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Abstract—Linear multi-component transforms (MCTs) are
commonly employed for enhancing the coding performance for
the compression of natural color images. Popular MCTs such
as the RGB to Y’CbCr transform are not optimized specifically
for any given input image. Data-dependent transforms such as
the Karhunen-Loève Transform (KLT) or the Optimal Spectral
Transform (OST) optimize some analytical criteria (e.g., the inter-
component correlation or mutual information), but do not con-
sider all aspects of the coding system applied to the transformed
components. Recently, a framework that produces optimized
MCTs dependent on the input image and the subsequent coding
system was proposed for 8-bit pathology whole-slide images. This
work extends this framework to higher bitdepths and investigate
its performance for different types of high-dynamic range (HDR)
contents. Experimental results indicate that the optimized MCTs
yield average PSNR results 0.17%, 0.47% and 0.63% higher than
those of the KLT for raw mosaic images, reconstructed HDR
radiance scenes and color graded HDR contents, respectively.

Index Terms—Image Compression, Multi-Component Trans-
forms, HDR.

I. INTRODUCTION

High dynamic range (HDR) contents offer enhanced con-
trast and extended color gamut by increasing the range of pos-
sible luminance values. Higher bitdepths are thus required to
represent these data and the storage and transmission costs are
increased, as compared to those of low dynamic range (LDR)
contents. To alleviate these costs, some image and video
coding methods have been proposed in the literature. These in-
clude standard compression algorithms (and approaches based
thereon) such as JPEG [1], JPEG XT [2], JPEG2000 [3]–[5],
H.264 [6] and HEVC [7] –e.g., the Main10 profile combined
with the PQ BT.2020 non-linearity, and the screen content
coding (SCC) extensions [8]. Ad-hoc algorithms have been
proposed as well, based on the discrete wavelet transform (e.g.,
the PIZ encoder in OpenEXR [9]), the LogLuv transform [10],
[11] and range-compression methods [12]–[14]. The compres-
sion of raw color filter array (CFA) data output by camera
sensors –often employed to produce LDR data or to generate
HDR content from multiple exposures [15]– has also been
investigated in recent years [16]–[19].
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It is a well known fact that linear multi-component transfor-
mations (MCTs) efficiently decorrelate the color components
and compact the pixel energy, thus enhancing compression
performance [20]. To the best of our knowledge, only data-
independent MCTs are used in the aforementioned works. That
is, each method applies only one MCT –e.g., the irreversible
color transform (ICT) [3]–, normally designed for LDR data.
Therefore, optimal decorrelation cannot be expected for any
given input. On the other hand, data-dependent strategies apply
different MCTs depending on the input to be compressed.
Commonly, these MCTs are designed to minimize analyt-
ical criteria such as inter-component correlation or mutual
information, hence yielding superior compression performance
than data-independent MCTs. In general, methods based on
Principal Component Analysis (PCA) –e.g., the Karhunen-
Loève Transform (KLT)– and Independent Component Anal-
ysis (ICA) –e.g., the Optimal Spectral Transform [21] (OST)–
provide highly competitive results. However, neither data-
independent nor data-dependent MCTs take into account all
details of the subsequent coding system applied to the trans-
formed components, like the context models employed by the
entropy coder. Hence, the resulting compression performance
may also be suboptimal.

Recently, an optimization framework for obtaining MCTs
dependent on the input data and the coding system was
proposed for the compression of 8-bit pathology whole-slide
images [22]. The optimized MCTs yielded by this framework
significantly outperform the KLT and the OST, as well as
other data-independent transforms. However, this framework
has only been evaluated on LDR data. In this work, we pro-
pose a straightforward extension of this framework to higher
bitdepths and investigate its MCT optimization efficiency for
different types of natural –i.e., photography and video– HDR
contents including reconstructed scene radiance, color-graded
scenes and raw CFA mosaic images.

The rest of this paper is structured as follows. Section II
describes the aforementioned optimization framework and its
extension to HDR data. Experimental results are provided in
Section III and Section IV draws conclusions and outlines
future work.

II. TRANSFORM OPTIMIZATION FOR HDR CONTENT

Any linear MCT for three-component images is fully de-
scribed by a 3 × 3 matrix M of real coefficients, which is
applied independently to each pixel as follows:

(u, v, w)′ = M(r, g, b)′. (1)



Fig. 1: Block diagram of the optimization framework in [22].

The MCT optimization framework proposed in [22], here-
inafter referred to as OptimizeMCT, is designed to search
for the matrix coefficients that minimize a cost function.
This cost function evaluates the coding performance of a
transform matrix by calculating a distortion metric between
the original and the reconstructed image generated by a com-
pression/decompression process using that MCT. Therefore,
the obtained transform is optimized for that particular image
and compression algorithm. In that work, image distortion
is assumed to be the mean square error (MSE). Thus, the
optimization is based on the energy of the reconstruction error,
which is well understood and can be efficiently computed.
Notwithstanding, this framework can be easily adapted to
minimize any objective metric by modifying the cost function
accordingly. A block diagram of OptimizeMCT is shown in
Fig. 1. In the Evaluate candidate MCTs stage, the performance
of a fixed set of MCTs including the KLT is evaluated for
the input image and the best one is selected. In the Powell’s
optimization stage, the selected MCT undergoes a numerical
optimization process. Powell’s method [23] –similar to hill
climbing optimization– iteratively modifies the 9 coefficients
of the transform matrix and evaluates the resulting MCT.

Since the OptimizeMCT framework was originally con-
ceived for LDR data, some modifications should be introduced
so that it can be used for HDR contents. Firstly, the compres-
sion algorithm used in the cost function need be adapted for
higher bitdepths. In [22] the transform matrices were evaluated
using JPEG2000, which accepts arbitrary MCTs in Part 2
of the standard. Since bitdepths exceeding 16 bits per pixel
(bpp) are supported, JPEG2000 is the compression algorithm
of choice for this work as well. Hence, it suffices to adjust
the input parameters related to the bitdepth to evaluate the
OptimizeMCT framework for integer HDR data.

When contents are stored using floating-point samples –for
instance, when using the OpenEXR format [9]– an additional
preprocessing step is needed to convert them to integer values.
The 16-bit IEEE 754-2008 float values typically employed
in the OpenEXR format express smaller absolute values with
higher precision than larger absolute values. Moreover, small
values are much more probable than large values in typi-
cal camera footage and directly applying a 16 bit uniform
quantizer to the input dynamic range may not represent HDR
contents with enough fidelity. Based on the methodology
proposed in [4], a normalized log function is applied to each
input sample x before quantization,

y = log2(x− xmin + 1), (2)

Fig. 2: A 4× 4 Bayer CFA pattern.

where xmin is the lower bound of the dynamic range and
the +1 term is used to avoid negative and undefined values
of y. As in [4], a uniform quantizer is then applied to map
the resulting dynamic range [ymin, ymax] into unsigned 16-bit
integers that can be processed by OptimizeMCT. Note that any
other float to integer mapping can be evaluated in a similar
way.

A special case of HDR data are the raw CFA mosaic
images commonly employed for scene radiance reconstruction.
Mosaic images contain only one component in which red,
green and blue pixels are interleaved following a known
pattern, typically the so-called Bayer CFA [24] depicted in
Fig. 2. In this type of CFA, there are twice as many green
pixels than red or blue pixels due to the higher sensitivity of
the human visual system to green wavelengths. Therefore, a
straightforward decomposition of the mosaic images into red,
green and blue pixels yields components of heterogeneous
dimensions that cannot be processed using linear MCTs as
defined in (1). However, as described by Koh et al. [25],
it is possible to obtain four color components of identical
dimensions as follows:∣∣∣∣∣∣∣∣
r0,0 G0,0 r0,1 G0,1

g0,0 b0,0 g0,1 b0,1
r1,0 G1,0 r1,1 G1,1

g1,0 b1,0 g1,1 b1,1

∣∣∣∣∣∣∣∣→
∣∣∣∣r0,0 r0,1
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∣∣∣∣∣∣∣∣g0,0 g0,1
g1,0 g1,1

∣∣∣∣ ∣∣∣∣b0,0 b0,1
b1,0 b1,1

∣∣∣∣ . (3)

For images produced in this fashion, MCTs are defined by
4×4 matrices. Therefore, Powell’s optimization method needs
be adapted to search in a 16-dimensional space, instead of the
9-dimensional space required for 3× 3 transforms. The com-
pression algorithm used in the cost function must also be able
to accept 4× 4 transform matrices. Since JPEG2000 supports
images with multiple components, only simple changes in the
input parameters are required to adapt OptimizeMCT to CFA
mosaic images.

III. EXPERIMENTAL RESULTS

A number of experiments are conducted to evaluate the
performance of the OptimizeMCT framework for three types
of HDR data. The first type are raw CFA mosaic images
produced by Nikon camera sensors, with bitdepths of 12
and 14 bits. As discussed above, they can be employed
to generate LDR content, or to produce data with larger



Fig. 3: Sample color-graded frames of the 16 sequences in the HdM-HDR-2014 set. From left to right and top to bottom: (1)
Beerfest; (2) Bistro; (3) Carousel; (4) Cars close; (5) Cars full; (6) Cars long; (7) Fireplace; (8) Fishing close; (9) Fishing
long; (10) Test image; (11) Poker full; (12) Poker traveling; (13) Showgirl 1; (14) Showgirl 2; (15) Hammering; (16) Welding.

dynamic ranges from multiple exposures. For this work, 20
real mosaic images of different color and edge complex-
ity depicting portraits, landscapes and close shots are gath-
ered [26] and split into four-component images as depicted
in (3). The resulting images have dimensions ranging from
3039 × 2014 to 6080 × 4012. This set is hereinafter referred
to as CFA mosaic. The second content type are the 16
sequences of the scene radiance images of the HdM-HDR-
2014 set [27]. Each frame was reconstructed from various
exposures and needs to be processed before it can be displayed.
Ten frames from each sequence, sampled uniformly across
time, are considered for this work. The linear RGB pixels
were originally stored using 16 bit IEEE 754-2008 floats, so
they are mapped to 16 bit integers using (2) as described
in Section II. The resulting 160 images are globally referred
to as HdM-HDR-2014 radiance. The last type are the color-
graded counterparts of the 160 HdM-HDR-2014 radiance im-
ages [27]. These images were graded for Rec.2020 primaries
and 0.005-4000cd/m2 luminance, and can be directly visual-
ized using appropriate HDR displays. A sample frame from
each sequence, tone-mapped to Rec.709, is shown in Fig. 3.
This set, referred to as HdM-HDR-2014 graded, was originally
distributed using 16 bit integer samples. Hence, no preprocess-
ing is necessary. All images in the HdM-HDR-2014 radiance
and the HdM-HDR-2014 graded corpora have dimensions
equal to 1920× 1080.

Two additional types of LDR content are also considered for
the sake of comparison. The first type is referred to as LDR
standard and contains 47 natural images from four popular
corpora –the ISO CCITT set [28] (7 images), the ISO 12640-
1 set [29] (8 images), the ISO 12640-2 set [30] (8 images)
and the Kodak set [31] (24 images). Their dimensions range
from 512× 512 to 4096× 3072. The second type is referred
to as LDR WSI and contains the 23 pathology whole-slide
images (WSIs) of up to 31655× 32619 pixels with which the
OptimizeMCT was originally evaluated [22]. All these LDR
images are stored using 8-bit integers.

For each of the aforementioned images, the OptimizeMCT
framework described in Section II is applied independently
to produce an MCT. Each image is then compressed using
Kakadu JPEG2000 v7.8 [32] with the corresponding opti-
mized MCT and 5 levels of spatial discrete wavelet transform
(DWT) decomposition. For comparison, each image is also
compressed using four MCT matrices: the KLT, the identity
matrix (i.e., no inter-component decorrelation), the JPEG2000
ICT [3] and the OST [21].1 To evaluate each MCT, a single
target bitrate R is defined for each image. Following the
methodology in [22], R is set to RICT/2, where RICT is the
highest compression rate achieved using JPEG2000 with the
ICT and 5 spatial DWT levels. The images compressed using

1The OST was designed for the lossy compression of multicomponent
images with JPEG2000.



the 5 aforementioned MCTs are then decompressed at their
target bitrate, and each reconstructed version Î is compared to
the original image I using the following PSNR definition:

PSNR(I, Î) = 10 log10

(
max2

I

MSE(I, Î)

)
(4)

MSE(I, Î) =
1

N

N∑
i=1

|xi − x̂i|2. (5)

Here, maxI is the maximum value of I , N is the total number
of pixels in I and xi and x̂i are, respectively, the i-th pixel of
I and Î .

Average PSNR results for each MCT and corpus are pro-
vided in Table I. As obvious from the data, the OptimizeMCT
framework produces transform matrices that outperform all
other tested MCTs. On average, the optimized MCTs yield
PNSRs 0.17%, 0.47% and 0.62% higher than the KLT for
the CFA mosaic, the HdM-HDR-2014 radiance and the HdM-
HDR-2014 graded sets, respectively. It should be noted that,
although results in Table I are for a single target bitrate per
image, improvements upon the KLT are obtained across low,
medium and high bitrates. This can be observed in Fig. 4 for
one sample image of each corpus.

The comparatively low performance achieved with the CFA
mosaic corpus can be explained by the fact that pixels co-
located in each of their four components were registered at
different positions of the Bayer CFA array, as depicted in (3).
Therefore, only a relatively low amount of inter-component
correlation can be exploited. On the other hand, images from
other corpora were produced by interpolating the red, green
and blue samples of their corresponding mosaic images (not
considered for this work), which results in more similar
components. These results suggest that the the OptimizeMCT
framework performs best when applied to sets of images
with high inter-component redundancy. This hypothesis is
consistent with the larger PSNR differences achieved for the
LDR sets, whose images can only contain 28 different pixel
values. As discussed in [22], WSI images exhibit significantly
higher inter-component correlation than natural LDR images,
due to the narrow range of colors present in WSIs. The
different performance increments for the LDR WSI and LDR
standard sets –i.e., respectively 6.09% and 4.15%– can be
considered further evidence of our hypothesis. As can also be
seen in Table I, high variability is present in the PSNR gains
of the optimized MCTs over the KLT for sequences (1)-(16)
of the HdM-HDR-2014 radiance and HdM-HDR-2014 graded
corpora. Improvements lower than 0.1% are yielded for some
sequences (e.g., radiance (4) Cars close and graded (12) Poker
traveling), whilst other exhibit gains exceeding 1.3% (e.g.,
radiance (1) Beerfest) and 1.7% (e.g., graded (3) Carousel).
As can be noticed by joint observation of Table I and Fig. 3,
the sequences for which OptimizeMCT tend to produce the
largest PSNR gains corresponds to the scenes with fewer
color hues and lower brightness. Conversely, smaller PSNR
increments are yielded for luminous scenes with higher color
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Fig. 4: Rate-distortion results for (top) the DS200 CFA mosaic
image; (middle) a frame of the HdM-HDR-2014 radiance (1)
Beerfest sequence; (bottom) a frame of the HdM-HDR-2014
graded (1) Beerfest sequence.



TABLE I: Average PSNR results in dB for different MCTs. Percentage differences with the KLT are provided between brackets,
and the best results for each set are highlighted in bold font. Average target rates are expressed in bits per pixel per component.

Set name |Set| Bitdepth Rate KLT No MCT ICT OST [21] OptimizeMCT
CFA mosaic 20 12, 14 0.413 47.37 45.96 (-2.99%) 46.47 (-1.89%) 47.33 (-0.08%) 47.45 (+0.17%)

HdM-HDR-2014 radiance 160 16 0.554 49.37 43.75 (-11.39%) 48.00 (-2.77%) 48.85 (-1.05%) 49.60 (+0.47%)
(1) Beerfest 10 16 0.422 50.29 47.57 (-5.41%) 48.59 (-3.39%) 47.25 (-6.05%) 50.95 (+1.31%)
(2) Bistro 10 16 0.402 50.11 43.60 (-13.00%) 49.26 (-1.70%) 50.01 (-0.20%) 50.18 (+0.14%)
(3) Carousel 10 16 0.672 47.72 44.91 (-5.90%) 47.39 (-0.69%) 44.99 (-5.72%) 48.00 (+0.58%)
(4) Cars close 10 16 0.641 47.55 38.65 (-18.70%) 46.68 (-1.83%) 47.52 (-0.05%) 47.59 (+0.09%)
(5) Cars full 10 16 0.750 47.39 39.66 (-16.32%) 46.27 (-2.38%) 47.34 (-0.10%) 47.47 (+0.17%)
(6) Cars long 10 16 0.623 48.03 40.39 (-15.90%) 46.84 (-2.47%) 47.91 (-0.24%) 48.09 (+0.14%)
(7) Fireplace 10 16 0.596 49.54 46.21 (-6.73%) 47.64 (-3.83%) 48.51 (-2.07%) 49.99 (+0.90%)
(8) Fishing close 10 16 0.609 47.96 40.95 (-14.62%) 47.03 (-1.94%) 47.89 (-0.14%) 48.09 (+0.28%)
(9) Fishing long 10 16 1.178 45.57 37.88 (-16.87%) 44.20 (-3.02%) 45.54 (-0.06%) 45.61 (+0.09%)

(10) Test image 10 16 0.425 49.46 42.76 (-13.54%) 48.76 (-1.42%) 49.44 (-0.04%) 49.59 (+0.26%)
(11) Poker full 10 16 0.422 49.40 43.04 (-12.87%) 48.60 (-1.63%) 48.88 (-1.05%) 49.46 (+0.12%)
(12) Poker traveling 10 16 0.502 48.41 41.14 (-15.01%) 47.77 (-1.31%) 48.12 (-0.59%) 48.61 (+0.42%)
(13) Showgirl 1 10 16 0.604 50.15 44.70 (-10.86%) 47.35 (-5.58%) 49.56 (-1.19%) 50.45 (+0.61%)
(14) Showgirl 2 10 16 0.599 49.88 44.21 (-11.38%) 47.62 (-4.54%) 49.94 (+0.11%) 50.12 (+0.48%)
(15) Hammering 10 16 0.183 54.91 53.50 (-2.57%) 52.45 (-4.48%) 55.01 (+0.18%) 55.41 (+0.91%)
(16) Welding 10 16 0.230 53.53 50.77 (-5.16%) 51.59 (-3.62%) 53.72 (+0.36%) 54.02 (+0.92%)

HdM-HDR-2014 graded 160 16 0.962 44.86 44.17 (-1.55%) 44.65 (-0.46%) 44.03 (-1.86%) 45.15 (+0.63%)
(1) Beerfest 10 16 0.987 44.53 44.89 (+0.80%) 44.60 (+0.16%) 41.33 (-7.19%) 45.17 (+1.44%)
(2) Bistro 10 16 0.856 45.26 44.51 (-1.65%) 45.06 (-0.43%) 45.26 (+0.00%) 45.39 (+0.28%)
(3) Carousel 10 16 1.505 42.06 42.52 (+1.09%) 41.79 (-0.65%) 42.00 (-0.14%) 42.79 (+1.73%)
(4) Cars close 10 16 0.631 47.13 46.58 (-1.17%) 46.78 (-0.75%) 47.09 (-0.10%) 47.25 (+0.25%)
(5) Cars full 10 16 0.911 45.13 43.38 (-3.89%) 44.69 (-0.99%) 45.15 (+0.04%) 45.23 (+0.22%)
(6) Cars long 10 16 0.435 48.82 46.01 (-5.74%) 48.42 (-0.82%) 48.72 (-0.19%) 48.87 (+0.11%)
(7) Fireplace 10 16 1.105 43.10 43.16 (+0.15%) 43.13 (+0.07%) 40.07 (-7.02%) 43.58 (+1.11%)
(8) Fishing close 10 16 0.528 47.61 46.24 (-2.88%) 47.36 (-0.52%) 47.60 (-0.02%) 47.66 (+0.11%)
(9) Fishing long 10 16 0.863 45.07 42.11 (-6.58%) 44.74 (-0.73%) 45.10 (+0.05%) 45.26 (+0.42%)

(10) Test image 10 16 0.983 44.38 44.18 (-0.45%) 44.27 (-0.24%) 44.37 (-0.03%) 44.63 (+0.55%)
(11) Poker full 10 16 1.020 44.49 44.00 (-1.10%) 44.39 (-0.21%) 44.49 (+0.00%) 44.66 (+0.38%)
(12) Poker traveling 10 16 0.612 46.52 45.42 (-2.37%) 46.30 (-0.47%) 46.52 (-0.01%) 46.55 (+0.06%)
(13) Showgirl 1 10 16 0.991 43.84 44.03 (+0.43%) 44.24 (+0.90%) 42.82 (-2.34%) 44.47 (+1.44%)
(14) Showgirl 2 10 16 0.899 45.59 44.95 (-1.41%) 45.49 (-0.22%) 39.71 (-12.91%) 45.81 (+0.47%)
(15) Hammering 10 16 1.522 42.12 42.34 (+0.54%) 41.68 (-1.04%) 42.12 (+0.00%) 42.50 (+0.91%)
(16) Welding 10 16 1.541 42.14 42.39 (+0.59%) 41.52 (-1.47%) 42.14 (+0.00%) 42.51 (+0.87%)

LDR standard 47 8 1.171 42.51 39.82 (-6.33%) 43.76 (+2.93%) 39.71 (-6.59%) 44.27 (+4.15%)
LDR WSI 23 8 0.539 46.76 44.42 (-5.00%) 46.62 (-0.30%) 47.16 (+0.86%) 49.61 (+6.09%)

complexity. Again, this is consistent with the aforementioned
hypothesis.

IV. CONCLUSIONS AND FUTURE WORK

Linear MCTs can significantly increase the coding per-
formance for the compression of HDR contents. Traditional
component transformations do not jointly take into account
the statistical properties of the input image and all aspects
of the coding system applied to the transformed components.
Recently, an MCT optimization framework that tackles both
aspects simultaneously was described for the compression
of LDR content. This work proposes an extension of that
framework, referred to as OptimizeMCT, to higher bitdepths
and evaluates its performance for the compression of HDR
contents.

Improved rate-distortion results as compared to the KLT are
observed for the optimized MCTs for all tested sets. Average
PSNR gains of 0.17%, 0.47% and 0.63% over the KLT are
produced for CFA mosaic images, reconstructed HDR radiance
scenes and HDR color graded scenes, respectively. Results

suggest that the the OptimizeMCT framework performs best
for contents with redundant components, e.g., when a limited
amount of hues are present.

Planned extensions to this work include MCT optimization
based on distortion metrics better correlated with mean opinion
scores such as the HDR-VDP-2 [33], and the evaluation of
the optimized transform matrices using state-of-the-art video
compression algorithms.
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