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Abstract—The use of whole-slide images (WSIs) in pathology
entails stringent storage and transmission requirements because
of their huge dimensions. Therefore, image compression is an
essential tool to enable efficient access to these data. In particular,
color transforms are needed to exploit the very high degree of
inter-component correlation and obtain competitive compression
performance. Even though state-of-the-art color transforms re-
move some redundancy, they disregard important details of the
compression algorithm applied after the transform. Therefore,
their coding performance is not optimal. We propose an optimiza-
tion method called Mosaic Optimization for designing irreversible
and reversible color transforms simultaneously optimized for any
given WSI and the subsequent compression algorithm. Mosaic
Optimization is designed to attain reasonable computational
complexity and enable continuous scanner operation. Exhaustive
experimental results indicate that, for JPEG 2000 at identical
compression ratios, the optimized transforms yield images more
similar to the original than other state-of-the-art transforms.
Specifically, irreversible optimized transforms outperform the
Karhunen-Loève Transform (KLT) in terms of PSNR (up to
1.1 dB), the HDR-VDP-2 visual distortion metric (up to 3.8 dB)
and accuracy of computer-aided nuclei detection tasks (F1 score
up to 0.04 higher). Additionally, reversible optimized transforms
achieve PSNR, HDR-VDP-2 and nuclei detection accuracy gains
of up to 0.9 dB, 7.1 dB and 0.025, respectively, when compared
to the reversible color transform (RCT) in lossy-to-lossless
compression regimes.

Index Terms—Color-Transform Optimization, Whole-Slide Im-
ages, Image Compression.

I. INTRODUCTION

In the traditional pathology workflow, pathologists examine
specimens under an optical microscope to detect biological
structures relevant to the diagnosis. In virtual pathology, tra-
ditional glass slides are being replaced by digital whole-slide
images (WSIs). WSIs allow concurrent examination of a case
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by several pathologists, possibly in different geographical lo-
cations, to reduce medical errors [1]. Remote diagnosis can be
life-critical in isolated, impoverished or otherwise underserved
regions where experts are not available. Moreover, virtual
pathology can increase pathologist availability [2] and reduce
costs in pathology laboratories [3]. Recently, computer-aided
diagnosis (CAD) algorithms are being developed [4]–[12] to
assist the pathologists in the diagnosis, especially in tedious
and error-prone tasks. WSIs can also enhance performance to
help pathologists detect and classify clinical markers, and to
create annotated databases for training, research and reference
purposes [13].

An important difficulty when dealing with WSIs is their
huge size. A 15×15 mm specimen scanned at 40× magnifica-
tion requires a 60000×60000, 24-bit RGB color image, result-
ing in over 10 GB of raw data. Even at a lower, more common
0.5 µm resolution, images attain sizes of 30000× 30000 and
2.5 GB of uncompressed data [1], [14].

Furthermore, multiple WSIs –sometimes exceeding 35 [15]–
are commonly produced per case. Thus, hundreds of Terabytes
are produced yearly by a single WSI scanner [15], [16]. These
massive data volumes hinder the adoption of virtual pathol-
ogy. Excessive bandwidth demands can handicap the remote
visualization of WSIs, while stringent storage necessities –
including archiving and backup systems– can diminish the
cost-effectiveness of digital pathology workflows. In such a
scenario, image compression is paramount to alleviate these
storage and transmission problems.

Lossless coding provides perfect reconstruction of the data
produced by the WSI scanner. To the best of our knowledge,
only one work has proposed a lossless compression algorithm
specific for these images. In [17], High Efficiency Video
Coding (HEVC) [18] intra coding mode is adapted to the
multidirectional patterns that are typically present in these
images. In particular, sample-by-sample differential pulse-
code modulation is combined with uniform angular modes
to improve prediction across strong edges. However, perfect
reconstruction comes at the cost of relatively low compression
ratios, commonly between 2:1 and 4:1, which may not suffice
for interactive and remote WSI visualization purposes.

On the other hand, lossy compression can offer almost
arbitrary ratios at the cost of introducing some distortion in the
images. A number of studies –involving pathologists and real
specimens– have shown that the images reconstructed with
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lossy coding methods are suitable for clinical and research
purposes. Compression ratios up to 20:1 with JPEG 2000 [19]
yield statistically indistinguishable diagnostic results from
those obtained using traditional glass slides [20]–[22], and do
not affect the pathologists’ confidence on the diagnosis [23].
Average compression ratios of approximately 13:1 produce
images that pathologists deem indiscernible from the original
WSIs [24]. Compression ratios up to 200:1 can hinder human-
made diagnoses [21], but not some carcinoma-detection CAD
algorithms [23]. Traditional JPEG [25] has also been shown to
produce reconstructed images that can be employed for diag-
nosis [26]. Produced results are on par with the ones obtained
using glass slides [27], [28], although exact compression ratios
for JPEG have not been reported. An accurate rate-allocation
method specific for WSIs has also been proposed [29] for
lossy regimes with HEVC. In most commercial WSI scanners,
standard JPEG 2000 or JPEG compression is employed [14].

Color transforms improve compression by removing inter-
component redundancy [30]. Due to the especially strong sim-
ilarities among color components in WSIs, applying adequate
transforms can greatly improve compression performance.
WSI-specific color transforms are scarce [31], [32], although
other transforms can also be applied to exploit inter-component
similarities. In HEVC, fixed color-space translations can be
applied to the prediction residuals using the Adaptive Color
Transform [33]. JPEG 2000 Part 1 supports the irreversible
color transform (ICT) and the reversible color transform
(RCT) to decorrelate color components [19]. Arbitrary linear
transforms can be used in Part 2 of the standard [34]. In
commercial WSI scanners [14] and WSI compression works
in the literature [20]–[24], the ICT is the most common color
transform. The Karhunen-Loève Transform (KLT) typically
produces highly competitive compression results, which nor-
mally improve upon the ICT. For Gaussian sources, the KLT
is known to provide perfect color component decorrelation.
Notwithstanding, WSIs do not follow a Gaussian distribution.
Moreover, the KLT does not take into account the details of the
compression algorithm applied after the transform. Hence, its
compression performance is not optimal either. The Optimal
Spectral Transform algorithm (OST [35]) produces linear
transforms that minimize the mutual information among color
components when they are considered as random variables.
Mutual information of two random variables X and Y can be
expressed as I(X;Y ) = H(X) − H(X|Y ), where H(·) de-
notes the marginal entropy and H(·|·) the conditional entropy.
Therefore, lower mutual information implies less redundant
information in X and Y , which often improves compression
performance. The OST considers the spatial wavelet transform
and the quantization of JPEG 2000, but does not consider other
important aspects of JPEG 2000 such as its entropy coder.
Therefore, its actual compression performance is also subop-
timal. Color deconvolution methods are successfully applied in
CAD algorithms for WSIs [36]–[38]. These methods separate
image colors by using so-called deconvolution matrices, which
can be considered color transforms as well. However, these
transforms are not designed for compression and do not yield
competitive coding performance in practice.

This work introduces a fast mosaic-based optimization

method for designing color transforms that overcomes the
inherent drawbacks of the approaches described above. In what
follows, this method is referred to as Mosaic Optimization.
For any input image, Mosaic Optimization produces a color
transform that is optimized simultaneously for the image and
for the compression algorithm applied after the transform. As
a result, the produced transform attains compression perfor-
mance results that improve upon the state of the art.

To allow reasonable computational complexity, the pro-
posed Mosaic Optimization employs a novel mosaic-based
sampling technique. Representative blocks of the image are
first extracted using a fast heuristic, and then an optimization
process is applied to a mosaic of the extracted blocks. Mosaic
Optimization builds upon the Full Optimization method, orig-
inally presented in [31]. Even though both methods produce
transforms that yield very similar compression performance,
Full Optimization has a prohibitive computational complexity,
i.e., exceeding 2 hours per image on average–, which makes
it unusable in practical scenarios. The proposed Mosaic Opti-
mization method enables execution times close to 2.4 minutes
on the workstation employed for this research, i.e., 54 times
faster than Full Optimization and comparable to the time it
takes to scan the WSIs [14], [27]. This allows continuous
pipelining of the scanning and the compression of WSIs using
reasonable computing power and requiring additional storage
space for only one scanned image. Mosaic Optimization also
builds upon the Single Patch Optimization method intro-
duced in [32]. Although both exhibit similar computational
complexity, Mosaic Optimization yields better compression
performance than Single Patch Optimization, as discussed
later in Section IV. We also propose an extension to design
optimized reversible color transforms that can be used for
lossless and progressive lossy-to-lossless compression. This
can be useful in scenarios where the original data must be
stored losslessly, e.g., due to legal restrictions, and bandwidth-
efficient lossy representations are necessary, e.g., for remote
visualization of the WSIs.

Exhaustive experimental results are provided to evaluate the
color transforms produced with Mosaic Optimization when
applied to WSIs depicting different tissue types. The PSNR–
based on the mean squared error–, the HDR-VDP-2 [39] met-
ric –calibrated to emulate a human observer– and the accuracy
of a CAD nuclei detection algorithm [10] are employed for
this purpose. Results indicate that the Mosaic Optimization
produces irreversible transforms that outperform the ICT and
the KLT in terms of PSNR, HDR-VDP-2 and nuclei detection
performance. The optimized reversible transforms improve
upon the RCT with respect to the PSNR, HDR-VDP-2 and
CAD metrics in lossy-to-lossless regimes, i.e., when only part
of a losslessly compressed codestream is used for reconstruc-
tion. Both the optimized transforms and the RCT produce very
similar bitrates in lossless compression regimes.

To recapitulate, we propose a color transform optimization
method based on [31]. The main novelties of this work are
(a) an original mosaic-based method to reduce computational
complexity that outperforms the one described in [32]; (b)
an extension of [31] to allow progressive lossy-to-lossless
compression; and (c) an exhaustive performance analysis that
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(a) (b) (c)

Fig. 1: Sample WSIs depicting (a) lymphatic tissue; (b)
pancreatic tissue; (c) renal tissue.

extends those of [31], [32] with more test images, new tissue
types and comparison with more color transform design algo-
rithms. With the proposed method, the coding performance of
existing compression algorithms can be significantly enhanced
and, improving upon [31], only reasonable computational
complexity is required. Moreover, the proposed lossy-to-
lossless extension broadens the applicability of this work to
situations where a lossless copy of the image must be stored.

The rest of the paper is structured as follows. Section II
describes key properties of WSIs that motivate the use of color
transformations for compression. Section III describes the
proposed color-transform optimization framework, including
the mosaic-based approach. Section IV provides extensive
experimental results and Section V concludes the paper.

II. WHOLE-SLIDE IMAGES AND COLOR TRANSFORMS

A key step to generate WSIs is to stain the biological
sample to highlight structures relevant to the diagnostic task at
hand. The most commonly employed stain for many types of
WSIs is Hematoxylin and Eosin (H&E) [40], which exposes
cell nuclei and cytoplasm. The stained slide is then inserted
in a special scanner with objective lenses for magnification,
which registers a color image depicting the complete glass
slide. This takes less than 3 minutes per slide [14], [27].

Optical magnification factors of 20×, 40× or even
100× [1], [10], [27] are necessary to provide a microscope-like
viewing experience. These magnification factors correspond
to resolutions of 0.5 µm, 0.25 µm and 0.1 µm per pixel,
respectively, and are often used with numerical aperture (NA)
of 0.75 [14]. A comprehensive description of the hardware
and methods employed to scan WSIs is available in [14].
As a result of the high magnification levels, the 24-bit RGB
WSIs output by the scanners have very high spatial resolutions,
which motivates compression, but also limits the complexity
of the algorithms that can be used under reasonable time and
memory constraints.

Due to the staining process, each image exhibits a limited
range of color gamut. H&E-stained images typically contain
violet, blue and red hues only, as can be seen in Fig. 1.
Therefore, WSIs exhibit inter-component redundancy signif-
icantly higher than regular photographic imagery. Table I

shows average values if these key characteristics for 50 WSIs
considered in this work. In order to provide a meaningful
discussion for all types of WSI, a total of 16 types of
tissue are hereinafter considered. The average inter-component
correlation for these images exceeds 0.95, whereas for the
ISO-12640-1 [41] and ISO-12640-2 [42] sets of natural images
the average correlation is 0.81 and 0.66, respectively.

Due to the high inter-component correlation present in
WSIs, employing adequate color transforms is crucial to ob-
tain competitive compression performance. Traditional static
transforms such as YCbCr [19] and YIQ [43] translate each
RGB pixel into a different color space using a fixed 3 × 3
matrix M = (mi,j):( u

v
w

)
=

( m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

)( r
g
b

)
, (1)

where (u, v, w) represents the pixel in the new color space
and mi,j are real-valued entries. Typical transforms are not
designed for the particular characteristics of WSIs. Thus, they
fail to properly decorrelate color components, which in turn
may negatively affect compression.

Data-dependent approaches adapt the coefficients of the
transform matrix M to the image to be compressed. For
instance, the well-known Karhunen-Loève Transform (KLT)
removes any inter-component correlation in the transformed
image components. Other methods based on independent
component analysis such as the Optimal Spectral Transform
(OST) [35] minimize the mutual information. In Strutz’s
work [44], an adaptive transform is implemented by choosing
an optimal mode based on the entropy of the image trans-
formed with that mode. Another reversible transform was
proposed by Kim et al., which applies an additional lifting
step to decorrelate the U and V components produced by the
ICT [45]. These data-dependent approaches yield significant
compression performance gains as compared to non-adaptive
methods. Although data-dependent methods in the literature
are designed to optimize criteria such as inter-component
correlation or mutual information, none of these methods
considers all aspects of the coding algorithm employed after
the color transform. For instance, the KLT does not take
into account any spatial decorrelation applied after the color
transform. The OST includes the 2D discrete wavelet trans-
form (DWT) in its model, but not the probability model
used to drive the subsequent entropy coding stage. In turn,
Strutz’s method evaluates each candidate color transform by
applying LOCO-I’s [46] spatial predictor after the spectral
decorrelation. The entropy of the produced residuals is then
used as a surrogate for the actual bitrate of the compressed
bitstream. Hence, existing data-dependent color transforms do
not attain optimal compression performance either.

III. COLOR TRANSFORM OPTIMIZATION

This section describes a color transform optimization algo-
rithm that attains higher compression efficiency for WSIs than
the KLT and other state-of-the-art component transforms. Sec-
tion III-A describes a numerical transform-optimization frame-
work and Section III-B describes the Mosaic Optimization
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TABLE I: Properties of 50 H&E-stained WSIs considered in this work.

Set #Images #Tissue Dimensions Average Inter-Component Correlation
Types Min Size Max Size ρ(R,G) ρ(R,B) ρ(G,B) Average

Lymphatic 6 1 12288×17408 17408×25600 0.964 0.976 0.983 0.975
Pancreatic 10 1 12470×12938 31655×32619 0.918 0.919 0.990 0.942
Renal 7 1 9352×8139 34018×16327 0.903 0.908 0.991 0.934
Mixed 27 13 34018×16327 32001×21186 0.955 0.954 0.992 0.967
All images 50 16 9352×8139 31655×32619 0.942 0.943 0.990 0.958

algorithm, which is a fast approximation to this framework.
An extension of Mosaic Optimization that allows progressive
lossy-to-lossless transmission is introduced in Section III-C.

Note that, even though other parts of the compression
pipeline can also be optimized to provide improved compres-
sion results [45], the scope of this work is limited to studying
and optimizing the color transform stage for WSIs.

A. Optimization Framework

The design of efficient color transforms can be regarded as
an optimization problem. For instance, the KLT is defined to
remove inter-component correlation, while the OST minimizes
inter-component mutual information. These optimization cri-
teria generally have a positive effect on compression, although
they are not specifically devised to do so except under certain
assumptions such as high-rate scalar quantizers and Gaussian
sources for the KLT, which may not hold in practice and
therefore lead to suboptimal performance [47]. Contrarily, the
proposed framework is conceived to optimize compression
performance directly. Given an input image I , our framework
aims at finding a transform matrix M that minimizes the cost
function EVALUATEDISTORTION,

M = argmin
M ′

{EVALUATEDISTORTION(M ′, I)} . (2)

This function appraises a color transform M ′ by comparing
I with the reconstructed image obtained after compression
and decompression with M ′. This scheme is depicted in
Fig. 2. Note that, for each I , the same bitrate R must be
used for compression in EVALUATEDISTORTION for all color
transforms M ′ so that their relative performance can be
compared. A single M that works well for a wide range of
R can be obtained by using R = RICT(I)/2, where RICT(I)
is the compression rate attained for I by lossy JPEG 2000
using Kakadu v7.8 [48] with its default parameters with the
irreversible color transform, without limiting the target bitrate.
The value of R for each test image considered in this work
is available as supplementary content at http://ieeexplore.ieee.
org.

By construction, the resulting transform M is not only opti-
mized for I , but also for the compression algorithm employed
in the cost function. As discussed in Section I, JPEG 2000
has been successfully employed for compression of WSIs.
Part 2 of the standard provides the syntax for user-defined
color transforms [34]. Therefore, JPEG 2000 is considered
exclusively hereafter. Nevertheless, any other compression
algorithm that admits arbitrary linear color transforms could
also be used within this framework.

Fig. 2: Diagram of the EVALUATEDISTORTION cost function.

Any distortion metric can be used to compare the input
and the reconstructed images in Fig. 2. In this work, the mean
squared error (MSE) is employed due to its low computational
complexity and its efficient integration with the JPEG 2000
standard. As discussed later in Section IV, optimizing for MSE
ultimately improves results for the HDR-VDP-2 metric and for
the accuracy of CAD nuclei detection tasks.

Deriving an analytical expression for (2) is not practical
for coding systems such as JPEG 2000. This is due to the
complex non-linear nature of reversible transforms, spatial
decorrelation transforms, quantizers, entropy coders and rate-
allocation algorithms. Therefore, unlike for the KLT or the
OST, which assume simpler models, closed-form solutions
cannot be easily obtained for (2).

To produce competitive transforms, we employ our previ-
ously proposed iterative numerical optimization framework,
TRANSOPT [31], summarized in Fig. 3. In the Evaluate Candi-
dates box, several candidate transform matrices are compared
using the EVALUATEDISTORTION cost function described
above. Here, the identity transform (i.e., not applying any color
transform), the KLT, the YCbCr and the YIQ (a rotation of
YCbCr) transforms are employed as candidates. Note that the
set of initial transforms was empirically chosen to maximize
compression performance while minimizing the number of
such transforms. Only the best of these, i.e., the one that yields
the smallest cost for the input image, is further considered.
This transform, denoted “Best candidate M ′” in Fig. 3,
undergoes iterative optimization based on Powell’s conjugate
direction algorithm [49]. In the i-th iteration of this algorithm,
the coefficients of M ′ are modified using a conjugate gradient
method to produce M ′

i , to which EVALUATEDISTORTION is
applied to obtain Costi. Powell’s algorithm employs M ′

j and
Costj , j ≤ i, to generate M ′

i+1. This process, depicted with
blue dashed arrows in the figure, is repeated Niter times. The
output optimized transform Mopt is then defined as the M ′

i

with the smallest associated Costi among all iterations. No
improvements are observed for Niter > 250.

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
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Fig. 3: Diagram of the TRANSOPT transform optimization
framework.

Fig. 4: Diagram of the mosaic-based fast approximation to
TRANSOPT.

B. Mosaic Optimization

When the TRANSOPT framework is applied to WSIs, it
generates color transforms that improve upon the KLT and
other state-of-the art methods in terms of compression per-
formance. However, this approach –hereafter referred to as
Full Optimization– exhibits a run time exceeding 130 minutes
averaged for the 50 images referenced in Table I, as discussed
later in Section IV. A fast mosaic-based approximation to Full
Optimization, denoted Mosaic Optimization, is proposed next.

Over 95% of the run time of TRANSOPT is spent in the
EVALUATEDISTORTION function in compression, decompres-
sion and comparison tasks. To accelerate the execution, a small
version S of the input image is generated first, and then the
optimization framework is applied to S, as depicted in Fig. 4.
It is important to generate a representative version of the full-
size image so that the resulting color-transform MS yields
good coding performance for the original image. The proposed
method for generating S, referred to as GENERATEMOSAIC,
is provided in Algorithm 1. The image is first divided in a
rectangular grid with blocks of size blockSize×blockSize
(line 2). Some of the blocks are then selected to build the
mosaic image as follows. The number of different pixel colors
is computed for each grid block (lines 3–5). Here, a color
is defined as the 3D vector (r, g, b), and two colors (r, g, b)
and (r′, g′, b′) are considered identical if and only if r = r′,
g = g′ and b = b′. Blocks that contain very few different
colors typically depict portions of the background, which is
normally bright and homogeneous, as can be observed in
Fig. 1. Conversely, blocks with many different colors tend to
depict stained tissue and be more representative of the relevant
parts of the image. Consistent with this, grid blocks are sorted
by the number of colors (line 6) and only the top fraction
ϕ is kept as candidate blocks for the mosaic (line 7), where
ϕ is a real parameter in (0, 1). Finally, blocks are selected
with uniform probability from the list of candidates until the
total number of pixels reaches a certain target value (line 9).

Algorithm 1 Mosaic-based generation of a smaller image.
1: function GENERATEMOSAIC(inputImage, blockSize, ϕ)
2: gridBlocks← CREATEGRID(inputImage, blockSize)
3: for all gridBlocks as block do
4: block.colors← COUNTDIFFERENTCOLORS(block)
5: end for
6: sortedBlocks← SORTBYCOLORS(gridBlocks)
7: candidateBlocks← sortedBlocks[|sortedBlocks| · ϕ:
8: |sortedBlocks|]
9: selectedBlocks← UNIFORMSAMPLE(candidateBlocks)

10: mosaicImage← COMBINECELLS(selectedBlocks)
11: return mosaicImage
12: end function

Fig. 5: Crop of a mosaic image produced with Algorithm 1.

For this work, random uniform sampling is used, denoted by
UNIFORMSAMPLE in the Algorithm.

The resulting mosaic image is then created by concatenating
the selected blocks (line 10), as depicted in Fig. 5. Note that by
using adequate values of ϕ, blocks depicting only background
regions, which carry no useful information for the optimization
process, are rarely included in the mosaic images.

When the produced mosaic image is used in the
EVALUATEDISTORTION function, the JPEG 2000 compressor
is invoked with tiles of size blockSize, so that the 2D
spatial wavelet transform is never performed across the (ar-
tificial) block boundaries. Additionally, identical bit budgets
are assigned to each mosaic block to avoid individual blocks
dominating the rate allocation and the cost function. Since
the selected blocks are chosen in a spatially uniform way,
the mosaic image is representative of all regions depicting
stained tissue. Moreover, the probability of a given biological
structure appearing in a block is comparable to the fraction
of tissue area depicting this structure. Therefore, this mosaic-
based approach produces color transforms MS optimized to
produce good overall performance across the original WSI.
This is in contrast with the fast method presented in [32],
where the small image version contains pixels from a single
area of the image.

The maximum area of the mosaic image, hereinafter referred
to as maximum mosaic area (MMA), determines the time
complexity of the proposed algorithm. Note that it is the MMA
and not ϕ that has a measurable impact on the size of the
produced mosaic images, and therefore on execution times. In
general, smaller MMAs need shorter execution times, although
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coding performance may be affected when the area is too
small. We found that an MMA equal to 0.25% of the original
image is adequate to achieve competitive coding performance
and computational complexity. This value is employed in the
experimental results. Notwithstanding, this parameter can be
adjusted to attain faster execution times with a small impact in
coding performance. As discussed later in Section IV, using
this value results in execution times comparable to the scan-
ning time of many commercial WSI scanners [14], with coding
performance similar to Full Optimization. The size of the
blocks, determined by blockSize, must be selected carefully.
Too small blocks yield non-representative performance from
JPEG 2000 because of boundary effects at tile edges when
the DWT is applied. Too large blocks reduce the number
of selected grid blocks, thus limiting the diversity of image
regions and features that can be represented in the mosaic
image. Block sizes between 128 × 128 and 256 × 256 are
found to produce the best results.

C. Progressive Lossy-to-Lossless Optimization
The optimized color-transform matrices produced by Mo-

saic Optimization have real-valued entries. They are irre-
versible and cannot be directly employed for efficient lossless
or progressive lossy-to-lossless compression of WSIs. In some
situations it is desirable or even necessary to retain the original
image data without loss, e.g., due to archiving policies or legal
constraints. Mosaic Optimization can be extended to produce
optimized, reversible integer-to-integer color transforms. WSIs
can be losslessly compressed with these transforms, achieving
compression ratios similar to other state-of-the-art lossless
coding algorithms. The losslessly compressed image files
can be transmitted partially or progressively, yielding rate-
distortion results that improve upon the state of the art.

The proposed extension of the TRANSOPT framework to
lossless and lossy-to-lossless scenarios is based on the work
by Galli et al. [50]. In that work, transform matrices are
factorized as a product of permutation matrices and triangular
elementary reversible matrices (TERMs), similar to a well-
known lower-upper LU matrix decomposition [51], where
TERMs are defined as triangular matrices containing only
±1 in the diagonal. The resulting factorization is equivalent
to a reversible integer-to-integer transform that approximates
the original lossy transform [50]. In [52], another algorithm
for producing reversible transforms based on the matrix fac-
torization proposed in [51] is described. Both [50] and [52]
produce accurate approximations. Galli’s method is employed
exclusively hereafter, and referred to as LOSSLESSAPPROX.

The EVALUATEDISTORTION function is modified to as-
sess the compression performance of the reversible ap-
proximation of M ′ in each iteration of the design pro-
cedure. The resulting evaluation function, denoted by
REVERSIBLEEVALUATEDISTORTIONand depicted in Fig. 6,
substitutes EVALUATEDISTORTION in TRANSOPT.

IV. EXPERIMENTAL RESULTS

A. Materials and Methods
To evaluate the performance of the proposed framework,

we use 50 H&E images from the Cancer Genome Atlas

Fig. 6: Diagram of REVERSIBLEEVALUATEDISTORTION.

(TCGA [53]) data portal. Images were selected to depict 16
different tissue types and a broad range of hues so that results
can be representative of WSIs in general. The Mosaic Opti-
mization method and its lossy-to-lossless extension are applied
to each image to generate optimized irreversible and reversible
transforms, respectively. The obtained transform matrices are
available as supplementary content at http://ieeexplore.ieee.
org. The Kakadu v7.8 implementation of JPEG 2000 Part 2
is employed for compression and decompression [48]. In all
cases, Niter = 250. Our evaluations shown that blockSize =
128 and ϕ = 0.5 produce the best overall results, hence
only these parameters are hereinafter considered. To evaluate
complexity, total execution times have been measured on a
dedicated workstation with a 4-core i5-4570 CPU at 3.2 GHz
and 16 GB of RAM. All reported time results are relative to
this platform.

Section IV-B compares Mosaic Optimization to the identity
transform (i.e., no color transform), the ICT, the KLT, the
OST [35], the YCoCg [54], the color transforms proposed
by Strutz et al. [44] and Kim et al. [45], the Full Opti-
mization method described in Section III-A, and the Single
Patch Optimization method introduced in [32]. The 50 images
summarized in Table I are compressed and reconstructed using
each color transform at 15 bitrates ranging from 0.04 to 1.6
bits per pixel per component (bpppc). These correspond to
compression ratios from 200:1 to 5:1, typically considered
in the literature [20]–[24]. Results for HEVC [18] using the
Adaptive Color Transform1 are also provided for reference.

The optimized reversible transforms are compared in
Section IV-C to the default reversible color transform of
JPEG 2000 (RCT [19]), the OST [35], the YCoCg-R trans-
form [55], the reversible KLT (RKLT [50]) of each image,
and the Single Patch Optimization method. Images are loss-
lessly transformed, compressed and reconstructed at 13 bitrates
linearly spaced between 0.04 bpppc and 1.2 bpppc. Five
of the 50 images are not included in the comparison since
their lossless compression bitrate is lower than 1.2 bpppc.
Reversible transforms are not compared to HEVC since it
does not provide progressive lossy-to-lossless compression for
single images.

Several image distortion metrics have been employed to
assess the severity of the distortion introduced in WSIs [23],

1Produced with the HM reference software v16.5, available at https://hevc.
hhi.fraunhofer.de/

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
https://hevc.hhi.fraunhofer.de/
https://hevc.hhi.fraunhofer.de/
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TABLE II: Average BD∗-PSNR and BD∗-HDR-VDP-2 results in dB for irreversible color transforms.

Color transform Lymphatic Pancreatic Renal Mixed All Images
PSNR VDP PSNR VDP PSNR VDP PSNR VDP PSNR VDP

No transform 42.56 19.13 51.22 38.86 48.31 32.09 47.31 27.07 47.67 29.20
YCoCg 48.33 41.15 51.57 42.06 47.71 30.53 47.82 31.47 48.63 34.93
ICT 47.85 38.72 51.26 42.37 47.01 29.43 47.31 31.38 48.14 34.22
KLT 46.89 38.01 52.38 42.65 48.96 32.45 48.49 30.82 49.14 34.30
OST 46.79 38.82 52.53 41.26 49.50 33.79 47.65 30.78 48.79 34.29
Full Optimization 48.37 42.36 52.70 43.00 49.43 33.41 49.18 31.74 49.83 35.54
Single Patch Optimization 48.02 41.64 50.74 39.69 49.54 32.85 48.56 31.14 49.07 34.37
Mosaic Optimization

blockSize = 128, ϕ = 0.5 48.33 42.82 52.63 43.92 49.27 32.52 49.02 31.77 49.70 35.65

[24], [28], [29], [56]. In [56], the ability of several metrics to
detect synthetic noise is evaluated. PSNR is employed in [29]
to compare different rate-allocation algorithms for WSIs.
In [24], the PSNR, the SSIM and a Visual Discrimination
Model (VDM) based on the works by Daly [57] and Lubin [58]
are investigated as tools to guide compression of WSIs. In [23],
[28], the accuracy of CAD algorithms is employed to evaluate
imaging and compression systems, respectively. Consistent
with this, the coding performance of the different transforms
is appraised using the PSNR, the High Dynamic Range Vi-
sual Difference Predictor v2.2.1 [39] (HDR-VDP-2)2 and the
effect on a recent CAD nuclei detection algorithm [10]. The
HDR-VDP-2 metric extends [57] and [58] to predict visible
differences between two images, and has been shown [39]
to provide higher accuracy than other visual metrics such as
SSIM, MS-SSIM [60] and mDCT-PSNR [61].

To compare the average PSNR performance of each trans-
form across all tested bitrates, a modified version of Bjonte-
gaard’s BD-PSNR [62] metric is defined as

BD∗-PSNR =
1

rmax − rmin

∫ rmax

rmin

PSNR(r) dr. (3)

Here, PSNR(r) is the PSNR between the original and recon-
structed image at rate r, and rmin and rmax are the minimum
and maximum reconstruction bitrates. This integral is numeri-
cally approximated with Simpson’s rule at the aforementioned
reconstruction target bitrates. To compare the HDR-VDP-2
metric across the range of tested bitrates, the BD∗-HDR-VDP-
2 metric is defined analogously. The BD∗-PSNR and BD∗-
HDR-VDP-2 metrics provide, respectively, the average PSNR
and HDR-VDP-2 values in dB across the tested bitrate ranges,
hence higher values correspond to smaller distortion.

To evaluate the effect of the transforms on the CAD nuclei
detection algorithm described in [10], each of the 100 H&E
images employed in that study is compressed and recon-
structed at the same range of bitrates as described above.
The CAD algorithm is then applied to the original and the
reconstructed images using the most competitive irreversible
and reversible transforms. The nuclei coordinates detected
in the original images are used as ground truth and the
performance of each transform at each bitrate is calculated

2The probability map produced by the HDR-VDP-2 method is summarized
into a single value in dB using the Minkowsky mean as described in [59].
The map is calculated using the default observer model, assuming an RGB
display with 100 cd/m2 peak luminance, 1 cd/m2 black level, and a resolution
of 30 pixels per degree.

TABLE III: Average execution times in minutes for obtaining
irreversible color transforms.

Algorithm Lym. Pan. Ren. Mix. All
KLT 0.2 0.3 0.2 0.3 0.3
OST 19.7 15.1 17.6 19.0 18.0
Full 65.6 113.3 90.5 162.3 130.8
Single Patch 1.2 2.2 1.4 2.7 2.3
Mosaic
blockSize = 128, 1.3 2.5 1.6 2.9 2.4ϕ = 0.5

using the F1 score defined as

F1 Score =
2 · TP

2 · TP + FP + FN
, (4)

where TP (true positives) are the nuclei detected in the
original and the reconstructed image, FP (false positives) are
the nuclei detected only in the reconstructed image and FN
(false negatives) are the nuclei detected in the original image
but not in the reconstructed image. F1 scores lie in [0, 1], and
higher values indicate better detection performance.

B. Irreversible Transforms

Average BD∗-PSNR and BD∗-HDR-VDP-2 results for lossy
color transforms are provided in Table II for each test set
individually3. Consistent with [31], [32], and as expected due
to the inter-component correlation described in Table I, all
of the transforms (optimized or not) outperform the case of
not using any color transform. As can be observed, the ICT –
commonly used in WSI scanners [14] and in the WSI compres-
sion literature [20]–[24]– yields average BD∗-PSNR results
1 dB lower than the KLT, and very similar BD∗-HDR-VDP-
2 results to the KLT. The YCoCg transform attains similar
performance to the ICT, with some improvements in terms
of PSNR. In turn, the optimized transforms produced by the
Full, Single Patch and Mosaic modes yield average results that
are more competitive than the ICT and the KLT. In particular,
Full Optimization and Mosaic Optimization improve upon the
ICT and the KLT for each set and for both distortion metrics.
Average results for the OST are slightly lower than those of
the KLT in terms of PSNR, and very similar in terms of the
HDR-VDP-2 metric.

3BD∗-PSNR and BD∗-HDR-VDP-2 results for HEVC are not included
in Table II because the maximum bitrates are below 1 bpppc for most
images, even for the lowest QP value of 1. Hence, a fair comparison for
rates r ∈ [rmin, rmax] is not possible. Results for HEVC are included in
Figs. 7a and 7b.
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(a) (b) (c)

Fig. 7: Average rate-distortion comparison of irreversible transforms for all images (a) using the PSNR metric; (b) using the
HDR-VDP-2 metric; (c) using the F1 score based on [10].

Fig. 8: Magnified sample crop (50×90) of image NCI02 of the Lymphatic set. (left) Original; (center) reconstructed at 0.1 bpppc
using Mosaic Optimization; (right) reconstructed at 0.1 bpppc using the KLT. Areas of interest are highlighted in yellow.

Full Optimization yields better BD∗-PSNR results than
Mosaic Optimization for all test sets. This is because all
image samples are available for optimization in the Full mode.
Notwithstanding, Mosaic Optimization provides very similar
results for each set, between 0.04 dB and 0.16 dB lower
than the Full mode. In terms of BD∗-HDR-VDP-2, Mosaic
Optimization exhibits gains over Full Optimization of up to
0.92 dB for the Pancreatic set, and 0.11 dB on average for
all images. This can be explained by the fact that Mosaic
Optimization prioritizes candidate grid blocks depicting tissue.
Hence, the resulting color transforms enable more accurate
reconstruction of visually relevant areas, e.g., edges between
nuclei and cytoplasm.

Average PSNR and HDR-VDP-2 rate-distortion results are
plotted in Figs. 7a and 7b, respectively. Results indicate that
PSNR gains between 0.6 dB and 1.1 dB and HDR-VDP-
2 gains up to 3.8 dB over the KLT are obtained with the
proposed method at the same bitrates. Therefore, at identical
compressed file sizes, images reconstructed using the Mosaic
Optimization method exhibit smaller distortion –e.g., fewer
morphological and chromatic artifacts– than those recon-
structed using the KLT, as illustrated in Fig. 8. Note that a low
bitrate (0.1 bpppc) is used in Fig. 8 so that artifacts are more
easily appreciable. These artifacts disappear at higher bitrates.
Mosaic Optimization attains similar PSNR and HDR-VDP-2
levels –i.e., similar quality– at bitrates between 0.05 bpppc
and 0.10 bpppc lower than the KLT, i.e., smaller compressed
files. Thus, the transmission of images at similar quality
levels can be completed faster. For instance, PSNR values of
approximately 47 dB are produced on average at 0.5 bpppc
for the optimized transforms and at 0.6 bpppc for the KLT,

i.e., 20% data volume reduction. As can also be observed in
Figs. 7a and 7b, the proposed method is better than HEVC
with the Adaptive Color Transform for the PSNR and HDR-
VDP-2 metrics.

Average F1 scores for the KLT, for the ICT and for Mosaic
Optimization obtained for the CAD nuclei detection algorithm
described in [10] are plotted in Fig. 7c. As can be observed,
all transforms produce F1 scores above 0.9 at bitrates as
low as 0.4 bpppc. Mosaic Optimization produces F1 scores
consistently higher than the ICT and the KLT for all tested
bitrates. These results suggest that, for any compression ratio,
the Mosaic Optimization method enables more accurate CAD
analysis results than the ICT and the KLT.

Average execution times for obtaining different data-
dependent irreversible color transforms are provided in Ta-
ble III. Note that these times refer to the time it takes to
generate the color transform matrices, not the time it takes
to compress an image using that transform matrix. For all
tested image sets, the KLT is the fastest algorithm. However,
as discussed above, its coding performance is lower than that
of the optimization methods. Full Optimization has an average
execution time exceeding 130 minutes, rendering it impractical
for most use cases. On the other hand, Mosaic Optimization
requires under 2 minutes for the Lymphatic and Renal image
sets, and under 3 minutes for the Pancreatic and Mixed sets.
These execution times are comparable to the scanning time of
many commercial scanners, i.e., up to 3 minutes depending
on the objective magnification [14], [27].

To recapitulate, the optimized transforms produced by the
proposed method outperform the ICT –the most usual trans-
form in commercial scanners and in the WSI compression
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TABLE IV: Average BD∗-PSNR and BD∗-HDR-VDP-2 results in dB for reversible color transforms.

Color transform Lymphatic Pancreatic Renal Mixed All Images
PSNR VDP PSNR VDP PSNR VDP PSNR VDP PSNR VDP

No Transform 35.37 11.83 44.07 18.48 41.03 12.28 41.21 12.95 40.59 13.84
RCT 42.87 18.64 45.43 20.04 41.13 13.13 42.26 15.34 42.82 16.85
YCoCg-R 39.88 12.02 42.25 18.13 41.10 12.83 41.77 12.56 41.79 13.74
Strutz’s [44] 42.91 18.97 45.46 20.05 41.15 13.17 42.44 15.48 42.87 16.93
Kim’s [45] 41.56 11.82 42.12 18.61 41.38 12.72 41.70 12.65 42.51 13.79
OST 41.58 20.08 44.84 19.15 41.69 13.21 42.28 14.53 42.62 16.15
RKLT 42.06 21.19 44.84 18.71 41.35 13.04 42.43 15.62 42.72 16.64
Single Patch Optimization 42.88 22.29 45.37 20.12 41.75 13.26 42.91 15.13 43.24 17.36
Mosaic Optimization

blockSize = 128, ϕ = 0.5 43.11 25.07 45.47 21.09 41.76 13.33 42.86 15.51 43.27 17.61

(a) (b) (c)

Fig. 9: Average rate-distortion comparison of reversible transforms for all images (a) using the PSNR metric; (b) using the
HDR-VDP-2 metric; (c) using the F1 score based on [10].

literature– as well as transforms such as the KLT and the OST
for traditional, visual and CAD-based distortion metrics.

C. Reversible Transforms

Average BD∗-PSNR and BD∗-HDR-VDP-2 results for the
reversible transforms are provided in Table IV. As can be
observed, the proposed Mosaic Optimization method improves
upon the RCT, the OST, Single Patch and the RKLT in almost
all cases. In general, larger improvements are observed for
the BD∗-HDR-VDP-2 than for the BD∗-PSNR metrics. Again,
this is explained by the fact that optimization is designed to
focus on visually relevant areas of the WSIs. Note that the
compression performance differences between the irreversible
transforms described in Section IV-B can be largely explained
by the different DWTs used for 2D decorrelation, i.e., the CDF
9/7 DWT for irreversible transforms and the integer-to-integer
CDF 5/3 DWT for reversible ones.

As shown in Figs. 9a and 9b, significant PSNR improve-
ments over the RKLT are observed for bitrates of 0.2 bpppc
and higher, with gains up to 0.9 dB. HDR-VDP-2 improve-
ments become significant from 0.4 bpppc onwards, with max-
imum gains of 3.7 dB. Results suggest that similar distortion
can be attained for smaller data volumes with the proposed
method, e.g., an average PSNR of 44 dB can be obtained
transmitting 14% less data. Note that bitrates of 0.4 bpppc
(i.e., compression ratios of 20:1) are often described in the
WSI compression literature [21]–[24] and a average bitrates of

about 0.6 bpppc (i.e., a compression ratio of about 13:1) have
been described to produce reconstructed images indiscernible
from the original [24]. These ranges are well aligned with the
bitrate ranges for which the proposed Mosaic method yields
compression gains.

Lossless compression bitrates are provided in Table V. On
average for all images, all tested methods yield similar results.
This indicates that the progressive lossy-to-lossless coding
gains produced by the Mosaic Optimization method are not
at the expense of hindering lossless compression efficiency, as
compared to other works in the literature.

Average F1 scores for the RCT and for Mosaic Optimization
obtained for the CAD nuclei detection algorithm described
in [10] are plotted in Fig. 9c. As can be observed, both
the RCT and Mosaic Optimization allow accurate CAD-based
analysis of the images, with F1 scores above 0.9 for bitrates
of 0.27 bpppc or higher. Identical F1 scores can be obtained
at bitrates up to 0.1 bpppc lower with Mosaic Optimization
than with the RCT.

Average execution times for producing reversible trans-
forms using different methods are shown in Table VI. Note
that compression time is not included in this table. As can
be observed, generating the reversible optimized transforms
requires about 19 minutes on average for all images. The
higher time complexity, compared to the irreversible transform
optimization methods discussed in the previous section is
expected, due to the additional approximation stage required in
each invocation of the REVERSIBLEEVALUATEDISTORTION
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TABLE V: Average lossless compression rates in bpppc.

Color transform Lym. Pan. Ren. Mix. All
No Transform 3.41 1.98 1.96 2.07 2.14
RCT 2.44 1.90 1.98 1.97 2.00
YCoCg-R 2.36 1.87 1.99 2.02 1.99
Strutz’s [44] 2.35 1.86 1.94 1.99 1.96
Kim’s [45] 2.42 1.84 2.01 2.03 1.99
OST 2.96 2.01 1.99 2.06 2.15
RKLT 2.87 2.09 1.99 1.94 2.09
Single Patch 2.71 2.01 1.93 1.95 2.02
Mosaic
blockSize = 128, 2.69 1.96 1.87 1.92 1.99ϕ = 0.5

TABLE VI: Average execution times in minutes for obtaining
reversible color transforms.

Algorithm Lym. Pan. Ren. Mix. All
RKLT 0.44 0.52 0.41 0.49 0.47
OST 19.94 15.33 17.84 19.21 18.48
Strutz’s [44] 0.65 1.74 0.81 1.58 1.39
Kim’s [45] 0.51 1.20 0.54 1.14 0.99
Single Patch 8.74 23.64 10.50 22.61 19.46
Mosaic
blockSize = 128 9.40 21.26 10.91 22.72 19.18ϕ = 0.5

function, depicted in Fig. 6.

V. CONCLUSIONS

WSIs can help pathologists improve their diagnostic accu-
racy, reach underserved regions and enhance their productivity,
thus reducing the operational costs of pathology laboratories.
However, the enormous data volumes associated with WSIs
make image compression necessary to enable efficient stor-
age and agile remote access. In particular, lossy compres-
sion can greatly reduce compressed data volumes without
affecting pathologists’ diagnoses or their confidence therein.
WSIs exhibit exceptionally high inter-component correlation,
which can be exploited using color transforms that enhance
coding performance. Color transforms in the literature are
designed to minimize theoretical criteria such as correlation,
but do not fully take into account all details of the coding
algorithm applied after the transform. Therefore, in practice,
their compression performance is suboptimal. The proposed
Mosaic Optimization method is tightly integrated with the
implementation of the coding algorithm used in the Kakadu
implementation and the produced color transforms improve
upon the ICT, the KLT and other methods in terms of
mean squared error (PSNR), visual distortion metrics (HDR-
VDP-2) and F1 score for a recent CAD nuclei detection
algorithm. At identical rates, PSNR values up to 1.1 dB
higher, HDR-VDP-2 results up to 3.8 dB higher and average
F1 scores up to 0.04 higher than the KLT are obtained.
Conversely, equal distortion levels are produced for bitrates
between 0.05 bpppc and 0.17 bpppc lower, i.e., file sizes up
to 20% smaller than for the KLT. An extension to design
reversible transforms is proposed as well to allow lossless and
progressive lossy-to-lossless compression. Without hindering
lossless compression performance, the optimized transforms
yield average PSNR values up to 0.9 dB higher, average
HDR-VDP-2 results up to 7.1 dB higher, and average F1

scores 0.025 higher than the RCT at the same bitrates. Similar
distortion levels are obtained at bitrates up to 14% lower than
for the RCT. Moreover, Mosaic Optimization is designed to
attain execution times comparable to that of a typical WSI
scanning process. This enables continuous operation of the
WSI scanner with only reasonable computational resources
dedicated to compression. In summary, the proposed color-
transform optimization method can produce tangible benefits
for WSI-centered laboratories in practical scenarios.
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Sagristà, “Transform Optimization for the Lossy Coding of Pathology
Whole-Slide Images,” in Proceedings of the Data Compression Confer-
ence, DCC, Mar. 2016.

[32] M. Hernández-Cabronero, V. Sanchez, F. Aulı́-Llinàs, and J. Serra-
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