
Received 8 November 2023, accepted 15 December 2023, date of publication 25 December 2023,
date of current version 9 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3347039

Federify: A Verifiable Federated Learning Scheme
Based on zkSNARKs and Blockchain
GHAZALEH KESHAVARZKALHORI 1, CRISTINA PÉREZ-SOLÀ1,
GUILLERMO NAVARRO-ARRIBAS1, JORDI HERRERA-JOANCOMARTÍ1,
AND HABIB YAJAM 2
1Department of Information and Communications Engineering, Autonomous University of Barcelona, 08193 Bellaterra, Spain
2Department of Computer and Electrical Engineering, University of Tehran, Tehran 1417935840, Iran

Corresponding author: Ghazaleh Keshavarzkalhori (Ghazaleh.Keshavarzkalhori@uab.cat)

This work was supported in part by the Spanish Ministry under Grant PID2021-125962OB-C33 SECURING/NET, Grant
PID2021-125962OB-C31 SECURING/CYBER, and Grant TSI-063000-2021-151 FREE6G-Security; and in part by the Catalan Agència
de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) under Grant SGR2021-00643 and Grant SGR2021-01508.

ABSTRACT Federated learning (FL) has emerged as an alternative to traditional machine learning in
scenarios where training data is sensitive. In federated learning, training is held at end devices, and thus
data does not need to leave users’ devices. However, most approaches to federated learning rely on a central
server to coordinate the learning process which, in turn, introduces its own security and privacy problems.
We propose Federify, a decentralized federated learning framework based on blockchain that employs
homomorphic encryption and zero knowledge proofs to provide security, privacy, and transparency. The
scheme successfully preserves the confidentiality of both the data used for training and the local models using
homomorphic encryption. All model parameters are publicly verifiable using zkSNARKs, and transparency
of both the learning process and the incentive mechanism is achieved by delegating coordination to a public
blockchain. The evaluation of the proof of concept of our framework demonstrates its viability both in terms
of required computational resources and the cost to train on a public generic blockchain such as Ethereum.

INDEX TERMS Federated learning, verifiable, zkSNARK, blockchain, decentralization, privacy, Ethereum.

I. INTRODUCTION
Federated learning is a machine learning technique that
enables multiple parties and devices to train a shared machine
learning model based on a dataset that is distributed among
them without sharing the data. Since parties do not share
datasets, this approach can provide data privacy to some
degree. However, the information that parties exchange
during the process of training can leak some information
about the training dataset.

The emergence of big data has pushed the development
of machine learning. Every day large amounts of data are
produced that can be used for training machine learning
models in fields such as language processing, biometrics,
and the Internet-of-Things. However, due to various reasons
(e.g. privacy concerns and bandwidth limitations), this

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Tucci .

data is scattered among many devices and under different
sovereignties. This leads to more demand for federated
learning.

Another vital challenge that federated learning faces is the
need for a verifiable learning process. Training should be
conducted in a way that participants cannot interfere with
the production of the final model in a way that causes it to
generate faulty results. Therefore, in a verifiable federated
learning method, a small group of malicious participants
should not be able to alter the final trained machine learning
model.

Google was the first to introduce federated learning as
an industrial solution to the privacy issues of centralized
machine learning. The idea of federated learning, as dis-
cussed by McMahan et al. [24], is referred to as local training
of machine learning models with local data and aggregation
ofmultiplemodels to retrieve a global model. Similarly, many
later works proposed schemes that train the model using a

3240

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-7758-0018
https://orcid.org/0000-0003-4344-7446
https://orcid.org/0000-0002-5969-5455


G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

central server, which gathers local models from clients and
aggregates them to create a better model. While this model
addresses the issue of data islands, it heavily relies on a
centralized structure.

Blockchain [27] is a revolutionary idea that comes up
when the notion of distribution is brought up. As a con-
sequence, recent research works propose using blockchain
or decentralized ledger technology to tackle the problem of
having a single point of failure in the federated learning
system. A proper decentralized federated learning system
based on blockchain technology guarantees that no single
party has an upper hand in controlling the training process.
All participants have equal power in the system, since the
blockchain distributes trust and has transparent transactions
in the immutable ledger.

This paper proposes Federify, a federated learning scheme
based on smart contracts, zkSNARK proofs, and partially
homomorphic threshold cryptography that trains a Gaussian
naive Bayes model. Utilizing zkSNARK verification of the
data users submit to the smart contract, the proposed scheme
prevents model poisoning attacks.

Additionally, we use partially homomorphic threshold
encryption to distribute trust among semi-trusted participants.
As a result, if the set of semi-trusted participants do not
collude with each other, user data privacy will be fully
preserved and only the final trained model will be publicly
available to everyone. On-chain smart-contracts omit the
need for a centralized authority and provide a transparent
incentive mechanism for participating users. One important
contribution of this research is providing an open-source
implementation of ourwork alongside a performance analysis
of the implementation which demonstrates its viability.
The following list summarizes the contributions of this
paper:

• We propose a decentralized federated learning frame-
work based on blockchain with security, privacy, and
transparency guarantees.
- - We introduce the usage of zkSNARK proofs to reject

outlier data and prevent model poisoning.
- - We propose to use partially-homomorphic threshold

encryption for preserving user data privacy during
on-chain model aggregation.

- - The framework includes an incentive mechanism
that motivates and rewards participants for their
contributions.

- - We evaluate the security properties offered by the
scheme.

• We implement an open-source proof of concept of the
framework.
- - We analyze the performance of the open-source

implementation.
- - We demonstrate the viability of the framework.

The rest of the paper is organized as follows. Section II
presents the basic concepts upon which our solution is built: it
presents the concept of blockchain-based smart contracts, the

federated learning approach to machine learning, the crypto-
graphic primitives used in the scheme, and the classification
technique. Then, Section III explains the Federify framework
and specifies the algorithms and actions performed in each
of its phases. Following this, Section IV describes the
implementation that constitutes our proof of concept for
the scheme. After that, Section V provides the results of
evaluating the proof of concept on the Ethereum network and
discusses its security properties. Later on, SectionVI explains
other works that have some similarities with the proposed
scheme and compares their contribution, highlighting the
benefits of our framework with respect to the state of the art.
Finally, Section VII wraps up the paper with conclusions and
further work.

II. PRELIMINARIES
To fully understand Federify, some preliminary knowledge
is required. The following section introduces these concepts
and explains how they are employed.

A. BLOCKCHAIN AND SMART CONTRACTS
Blockchain has attracted so much attention in the research
area of computer science since its inception in 2008 [27].
In brief, it is a distributed immutable ledger, which all the
nodes of the network work together to update and keep track
of. This ledger is kept in the form of blocks of data that each
contain the hash of the previous block.

Ethereum [6] is a platform based on blockchain which
supports smart contracts. Smart contracts are defined as ‘‘a
computerized transaction protocol that executes the terms
of a contract’’ by Nick Szabo [36] in the mid 1990s.
Ethereum nodes execute smart contracts by the Ethereum
virtual machine. When a contract is deployed on the network,
the code cannot be altered and all the states are executed
automatically, providing execution integrity.

Smart contracts on Ethereum are coded in Solidity and
managed by a contract account created by an external account
owned by a person. A contract account stores the code of the
corresponding contract and is charged some amount of Ether
to exchange values with respect to the code. Each line of code
executed on Ethereum demands a certain value of gas, which
is the minimum metric of value on the Ethereum platform.
The external functions of the contract can be accessed by each
account by sending a transaction to them. By doing so, some
gas is used, which is limited by 30 million per block at the
time of writing.

B. FEDERATED LEARNING
Federated learning (FL) is the distributed solution to machine
learning. A set of clients {C0,C1, . . . ,CN } train a local
model with their local data, and send their model or updates
to a central server, which aggregates them to obtain a
global model. The process is usually iterative, where the
central node distributes the global model back to the clients,
they send back differences between their local models
and the global one, the server updates the global model,

VOLUME 12, 2024 3241



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

and so on. The process finishes when some condition
is met, usually based on the convergence of the global
model.

The FL approach was initially praised for its privacy
guarantees, given that the data do not leave the client device.
There is no need to share data, that might contain sensitive
information. This has proven to be a bit illusory [1], [21], [46].
Information leakage can occur at different stages, in the local
model of each client, or even in the aggregation can lead to
different types of disclosure.

Moreover, FL also needs to face the possibility of having
some dishonest clients, which might attempt to make the
machine learning model to misbehave. Either to target a
specific outcome or simply to make it unusable.

In this sense, there are commonly two types of problems
that can arise in FL: security problems aimed to attack
the model and process, and privacy problems where the
attacker aims to obtain sensitive information from the clients.
FL literature usually addresses these problems separately,
and just a few proposals attempt to address them at
the same time. Some examples of the latter are [19]
and [23].
One of the major motivations of our proposal is that it can

be considered a fully distributed FL framework, that does not
require a central server to aggregate the local models. This
decentralization is performed by relying on a blockchain and
smart contracts to perform the tasks that are commonly done
by a server. The main consequence is that we do not need to
place any level of trust in the server and its operations. Note
that common FL works assume an honest, or semi-honest
server model. That is a server that follows the protocol but
might try to infer information. In our case, no trust needs to
be placed in the aggregation operations since it is auditable by
any participant having access to the blockchain (which could
be public).

Privacy attacks are commonly divided into client-side and
server-side. Client-side attacks are usually limited, and only
considered when the number of participants is relatively
small. It might seem that in our case the server-side does
not directly apply, but common server-side attacks can be
also considered in scenarios without a server. In some
sense the smart contract and its resulting computations
and data, which might get published in the blockchain,
could lead to some disclosure, similarly to the information
that a server could infer in a more common FL scenario.
This makes the distinction between server, client or even
external attacker a bit unnecessary. We consider that privacy
attacks can be performed by any entity having access
to the blockchain. The common privacy attacks in FL
are:
• Membership inference attacks: in this case, the attacker
attempts to determine if some specific data is part of the
training data set [14], [25], [28], [43].

• Property inference attacks refer to the disclosure of
properties of the training data not the data itself (e.g.
location, testing environment, . . . ) [12], [25], [42].

• Distribution estimation attacks: here, the attacker
attempts to determine the distribution of the client
data [18].

• Reconstruction attacks: possibly the most ambitious
attack, where the attacker tries to obtain the original
data [13], [32], [45], [46].

Security attacks are usually performed by malicious
clients, which aim to influence in the final model. The
literature commonly characterizes them into two types:
• Model poisoning, where the malicious client tries to
manipulate the local model parameters before they are
aggregated into the global one [2], [5], [40].

• Data poisoning: the client injects biased or wrong data
into the training data [4], [11].

These attacks also might differ on the goal of the attacker,
distinguishing between targeted and untargeted attacks. The
targeted attacks try to force the global model to make
a specific incorrect prediction, while the untargeted ones
attempt to prevent the convergence of the global model or
force it to converge to an arbitrary wrong state.

C. THRESHOLD ElGamal CRYPTOSYSTEM
The proposed scheme provides confidentiality of both the
data used for training and the local models through homomor-
phic encryption using ElGamal encryption. By sharing the
private key among multiple decrypting parties, the threshold
ElGamal cryptosystem ensures that the plain text data is not
accessible to any single party. The ElGamal cryptosystem
also has the property of partial homomorphism that can
be used for adding content of two ciphertexts [30]. In a
(t,m)-threshold decryption scheme, for the decryption of
a ciphertext, participation of at least t out of the total
m number of decrypting parties is required. The value of
t is predetermined by protocol designers. There are five
algorithms that are part of a partial homomorphic threshold
ElGamal cryptosystem:
– P← Setup(s1, . . . , sm). Every user Uk of the set of all m

users has its secret key sk and public key Pk = skG. The
global public key of the scheme is:

P =
m∑
k=1

Pk

Then, every user Uk shares his private key sk using a
polynomial secret sharing scheme. To do so, every user
Uk chooses at random a polynomial fk (z) of degree t − 1:

fk (z) = fk,0 + fk,1z+ fk,2z2 + · · · + fk,t−1zt−1

such that fk (0) = fk,0 = sk . Uk also computes a
commitment for every polynomial coefficient Fkj = fk,jG,
for j = {0, · · · , t − 1} and publicly publishes {Fkj}

t−1
j=0 .

Afterward, Uk secretly sends the secret share (i, ski) with
ski = fk (i) toUi for i = {1, · · · ,m} alongside its signature.
Then every user Ui can verify the signature from user Uk
and the correction of the share ski by ensuring the next

3242 VOLUME 12, 2024



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

equations hold:

skiG = fk (i)G =
t−1∑
l=0

(Fkl) · il

Fk0 = fk,0G = Pk

– (R,C) ← EncP(r,m). The encryption of a given plain-
textm on the elliptic curve1 with the public key P is done
by taking a random r ∈ (1, n − 1) and calculating the
cipher-text:

(R,C) = (rG,m+ rP)

where n is the order of G in the curve.
– (R,C)← HAdd(R1,C1,R2,C2). Homomorphic addition
of two ciphertexts (R1,C1) and (R2,C2) is:

(R,C) = (R1 + R2,C1 + C2)

– (R,Csk ) ← PartDec(sk , (R,C)). Each user Uk partially
decrypts the cipher-text obtaining:

Csk = (C − skR)

The complete decryption of an encrypted value (R,C)
coming from a multiple party key, P =

∑m
k=1 Pk , can be

obtained by applying a partial decryption over all subkeys,
that is:

m = PartDec(s1, PartDec(s2,PartDec(· · · ,
PartDec(sm, (R,C)))))

The plaintext is indeed recovered because (R,C) have
been obtained by encrypting with the global public key P,
thus:

C = 6m
k=1skR+m

C −6m
k=1skR = m

Csk = C − skR

Csk − (s1R+ s2R+ · · · sk−1R+ sk+1R+ · · ·+smR)=m

Note that partial decryption order is not important because
of the commutative property of addition. Moreover, if user
Uk does not cooperate in decryption, then any set of t
users can recover his secret sk using the shares ski they
have [30], soCsk can be always computed assuming t users
are honest.

D. zkSNARKs
A Zero Knowledge Proof (ZKP) is a probabilistic proof
in which no extra knowledge is dispensed to the par-
ties except the fact to be proved. Zero-knowledge Suc-
cinct Non-interactive Arguments of Knowledge (zkSNARK)
proofs have the same property but are more widespread with
use cases such as zCash, which is an implementation of

1Notice that m needs to be a point of the elliptic curve. In case m is an
integer, we can take m as the x-coordinate and compute the y-coordinate to
obtain both components of the point.

FIGURE 1. Steps of creating a zkSNARK proof from a program.

the Zerocash [34] payment system. A zkSNARK has the
following properties:

• Completeness: There is a need to ensure that any correct
proof of the algorithm conforms to the protocol in order
to ensure it’s working correctly.

• Soundness: Using such an algorithm requires that it
makes sure no false proofs are verified. As such, the
prover acting faulty could not submit false proofs of a
known fact.

• Zero-knowledge: As far as other parties are concerned,
no extra knowledge must be divulged to them other than
what has already been proved.

• None-interactive: The provider and the verifier
exchange only one message during the verification
process.

Figure 1 shows the process of creating and verifying the
proof of a program.

zkSNARK usage requires an initial setup phase, generating
a common reference string (CRS) shared between the prover
and the verifier. The CRS is connected to the verification
process by setting a set of variables corresponding to the fact
being verified. As a result of the generation of a CRS, there
is no longer any need to exchange back and forth messages
during the verification process and hence the proof becomes
non-interactive.

When creating a zkSNARK, the proving program must be
converted into an arithmetic circuit. Arithmetic circuits only
consist of the basic four mathematical functions (addition,
subtraction, multiplication, and division), which makes a
program easier to process. Although arithmetic circuits are
simple, they are not themost convenient to work with in terms
of privacy. The next steps in generating zkSNARKs are the
key points of how all their features are attainable.

The next step in a zkSNARK generation will check if each
of the computation steps is correctly computed or, in other

VOLUME 12, 2024 3243



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

words, check the constraints of a simplified equation. A Rank
1 Constraint System (R1CS) would check if the values are
correctly computed. The act of creating the R1CS from a
program is referred to as compilation throughout this paper.
The more complex the program, the more constraints are
there.

Afterwards, the prover will compute the inputs to the
R1CS, the witness, for the specified input values. Program
inputs can be passed as private and public. Both of these
inputs are needed when generating a witness, but when
verifying a proof only public inputs are used. Methods for
using these inputs in the R1CS are beyond the scope of this
paper.

It is possible to generate the witness with specific input
values, but the verification process requires a general method
independent of inputs. The next step in zkSNARK generation
will generalize these constraints by comparing them between
polynomials rather than numbers. Quadratic Arithmetic
Programs (QAP) confirm the equality of polynomials by
checking random points between them. Polynomials with
different coefficients will fail at most points if equality does
not hold between them. If you check two polynomials at
random points to determine if they are equal, the result will
be correct with a high probability.

An initial setup is required between the prover and the
verifier in a zkSNARKgeneration process, prior to generating
random valid points for the validation process and CRS
mentioned previously. This setup must not be done solely by
the prover since if the randomness of the points is known to
the prover he/she can create false proofs. The output of this
initial setup is a Verification key and Proof key which are the
bonded values of the CRS and the checking points.

E. GAUSSIAN NAIVE BAYES
The naive Bayes classifier is a probabilistic classification
algorithm where the conditional probability of assigning a
data point to a specific class is computed for each feature
within the dataset. The final probability of a data point
belonging to a particular class is determined through the
cumulative probability of its individual features, which can
be derived using Bayes’ theorem.

When applied to data classification, Gaussian naive Bayes
assumes that all features follow a normal distribution. In this
context, Gaussian distributions can be expressed as:

P(x) =
1

√
2πσ 2

e−
(x−µ)2

2σ2

This probability function is solely dependent on the mean,
µ, and variance, σ . Therefore, the naive Bayes classifier
calculates themean and variance of the features in the training
dataset, subsequently employing this information to classify
the test data.

If data are classified within N classes and haveM features,
then µ

j
i and σ

j
i represent the mean and the standard deviation

of feature i for class j. The model parameters are thus the

FIGURE 2. Entities participating in the scheme.

mean and the standard deviation for each feature and class,
resulting to a total of 2MN model parameters.
In order to classify a data point X , we would compute the

probability of this point belonging to each class using the
values of its features. Let us denote xi as the value of the ith

feature of X . Then, Pji represents the probability associated
with the ith feature within class j, which can be derived
by applying the Gaussian naive Bayes function utilizing the
computed class parameters (µj

i and σ
j
i ).

Pji(X ) =
1√

2π (σ ii )
2
e
−

(xi−µ
j
i)
2

2(σ ii )
2

In a naive Bayes classifier, it is assumed that the features of
the data are independent, so the final probability of a data
point being classified as a specific class is the multiplication
of all the conditional probabilities of its features. Hence, the
final probability of data point X belonging to class j can be
expressed as:

Pj(X ) = 5M
i=1P

j
i

Finally, the data point is classified into the class that
exhibits the highest probability Pj among the N possible
classes.

III. FEDERIFY’S SCHEME
In the proposed scheme, a set of model owners (MO) sponsor
the training of a global model using private local data from
a set of data owners (DO). A smart contract (deployed by
the smart contract moderator) in a public blockchain acts as
a coordinator (Figure 2).
The execution of our proposed scheme consists of four

phases:
1) A setup phase is required to set up all the parameters

of the scheme and deploy the smart contract on the
blockchain.

2) During the registration phase, model owners register to
the smart contract, providing their public keys and some
capital.

3244 VOLUME 12, 2024



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

TABLE 1. Description of the notation used throughout the paper.

3) Learning is an iterative process composed of several
rounds. Each round consists of four steps: training
the local models and aggregation of the global model,
decryption of the global model, payment of incentives,
and decision-making.
a) Data owners train their models with local data.

To preserve the privacy of such local data, data owners
encrypt their model before sending it to the smart
contract together with a zkSNARK proof attesting to
the correct computation of the encrypted model. If the
proof is valid, the smart contract aggregates the local
model into the global model.

b) Model owners collaborate in the decryption of the
globalmodel: eachmodel owner partially decrypts the
global model and submits its partial decryption (and
a zkSNARK proof attesting its correct computation)
to the smart contract. The participation of at least
t honest model owners ensures the global model
decryption is obtained.

c) Data owners are rewarded for their contribution
to the global model. Data owners submit a diver-
gence value quantifying their contribution (together
with a zkSNARK proof attesting its correct com-
putation) to the smart contract, and they are

rewarded using funding that MOs have paid during
registration.

d) Once the global model is decrypted and MOs
incentives are paid, model owners can assess its
performance and vote on whether to continue training
or stop.

4) Upon finishing training, at the ending phase, the smart
contract will distribute the remaining capital to the
owners.

The following subsections will thoroughly explain the
process of the scheme in each of the phases. The notations
used throughout the paper can be found in the Table 1.

An overall diagram of the sequence flow of Federify is
presented in Figure 3.

A. SETUP
The moderator does the initial zkSNARK setup described
in Section II-D, obtaining the Verification key and
the Proof key for all of the verification processes further
referred to in the following sections. Upon completing this
step, the program, the obtained Verification keys,
and the Proof keys are shared in a shared file system.
This is so each entity can verify that the setup phase is done
truthfully.

The moderator also has to deploy the scheme’s federated
learning smart contract (FLSC) to the blockchain. FLSC
aggregates model updates and stores deposits and funds,
as well as scheme variables. As a result of conducting
Create Verifier() for each of the verification steps, a smart
contract is created which contains the Verification Key. These
smart contracts are used for the verifications explained later,
such as the model verification smart contract (MVSC) in
Section III-C, the decryption verification smart contract
(DVSC) from Section III-D, and the incentive verification
smart contract (IVSC) in Section III-E.

Since a smart contract cannot change after being deployed,
the moderator first configures the scheme variables and then
deploys the contract to the blockchain. These variables are
batch size (β), number of model owners (m), number of
features (f ), initial deposit, and minimum submissions (p) for
each training phase.

B. REGISTRATION
Each Model Owner (MOk ) registers in the smart contract
during the registration phase. As part of this phase, MOs
need to send the initial deposit, funding, and a local public
key, Pk .

On the one hand, the initial deposit serves as an incentive
for MOs to act honestly, that is, to honestly participate
in the decryption process. MOs will recover this deposit
if they submit correct partial decryptions of the model
parameters.

On the other hand, funding will be used to reward Data
Owners (DOs) for their contributions to the model.

VOLUME 12, 2024 3245



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

FIGURE 3. Flowchart of the Federify flow. The DO and MO represent
correspondingly the flow of one data owner and the model owner
participating in the scheme. Whenever there is a yes/no decision, lines
going to the right (respectively, left) correspond to the behavior of the DO
(respectively, MO). Each time there is a dot joining different arrows, the
direction can be inferred by the missing arrow (i.e. the line without an
arrow indicates the outgoing direction).

Finally, the local public key Pk will be used within the
threshold encryption scheme, as described in Section II-C.
Combining the local public keys sent by theMOs will provide
the global public key P used for encryption:

P =
m∑
1

Pk

Training for the global model can begin once all model
owners have registered.

C. LOCAL MODEL TRAINING AND GLOBAL MODEL
AGGREGATION
Data owners train a Gaussian naive Bayes (Section II-E)
model by updating it repeatedly. Themodel updates occur in a
sequence of classes; whenever data in a specific class reaches
the batch size β the DO trains its model and sends an update
to the global model.
DOs will encrypt their local model parameters with

ElGamal’s threshold encryption scheme using the global
public key P computed in the registration phase. The
encrypted model each DO sends to the smart contract in
each round is the set of encrypted parameters for all of the
features {1, 2, · · · , f }, denoted as S = {µi, (σi)2}

f
i=1, where

µi = EP(µi, ri) and σ 2
i = EP(σ 2

i , r ′i ).
Each DO should then create a proof for multiple aspects

of its model computations. First, the zkSNARK program
ValidateModel() would check if the local model parameters
are correctly computed from the local data Dj.

Algorithm 1 ValidateModel

Input: Dj = {x1i, · · · , xβi}, i = {1, · · · , f }, {(µi, σ
2
i )}

f
i=1

Output: verify
verify = true
for i = {1, · · · , f } do

µ′i←
6

β
k=1xki
β

(σ 2
i )
′
←

6
β
k=1(xki−µ′i)

2

β

if µ′i ̸= µi or (σ 2
i )
′
̸= σ 2

i then
verify = false
break

end if
end for

After proving that the passed local model parameters
are correct, it has to ensure that the encryption process is
also done correctly. zkSNARKprogramValidateEncryption()
receives the local model parameters, the encrypted local
model parameters, and the global public key P as the input
and checks if the encrypted variables are donewith the correct
public key.

In order to generate the witness, the DO must apply
Compute Witness() on the public inputs, private inputs, and
the output of the Compile() process. The inputs passed to the

3246 VOLUME 12, 2024



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

Algorithm 2 ValidateEncryption

Input: {(µi, σ
2
i )}

f
i=1, {(µi, σ

2
i )}fi=1, {ri}

2f
i=1,P

Output: verify
verify = true
for i = {1, · · · , f } do

µ′i ← EP(µi, ri)
(σ 2
i )
′ ← EP(σ 2

i , rf+i)
if (σ 2

i )
′ ̸= σ 2

i or µ′i ̸= µi then
verify = false
break

end if
end for

Compute Witness() are shown below, where underlined items
correspond to private inputs.

Compute Witness(S,S,Dj,P, {ri}
2f
i=1,

Compile(Algorithm 1, 2))

After generating the witness with the inputs necessary for
the program, DO will apply the Generate Proof() on the
witness and the Proof key which results in the proof.
After creating the proof, the DO sends a transaction

containing the proof and the public variables of the program
such as Tx(Proof ,S,P) to the corresponding function of the
smart contract to submit an update. The contract aggregates
the model upon validating the received proof by adding the
encrypted parameters to the class parameters.

Let Sj be the encrypted values of µi and σ 2
i for all features

i = 1, · · · , f provided by DOj, the encryption aggregation
for the first and second DO is defined as {Sj}2j=1 =

HAdd(S1,S2). In a more general way, the final aggregated
value, {Sj}pj=1 when the last DO, Dp, merges his encrypted
values is computed as

{Sj}pj=1 = HAdd({S1}p−1j=1 ,Sp)

The training phase can continue until the minimum number
of submissions p are made in each class. Each time the
scheme reaches this limit, MOs decrypt the global model
stored in {Sj}pj=1 to continue with the scheme.

D. DECRYPTION
The more submissions made in a specific class, the more
accurate the classification becomes. After the minimum
submissions p are made in all classes, MOs apply threshold
decryption to the global encrypted model {Sj}pj=1 to retrieve

the decrypted global model {(µ∗i , (σ
2
i )
∗)}fi=1.

Each MOk would first retrieve the current model from the
smart contract and decrypt it using his own private key sk
by performing a partial decryption PartDec(sk , (R,C)) (as
explained in Section II-C). In order to completely decrypt
the parameters of the model, eachMOk will need to partially

decrypt the model and submit his partial decryptionCsk to the
smart contract.2

To ensure the submitted partially decrypted value Csk is
correct, theMO also computes a proof that will be submitted
together with Csk .

EachMO has to prove their decryption computations for all
model parameters, as depicted by ValidateDecryption(). The
function shows the verification for a single parameter, where
C is the retrieved partially decrypted ciphertext by otherMOs
until the time of submission.

Algorithm 3 ValidateDecryption
Input: (Pk , sk ),Csk , (C,R),G
Output: verify
C ′sk ← C − skR
verify = (Pk == skG and C ′sk == Csk )

Here also the MO computing a proof must first compute a
witness.

Compute Witness(sk ,C,Csk ,Pk ,R,Compile(Algorithm 3))

Upon receiving a partially decrypted model, the smart
contract will verify the proof. As soon as the decryption is
verified, the smart contract replaces the already decrypted
model with the new one. The protocol will continue until the
model is decrypted.

The parameters retrieved after the decryption are the sums
of all local model parameters. The global model is thus the
division of these sums by the number of submissions in their
respective classes.

E. INCENTIVE DISTRIBUTION
In a distributed architecture, it is vital to encourage partic-
ipation. This scheme provides an incentive mechanism for
this purpose. To measure participation, a metric computes
the local model’s contribution to the global model in each
iteration.

After each decryption phase, the DOs who have
contributed to that iteration compute a metric using
their model parameters and the global model parameters,
F(σi, µi, σ

∗
i , µ∗i ), with the help of Kullback-Leibler [20]

or the Bhattacharyya distance [3] that indicates how close
their submitted model is to the global model in each for the
features.

DMi = F(σi, µi, σ
∗
i , µ∗i )

where σ ∗i and µ∗i are, respectively, the variance and the
mean for the feature i obtained from the decrypted global
model.

Note that the model parameters are all in plain-text
format.The value of the computed DM quantifies how

2Notice that only t number of the MOs need to collaborate in the
decryption process since that threshold is enough to compute the secret key
of the other m− t . For simplicity, the secret key retrieving equations for the
possible m− t no-cooperation MOs are not mentioned here.

VOLUME 12, 2024 3247



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

diverged the models are from each other. For a specific model
update, the lower theDM value for that update, the closer that
model is to the global model, and thus the more effective it
was in shaping the global model.

When sending their DM to the smart contract, each DO
has to prove that their metric corresponds to the model
they have submitted to the scheme in the same iteration.
To create the proof, ValidateEncryption() will check if the
passed encrypted version of the model is the same as
the encryption of the plain text input of the model. Then
ValidateFeatureMetric() will check each of the computations
of DMi for all features in the submitted class.

Algorithm 4 ValidateFeatureMetric

Input: {DMi}
f
i=1, {µi, σ

2
i }
f
i=1, {µ

∗
i , (σ

2
i )
∗
}

Output: verify
verify = true
for i = {1, · · · , f } do
(DMi)′← F(σi, µi, σ

∗
i , µ∗i )

if (DMi)′ ̸= DMi then
verify = false
break

end if
end for

The overall metric sent to the smart contract by eachDO is
the mean of theDMi for all of the features existing in the data
set. The Algorithm 5 will in the end check if the sent DM is
correctly computed from the set {DMi}

f
i=1.

Algorithm 5 ValidateMetric

Input: {DMi}
f
i=1,DM

Output: verify M ← 0
verify = true
for i = {1, · · · , f } do
M ← M + DMi

end for
DM ′← M

f
verify = (DM ′ == DM )

After compiling all the programs for the incentive
computation proof, the DO wanting to submit their DM
must generate the witness corresponding to their values as
below.

Compute Witness(S,S,

{DMi}
f
i=1,DM ,Compile(Algorithm 2, 4, 5))

The DO wanting to receive its incentive sends a transaction
containing the proof, and the public variables in the format
of Tx(Proof ,S,DM ) to the smart contract. DOs will receive
an incentive if their proof is correct. A malicious DO will
receive less incentive if most of the DO are acting honestly.
This is due to the fact that the parameters of their model will
diverge from those of the global model. After the distribution

of incentive values, the scheme undergoes either another
iteration of training or finishes.

F. DECISION MAKING
The MOs will test the model after each decryption to
determine whether it has reached a certain performance.
In the event that they are satisfied with the model’s
performance, they will vote to finish the scheme and end the
training process; if not, the training process will continue.

G. ENDING
When the training is completed, eachMO receives his deposit
back based on his contribution. The amount of money they
get back depends on how many times they contributed to
the decryption process and how honest they were. Through
the use of deposits, MOs are thus incentivized to contribute
to decryption. Therefore, the MOs using the decrypted
models but not contributing cannot claim back their deposits
and the computation overhead is fairly distributed among
the MOs.

IV. IMPLEMENTATION
The purpose of this section is to describe what the
implementation consists of and how results affect the
scheme. Among the phases described in Section 3, the local
model training and aggregation performed by the smart
contract are more computationally intensive. As a result,
these two are the ones implemented and deployed on the
Ethereum public blockchain to prove that Federify is feasible.
In the Ethereum blockchain, a block is generated every
12 seconds using the proof of stake consensus protocol.3

The number of transactions in a block varies as Ethereum
uses the notion of gas to adjust the size of each block.4

Whereas the gas consumption of a transaction varies with
respect to its resource consumption. By deploying the
smart contracts implemented in Solidity and testing the gas
consumption of carrying out the scheme, we prove Federify’s
practicality.

The implementation consists of two parts and is available
for the public on GitHub.5 Each DO gathers data and
trains a model corresponding to the scheme, then updates
the global model with the trained local model. Each MO
registers in the smart contract with a public key and later
takes part in decryption. Local computations done by the
MO and DO are only trusted when verified via zkSNARK
proofs. In this implementation, ZoKrates toolset it used for
implementing the zkSNARK circuits of Federify [8]. All
the verifications needed for the scheme in ZoKrates are as
described in Algorithms 1, 2, 3, 4, and 5. Among these,
only Algorithms 1, 2, and 3 are implemented since these

3Ethereum started with a proof of work consensusmechanism, but in order
to reduce the energy consumption switched to proof of stake on September
2022.

4At the time of publishing this paper, Ethereum roughly generates
12 transactions per second.

5https://github.com/qatkk/FederatedNaiveBayesZKP

3248 VOLUME 12, 2024



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

FIGURE 4. Overall interaction between different implemented entities.

are more computationally heavy and crucial when testing
feasibility.

The DO and MO interact with the main smart contract
(FLSC) which coordinates the scheme and handles on-chain
aggregation and decryption. Model verification smart con-
tract (MVSC) as explained in Section III-C, the decryption
verification smart contract (DVSC) from Section III-D, and
the incentive verification contract (IVSC) as Section III-E are
the three smart contracts used for the on-chain verification
process. The uses of these smart contracts and the connection
between them are depicted in Fig. 3. As shown, FLSC
includes and calls all other verification contracts, but the only
ones corresponding to the implemented verifications, MVSC
and DVSC, are implemented and described here.

A. DATA OWNER (DO)
As described in Section III-C the DO gathers data for a
specific class that is to be trained. When the data reaches β,
the program computes the model parameters. After training
the model parameters DO then retrieves the public key from
FLSC for encryption. The implementation uses the Baby Jub
Jub [39] curve parameters to encrypt the model.
The DO must then continue to create a proof using the

computed model parameters. Input parameters to ZoKrates
need to be prepared before being given as input for witness
generation. As part of this preparation, the DO must
preprocess the data and model parameters due to multiple
computation shortfalls in ZoKrates. The first drawback is that
ZoKrates cannot handle floating points and negative values.
It is necessary to add a specific positive predefined value
to all the data points before computing model parameters to
remove negative and outlier points. Additionally, ZoKrates’

computation requires a fixed-size input for a fixed-compiled
program. We solve this problem using β for the data.
A model parameter is then multiplied by the accuracy
parameter in the form of 10d , being d the accuracy
parameter, in order to have better precision when computing
integers.

The data and local model parameters are passed as
private parameters, while accuracy, encryption, and public
parameters are passed as public to the ZoKrates for witness
generation. The only verification applied by DO is described
in Algorithms 1 and 2. This part is implemented in Javascript
to interact both with the smart contract and ZoKrates.

As shown in Fig. 3, the DO sends its proof for the model
verification to the MVSC. The Verifytx() function of the
MVFC is responsible for verifying the proof. Whenever
a DO sends an update to the UpdateModel() function
of FLSC, this function calls Verifytx() from the MVSC
passing the proof along with the public parameters as
input. If the proof is verified, the UpdateModel() will then
homomorphically add the received parameter update to the
existing model parameters of the class and increment the
number of submissions sent to that class, as described in
Section III-C.

B. MODEL OWNER (MO)
TheMO only interacts with the scheme in two phases through
the scheme sequence. At the registration phase, each MOk
registers in the FLSC by sending Pk , deposit, and funds
using an Ethereum account. The FLSC contract then saves
the address of that specific MOk along with their deposit
and adds the received Pk to P. At the end of the registration
phase, FLSC has the P in the format of P = 6m

i=1Pk for
later use in encryption. The second interaction is when the

VOLUME 12, 2024 3249



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

TABLE 2. Proof.key and R1CS file size with respect to batch size and number of the features for the model verification process.

TABLE 3. R1CS and Proof.Key size for the whole scheme with respect to
batch size and number of the features for the partial decryption process.

MO takes part in decryption which consists of multiple steps.
First, the MO retrieves the partially decrypted global model
from the specified function of the FLSC for a specific class
of the model.

At this point, the MO will then decrypt the retrieved
partially decrypted model. MO applies verification for
decryption as in Algorithm 3. In the verification process,
the local public key, the partially decrypted model, the
random point, and the decrypted global model until that
decryption round are passed as public input. Where the
only private input passed is the secret key corresponding
to the local public key. In the end, the MO interacts with
FLSC for decryption verification through the same Ethereum
account registered on FLSC. The MO sends its decrypted
model parameters with proof to the DecryptModel() to
submit the new partially decrypted model. This function
of the FLSC then calls Verifytx() from the DVSC passing
the proof along with the public parameters as input. As a
result of verifying the received decrypted model, FLSC
then replaces the partially decrypted model with the newly
submitted one and increments the number of participations
for that specific MO. The implementation for the MO
is in Javascript to interact with both ZoKrates and the
blockchain.

V. SCHEME ANALYSIS
Using the implementation, we run experiments to test two
valuable resources in this scheme. Use of zkSNARKs is
computationally heavy which results in more gas cost on the
blockchain and more storage usage when storing the output
files. A diagram illustrating how the various implementation

parts interact can be found in Fig 4. Furthermore, we also
review the security requirements that have been outlined in
Section II-B.

A. STORAGE REQUIREMENTS
The storage required for proof generation and verification
changes with respect to the scheme parameters and the
program that an entity is verifying. Themore computationally
heavy a program is the more its constraints will be and the
bigger the size of its setup files. The R1CS is the main
file needed for ComputeWitness() and Setup(). An R1CS
is generated before the setup phase and is stored off the
blockchain on a distributed file-sharing system for each of
the verifications.

The files used directly or indirectly for zkSNARK proof
generation are the R1CS and the Proof.Key. The size of
these files changes with respect to scheme parameters. The
computations done in ZoKrates are converted into constraints
after compilation.

Table 2 shows the file size of Proof.Key and R1CS for
different values of the number of features (f ) and batch sizes
(β) for a DO.

Decryption verification depends only on f , where
Proof.Key and R1CS size for this verification can be found
in Table 3 with respect to this parameter. The size of
Verify.Key and Proof files are not affected by changes in
scheme parameters, with their sizes remaining 22KB for the
model verification and 15KB and 7KB for the decryption
verification. According to Table 2, in order to generate
proof for verifying the trained local model on an average
computer, the DO only requires 6.62 GB of storage when
training a model with 15 different features and 500 batches.
As mentioned in Table 3, an MO requires only 128 MB of
storage in order to verify its decryption for the global model
for the mentioned training configuration.

These results are obtained by executing ZoKrates with
Groth16 for proof generation and the alt bn128 curve for
the key generation and bindings. Proof generation and setup
phase for the results reported in this section were obtained
by running ZoKrates commands on a system with 16 GB

3250 VOLUME 12, 2024



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

TABLE 4. Gas cost of the implementation of the scheme with respect to the number of features.

of RAM.6 The only training configuration exceeding this
memory bound is for 15 features and a batch size of 1500 and
2000. Reported results for the mentioned configuration were
carried out by a system with 64GB of memory.

B. GAS COST
The second valuable resource is the cost of interacting with
the blockchain. When interacting with a smart contract,
each transaction costs a certain amount of gas based on the
computations performed to execute a function. In order to
test the utility of our design, the Goerli test network7 is
used to deploy FLSC and measure the costs of interacting
with it. Each DO undergoes costs when updating the global
model as part of the experiment. Such costs directly influence
participation and model quality.

These costs are mainly caused when carrying out the
zkSNARK verification on the blockchain. As described in
the original paper of ZoKrates [8], the on-chain verification
cost of a ZoKrates program only depends on the number
of public inputs passed to the program. That means that
the complexity of the ZoKrates program doesn’t affect the
gas costs on the blockchain and is the same for the same
number of public inputs to the verification smart contract.
In the mentioned public and private set of inputs to ZoKrates,
every point on the curve for every encrypted model parameter
requires two inputs, the (x, y) coordinate of the point on the
curve. Verification costs on the blockchain can be reduced
by passing only the x value of each point as public input.
This reduces the cost but imposes a new security risk if the
verifier passes wrong coordinates. To prevent such actions,
the program accepts the y value along with each x and checks
if the point is a valid point on the curve.

The gas costs corresponding to model update, contract
deployment, and partial decryption can be found in Table 4.
Note that the gas cost only changes with respect to f
and is independent of β. Among these costs, the contract
moderator8 pays for the contract deployment, DOs pay for
the model update, and the MO pays for each decryption
verification they participate in.

The reported values are far from the current limit of the
Ethereum network, which is 30,000,000 units, and show that
the proposed plan is feasible.

6zkSNARKs can only be used when the system has sufficient memory,
since when computing heavy programs are run, the number of constraints
increases, therefore the amount of memory required increases.

7https://goerli.net
8This entity can be anyone of the MOs.

C. SECURITY DISCUSSION
We have seen in Section II-B an outline of the main problems
found in FL frameworks. In our proposal, given our use of
a public blockchain and smart contracts, we do not need
to place trust in the entity aggregating the local models,
something that is usually assumed in FL. This being the
major characteristic of our proposal would not suffice by
itself without proper mechanism to prevent security and
privacy problems, but will bring availability, accessibility
and fault tolerance with respect to network failures since a
public blockchain is maintained among distributed nodes or
miners. We consider that even without the use of a central
aggregation server, most of the server-side attacks considered
in the literature can also be possible. The aggregation is
performed in a smart contract over a public blockchain, which
means that the information and computations used in the
aggregation are public. In some sense, the lack of a central
server requires stronger security mechanisms, something to
be expected when we do not require placing trust in such a
process.

Security problems in FL are commonly related to clients
providing malicious data, either using bad data to train their
local model (data poisoning) or directly sending maliciously
crafted local model parameters (model poisoning). In order
to minimize these problems, our proposal relies on the use
of zkSNARKs, which could allow verifying the local model
parameters from the local data. Model poisoning attacks are
thus prevented, but it is noteworthy to consider that data
poisoning is still possible, as it is in most FL frameworks.
In general, having control over the data collected by each
client goes against the spirit of FL. In our case, the use of the
zkSNARKs can also provide some accountability. It makes
it possible to perform a posteriori analysis of a given client
data. That is, verify, only if there is a problem, the data used
by a given client.

From a privacy perspective, we have seen that our
proposal relies on homomorphic encryption to preserve the
confidentiality of the local models and the aggregation
process. The threshold scheme ensures that even data owners
are not able to decrypt local models. The only potential
inference can be done by a client from the partial global
model. This kind of client-side privacy attacks is limited,
specially as the number of clients increases [25].
It is noteworthy to highlight that the scheme provides

transparency of both the learning process and the incentive
mechanism by delegating coordination into a smart contract
in a public blockchain. In addition to the use of a

VOLUME 12, 2024 3251



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

public blockchain, using a threshold encryption mechanism,
and the distributed structure of the scheme, results in
Federify being resilient to the single point of failure
attacks.

In the following sections, we will provide a deeper
discussion of these issues comparing them to related work.

VI. RELATED WORKS AND COMPARISON
In this section, an in-depth description and comparison of the
existing literature is provided. Many methods for federated
learning have been proposed, but their designs are limited by
the following issues: (i) security threats to the privacy of local
data, (ii) verifiability of the results, and (iii) lack of reward
mechanisms.

Our first discussion will focus on the different hiding
protocols they may use to protect local data. Afterward,
we will discuss the verifiability of the obtained results from
two different perspectives. As part of a federated learning
structure, the correctness of the global model is dependent
on the correct aggregation of the local models and the correct
computation of the local models. We present a discussion of
different aggregation methods in the field and then discuss
how different works examine the correctness of the local
models within the analysis.

A. HIDING PROTOCOL
Sending raw model parameters may reveal critical informa-
tion about the data that was used to train those models [1].
Therefore, existing FL schemes conceal or mask their local
models, and several approaches have been followed with this
goal. In [22], [26], and [35], model parameters are hidden
to some extent by adding random noise, in order to provide
differential privacy. Based on the added noise’s randomness
and value, this method provides varying degrees of security
to each scheme. To resolve attacks on the randomness of the
noise, Rückel et al. [33] and Zhang et al. [44] verify the
randomness of the added noise by using verifiable random
functions used in Algorand [7].
Several works, including our proposal, have used encryp-

tion to secure model parameters. First, [29] employs
a multi-party computation encryption scheme (MPC) to
encrypt model parameters. Following a round of model
training, these parameters are sent to a third-party server
that decrypts and aggregates the model updates in a trusted
execution environment (TEE). The TEE then provides
participants with the results of aggregation as well as
its verification. The use of TEEs introduces a single
point of failure and trust into the design, which can be
inconvenient.

Toyoda et al. use encryption in [37] and [38] alongside
incentive mechanisms to ensure better behavior of the partici-
pants. In both of these schemes, a task publisher is responsible
for sending out encryption keys to participants through
private channels. This can risk the privacy of the scheme in
case of eavesdropping. A similar study was conducted by
Feng et al. [9] where a conductor sends participants the keys

for secret sharing. With this scheme’s homomorphic masking
protocol, there is no need for decrypting each model update,
and aggregation is done by a chosen participant at the end of
each training round. A potential disadvantage of this work is
that the keys are distributed over a private channel, and it will
require an extra setup step in the event that participants drop
out.

Other works such as [16] and [41] also use encryption as
a hiding protocol for model updates which is also done by a
central aggregator server.

Federify only requires an initial setup phase for MPC
encryption, allowing participants to drop out at no cost to
communications or computation. With the help of cumulative
decryption performed at the end of every phase, MO privacy
is also preserved through homomorphic aggregation. Also,
our scheme guarantees no faults in the aggregation process
due to the automatic aggregation method done by the smart
contract.

B. AGGREGATION METHOD
When talking about aggregation in an FL design, the first
idea that comes to mind is to rely on a third-party server.
In [29], the trust is removed from the aggregator with the help
of a TEE (Trusted Execution Environment) to safely decrypt
model updates and compute the aggregated global model.
In order to provide fairness to the aggregation process, [41]
introduces a verification method. In this work, a cloud service
conducts aggregation and then presents the result along
with a verification to prove that the aggregation is fair and
secure.

To enhance the security of the previous work, [16] adds
a key exchange technology, hence improving the problem
of a trusted third party. Other works such as [10], [15],
and [9] also use an aggregation server and remove trust
from the aggregator by using different hiding methods
as described in the previous section and conduct fair
aggregation by verifying the aggregated results. As an
example, [16] leverages homomorphic hash functions and
pseudorandom technologies to provide proof for aggrega-
tion. Nevertheless, these works rely on a third party for
aggregation, which can expose them to single-point-of-failure
attacks.

The aggregator server can be removed by distributing the
aggregation task. In [37] and [38], multiple entities take
the role of an aggregator. A group of randomly chosen
entities apply aggregation to the collected updates from each
round. In their first work [37], Toyoda et al. ensure the
honest behavior of the entities with the help of competitive
model updates, where only desired updates are accepted.
They implemented an incentive mechanism through which
clients would only profit by acting as the scheme demands.
Although the aggregation is distributed among participants,
the fairness of the aggregation is only guaranteed by an
incentive mechanism. Further, they enhanced their previous
work in [38] by implementing aggregation verification with
the help of Lagrange interpolation.

3252 VOLUME 12, 2024



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

A different method of distributing the aggregation is to
integrate FL with blockchain, where participants are miners
as in [22] and [35]. In these works, each block contains
all the updates for a training round and the aggregated
results. In Biscotti, proof of federation (PoF) is proposed
as a blockchain consensus protocol to withstand attacks on
the aggregation of FL structures. In this scheme, verifiable
random functions and hashing algorithms determine the roles
of entities as aggregators of the structure. In [22], DOs are
the nodes of the blockchain in the sense that the nodes do
the verification. Each node verifies the quality of uploaded
local models to the blockchain by using their local data as a
test set and aggregating the models. When receiving a block,
each miner can verify if the aggregated result is true based on
the updates in the block. These works verify the aggregation
and distribute the trust bringing fairness and correctness to
the aggregation process in an FL design but need their own
blockchain and cryptocurrencies which can decrease their
usability.

To increase the usability and have a trustless distributed
aggregation process, multiple works such as [17], [31],
[33], and [44] use smart contracts. Since functions in a
smart contract run automatically and publicly, using them
for aggregation removes the need for trusting a server and
verifying the aggregation process. Since the computations are
done publicly, these works need to use hiding methods to
preserve the privacy of the individual updates in each training
round.

C. A COMPARISON OF FEDERIFY WITH THE STATE OF THE
ART
In this section, we describe more in detail the works that
are closely related to the proposed scheme and compare
Federify to the existing state of the art. In [44], the
design provides fairness through verifiable aggregation and
preserves data privacy by adding random noise to the
local model parameters. This scheme takes advantage of
a verifiable random function (VRF) to implement fully
verifiable differential privacy. In this scheme, at each training
phase, a new transaction is created and used as the seed
for the VRF function. After VRF creates random values,
each client would retrieve the random value, create their
own random parameter, and use it to hide their local model
parameters. In such a scheme, all random values added to
the local parameters will be verified on the blockchain with
the help of zkSNARKS. Although this scheme verifies the
randomness of the local model parameters and preserves
local data privacy, the computation of the gradients is
unverified and can put the global model at risk of model
poisoning.

Heiss et al. In [17] present a design where all data owners’
model computations are verified with zkSNARK. The clients
compute a model locally and send their gradients to the smart
contract for verification and aggregation. Although the design
prevents model poisoning, it cannot guarantee the privacy of

the data since all gradients are sent to the blockchain without
hiding them.

Ruckel et al. presented a scheme using Blockchain and
zkSNARKs in [33] to prevent the model and data poisoning
attack. To validate the model owners’ computation and
process, a simple linear regression circuit is implemented
using zkSNAKRs. Each data owner then submits their local
model with added noise to the smart contract for aggregation.
This scheme takes advantage of a public test data set to check
the performance of the submitted models. Although in this
work the computation for local model parameters is verified,
the added noise is still not verified and won’t fully protect the
privacy of data owners’ data.

A majority of the existing literature carries out aggregation
through a third-party server, which can be verified, whereas
Federify uses smart contracts to automatically and transpar-
ently do the model aggregation, eliminating the need for
verification. In comparison to the few works mentioned in
this section providing verifiability for the model parameters,
Federify’s advantage is through the use of homomorphic
encryption which provides full privacy for model parameters
yet allows the continued training of the global model. As a
result, compared to the existing state of the art, Federify
ensures full privacy of the local data and model parameters
while demonstrating feasibility and verifiability through the
provided proof-of-concept.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have designed, implemented, and evaluated
Federify, a distributed federated learning framework based
on blockchain and cryptography. By using a blockchain,
our framework is able to remove the need for a central
server that coordinates the learning process. Furthermore,
the usage of a public blockchain not only introduces
transparency to the learning process and the incentive
distribution mechanism but also reinforces the security of the
system. The usage of encryption ensures the confidentiality of
local models, and the incorporation of zkSNARKs provides
security guarantees to the scheme without compromising
privacy.

Moreover, our proof-of-concept implementation success-
fully demonstrated the practical viability of the proposed
framework. The proposed smart contracts are deployable on
the Ethereum blockchain and the size of the zkSNARKs
circuits and keys is manageable even for an average
laptop (a 16GB RAM laptop is able to run our proof-of-
concept for models up to 15 features with a batch size
of 1000).

Moving forward, future research endeavors will focus on
enhancing the capabilities of our framework by incorporating
other (more complex) learning models and ensuring the
scalability of the scheme (for instance, by studying its
viability over layer two solutions or sidechains). Additionally,
we will explore diverse incentive functions to gauge their
impact on the computational cost of running the scheme
and the learned models. These extensions will facilitate

VOLUME 12, 2024 3253



G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

a deeper understanding of the potential and limitations
of our proposed framework, ultimately contributing to the
advancement of federated learning in a distributed and secure
manner.

REFERENCES

[1] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, ‘‘Privacy-
preserving deep learning via additively homomorphic encryption,’’ IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333–1345, May 2018.

[2] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, ‘‘How to
backdoor federated learning,’’ in Proc. 23rd Int. Conf. Artif. Intell. Statist.,
Jun. 2020, pp. 2938–2948.

[3] A. Bhattacharyya, ‘‘On a measure of divergence between two multinomial
populations,’’ Sankhyā, Indian J. Statist., vol. 7, no. 4, pp. 401–406,
Jul. 1946.

[4] B. Biggio, B. Nelson, and P. Laskov, ‘‘Poisoning attacks against support
vectormachines,’’ inProc. 29th Int. Conf.Mach. Learn. (ICML), Jun. 2012,
pp. 1467–1474.

[5] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, ‘‘Machine
learning with adversaries: Byzantine tolerant gradient descent,’’ in
Advances in Neural Information Processing Systems, vol. 30. Red Hook,
NY, USA: Curran Associates, 2017.

[6] V. Buterin, ‘‘Ethereum white paper: A next generation smart contract &
decentralized application platform,’’ Ethereum Found., Tech. Rep., 2013.

[7] J. Chen and S. Micali, ‘‘Algorand,’’ 2016, arXiv:1607.01341.
[8] J. Eberhardt and S. Tai, ‘‘ZoKrates–Scalable privacy-preserving off-chain

computations,’’ in Proc. IEEE Int. Conf. Internet Things (iThings), IEEE
Green Comput. Commun. (GreenCom), IEEE Cyber, Phys. Social Comput.
(CPSCom), IEEE Smart Data (SmartData), Jul. 2018, pp. 1084–1091.

[9] C. Fang, Y. Guo, J. Ma, H. Xie, and Y. Wang, ‘‘A privacy-preserving
and verifiable federated learning method based on blockchain,’’ Comput.
Commun., vol. 186, pp. 1–11, Mar. 2022.

[10] A. Fu, X. Zhang, N. Xiong, Y. Gao, H. Wang, and J. Zhang, ‘‘VFL:
A verifiable federated learning with privacy-preserving for big data in
industrial IoT,’’ IEEE Trans. Ind. Informat., vol. 18, no. 5, pp. 3316–3326,
May 2022.

[11] C. Fung, C. J. M. Yoon, and I. Beschastnikh, ‘‘Mitigating Sybils in
federated learning poisoning,’’ Jul. 2020, arXiv:1808.04866.

[12] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, ‘‘Property
inference attacks on fully connected neural networks using permutation
invariant representations,’’ inProc. ACMSIGSACConf. Comput. Commun.
Secur. (CCS), NewYork, NY,USA:Association for ComputingMachinery,
Oct. 2018, pp. 619–633.

[13] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, ‘‘Inverting
gradients—How easy is it to break privacy in federated learning?’’ in
Advances in Neural Information Processing Systems, vol. 33. Red Hook,
NY, USA: Curran Associates, 2020, pp. 16937–16947.

[14] Y. Gu, Y. Bai, and S. Xu, ‘‘CS-MIA: Membership inference attack based
on prediction confidence series in federated learning,’’ J. Inf. Secur. Appl.,
vol. 67, Jun. 2022, Art. no. 103201.

[15] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker,
‘‘VeriFL: Communication-efficient and fast verifiable aggregation for
federated learning,’’ IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 1736–1751, 2021.

[16] G. Han, T. Zhang, Y. Zhang, G. Xu, J. Sun, and J. Cao, ‘‘Verifiable
and privacy preserving federated learning without fully trusted centers,’’
J. Ambient Intell. Humanized Comput., vol. 13, no. 3, pp. 1431–1441,
Mar. 2022.

[17] J. Heiss, E. Grünewald, S. Tai, N. Haimerl, and S. Schulte, ‘‘Advancing
blockchain-based federated learning through verifiable off-chain compu-
tations,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain), Aug. 2022,
pp. 194–201.

[18] B. Hitaj, G. Ateniese, and F. Perez-Cruz, ‘‘Deep models under the
GAN: Information leakage from collaborative deep learning,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), New York, NY,
USA: Association for Computing Machinery, Oct. 2017, pp. 603–618.

[19] N. M. Jebreel, J. Domingo-Ferrer, A. Blanco-Justicia, and D. Sánchez,
‘‘Enhanced security and privacy via fragmented federated learning,’’
IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15, Oct. 2022, doi:
10.1109/TNNLS.2022.3212627.

[20] J. M. Joyce, ‘‘Kullback–Leibler divergence,’’ in International Encyclope-
dia of Statistical Science. Berlin, Germany: Springer, 2011, pp. 720–722.
[Online]. Available: https://doi.org/10.1007/978-3-642-04898-2_327

[21] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[22] C. Ma, J. Li, L. Shi, M. Ding, T. Wang, Z. Han, and H. V. Poor,
‘‘When federated learning meets blockchain: A new distributed learning
paradigm,’’ IEEE Comput. Intell. Mag., vol. 17, no. 3, pp. 26–33,
Aug. 2022.

[23] X. Ma, X. Sun, Y. Wu, Z. Liu, X. Chen, and C. Dong, ‘‘Differentially
private Byzantine-robust federated learning,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 12, pp. 3690–3701, Dec. 2022.

[24] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[25] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, ‘‘Exploiting
unintended feature leakage in collaborative learning,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2019, pp. 691–706.

[26] A. Mondal, H. Virk, and D. Gupta, ‘‘BEAS: Blockchain enabled asyn-
chronous & secure federated machine learning,’’ 2022, arXiv:2202.02817.

[27] S. Nakamoto and A. Bitcoin. (Apr. 2008). A Peer-to-Peer Electronic Cash
System. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[28] M. Nasr, R. Shokri, and A. Houmansadr, ‘‘Comprehensive privacy analysis
of deep learning: Passive and active white-box inference attacks against
centralized and federated learning,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2019, pp. 739–753.

[29] J. Passerat-Palmbach, T. Farnan, R.Miller, M. S. Gross, H. Leigh Flannery,
and B. Gleim, ‘‘A blockchain-orchestrated federated learning architecture
for healthcare consortia,’’ 2019, arXiv:1910.12603.

[30] T. P. Pedersen, ‘‘A threshold cryptosystem without a trusted party,’’
in Advances in Cryptology—EUROCRYPT, vol. 547. Berlin, Germany:
Springer, 1991. [Online]. Available: https://doi.org/10.1007/3-540-46416-
6_47

[31] P. Ramanan and K. Nakayama, ‘‘BAFFLE: Blockchain based aggregator
free federated learning,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain),
Nov. 2020, pp. 72–81.

[32] H. Ren, J. Deng, and X. Xie, ‘‘GRNN: Generative regression neural
network—Adata leakage attack for federated learning,’’ACMTrans. Intell.
Syst. Technol., vol. 13, no. 4, pp. 65:1–65:24, May 2022.

[33] T. Rückel, J. Sedlmeir, and P. Hofmann, ‘‘Fairness, integrity, and privacy
in a scalable blockchain-based federated learning system,’’Comput. Netw.,
vol. 202, Jan. 2022, Art. no. 108621.

[34] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, ‘‘Zerocash: Decentralized anonymous payments from bitcoin,’’
in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 459–474.

[35] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, ‘‘Bis-
cotti: A blockchain system for private and secure federated learning,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1513–1525, Jul. 2021.

[36] N. Szabo, ‘‘Smart contracts: Building blocks for digital markets,’’
EXTROPY, J. Transhumanist Thought, vol. 18, no. 2, p. 28, 1996.

[37] K. Toyoda and A. N. Zhang, ‘‘Mechanism design for an incentive-aware
blockchain-enabled federated learning platform,’’ in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2019, pp. 395–403.

[38] K. Toyoda, J. Zhao, A. N. S. Zhang, and P. T. Mathiopoulos, ‘‘Blockchain-
enabled federated learning with mechanism design,’’ IEEE Access, vol. 8,
pp. 219744–219756, 2020.

[39] B. WhiteHat, J. Baylina, and M. Bellés, ‘‘Baby Jubjub elliptic curve,’’
Ethereum Improvement Proposal, Ethereum Found., Tech. Rep. EIP-2494,
2020, vol. 29.

[40] Z. Wu, Q. Ling, T. Chen, and G. B. Giannakis, ‘‘Federated variance-
reduced stochastic gradient descent with robustness to Byzantine attacks,’’
IEEE Trans. Signal Process., vol. 68, pp. 4583–4596, 2020.

[41] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, ‘‘VerifyNet: Secure and
verifiable federated learning,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 911–926, 2020.

[42] H. Yang, Y. Wang, and B. Li, ‘‘Individual property inference over
collaborative learning in deep feature space,’’ in Proc. IEEE Int. Conf.
Multimedia Expo (ICME), Jul. 2022, pp. 1–6.

[43] J. Zhang, J. Zhang, J. Chen, and S. Yu, ‘‘GAN enhanced membership
inference: A passive local attack in federated learning,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[44] Y. Zhang, Y. Tang, Z. Zhang,M. Li, Z. Li, S. Khan, H. Chen, and G. Cheng,
‘‘Blockchain-based practical and privacy-preserving federated learning
with verifiable fairness,’’Mathematics, vol. 11, no. 5, p. 1091, Feb. 2023.

[45] B. Zhao, K. R. Mopuri, and H. Bilen, ‘‘iDLG: Improved deep leakage from
gradients,’’ Jan. 2020, arXiv:2001.02610.

[46] L. Zhu, Z. Liu, and S. Han, ‘‘Deep leakage from gradients,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, 2019, pp. 14774–14784.

3254 VOLUME 12, 2024

http://dx.doi.org/10.1109/TNNLS.2022.3212627


G. Keshavarzkalhori et al.: Federify: A Verifiable FL Scheme Based on zkSNARKs and Blockchain

GHAZALEH KESHAVARZKALHORI received
the bachelor’s degree in electrical engineering
major in communication engineering from the
University of Tehran. Her research conducted
primarily in the fields of blockchain technology
and privacy-preserving protocols with the Secure
Communication Laboratory (SCL), University
of Tehran. After graduating, she has been a
Researcher with the SENDA Research Group,
Autonomous University of Barcelona. She is also

researching on the combination of federated learning, blockchain, and
privacy.

CRISTINA PÉREZ-SOLÀ received the first Ph.D.
degree in computer science from the Autonomous
University of Barcelona (UAB) and the second
Ph.D. degree in engineering science (electrical
engineering) from Katholieke Universiteit Leuven
(KULeuven). She is currently an Associate Pro-
fessor with the Department of Information and
Communications Engineering, UAB. Since 2014,
her main research interests include Bitcoin and
blockchain-based cryptocurrencies, mainly with

respect to security and privacy. She is also interested in machine learning,
cryptography, and graph theory.

GUILLERMO NAVARRO-ARRIBAS is currently
an Associate Professor with the Department of
Information and Communications Engineering,
Autonomous University of Barcelona (UAB),
where he is also amember of the SENDAResearch
Group. His main research interests include data
privacy, privacy enhancing technologies, and
blockchain technology.

JORDI HERRERA-JOANCOMARTÍ received the
degree in mathematics from the Autonomous
University of Barcelona (UAB), in 1994, and
the Ph.D. degree from Universitat Politècnica de
Catalunya, in 2000. In 2000, he joined Universitat
Oberta de Catalunya and founded the KISON
Research Group. He is currently an Associate
Professor with the Department of Information and
Communications Engineering, UAB, where he is
also amember of the SENDAResearch Group. His

research interests include privacy, computer security, and cryptography, with
special dedication to blockchain technology and cryptocurrencies.

HABIB YAJAM received the Ph.D. degree in
secure communication from the University of
Tehran, Iran, and the M.Sc. degree in telecom-
munication engineering-cryptography from the
Sharif University of Technology. His research,
conducted primarily at the Secure Communi-
cation Laboratory, has been extensive in the
fields of blockchain technology, consensus algo-
rithms, privacy-preserving protocols, and anony-
mous communications. He has a distinguished

background in research, with a focus on developing innovative solutions to
enhance security and privacy in digital communications.

VOLUME 12, 2024 3255


