Transform Optimization for the Lossy Coding of Pathology Whole-Slide Images

Miguel Hernández^{*}, Victor Sanchez^{*}, Francesc Aulí-Llinàs[†] and Joan Serra-Sagristà[†]

Engineering and Physical Sciences Research Council

Data Compression Conference March 30, 2016

Contents

Whole-Slide Pathology Images

2 Lossy Compression of WSIs • Multi-Component Transforms (MCTs) • Previous Approaches

Lossy Compression of WSIs

Our Approach: MCT Optimization

Contents

Lossy Compression of WSIs
 Multi-Component Transforms (MCTs)
 Previous Approaches

Lossy Compression of WSIs

Our Approach: MCT Optimization

Pathology Workflow

Lossy Compression of WSIs

Our Approach: MCT Optimization

Pathology Workflow

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Whole-Slide Images

Lossy Compression of WSIs

Our Approach: MCT Optimization

Whole-Slide Images

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Whole-Slide Images

Lossy Compression of WSIs

Our Approach: MCT Optimization

Advantages of Whole-Slide Images

Pathology Image Crop

Advantages over glass:

- More pathologists
- \Rightarrow better diagnosis

Lossy Compression of WSIs

Our Approach: MCT Optimization

Advantages of Whole-Slide Images

Pathology Image Crop

Advantages over glass:

- More pathologists
- \Rightarrow better diagnosis
 - Computer-aided methods

Lossy Compression of WSIs

Our Approach: MCT Optimization

Advantages of Whole-Slide Images

Pathology Image Crop

Advantages over glass:

- More pathologists
- \Rightarrow better diagnosis
 - Computer-aided methods
 - Formative scenarios

Lossy Compression of WSIs

Our Approach: MCT Optimization

Challenges of Whole-Slide Images

Pathology Image Crop

Challenges:

• Huge dimensions (>3.5 Gpx)

Lossy Compression of WSIs

Our Approach: MCT Optimization

Challenges of Whole-Slide Images

Pathology Image Crop

Challenges:

- Huge dimensions (>3.5 Gpx)
- RGB components

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Challenges of Whole-Slide Images

Pathology Image Crop

Challenges:

- Huge dimensions (>3.5 Gpx)
- RGB components
- \Rightarrow Gigabytes of raw data (> 11 GB/img)

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Challenges of Whole-Slide Images

Pathology Image Crop

Challenges:

- Huge dimensions (>3.5 Gpx)
- RGB components
- \Rightarrow Gigabytes of raw data (> 11 GB/img)
 - Need efficient methods
 - Storage
 - Transmission
 - Visualization

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Challenges of Whole-Slide Images

Pathology Image Crop

Challenges:

- Huge dimensions (>3.5 Gpx)
- RGB components
- \Rightarrow Gigabytes of raw data (> 11 GB/img)
 - Need efficient methods
 - Storage
 - Transmission
 - Visualization

⇒ Compression: natural approach

Lossy Compression of WSIs

- 2 Lossy Compression of WSIs
 - Multi-Component Transforms (MCTs)
 - Previous Approaches

Lossy Compression of WSIs

Our Approach: MCT Optimization

Lossy Compression of WSIs

Our Approach: MCT Optimization

Multi-Component Transforms (MCTs)

Avg. inter-component correlation:

- Lymphatic: 0.9823
- Pancreatic: 0.8718
- Whole-slide images
- Renal: 0.9524

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Multi-Component Transforms (MCTs)

Avg. inter-component correlation:

- Lymphatic: 0.9823
- Pancreatic: 0.8718 Whole-slide images
- Renal: 0.9524
- ISO 12640-1: 0.8068ISO 12640-2: 0.6758
- Natural images

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Multi-Component Transforms (MCTs)

Avg. inter-component correlation:

- Lymphatic: 0.9823
- Pancreatic: 0.8718
 Whole-slide images
- Renal: 0.9524
- ISO 12640-1: 0.8068ISO 12640-2: 0.6758
- Natural images

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Lossy Compression of WSIs

Our Approach: MCT Optimization

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Lossy Compression of WSIs

Our Approach: MCT Optimization

Multi-Component Transforms (MCTs)

Advantages:

- decorrelate components
- compact energy
- \Rightarrow enhance compression

Lossy Compression of WSIs

Our Approach: MCT Optimization

Multi-Component Transforms (MCTs)

Focus on linear MCTs:

$$\left(egin{array}{c} u_i \ v_i \ w_i \end{array}
ight) = \mathbf{M} \left(egin{array}{c} r_i \ g_i \ b_i \end{array}
ight) \quad orall \ ext{ pixel } (r_i, g_i, b_i),$$

Lossy Compression of WSIs

Our Approach: MCT Optimization

Multi-Component Transforms (MCTs)

Focus on linear MCTs:

$$\left(egin{array}{c} u_i \ v_i \ w_i \end{array}
ight) = \mathbf{M} \left(egin{array}{c} r_i \ g_i \ b_i \end{array}
ight) \quad orall ext{ pixel } (r_i, g_i, b_i),$$

where

$$\mathbf{M} = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{pmatrix} \in M_{3\times 3}(\mathbb{R})$$

Lossy Compression of WSIs 000000

Our Approach: MCT Optimization

2 Lossy Compression of WSIs

Multi-Component Transforms (MCTs)

• Previous Approaches

Static MCTs

Lossy Compression of WSIs

Our Approach: MCT Optimization $_{\rm OOOOO}$

• Fixed matrix for all images

Static MCTs

Lossy Compression of WSIs

- Fixed matrix for all images
- Examples
 - Irreversible Color Transform $(ICT/YUV/YC_rC_b)$
 - YIQ

Static MCTs

Lossy Compression of WSIs

- Fixed matrix for all images
- Examples
 - Irreversible Color Transform (ICT/YUV/YCrCb)
 - YIQ

\sim ICT matrix						
(0.3	0.6	0.1			
-	-0.2	-0.3	0.5			
	0.5	-0.4	-0.1			

\sim	YIQ r	natrix	
	(0.3	0.6	0.1
	0.6	-0.3	-0.3
	0.2	-0.5	0.3

Static MCTs

Lossy Compression of WSIs

- Fixed matrix for all images
- Examples
 - Irreversible Color Transform $(ICT/YUV/YC_rC_b)$
 - YIQ
- Designed for natural images

~ICT matrix							
(0.3	0.6	0.1				
-	-0.2	-0.3	0.5				
	0.5	-0.4	-0.1				

\sim	YIQ r	natrix	
	(0.3	0.6	0.1
	0.6	-0.3	-0.3
	0.2	-0.5	0.3

Static MCTs

Lossy Compression of WSIs

- Fixed matrix for all images
- Examples
 - Irreversible Color Transform (ICT/YUV/YCrCb)
 - YIQ
- Designed for natural images
 ⇒ subobtimal for WSIs

\sim	\sim ICT matrix						
(0.3	0.6	0.1				
-	-0.2	-0.3	0.5				
	0.5	-0.4	-0.1				

$\sim \! YI$	Qm	atrix	
/0	.3	0.6	0.1
0	.6	-0.3	-0.3
\o	.2	-0.5	0.3

Lossy Compression of WSIs

Our Approach: MCT Optimization $_{\rm OOOOO}$

Data-dependent MCTs

• Tailored for each input image

Lossy Compression of WSIs

Our Approach: MCT Optimization

- Tailored for each input image
- Examples:
 - Karhunen-Loève Transform (KLT/PCA)
 - Optimal Spectral Transform (OST)

Lossy Compression of WSIs

Our Approach: MCT Optimization

- Tailored for each input image
- Examples:
 - Karhunen-Loève Transform (KLT/PCA)
 - \Rightarrow minimize correlation
 - Optimal Spectral Transform (OST)
 - ⇒ minimize mutual information

Lossy Compression of WSIs

Our Approach: MCT Optimization

- Tailored for each input image
- Examples:
 - Karhunen-Loève Transform (KLT/PCA)
 - ⇒ minimize correlation
 - Optimal Spectral Transform (OST)
 - ⇒ minimize mutual information
- Neglect compressor details:
 - DWT after MCT (KLT)
 - Entropy coder contexts

Lossy Compression of WSIs

Our Approach: MCT Optimization

- Tailored for each input image
- Examples:
 - Karhunen-Loève Transform (KLT/PCA)
 - ⇒ minimize correlation
 - Optimal Spectral Transform (OST)
 - ⇒ minimize mutual information
- Neglect compressor details:
 - DWT after MCT (KLT)
 - Entropy coder contexts
- \Rightarrow suboptimal results

Lossy Compression of WSIs

Our Approach: MCT Optimization

- Lossy Compression of WSIs
 Multi-Component Transforms (MCTs)
 - Previous Approaches

Lossy Compression of WSIs

Our Approach: MCT Optimization • 0000

Our approach

Don't minimize correlation, mutual information

Lossy Compression of WSIs

Our Approach: MCT Optimization

Our approach

Don't minimize correlation, mutual information

Do { minimize MSE of reconstructed images

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Our approach

Don't minimize correlation, mutual information

Do { minimize MSE of reconstructed images use real compression algorithm

Lossy Compression of WSIs

Our Approach: MCT Optimization 0000

Our approach

Don't minimize correlation, mutual information

argmin EVALUATEMSE(MCT) MCT

Lossy Compression of WSIs

Our Approach: MCT Optimization 0000

Our approach

Don't minimize correlation, mutual information

minimize MSE of reconstructed images

- **Do** use real compression algorithm state as optimization problem

argmin EVALUATEMSE(MCT) MCT

Lossy Compression of WSIs

Our Approach: MCT Optimization $0 \bullet 000$

MCT Optimization

Analytical EVALUATEMSE: intractable

Lossy Compression of WSIs

Our Approach: MCT Optimization $0 \bullet 000$

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Lossy Compression of WSIs

Our Approach: MCT Optimization

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Decisions

? Optimization algorithm

Lossy Compression of WSIs

Our Approach: MCT Optimization

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Decisions

? Optimization algorithm

- Global vs local?
- Optimization algorithm?

Lossy Compression of WSIs

Our Approach: MCT Optimization

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Decisions

? Optimization algorithm

- Global vs local? $9D \Rightarrow Local$
- Optimization algorithm?

Lossy Compression of WSIs

Our Approach: MCT Optimization

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

- Global vs local? $9D \Rightarrow Local$
- Optimization algorithm? Powell's

Lossy Compression of WSIs

Our Approach: MCT Optimization

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Decisions √ Optimization algorithm

?

Initial MCT

Lossy Compression of WSIs

Our Approach: MCT Optimization

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Lossy Compression of WSIs

Our Approach: MCT Optimization

MCT Optimization

Analytical $\mathrm{EvaluateMSE}:$ intractable \Rightarrow numerical optimization

Decisions

algorithm

 \checkmark

 \checkmark

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

MCT Optimization

Analytical EVALUATEMSE: intractable \Rightarrow numerical optimization

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Experimental Results

Lossy Compression of WSIs

Our Approach: MCT Optimization

Experimental Results

Improvements:

all bitrates

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Experimental Results

Improvements:

all bitrates

Lossy Compression of WSIs

Our Approach: MCT Optimization

Experimental Results

Improvements:

- all bitrates
- different
 WSI types

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Average reconstructed PSNR (dB)						
Images	Target bitrate	No MCT	ІСТ	KLT	OST	Optimize MCT
All (23)	0.54					

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Average reconstructed PSNR (dB)						
Images	Target bitrate	No MCT	ІСТ	KLT	OST	Optimize MCT
All (23)	0.54	44.42	46.62	46.76	47.16	

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Average reconstructed PSNR (dB)						
Images	Target bitrate	N₀ MCT	ІСТ	KLT	OST	Optimize MCT
All (23)	0.54	44.42	46.62	46.76	47.16	49.61

- Avg. improvement vs KLT: 2.85 dB
- Improvement vs KLT up to: 5 dB

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Average	reconstructed	PSNR	(dB)	
---------	---------------	------	------	--

Images	Target bitrate	N₀ MCT	ІСТ	KLT	оѕт	Optimize MCT
All (23)	0.54	44.42	46.62	46.76	47.16	49.61
Lymphatic (6) Renal (7) Pancreatic (10)	0.58 0.42 0.68	41.56 44.74 46.43	46.14 47.41 45.91	44.74 47.39 47.59	45.81 48.02 47.10	47.38 49.64 51.49

- Avg. improvement vs KLT: 2.85 dB
- Improvement vs KLT up to: 5 dB

Lossy Compression of WSIs

Our Approach: MCT Optimization 00000

Average	reconstructed	PSNR ((dB)	
---------	---------------	--------	------	--

Images	Target bitrate	N₀ MCT	ІСТ	KLT	ОЅТ	Optimize MCT
All (23)	0.54	44.42	46.62	46.76	47.16	49.61
Lymphatic (6) Renal (7) Pancreatic (10)	0.58 0.42 0.68	41.56 44.74 46.43	46.14 47.41 45.91	44.74 47.39 47.59	45.81 48.02 47.10	47.38 49.64 51.49

- Avg. improvement vs KLT: 2.85 dB
- Improvement vs KLT up to: 5 dB
- Improvements for all images

Lossy Compression of WSIs

Our Approach: MCT Optimization

Conclusions & Future Work

Conclusions:

 Traditional MCTs: suboptimal for WSIs

Lossy Compression of WSIs

Our Approach: MCT Optimization

Conclusions & Future Work

Conclusions:

- Traditional MCTs: suboptimal for WSIs
- Numerical optimization: feasible

Lossy Compression of WSIs

Our Approach: MCT Optimization

Conclusions & Future Work

Conclusions:

- Traditional MCTs: suboptimal for WSIs
- Numerical optimization: feasible
 - 2.85 dB better than KLT
 - Several tissue types

Lossy Compression of WSIs

Our Approach: MCT Optimization

Conclusions & Future Work

Conclusions:

- Traditional MCTs: suboptimal for WSIs
- Numerical optimization: feasible
 - 2.85 dB better than KLT
 - Several tissue types

- Reduce time complexity
 - Current: 120 min
 - Scan: 1–3 min

Lossy Compression of WSIs

Our Approach: MCT Optimization

Conclusions & Future Work

Conclusions:

- Traditional MCTs: suboptimal for WSIs
- Numerical optimization: feasible
 - 2.85 dB better than KLT
 - Several tissue types

- Reduce time complexity
 - Current: 120 min
 - Scan: 1–3 min
- Reuse optimized MCTs

Lossy Compression of WSIs

Our Approach: MCT Optimization

Conclusions & Future Work

Conclusions:

- Traditional MCTs: suboptimal for WSIs
- Numerical optimization: feasible
 - 2.85 dB better than KLT
 - Several tissue types

- Reduce time complexity
 - Current: 120 min
 - Scan: 1–3 min
- Reuse optimized MCTs
- Extend to lossless

Lossy Compression of WSIs

Our Approach: MCT Optimization

Conclusions & Future Work

Conclusions:

- Traditional MCTs: suboptimal for WSIs
- Numerical optimization: feasible
 - 2.85 dB better than KLT
 - Several tissue types

- Reduce time complexity
 - Current: 120 min
 - Scan: 1–3 min
- Reuse optimized MCTs
- Extend to lossless