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ABSTRACT

Progressive lossy-to-lossless methods for hyper-spectral im-
age coding are becoming common in remote-sensing. How-
ever, as remote-sensing imagery is sometimes fed directly
into an automated process, there are several alternative dis-
tortion measures directed to quantify the image quality with
regard to how this process will perform. In this scenario, we
investigate the quality evolution in the lossy regime of pro-
gressive lossy-to-lossless and perform a detailed evaluation.

Index Terms— Hyper-spectral image coding, progressive
lossy-to-lossless, remote sensing, quality evaluation, multi-
component JPEG2000

1. INTRODUCTION

Techniques that allow Progressive Lossy-to-Lossless (PLL)
are gaining traction in the Remote Sensing (RS) community.
This is because, in moderate bitrates, they have similar Rate-
Distortion (R-D) performances to lossy techniques, and, on
lossless, they yield Compression-Ratios (CRs) competitive
with pure lossless methods. Moreover, they also allow for em-
bedded bitstreams, where bitrate reduction can be performed
by selecting a subset of the original bitstream.

Unlike in other areas, in RS a lossy image is not always
consumed by visual inspection, but by some kind of auto-
mated process. This is especially true for hyper-spectral im-
agery, and for this reason a moderate amount of alternative
quality measures have appeared in the last years. As its pur-
pose is to quantify future information extraction from an im-
age, they are referred to as Information Extraction Measures
(IEMs).

However, to the best of the authors’ knowledge, the lossy
regime of PLL methods has yet to be examined with those
measures.

PLL methods have been known for a long time [1], but it is
just recently that its use on hyper-spectral imagery has started
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to extend, in part because of the improvements in reversible
spectral transforms. Reviews of PLL for RS can be found in
[2, 3]. As for IEMs, a comprehensive review can be found
in [4].

This paper is organized as follows. First, common setups
for PLL encoding are discussed in Section 2. IEMs are de-
tailed in Section 3. Experimental results follow in Section 4.
And finally, conclusions close this paper.

2. PROGRESSIVE LOSSY-TO-LOSSLESS CODING

PLL encoders have structures similar to the ones from lossy
coders. The differences arise in that each stage is replaced by
a lossless equivalent, and then a lossless bitstream can be pro-
duced by encoding all bitplanes. As in lossy coding, if applied
to hyper-spectral imagery, a spectral decorrelation is prefixed
to the process and Volumetric R-D is taken into account.

Common techniques for PLL are JPEG2000 and Tarp-
based coding with Classification for Embedding [3]. Both
of them allow for lossy or lossless stages, and both yield sim-
ilar performances [3]. With regard to lossless spectral trans-
forms, two are the common choices: the well known Inte-
ger Wavelet Transform (IWT) and the Reversible Karhunen-
Loéve Transform (RKLT). The latter, first proposed in [5], is
a lossless approximation of the Karhunen-Loéve Transform
(KLT). As with the IWT, the lifting structure is used to en-
sure reversibility. A new multilevel clustered approach has
been recently proposed [6]. It substantially reduces the com-
putation time and has the same CRs and R-D properties (see
Fig. 1). In the sequel, this variant of the RKLT will be used.
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Fig. 1: Operation count of the Multi-level Clustered RKLT
compared to the plain RKLT.
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3. INFORMATION EXTRACTION MEASURES

This section describes several hyper-spectral measures ori-
ented to quantitatively asses the performance of an automated
information extraction process.

Measures presented have been grouped in two categories.
The first category includes measures that try to evaluate qual-
ities from a statistical point of view, and the second includes
measures directly linked to the output of classification pro-
cesses.

For brevity of description, I will denote the original im-
age, I, will denote the component z of the original image, and
this same convention will be extended to the recovered image
R.

The measures included in the first category are:

Maximum Spectral Similarity (MSS) [7]

T,y S
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MSS = max \/H Y — Y |2 +(1_p%,y)2

where
Doy = U(Iz,ya RLy)
Y U(Izyy)U(Rz,y)

and o is the sample variance or covariance function.

It is used to ensure class homogeneity in an unsuper-
vised classifier. It measures changes in spectral magni-
tude and direction.

Maximum Spectral Angle (MSA)

<I, 5 Ry >
MSA = max {cos1 < WY )}
zy 1Lz yll2 - || R yll2

The MSA quantifies the peak angular distortion. It is
brightness invariant, and is usually presented in de-
grees.

Spectral Wang-Bovik Q [8, 4]

Qx = Igl’l;l {Q(Im,ya Racﬂ/)}

Qstack: = lein {Q(Iz7 Rz)}
where

4o (U, V)u(U) (V')
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Q(U’ V) -

and y is the mean function.

It is intended to evaluate the distortion in the three fol-
lowing properties: correlation, luminance, and contrast.
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Fig. 2: R-D comparison of PLL and lossy methods.

On the second category, measures are based on the distor-
tion between classification results. A common way to quan-
tify these results is the Preservation of Classification (POC),
where the percentage of spatial locations that maintain the
same class are counted. Two common unsupervised classi-
fication methods used for this purpose are the k-means clas-
sification and the Reed Xiaoli (RX) anomaly detection algo-
rithms.

k-Means classification k-Means is a very common cluster-
ing approach [9]. In this case, the spectral angle has
been selected as classification distance for its bright-
ness invariance, and the number of desired cluster has
been set to 10.

RX anomaly detection This is also a very common proce-
dure in remote sensing [10]. While the direct applica-
tion is very straightforward, it requires the inverse of
the spectral covariance matrix, which does not always
exist. We recommend alternative methods based on the
computation of the Mahalanobis distance in the KLT
space [11]. As for the threshold selection, we will con-
sider the top 1% locations to be anomalies.

All these measures have been implemented in an open
source package available at [12].

4. EXPERIMENTAL RESULTS

Experimental results are performed on the widely available
AVIRIS corpus by NASA [13]. The usual top-left tile of
512x512 pixels is selected. Images are stored as 16 bit signed
integers. Unless otherwise stated, results are presented for
Cuprite, and other images yielded similar results.

Encodings have been performed with both spectral trans-
forms described, and JPEG2000! with Mean Squared Error
(MSE) as R-D optimization distance.

First, Signal-to-Noise Ratio (SNR) and CR results will be
shown so the reader can asses qualities by traditional means.
In Fig. 2, PLL methods are compared with their lossy coun-
terparts. As can be observed, similar results are obtained up to
a 1 bpppb, and then PLL versions start to decline. However,
around 5 bpppb, PLL methods become lossless. In Table 1,
a comparative of the target bitrates for lossless compression

1JPEG2000 encodings have been performed with Kakadu Software [14]
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IWT | RKLT | M-CALIC | LUT
Cuprite 5.28 4.86 486 | 4.61
Jasper Ridge | 5.54 4.87 4.96 | 492
Low Altitude | 5.95 5.21 - -
Lunar Lake 5.30 4.96 496 | 4.77
Moffett Field | 5.65 4.98 5.05 | 5.13
Yellowstone 4.79 3.89 - -

Table 1: Comparison of target bitrate for lossless recovery
between PLL and pure lossless methods. Pure lossless re-
sults from [3]. M-CALIC and LUT are introduced respec-
tively in [15, 16].

IWT 5/3
RKLT 16 ML

—— IWT 5/3
RKLT 16 ML

MSA (°)

Bitrate (bpppb)

Bitrate (bpppb)

—— IWT 5/3
RKLT 16 ML

0.99 9 = IWT 5/3
RKLT 16 ML

Wang's Q lambda

°

8

|

|

|

i

o]

B3

3

©

N
Wang's Q stack

1 2z 3 4 5 6
Bitrate (bpppb)

Bitrate (bpppb)

Fig. 3: Quality evolution for statistical measures. On MSS
and MSA less is better, and on s less is worse.

is presented. It can be appreciated that PLL yields similar
results to other pure-lossless state-of-the-art techniques.

Once the traditional properties of PLL have been estab-
lished, results from IEMs will be presented. Using the same
convention as in Section 3, results for statistical measures will
be presented first.

In Fig. 3 plots for all the statistical IEMs are shown. All
measures, but (), have large graceful decays and no insta-
bilities, which is good. However, Qssqck, Saturates around
5 bpppb, even for lossy techniques. @ has a large constant
zone, and is insensitive to large amounts of compression. This
leads to doubt about the usefulness of this specific ) exten-
sion to spectral images.

Regarding classification-related metrics, plots for quality
evolution are provided in Fig. 4, and visual inspections in Fig.
5 and Fig. 6.

In these experiments, k-means has proved to be very re-
sistant to high amounts of compression, losing less than 2%
of performance at 0.5 bpppb. From visual inspection, we see
that most of the spatial locations that change class are located
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Fig. 4: Quality evolution for classification-based measures.
RX anomaly threshold is 1%.

Correlation

RMSE and MSS 0.998
RMSE and MSA 0.988

MSS and MSA 0.983

Qstack and Real Bitrate 0.985

Table 2: Measure correlation for Cuprite compressed with
RKLT and JPEG2000. The other images yielded similar re-
sults.

on the boundaries, and that a high structural similarity is still
preserved.

RX, on the other hand, is very sensitive to compression.
Compression up to 1 bpppb still preserves most of the original
features, but as compression increases, strong artifacts appear.
And, on very low bitrates, the algorithm is extremely unstable
and becomes unusable. As shown, the RKLT provides a sub-
stantial improvement over the other methods. Also note, that
although RX performances might seem similar to the ones of
k-means, the high bias between classes and the small number
of them make a 0.5% error ratio, change half of the anomalies
detected.

To conclude this experimental analysis we investigated
the correlation between these metrics and the “traditional”
ones, in order to detect measures with similar responses to
distortion introduced by compression. Correlation between
two measures has been computed, for each image, by sam-
pling the compression process at bitrates from 0.25 bpppb to
11.75 bpppb in intervals of 0.25 bpppb. Most relevant results
are provided in Table 2. Strong correlations (p > 0.95) have
been found between MSS, MSA, and the square root of the
MSE. Also, an interesting result is the high correlation be-
tween (Qsqcr and the real bitrate achieved by the encoder.

On the other hand, no apparent relation has been found
involving classification-based metrics. In addition, we have
seen that using other distances on the k-means algorithm, such
as the Euler distance or the Manhattan distance, produces sim-
ilar results (p > 0.99 between them).

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, after an overview of the current state of Pro-
gressive Lossy-to-Lossless (PLL) encoders for hyper-spectral
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imagery, a detailed investigation of the lossy regime of PLL
encoders evaluated with alternative measures is presented.

First, traditional properties of PLL encoders are assessed,
showing both good SNR at moderate bitrates, and good CR at
lossless.

Two families of alternative measures are presented: the
statistical family, where statistical properties of an image are
used to infer distortion; and the classification-based family
where distortion is linked to the performance of an unsuper-
vised classifier.

On the statistical family, measures are found to highly cor-
relate with already known properties of the coding process
(i.e. MSE and bitrate). Therefore, the analyzed measures of
this family provide little value in this scenario. However, the
reported correlation might only occur on the performed cod-
ing process, and other processes (fusion, sharpening, segmen-
tation, Gaussian noise, ...) might not produce this correlation.

Quite the contrary, classification-based measures do not
directly correlate into any other measures, even between
them, and seem to provide a reliable threshold for compres-
sion. Furthermore, each one has a different tolerance to
compression artifacts.

Future research on this topic might be the use of super-
vised classification-based measures or the extension of these
results to other corpus of RS images, and other sources of
distortion.
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