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Abstract

X-ray angiography images are widely used to identify irregularities in the vascular system. Because of their high spatial resolution
and the large amount of images generated daily, coding of X-ray angiography images is becoming essential. This paper proposes
a diagnostically lossless coding method based on automatic segmentation of the focal area using ray-casting and α-shapes. The
diagnostically relevant Region of Interest is first identified by exploiting the inherent symmetrical features of the image. The
background is then suppressed and the resulting images are encoded using lossless and progressive lossy-to-lossless methods,
including JPEG-LS, JPEG2000, H.264 and HEVC. Experiments on a large set of X-ray angiography images suggest that our
method correctly identifies the Region of Interest. When compared to the case of coding with no background suppression, the
method achieves average bit-stream reductions of nearly 34% and improvements on the reconstruction quality of up to 20 dB-SNR
for progressive decoding.

Keywords: X-ray angiography images, diagnostically lossless coding, ray casting segmentation, alpha-shapes filters, region of
interest compression.

1. Introduction

X-ray medical imaging has become a popular non- or
minimal- invasive modality in healthcare practice and research
due to its low cost, high resolution and excellent capability to
penetrate deep within tissue [1].

X-ray angiography, in particular, is a widespread tool that
aids in visualizing and quantifying the human vascular system,
which is an important pre-requisite for a number of clinical pro-
cedures [2]. X-ray angiography (angio) images are acquired by
injecting a contrast agent into the blood vessels followed by
X-ray fluoroscopic imaging. If several images are acquired at
different time intervals, the resulting imaging data comprises a
collection of frames describing the flow of the contrast agent
through the vessels over a specific period of time [1]. Re-
cent advances in telemedicine require that X-ray angio images
be efficiently transmitted over networks of limited bandwidth.
Moreover, a recent trend towards facilitating the general pub-
lic on-line access to their own medical records has also become
of significant interest to major companies and healthcare insti-
tutions [3]. X-ray angio images are, however, usually large in
file size and thus pose heavy demands on storage and transmis-
sion resources, particularly if these images are to be managed

through current picture archiving and communications systems
(PACS) [4] with the associated digital imaging and commu-
nications in medicine (DICOM) standard [5]. The X-ray an-
gio images used in this work are acquired from different hu-
man regions (e.g., knee, foot, arm, ankle, etc) and have much
less frames than coronography and ventriculography image se-
quences. Yet, they produce large file sizes. As an example, a
typical X-ray angio image sequence used in this work, com-
prising 5 frames, each with a spatial resolution of 1024×1024
pixels and a bit-depth of 16 bits per pixel, amounts to over 10
MB of data; in current practice, human vascular system studies
involve up to ten X-ray angio images, with about 100 MB of
imaging data per patient.

Lossless coding, and particularly diagnostically lossless cod-
ing, can reduce the storage and transmission burden of medi-
cal images, while avoiding any loss of valuable clinical data.
Lossless coding usually exploits data redundancies to increase
the coding efficiency while guaranteeing perfect reconstruction
of the signal [6]. Diagnostically lossless coding, on the other
hand, guarantees the perfect reconstruction of only those Re-
gions of Interest (ROIs) that are used for diagnostic purposes.
This is usually achieved by identifying the ROIs and applying
lossless coding to only these regions and lossy coding to the
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background (BG) [7, 8, 9, 10].
X-ray angiography image compression is an active topic of

research. Recent published contributions are normally devised
to a specific coding technique or to a particular compression
strategy for angiography image. Depending on the compres-
sion strategy, contributions can be classified into lossy [11],
lossless [6], or diagnostically lossless compression [8, 10].

With regard to the recent diagnostically lossless coding meth-
ods developed for various medical images [7, 8, 9, 10], most
of them rely on segmentation to identify the ROI. Although
these methods achieve competitive coding performances, they
present two important drawbacks when applied to X-ray angio
images. First, they employ either manual segmentation, which
can be extremely time-consuming and prone to human errors,
or automatic region-based segmentation[8], which may fail to
identify the ROI accurately when the intensity values in the
BG and ROI are very similar. Second, they are in general non
DICOM-compliant, which renders them unsuitable for PACS.

In this paper, we focus on diagnostically lossless and pro-
gressive lossy-to-lossless coding of X-ray angio images through
automatic segmentation. Specifically, we first remove the non-
clinically relevant areas using a low-complexity segmentation
method based on ray-casting and α-shapes [10]. The main dif-
ference with [10] is that the current manuscript explains with
high detail all the parameters used in our proposal and justi-
fies better the need for our approach, for instance presenting
more segmentation results produced by more recent segmenta-
tion methods that do not work either. Further, the lossless com-
pression performance is evaluated extensively using all coding
techniques included in DICOM such as JPEG-LS, JPEG2000
and H.264 [12]. For JPEG-LS and JPEG2000, different multi-
component transforms to exploit redundancy among compo-
nent have been used. Also, results for a shape adaptive ver-
sion of JPEG2000 [13] and for HEVC [14] video coding stan-
dard, considered the successor of H.264, are reported. Pro-
gressive lossy-to-lossless coding performance is investigated
for JPEG2000 standard.

The rest of the paper is organized as follows. Our automatic
segmentation technique is described in Section 2. Section 3
presents an extensive experimental evaluation for the cases of
diagnostically lossless and progressive lossy-to-lossless coding.
This section also discusses, in collaboration with physicians
from Hospital Fundació Mútua de Terrassa, Spain, the accuracy
of the proposed segmentation technique. Section 4 concludes
this work.

2. Proposed Coding Method

The proposed coding method is based on the fact that im-
provements in coding efficiency may be achieved by exploiting
some of the inherent symmetrical features of medical images.
For example, in X-ray angio images, there are usually two dis-
tinguishable areas: the ROI, depicting skeleton and tissues, and
the BG, depicting non-clinically relevant information, as shown
in Figure 1. Note that in these sample frames, the ROI is located
in the center of the image (i.e., the focal area) and the BG fea-
tures radially symmetrical properties around the ROI. Based on

a) Image01 b) Image02 c) Image03

Figure 1: Sample frames of three different X-ray angio images.

Figure 2: Block diagram of the proposed diagnostically lossless coding method.

this observation, we focus on exploiting these symmetrical fea-
tures to attain automatic segmentation and thus increase coding
efficiency.

Our method, as illustrated in Figure 2, consists of two main
stages, the first stage deals with automatic ROI segmentation,
while the second stage focuses on data coding. The auto-
matic ROI segmentation is based on ray-casting and α-shapes,
which provide a high level of accuracy with low computational
complexity. After segmentation, our method suppresses the
BG from the image to increase data redundancy. In the sec-
ond stage, the method employs lossless or progressive lossy-
to-lossless (PLL) coding on the BG-suppressed image. In the
following sections, we describe in more detail these two stages.

2.1. Segmentation Stage

The segmentation stage comprises four steps: 1) preprocess-
ing; 2) boundary approximation; 3) boundary refinement; and
4) BG suppression.

2.1.1. Preprocessing step: noise reduction & frame averaging
This step reduces the amount of noise in the data and ex-

ploits correlations among frames. X-ray angio images con-
tain random noise introduced by unblocked secondary radia-
tion, poor film-developing and handling, or by the digitization
process [15], which may affect the segmentation accuracy. To
reduce this random noise, several techniques may be employed,
such as low-pass filtering, neighbor average filtering, median
filtering, non-local means [16] and 3D block matching [17]. In
the algorithm, we employ anisotropic diffusion filtering in each
frame as it is capable to efficiently reduce noise while preserv-
ing edge information [18].

Since X-ray angio images commonly consist of several
frames that are usually highly correlated, a simple averag-
ing operation may be used after noise reduction to generate
a single frame that preserves the boundary between the ROI
and BG. Here, we employ an averaging operation defined as
Iavg(x, y) =

(∑F
f=1 I f (x, y)

)
/F, where F is the number of frames
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(a)

(b) (c)
Figure 3: (a) Two pairs of symmetrical rays projected from P (red dot):
R1(P, θ1), R1(P, θ1 + π), and R2(P, θ2) and R2(P, θ2 + π); (b)- (c) the correspond-
ing image profiles.

in the X-ray angio image, and I f (x, y) and Iavg(x, y) denote the
intensity value of the spatial position (x, y) in frame f and the
average frame Iavg, respectively. By employing this simple av-
eraging operation, we reduce the computational complexity of
subsequent steps since segmentation can now be performed on
the average frame and the results be used to identify the ROI in
each frame.

2.1.2. Boundary approximation step
This second step computes a coarse approximation of the lo-

cation of the boundary between the ROI and BG on the average
frame Iavg by employing ray-casting and the image (pixel in-
tensity) profiles computed along a set of rays. Let P denote the
center of Iavg, Rn(P, θn) denote ray n projected from P towards
the periphery at an angle θn (see Figure 3(a)), and An denote
the image profile along ray Rn(P, θn) computed using nearest-
neighbor interpolation (see Figure 3(b)). The image profile An

provides information about important intensity changes along
the ray Rn(P, θn), which may be used to locate the position of
the boundary between the ROI and BG. Due to the symmet-
rical properties of the ROI, important intensity changes along
ray Rn(P, θn) usually occur at a very similar Euclidean distance
from P as in ray Rn(P, θn + π). We call such two rays, Rn(P, θn)
and Rn(P, θn + π), symmetrical rays. Figure 3(a) illustrates this
concept by depicting rays R1(P, θ1) and R2(P, θ2), and their sym-
metrical rays R1(P, θ1+π) and R2(P, θ2+π). Figure 3(b)-(c) plots
the corresponding image profiles A1, A1+π and A2, A2+π. Note
that the first significant intensity changes along the image pro-
file plot, moving from the periphery towards P, usually happen
at the boundary between ROI and BG and therefore, may be
used to approximate the location of this boundary.

Nevertheless, in many cases, the intensity values of ROI and
BG tend to be very similar in the boundary region for some of
the rays, making it challenging to approximate the boundary lo-
cation by simply analyzing the image profile along such rays.
To overcome this, we exploit the radially symmetrical proper-
ties of ROIs and estimate the location of the boundary along a

Figure 4: Sample case where the boundary is hard to locate in the intensity
profile of one ray (solid ray) but it is easy to detect in the corresponding sym-
metrical ray (dashed ray).

Figure 5: Example of an image profile An and the corresponding intensity-
change set Cn computed with a window of width w1 = 3.

challenging ray by using the location of the first significant in-
tensity change along the corresponding symmetrical ray. This
idea is illustrated in Figure 4. We follow the next procedure and
criterion to identify the significant intensity changes and deter-
mine the location of the boundary along a pair of symmetrical
rays:

1. For each pair of symmetrical rays, Rn(P, θn) and Rn(P, θn +

π), we compute the corresponding image profiles, An and
An+π.

2. For each pair An and An+π , we compute the correspond-
ing intensity-change sets, denoted by Cn and Cn+π, respec-
tively. An intensity-change set stores the largest intensity
change within a small sliding window of size w1. Figure 5
depicts a sample computation of Cn. It is worth noting
that, instead of computing the Cn and Cn+π through the
Intensity-change operator, we could also use first deriva-
tive of Gaussian, central moment of variance, or mean
deviation, to obtain an equivalent representation of the
intensity-change set in An and An+π. The intensity change
operator has been selected because it is more computa-
tionally efficient than the above mentioned operators and
it provides the same accuracy in detecting the first signifi-
cant change.

3. We compute the maximum value M = max{Cn,Cn+π} and
threshold T = M × t, where 0 < t < 1.

4. In the intensity-change set where M is found, we search for
the first element larger than T , denoted by Bn (or Bn+π).

5. We estimate Bn+π (or Bn) in Cn+π (or Cn) by searching for
the largest element within a window of size w2 centered
in Cn+π[Bn] (or Cn[Bn+π]) (see Figure 6). Positions An[Bn]
and An+π[Bn+π] correspond to the position of the boundary
along rays Rn(P, θn) and Rn(P, θn + π), respectively.

6. We repeat steps 1-5 for all pairs of symmetrical rays.

Section 3 reports on the values for parameters t, w1 and w2
that result in the best performance for the data set used in the
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Figure 6: Sample estimation of Bn+π: Bn is used to determine Bn+π in Cn+π
by searching for the largest element within a window of size w2 centered in
Cn+π[Bn].

(a) (b)

(c) (d) (e)
Figure 7: (a)-(b) Boundary points for Iavg of Image02 depicted in Figure 1. (c)-
(d) Points (red squares) where an edge can be traced for a closed disk with r =
-1/α. (e) Inner and outer contours computed with α = 0.01.

experimental evaluation.

2.1.3. Boundary refinement step
The previous step results in a set of locations that approxi-

mates the position of the boundary between the ROI and BG.
Figure 7(a)-(b) show examples of such locations, depicted as
white pixels over a black background, for an average frame
Iavg. Note that these pixels only provide a coarse approxima-
tion of the overall boundary, for instance in the zoom area in
Figure 7(b) we can see that several pixels are cluttered in a small
area and disconnected with the other pixels. In order to refine
the boundary location and compute a closed contour, we link
these pixels by employing α-shapes [19]. The objective is to
create a closed contour that accurately describes the boundary
between ROI and BG, so that this contour can be used to create
a binary mask.

Let us define a disk of radius r = 1/α pixels (thus, the unit of
α is pixel−1), such that if α > 0, we obtain a closed disk; if α
= 0, we obtain a closed half-plane; and if α < 0, we obtain the
closure of the complement of a closed disk. Let us assume that
the set of pixels corresponding to the boundary location forms
a set of points on a plane, where the location of each pixel i
denotes the location of point Pi in the point set. Based on this
assumption, we compute a closed contour as follows:

1. For each point Pi in the point set, we create a vertex Vi.
2. We create an edge between two vertices Vi and V j when-

ever there exists a disk of radius r = 1/α pixels containing
the entire point set and which has the property that Pi and
P j lie on the disk boundary.

After employing α-shapes we obtain a closed contour with
less distortion than those generated by simple morphological
operations like closing or dilation. Figure 7(c) shows those

points –squared in red in the figure– where an edge can be
traced for a closed disk of radius r = 1/α pixels, with α =
−0.01. Note that such small r values may result in additional
closed contours inside the set of boundary points (see Fig-
ure 7(e)). In such cases, we select the outermost contour as
the ROI boundary to ensure that the whole ROI is inside the
contour.

2.1.4. BG suppression step
After computing the closed contour between the ROI and

BG, we compute a binary mask by setting the intensity values of
those points inside the contour to 1 (ROI) and those outside the
contour to 0 (BG). We then achieve BG suppression by apply-
ing a logical AND operation between this mask and each frame
of the X-ray angio image, which sets the BG to zero. There is
no need to transmit this mask. Mask results and BG-suppressed
images are reported in Section 3.

2.2. Coding Stage

In this work, we focus on four coding techniques, JPEG-LS,
JPEG2000, H.264 and HEVC. All of them support lossless cod-
ing and provide excellent coding performance. Note that only
JPEG-LS, JPEG2000 and H.264 are included in DICOM. We
are particularly interested in JPEG2000 as this coding standard
offers a richer set of coding features than any other lossless
coding method. These features include scalability by resolu-
tion and quality and the capability to exploit data redundancies
among frames of X-ray angio image sequences through the use
of a multi-component transform.

It is important to mention that BG-suppressed frames of X-
ray angio image sequences usually contain sharp boundaries
between BG and ROI that may generate a large amount of
high frequencies responses during the spatial wavelet trans-
form (WT) process of JPEG2000, penalizing the coding per-
formance. The shape-adaptive version of JPEG2000 (SA-
JPEG2000) [13] is designed to overcome this issue. SA-
JPEG2000 modifies the spatial WT and bit-plane encoder of
JPEG2000 so that only the ROI data is processed, without the
need to encode the BG. SA-JPEG2000 also allows for the use of
multi-component transforms but requires that the binary mask
used to identify the ROI be encoded and transmitted. SA-
JPEG2000 may then provide a theoretical optimal coding per-
formance for ROI coding using JPEG2000. In our evaluation
results we consider SA-JPEG2000 as the benchmark coding
method.

3. Experimental Results and Discussion

We performed extensive performance evaluations to verify
the accuracy and advantages of our proposed method. In par-
ticular, we carried out two different sets of evaluations aimed at
assessing: a) the segmentation stage, and b) the coding stage,
which includes diagnostically lossless and PLL coding.

Our test data set comprises 60 X-ray angio image sequences
of various frames, each frame with a resolution of 1024×1024
pixels of 12 bits of unsigned precision. All the images were
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 8: (a) Average frame of one X-ray angio image; the corresponding edge detection results by using (b) Canny edge detector, (c) Sobel edge detector, (d)
orthogonal projection method, and (e) our proposed boundary detection technique; and the corresponding binary masks computed using (f) Active Contour WE, (g)
BC Level Set, (h) Adaptive SRG, (i) MC Watershed and (j) our proposed segmentation technique.

routinely acquired at Hospital Mútua de Terrassa, Spain, with a
Siemens AXIOM-Artis system using iodine as the X-ray con-
trast agent. The segmentation stage of the proposed strategy has
been implemented and run with MATLAB R2012a.

Supplementary materials for reproducing the experiments are
provided at http://www.gici.uab.cat/GiciApps/
SupplementaryMaterials.tar.gz 1.

3.1. Evaluation of the Segmentation Stage
3.1.1. Segmentation Accuracy Metrics

With the aim of providing quantitative results, we quan-
tify the segmentation accuracy of one automatic segmentation
method by comparing its results to the manual segmentation
performed with the help of physicians from Hospital Mútua de
Terrassa (Spain), using the following Dice Similarity Coeffi-
cient (DSC):

DSC =
2 ×

∑X−1
x=0

∑Y−1
y=0 (M_ROI(x, y) × P_ROI(x, y))

#M_ROI + #P_ROI
, (1)

where M_ROI and P_ROI represent the binary masks de-
tected, respectively, manually and automatically; #M_ROI and
#P_ROI denotes the number of ROI samples in M_ROI and in
P_ROI, and X and Y are the number of rows and columns of
the image. Note that DSC ∈ [0, 1], and higher DSC indicates
higher similarity between M_ROI and P_ROI, therefore indi-
cates higher segmentation accuracy.

3.1.2. Parameters Selection
We studied the proposed segmentation algorithm using vari-

ous parameters w1, w2, t and α. The influence of changing the
number of casting rays is also reported.

1The material includes some of the X-ray images, segmentation and com-
pression scripts. The total size of the file is 75.8 MB.

With regard to the sliding window size w1 and w2, w1 de-
fines the range to find the steepest intensity change, as depicted
in Figure 5. When the steepest intensity change is located, the
center pixel of the current sliding window will be defined as the
boundary pixel. Therefore, a small w1 will reduce the distance
between the position of the real boundary pixel and the position
found by our algorithm, Bn. On the other hand, w2 defines the
range where the second boundary pixel position Bn+π is placed,
after Bn has already been found, as depicted in Figure 6. In
order to find Bn+π based on the position Bn, it is required that
w2/2 > |Bn+π − Bn|, i.e., the range w2 should be large enough
to include the intensity change belonging to the second bound-
ary pixel; however, if w2 is too large, another larger intensity
change of a non-boundary edge could go inside the window,
being mistakenly identified as the second boundary pixel.

Concerning t, it is employed to define threshold value T used
for finding the most external significant intensity change. Con-
sequently, the larger t is, the stepper significant change will be
detected.

Finally, parameter α is employed to define the disks for the
boundary refinement, which must have a small enough abso-
lute value (i.e., |r| is large enough) to close all the disconnected
points.

In practice, parameters w1, w2, t and α have been chosen after
training our algorithm with 30 images. For the training, we test
different values for w1, w2, t and α and the quantitative segmen-
tation performance DSC is then computed. The parameters val-
ues have been set for those combinations that obtain the highest
mean and the lowest Standard Deviation (Std) of DSC. Firstly,
we set w1 = 10 pixels and w2 = 50 pixels, obtaining DSC re-
sults that yield the most accurate and stable segmentation when
using t = 0.7, and α = −0.01. Secondly, we set t = 0.7 and
α = −0.01, and find that w1 = 10 pixels and w2 = 50 pixels
obtain an appropriate accuracy. According to this training, in
our experimental setting, we used parameters w1 = 10 pixels,
w2 = 50 pixels, t = 0.7 and α = −0.01 in our algorithm.
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Table 1: The DSC performance (mean and Std values) for all 60 images for the
proposed method, casting rays every D deg, where D = 0.1, 0.25, 1, 2, 4 and 6.

Rays are cast every
0.1 deg 0.25 deg 1 deg 2 deg 4 deg 6 deg

(3600 rays)(1440 rays)(360 rays)(180 rays)(90 rays)(60 rays)
Mean 0.985 0.985 0.985 0.985 0.984 0.983
Std 0.002 0.002 0.002 0.002 0.003 0.003

Execution Time 96.0 39.3 16.7 11.6 9.4 8.7
(in sec.)

Table 2: Segmentation quantitative results. Mean and Std values of the DSC
for all 60 images for Active Contour WE, BC Level Set, Adaptive SRG, MC
Watershed and the proposed method.

Active Contour WEBC Level SetAdaptive SRGMC WatershedProposed
Mean 0.96 0.87 0.89 0.93 0.98
Std 0.029 0.081 0.120 0.082 0.002

Note that, in order to detect the boundary using our tech-
nique, the number of casting rays influences the execution time
of our segmentation algorithm, as presented in Table 1. For in-
stance, if the rays are cast every 0.1 or 6 degrees, the execution
time is, respectively, 96 and 8.7 seconds. The mean and Std
of the resulting DSC are 0.985 and 0.002 for rays cast every
0.1 degrees and 0.983 and 0.003 for rays cast every 6 degrees.
In our experimental results we have cast the rays every 2 deg,
based on the trade off between boundary refinement accuracy
and execution time.

3.1.3. Segmentation Results
We first compare our segmentation technique to several edge-

based and region-based segmentation methods. In general,
edge-based methods use exclusively edge information to iden-
tify the ROI, while region-based methods use texture, intensity
or statistical features extracted from the image.

Figure 8 (a)-(e) show one average frame and its visual seg-
mentation results using several edge-based methods; specifi-
cally Canny edge detector, Sobel edge detector [20], orthogonal
projection [21] and our proposed boundary detection technique.
It is important to mention that the average frame in Figure 8 (a)
is one of the most challenging average frames in our test data
set. As Canny, Sobel and orthogonal projection are developed
to generate the edge representation of an image, they detect all
the edges but do not distinguish the ROI boundary and the other
edges in angio images; therefore, their edge results can hardly
be used directly to identify the ROI and BG regions. Our pro-
posed technique focus only on locating the unique and closed
ROI contour of the angio image, benefiting from the radially
symmetrical feature of these images, which then generates only
the ROI boundary that can be used to define the ROI directly.

Figure 8(f)-(j) show the binary masks for the average frame
in Figure 8(a) computed using state-of-the-art region-based
methods. These methods are: Active Contour Without Edges
(Active Contour WE) [22], Bias Correction Level Set (BC
Level Set) [23], Adaptive Seeded Region Growing (Adap-
tive SRG) [24], and Marker-Controlled Watershed (MC Water-
shed) [25].

In Active Contour WE, the deformation process of the curve
does not depend on the gradient of the image as in classical
active contour models; instead, it depends on the difference of
intensities inside and outside the contour, making these curves
less sensitive to noise and the initial curve position. In our ex-
periments, we set the most outside square boundary of Iavg as
the initial curve. Figure 8(f) shows the result of Active con-
tour WE, which fails to correctly detect the ROI boundary in
those regions where the intensities between BG and ROI are
very similar. BC Level Set is a region-based method capable of
dealing with intensities inhomogeneities while using the well-
known level-set formulation [23] based segmentation process.
Adaptive SRG combines Otsu’s thresholding method and reg-
ular SRG, avoiding the “trial-and-error” threshold selection of
SRG, which is commonly done with human supervision. In our
experiments, for BC Level Set the initial curve is the most out-
side square boundary of Iavg, while for Adaptive SRG the initial
seeds are a selection of pixels belonging to the four corners of
Iavg. Figure 8(g) and (h) show results for BC Level Set and
Adaptive SRG, both methods miss-classify dark bones and tis-
sues areas as being part of the BG. MC Watershed is based on
watershed transform; it employs predefined background-region
marker pixels and foreground-region marker pixels to solve the
embedded “over-segmentation” problem of regular watershed
methods. Figure 8(i) shows the result of MC Watershed. It is
important to mention that in our experiments, after an extensive
search to define good background-region markers, we were able
to segment correctly 27 of the 60 images, which accounts for
less than 50% of the images. In summary, all the region-based
methods [22], [23], [24] and [25] classify the ROI and BG ba-
sically based on the the intensity differences. Without using
the radially symmetrical feature of the angio image to help the
identification, all of them can not avoid the misclassification of
the ROI and BG regions when the intensity values in both areas
are quite similar, as shown in the left-bottom area of the image
in Figure 8 (a).

For all the methods tested, the corresponding parameters
were adjusted according to the values recommended by the au-
thors and according to our evaluations in order to provide the
most accurate segmentation results.

The mean and the standard deviation (Std) values of DSC are
presented in Table 2 for the 60 X-ray angio image sequences.
It can be seen from these results that the proposed method has
not only the most accurate segmentation results (highest mean
DSC), but also the most consistent performance (lowest Std of
DSC).

Figure 9 shows the BG-suppressed average frames for twelve
different X-ray angio image sequences, with the boundary be-
tween ROI and BG enhanced in red. Note that our proposal
distinguishes the ROI from the BG with high accuracy. For the
rest of the images in the test data set, the results are equivalent.

3.2. Evaluation of the Coding Stage
We compare several lossless coding methods after applying

our segmentation technique to the case of no BG suppression.
To better understand the relationship between the amount of BG
and the coding performance, the 60 tested images are divided
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Figure 9: Average frames for 12 different X-ray angio image sequences after BG suppression. The boundary (closed contour) between ROI and BG, as detected
using α-shapes, is enhanced in red.

into various subsets according to the amount of BG (in %). Our
evaluations include lossless coding and PLL coding. The later
is important in interactive telemedicine applications to access
and display X-ray angio image sequences over channels of var-
ious capacities.

We first compare lossless JPEG2000, JPEG-LS, H.264 and
HEVC to the case of coding after BG suppression using our seg-
mentation technique, denoted by BGS-JPEG2000, BGS-JPEG-
LS, BGS-H.264 and BGS-HEVC, respectively. In order to ob-
tain a theoretical optimal rate for JPEG2000, SA-JPEG2000
is applied on the BG-suppressed images. We employ 5 levels
of 5/3 reversible spatial WT and codeblocks of size 64x64 for
JPEG2000 and SA-JPEG2000, using the BOI 2 software. For
JPEG-LS, the reset interval to 64 and the line-interleaved mode
for multi-component images are used within the HP implemen-
tation LOCO-I/JPEG-LS. For H.264, the reference software JM
16.2 is used, with FRExt Profile "High 4:4:4" selected for Intra
coding and QP and QP Offsets set to 0. For HEVC, the refer-
ence software HM 16.2 is used. Three coding modes of HEVC
are tested: Intra mode, using the Intra main profile; Random
Access (RA) mode, using the Random Access profile and RExt
mode, which uses HM 16.2 software with the SCM 3.0 exten-
sion and the Random Access main RExt profile. For all these
three modes, QP was set to 0 and both TransquantBypassEn-
ableFlag and CUTransquantBypassFlagForce are set to 1, and
in RExt mode, CostMode is set to lossless. Note that, in order
to comply with the profiles used in H.264 and HEVC, all angio
frames are coded using the colour space YUV 4:4:4 and YUV
4:0:0, respectively.

Table 3 reports the average coding results, in bits per pixel
(bpp), for each image subset and for the whole test data set.
When no BG suppression is used, the entire image is losslessly
encoded. These results indicate that by employing BG suppres-
sion the coding performance improves by more than 28%, on
average, for all coding methods compared to the case of no BG
suppression. H.264 does not achieve as good coding perfor-

2The implementation of BOI software can be downloaded from http://
www.gici.uab.es/BOI

mance as the other coding methods for the angio images. BGS-
HEVC RExt attains the best coding performance, followed by
BGS-JPEG-LS. BGS-JPEG2000 gets a similar coding perfor-
mance as BGS-HEVC and BGS-JPEG-LS, while allowing ac-
cessing the coded data in a progressive manner. Note that SA-
JPEG2000 is, on average, 0.1 bps better than BGS-JPEG2000
even though it requires that the ROI binary mask be encoded
and included in the bit-stream. This improvement is mainly
due to skipping all of the BG samples during spatial WT and
bitplane coding.

As video coding standards H.264 and HEVC are developed
with also exploiting the redundancy among frames, we also
compare the lossless coding performance when the redundancy
among frames is exploited through different multi-component
transforms included in Part-2 of JPEG2000 [26], namely Re-
versible Haar Transform (RHAAR), Reversible Karhunen Lo-
eve Transform (RKLT)[12], 5/3 Reversible Wavelet Transform
(RWT) and Differential Pulse Code Modulation (DPCM) [12].
Although JPEG-LS does not include any multi-component
transformation, we also introduce the use of a multi-component
transform in JPEG-LS to provide a fair comparison. For
RHAAR and RWT, the number of decomposition levels along
frames is given by min(5, blog2 Fc). For RKLT, the side infor-
mation is encoded with LZMA and included in the final bit-
rate. Table 4 reports the average coding results for the same
image subsets in Table 3 when multi-component transforms
are employed. It is easy to see that JPEG2000 and JPEG-LS
with multi-component transforms get closer or even better cod-
ing performance than HEVC, for X-ray angio image sequences.
BGS-RKLT-JPEG-LS yields, on average, the best coding per-
formance, closely followed by SA-RKLT-JPEG2000, and both
are slightly better than BGS-HEVC RExt, while SA-RKLT-
JPEG2000 also supports PLL coding.

For progressive coding, we only compare DICOM-compliant
methods that support PLL coding. Figure 10 shows the
rate-distortion performances for BGS-RKLT-JPEG2000, BGS-
RHAAR-JPEG2000, BGS-RWT-JPEG2000, BGS-JPEG2000
and JPEG2000 for three images with various amounts of BG.

The rate-distortion performances are evaluated in terms
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Table 3: Coding performance (in bpp) of JPEG2000, BGS-JPEG2000, SA-JPEG2000, JPEG-LS, BGS-JPEG-LS, H.264, BGS-H.264, HEVC (in three modes) and
BGS-HEVC (in three modes); bpp savings are reported in % within parenthesis with respect to the case of coding with no BG suppression.

# Images BG percentage
range JPEG2000 BGS-

JPEG2000
SA-

JPEG2000 JPEG-LS BGS-
JPEG-LS H.264 BGS-

H.264
HEVC
Intra

BGS-
HEVC
Intra

HEVC
RA

BGS-
HEVC

RA

HEVC
RExt

BGS-
HEVC
RExt

23 10% - 20% 6.08 5.39 5.24 6.01 5.18 8.56 7.37 6.40 5.56 6.12 5.27 5.82 5.06
(11.35%) (13.82%) (13.81%) (13.90%) (13.13%) (13.89%) (13.06%)

8 20% - 30% 6.20 4.60 4.46 6.17 4.42 8.90 6.16 6.51 4.73 6.29 4.50 5.95 4.31
(25.81%) (28.06%) (28.36%) (30.79%) (27.34%) (28.46%) (27.56%)

12 30% - 40% 6.24 3.97 3.84 6.18 3.78 9.14 5.19 6.55 4.08 6.33 3.86 5.96 3.68
(36.38%) (38.46%) (38.83%) (43.22%) (37.71%) (39.02%) (38.26%)

13 40% - 50% 6.42 3.57 3.45 6.36 3.39 9.60 4.69 6.74 3.67 6.55 3.49 6.12 3.31
(44.39%) (46.26%) (46.70%) (51.15%) (45.55%) (46.72%) (45.92%)

4 50% - 60% 6.58 2.98 2.87 6.51 2.82 10.35 3.93 6.87 3.06 6.71 2.90 6.21 2.74
(54.71%) (56.38%) (56.68%) (62.03%) (55.46%) (56.78%) (55.88%)

Average 6.23 4.46 4.31 6.17 4.27 9.07 5.96 6.55 4.58 6.32 4.34 5.96 4.15
(28.41%) (30.82%) (30.79%) (34.29%) (30.08%) (31.33%) (30.37%)

Table 4: Coding performance for multi-component transform using RHAAR, RKLT, RWT and DPCM, followed by JPEG2000 and JPEG-LS. First row reports
bitrate (in bpp); second row reports bpp savings (in %) with respect to the case of coding with no BG suppression and no multi-component transform (see Table 3)

BG %
range

# Frame
average

JPEG2000 JPEG-LS
BGS- SA- BGS- SA- BGS- SA- BGS- SA- BGS- BGS- BGS- BGS-

RHAAR RHAAR RKLT RKLT RWT RWT DPCM DPCM RHAAR RKLT RWT DPCM
10 - 20 10 5.05 4.97 4.99 4.92 5.07 4.99 5.25 5.17 4.94 4.89 4.96 5.14

(16.94%) (18.26%) (17.93%) (19.08%) (16.61%) (17.93%) (13.65%) (14.97%) (17.80%) (18.64%) (17.47%) (14.48%)
20 - 30 8 4.36 4.28 4.32 4.24 4.38 4.29 4.51 4.43 4.26 4.23 4.28 4.41

(29.68%) (30.97%) (30.32%) (31.62%) (29.35%) (30.81%) (27.26%) (28.55%) (30.96%) (31.44%) (30.63%) (28.53%)
30 - 40 6 3.74 3.66 3.68 3.61 3.73 3.65 3.82 3.75 3.62 3.57 3.61 3.70

(40.06%) (41.35%) (41.03%) (42.15%) (40.22%) (41.51%) (38.78%) (39.90%) (41.42%) (42.23%) (41.59)% (40.13%)
40 - 50 7 3.41 3.33 3.33 3.26 3.39 3.31 3.45 3.38 3.28 3.22 3.27 3.34

(46.88%) (48.13%) (48.13%) (49.22%) (47.20%) (48.44%) (46.26%) (47.35%) (48.43%) (49.37%) (48.58%) (47.48%)
50 - 60 6 2.80 2.73 2.75 2.68 2.79 2.72 2.84 2.78 2.70 2.66 2.69 2.75

(57.45%) (58.51%) (58.21%) (59.27%) (57.60%) (58.66%) (56.84%) (57.75%) (58.53%) (59.14%) (58.68%) (57.76%)
Average 4.19 4.11 4.13 4.06 4.19 4.11 4.32 4.24 4.08 4.03 4.08 4.20

(32.74%) (34.03%) (33.71%) (34.83%) (32.74%) (34.03%) (30.66%) (31.94%) (33.87%) (34.68%) (33.87%) (31.93%)

of the Signal-to-Noise Ratio (SNR), which is defined as
10 log10

σ2

MS E . The mean-squared error (MSE) is computed as
1
F

1
X

1
Y
∑F

f
∑X

x
∑Y

y (I f (x, y) − Î f (x, y))2, where I f (x, y) and Î f (x, y)
denote, respectively, the original frame and the recovered
frame, and σ2 denotes the variance of the original image. The
distortion gains between JPEG2000 and the BG-suppression
strategies vary according to the amount of BG, and are up
to 4dB, 10dB and 20dB for images with a BG percentage
of 10.40%, 31.31% and 58.97%, respectively. Note that,
when multi-component transforms are used, the best results
are achieved by BGS-RKLT-JPEG2000, and the distortion gain
compared to BGS-JPEG2000 is on average 5dB.

Figure 11 depicts a region of two sample frames decoded at
0.01 bpp after JPEG2000 and BGS-RKLT-JPEG2000 PLL cod-
ing. It can be observed that the visual quality attained by the
latter is better. This is a useful feature that can be exploited in
situations where physicians need to access and analyze X-ray
angio image sequences in limited bandwidth network environ-
ments, e.g., using mobile phones.

To summarize, background suppression helps achieving sig-
nificant bit-rate savings, and while JPEG-LS with RKLT multi-
component is the best lossless coding technique for the tested
images, JPEG2000 with RKLT multi-component transform be-
comes the best alternative when different types of scalability
are needed.

4. Conclusions

X-ray angio images have been commonly used in hospi-
tals and clinics. However, the large file sizes of these images
pose heavy demands on storage and transmission resources.
Therefore, developing an efficient diagnostically lossless cod-
ing methods for this type of images without affecting the sensi-
tive clinical-relevant areas is important.

In this paper, we present a two-staged diagnostically lossless
coding method for X-ray angio images. The first stage per-
forms automatic segmentation by employing ray-casting and
α-shapes to distinguish the clinically relevant ROI from the
BG. The second stage performs lossless or progressive lossy-to-
lossless coding on the BG-suppressed images by using JPEG-
LS, JPEG2000, H.264 and HEVC.

Experimental results suggest that our segmentation technique
identifies the ROI with an average Dice Similarity Coefficient
of 0.98 with respect to manual segmentation. When our pro-
posal is combined with lossless coding methods, the coding
performance is improved by more than 28%, on average. In ad-
dition, when a multi-component transforms is applied to exploit
the component redundancy, the coding performance improve-
ment reaches 34%. JPEG-LS technique with multi-component
transform has the best coding results, closely followed by
JPEG2000 with multi-component transform and HEVC. In ad-
dition, evaluations of JPEG2000 with multi-component trans-
form and progressive lossy-to-lossless coding also indicate that,
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a) Image04 (BG percentage = 10.40%) b) Image05 (BG percentage = 31.31%)

c) Image06 (BG percentage = 58.97%)
Figure 10: Rate-distortion performance for BGS-RKLT-JPEG2000, BGS-RHAAR-JPEG2000, BGS-RWT-JPEG2000, BGS-JPEG2000 and JPEG2000 for three
X-ray angio image sequences with different BG amounts.

(a) (b) (c)

(a) (b) (c)
Figure 11: (a) Two sample frames decoded at 0.01 bpp after PLL coding using
(b) JPEG2000 and (c) BGS-RKLT-JPEG2000. A zoomed-in region of the ROI
is presented to show visual differences.

by employing BG suppression, significant improvements on the
reconstruction quality of the images may be attained at all bit-
rates.
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