Lossy Compression of Natural HDR Content based on Multi-Component Transform Optimization

Miguel Hernández*, Victor Sanchez*, Francesc Aulí-Llinàs[†] and Joan Serra-Sagristà[†]

Engineering and Physical Sciences Research Council

IEEE DMIAF 2016 MA1.5 :: July 4, 2016

• HD: 1920×1080 @ 30 fps, 10-bit: 1.2 TB (222 MB/s)

- HD: 1920×1080 @ 30 fps, 10-bit: 1.2 TB (222 MB/s)
- 4K: 3840×2160 @ 50 fps, 10-bit: 7.6 TB (1483 MB/s)

- HD: 1920×1080 @ 30 fps, 10-bit: 1.2 TB (222 MB/s)
- 4K: 3840×2160 @ 50 fps, 10-bit: 7.6 TB (1483 MB/s)
- 8K: 7680×4320 @ 50 fps, 12-bit: 36.7 TB (7119 MB/s)

- HD: 1920×1080 @ 30 fps, 10-bit: 1.2 TB (222 MB/s)
- 4K: 3840×2160 @ 50 fps, 10-bit: 7.6 TB (1483 MB/s)
- 8K: 7680×4320 @ 50 fps, 12-bit: 36.7 TB (7119 MB/s)

Unrealistic values

- HD: 1920×1080 @ 30 fps, 10-bit: 1.2 TB (222 MB/s)
- 4K: 3840×2160 @ 50 fps, 10-bit: 7.6 TB (1483 MB/s)
- 8K: 7680×4320 @ 50 fps, 12-bit: 36.7 TB (7119 MB/s)

Unrealistic values... because of compression!

- HD: 1920×1080 @ 30 fps, 10-bit: 1.2 TB (222 MB/s)
- 4K: 3840×2160 @ 50 fps, 10-bit: 7.6 TB (1483 MB/s)
- 8K: 7680×4320 @ 50 fps, 12-bit: 36.7 TB (7119 MB/s)

Unrealistic values... because of compression!

 \uparrow bit-depth (HDR) $\Rightarrow \uparrow$ need for compression

Compressed file

Image(s)

Linear Multi-Component Transforms (MCTs):

- decorrelate (color) components
- compact energy
- low complexity
- \Rightarrow improve coding performance

Linear Multi-Component Transforms (MCTs):

- decorrelate (color) components
- compact energy
- low complexity
- \Rightarrow improve coding performance

JPEG2000 + MCT Optimization: good on LDR

- Natural LDR: +4% PSNR
- Microscopy LDR: +6% PSNR

Linear Multi-Component Transforms (MCTs):

- decorrelate (color) components
- compact energy
- low complexity
- \Rightarrow improve coding performance

JPEG2000 + MCT Optimization: good on LDR

- Natural LDR: +4% PSNR
- Microscopy LDR: +6% PSNR

MCT Optimization for HDR contents?

Contents

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Contents

2 Compression of HDR data

3 Experimental results

Linear MCTs

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Focus on JPEG2000

Linear MCTs

Image

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Focus on linear MCTs:

$$\left(\begin{array}{c} u_i \\ v_i \\ w_i \end{array}\right) = \mathbf{M} \left(\begin{array}{c} r_i \\ g_i \\ b_i \end{array}\right) \quad \forall \text{ pix}$$

$$\forall$$
 pixel $(r_i, g_i, b_i),$

Linear MCTs

Image

Multi-component

transformation

Spatial DWT

Quantization

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Focus on linear MCTs:

$$\left(egin{array}{c} u_i \ v_i \ w_i \end{array}
ight) = \mathbf{M} \left(egin{array}{c} r_i \ g_i \ b_i \end{array}
ight) \quad orall ext{ pixel } (r_i, g_i, b_i),$$

where

$$\mathbf{M} = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{pmatrix} \in M_{3\times 3}(\mathbb{R})$$

Bitplane coding

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Existing Approaches

- Static MCTs
- Data-dependent MCTs

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Existing Approaches

- Static MCTs designed for LDR
- Data-dependent MCTs

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Existing Approaches

- Static MCTs designed for LDR
- Data-dependent MCTs neglect compressor details

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Existing Approaches

- Static MCTs designed for LDR
- Data-dependent MCTs neglect compressor details
- Our MCT optimization framework

МСТ	Optimization
0000	

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Our approach

Don't minimize correlation, mutual information

МСТ	Optimization
0000	n É

Our approach

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Don't minimize correlation, mutual information

```
Do { minimize distortion of reconstructed images
```

мст	Optimization
0000	

Compression of HDR data

Experimental results

Our approach

Don't minimize correlation, mutual information

Do { minimize distortion of reconstructed images use real compression algorithm

мст	Optimization
0000	

Compression of HDR data

Experimental results

Our approach

Don't minimize correlation, mutual information

Do { minimize distortion of reconstructed images use real compression algorithm state as optimization problem

argmin EVALUATEMSE(MCT) MCT

МСТ	Optimization
0000)

Compression of HDR data

Experimental results

Our approach

Don't minimize correlation, mutual information

minimize distortion of reconstructed images

- { use real compression algorithm
 state as optimization problem Do

argmin EVALUATEMSE(MCT) MCT

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Find best candidate

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

- Find best candidate
- Apply Powell's method

 $\underset{\circ\circ\circ\circ\circ}{\text{Compression of HDR data}}$

Experimental results

Contents

МСТ	Optimization
0000	

Compression of HDR data $\bullet 000$

Experimental results

Original MCT Optimization designed for:

- 8-bit integer images
- 3 components (R,G,B)

МСТ	Optimization
0000	

Compression of HDR data $\bullet 000$

Experimental results

Original MCT Optimization designed for:

- 8-bit integer images
- 3 components (R,G,B)

How to apply on HDR data?

МСТ	Optimization
0000	

Original MCT Optimization designed for:

- 8-bit integer images
- 3 components (R,G,B)

How to apply on HDR data?

- Color-graded HDR
- Scene radiance
- Bayer CFA mosaics

Compression of HDR data 000

Experimental results

Color-graded HDR

- 0.005-4000 cd/m^2 Rec.2020
- \bullet RGB, 1920 \times 1080
- 16-bit integers

Compression of HDR data 000

Experimental results

Color-graded HDR

- 0.005-4000 cd/m^2 Rec.2020
- RGB, 1920 \times 1080
- 16-bit integers

High-level description
Compression of HDR data 000

Experimental results

Color-graded HDR

- 0.005-4000 cd/m^2 Rec.2020
- RGB, 1920 \times 1080
- 16-bit integers

Modifications:

Compression of HDR data 000

Experimental results

Color-graded HDR

- 0.005-4000 cd/m^2 Rec.2020
- RGB, 1920 \times 1080
- 16-bit integers

Modifications:

Compression of HDR data 000

Experimental results

Color-graded HDR

- 0.005-4000 $cd/m^2 \ Rec.2020$
- RGB, 1920 \times 1080
- 16-bit integers

Modifications:

✓ JPEG2000 supports 16-bit images

Compression of HDR data 0000

Experimental results

- Raw video footage
- Needs to be "developed"
- 16-bit floats

Compression of HDR data 0000

Experimental results

- Raw video footage
- Needs to be "developed"
- 16-bit floats

Compression of HDR data 0000

Experimental results

- Raw video footage
- Needs to be "developed"
- 16-bit *floats*
 - 1 bit sign
 - 5 bit exponent
 - 11 bit mantissa

Compression of HDR data 0000

Experimental results

- Raw video footage
- Needs to be "developed"
- 16-bit *floats*
 - 1 bit sign
 - 5 bit exponent
 - 11 bit mantissa
 - $\Rightarrow \downarrow$ values: \uparrow precision
 - \Rightarrow low average intensity

Compression of HDR data 0000

0.25

Experimental results

65535

Scene Radiance HDR

Raw video footage
 Needs to be "developed"
 16-bit floats

 1 bit sign
 5 bit exponent
 11 bit mantissa
 ↓values: ↑precision
 ⇒ low average intensity

Modifications:

- [Xu2005] Apply $y = \log_2(x x_{\min} + 1)$
- ② [Xu2005] Uniform quantizer: float → integers map $[y_{min}, y_{max}] \rightarrow [0, 2^{16} - 1]$

Compression of HDR data 0000

Experimental results

Scene Radiance HDR

- Raw video footage
- Needs to be "developed"
- 16-bit *floats*
 - 1 bit sign
 - 5 bit exponent
 - 11 bit mantissa
 - $\Rightarrow \downarrow$ values: \uparrow precision
 - \Rightarrow low average intensity

Modifications:

- [Xu2005] Apply $y = \log_2(x x_{\min} + 1)$
- ② [Xu2005] Uniform quantizer: float → integers map [y_{min}, y_{max}] → [0, 2¹⁶ - 1]
- ✓ Use 16-bit EvaluateMSE

Compression of HDR data 000 \bullet

Experimental results

Bayer CFA Mosaics

- Raw camera output
- 10-14-bit integers
- Needs to be "developed"
- R,G,B mosaic

Compression of HDR data 000 \bullet

Experimental results

Bayer CFA Mosaics

- Raw camera output
- 10-14-bit integers
- Needs to be "developed"
- R,G,B mosaic

Compression of HDR data 000 \bullet

Experimental results

Bayer CFA Mosaics

- Raw camera output
- 10-14-bit integers
- Needs to be "developed"
- R,G,B mosaic

Modifications:

Split into 4 components

Following [Koh2003]:

Compression of HDR data 0000

Experimental results

Bayer CFA Mosaics

- Raw camera output
- 10-14-bit integers
- Needs to be "developed"
- R,G,B mosaic

Modifications:

- Split into 4 components
- Optimize 4 × 4 matrix $\begin{pmatrix} m_{0,0} & m_{0,1} & m_{0,2} \\ m_{1,0} & m_{1,1} & m_{1,2} \\ m_{2,0} & m_{2,1} & m_{2,2} \\ m_{0,0} & m_{0,1} & m_{0,2} \end{pmatrix}$ $m_{0,3}$ $m_{1,3}$

 $m_{2,3}$ $m_{3.1}$ $m_{3,2}$ $m_{3,3}$ Following [Koh2003]:

Compression of HDR data 0000

Experimental results

Bayer CFA Mosaics

- Raw camera output
- 10-14-bit integers
- Needs to be "developed"
- R,G,B mosaic

Modifications:

- Split into 4 components
- Optimize 4 × 4 matrix

 $\begin{pmatrix} m_{0,0} & m_{0,1} & m_{0,2} & m_{0,3} \\ m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,0} & m_{3,1} & m_{3,2} & m_{3,3} \end{pmatrix}$

✓ JPEG2000 supports 4 × 4 MCTs

Following [Koh2003]:

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Color-graded HdM-HDR-2014

- Froehlich et al.'s Color-graded HdM-HDR-2014
- 16 sequences, 10 frames/sequence = 160 images
- 1920 \times 1080, 16-bit int, RGB

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Color-graded HdM-HDR-2014

•
$$\uparrow$$
rate $\Rightarrow \uparrow$ gain

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Color-graded HdM-HDR-2014

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
0.962 bpp				

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Color-graded HdM-HDR-2014

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
0.062 have	44.86 dB	44.17 dB	44.03 dB	45.15 dB
0.902 ppp	(anchor)	-1.55%	-1.86%	+0.63%

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Color-graded HdM-HDR-2014

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
0.060 have	44.86 dB	44.17 dB	44.03 dB	45.15 dB
0.902 bpp	(anchor)	-1.55%	-1.86%	+0.63%

- OptimizeMCT > KLT, OST
- Better for all images

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Largest/smallest improvements

Largest improvements (1.44% - 1.77%)

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Largest/smallest improvements

Largest improvements (1.44% - 1.77%)

Smallest improvements (0.06% - 0.11%)

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Scene radiance HdM-HDR-2014

- Froehlich et al.'s Reconstructed scene radiance HdM-HDR-2014
 - 16 sequences, 10 frames/sequence = 160 images
 - 1920 \times 1080, 16-bit float, RGB

Compression of HDR data

Experimental results

Scene radiance HdM-HDR-2014

- Gains across all bitrates
- \uparrow rate $\Rightarrow \uparrow$ gain
- Smaller gains than for color-graded

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Scene radiance HdM-HDR-2014

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
0.554 bpp				

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Scene radiance HdM-HDR-2014

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
0 554 have	49.37 dB	43.75 dB	48.85 dB	49.60 dB
0.554 ppp	(anchor)	-11.39%	-1.05%	+0.47%

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Scene radiance HdM-HDR-2014

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
	49.37 dB	43.75 dB	48.85 dB	49.60 dB
0.554 bpp	(anchor)	-11.39%	-1.05%	+0.47%

- OptimizeMCT > KLT, OST
- Better for all images

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Scene radiance HdM-HDR-2014

Largest improvements (0.90% - 1.31%)

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Scene radiance HdM-HDR-2014

Largest improvements (0.90% - 1.31%)

Smallest improvements (0.09% - 0.14%)

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

- 20 Nikon camera models
- 20 real Bayer CFA images
- 3000 \times 2000, 12–14-bit integers, 4 components

Bayer CFA

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

- Gains across all bitrates
- Smaller gains than for color-graded/radiance

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Average 20 images:

Avg. Rate	KLT	No MCT	OST	OptimizeMCT

0.413 bpp

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Average 20 images:

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
0.412 hpm	47.37 dB	45.96 dB	47.33 dB	47.45 dB
0.415 ppp	(anchor)	-2.99%	-0.08%	+0.17%

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Average 20 images:

Avg. Rate	KLT	No MCT	OST	OptimizeMCT
0.413 bpp	47.37 dB	45.96 dB	47.33 dB	47.45 dB
	(anchor)	-2.99%	-0.08%	+0.17%

- OptimizeMCT > KLT, OST
- Better for all images

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Conclusions & Future Work

• OptimizeMCT: can be adapted to HDR

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Conclusions & Future Work

- OptimizeMCT: can be adapted to HDR
- Improve upon KLT, OST (PSNR, all images)

Set	OST vs KLT	OptimizeMCT vs KLT
Color graded	-1.86%	+0.63%
Scene radiance	-1.05%	+0.47%
Bayer CFA	-0.08%	+0.17%
$\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Conclusions & Future Work

- OptimizeMCT: can be adapted to HDR
- Improve upon KLT, OST (PSNR, all images)

Set	OST vs KLT	OptimizeMCT vs KLT
Color graded	-1.86%	+0.63%
Scene radiance	-1.05%	+0.47%
Bayer CFA	-0.08%	+0.17%

• Future:

- New metrics: HDR-VDP-2
- New coders: HEVC

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

Conclusions & Future Work

- OptimizeMCT: can be adapted to HDR
- Improve upon KLT, OST (PSNR, all images)

Set	OST vs KLT	OptimizeMCT vs KLT
Color graded	-1.86%	+0.63%
Scene radiance	-1.05%	+0.47%
Bayer CFA	-0.08%	+0.17%

• Future:

- New metrics: HDR-VDP-2
- New coders: HEVC

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT Optimization

Decisions

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT Optimization

- Global vs local?
- Optimization algorithm?

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT Optimization

- Global vs local?
- Optimization algorithm?

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT Optimization

- Global vs local?
- Optimization algorithm?

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT Optimization

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT Optimization

 $\begin{array}{c} \text{Compression of HDR data} \\ \text{0000} \end{array}$

Experimental results

MCT Optimization

Decisions

- ✓ Optimization algorithm
- ✓ Initial MCT
- ? Iteration count

Decisions

 \checkmark

algorithm

Compression of HDR data

Experimental results 0000000000000

MCT Optimization

