International Journal of Information Security (2022) 21:1349-1359
https://doi.org/10.1007/s10207-022-00614-6

REGULAR CONTRIBUTION

®

Check for
updates

PSO + FL = PAASO: particle swarm optimization + federated learning =
privacy-aware agent swarm optimization

Viceng Torra'?

Accepted: 1 September 2022 / Published online: 22 September 2022
© The Author(s) 2022

Abstract

- Edgar Galvan3 . Guillermo Navarro-Arribas*

In this paper, we present an unified framework that encompasses both particle swarm optimization (PSO) and federated
learning (FL). This unified framework shows that we can understand both PSO and FL in terms of a function to be optimized
by a set of agents but in which agents have different privacy requirements. PSO is the most relaxed case, and FL considers
slightly stronger constraints. Even stronger privacy requirements can be considered which will lead to still stronger privacy-
preserving solutions. Differentially private solutions as well as local differential privacy/reidentification privacy for agents
opinions are the additional privacy models to be considered. In this paper, we discuss this framework and the different privacy-
related alternatives. We present experiments that show how the additional privacy requirements degrade the results of the
system. To that end, we consider optimization problems compatible with both PSO and FL.

Keywords Particle swarm optimization - Federated learning - Differential privacy - Masking - Differentially private social

choice

1 Introduction

Privacy is a matter of trust. An agent can conceal some infor-
mation when she does not trust the recipient of a message,
or medium in which this message is transmitted. When the
agent trusts both the medium and the recipient, the quality
of the information being transmitted is higher [16] and the
message will be more on line of agent’s beliefs.

Federated learning [10] computes machine learning mod-
els without accessing the data of individual agents. In its basic

B Viceng Torra
vtorra@ieee.org

Edgar Galvan
Edgar.Galvan@mu.ie

Guillermo Navarro-Arribas
guillermo.navarro@uab.cat

Department of Computing Science, Umea University, Umed,
Sweden

School of Informatics, Skovde University, Skovde, Sweden

Naturally Inspired Computation Research Group, Department
of Computer Science, Hamilton Institute, Maynooth
University, Maynooth, Ireland

Department Information and Communications Engineering —
CYBERCAT, Universitat Autonoma de Barcelona, Bellaterra,
Catalonia, Spain

form, federated learning considers a centralized entity that
through a set of iterations computes the model, distributes
the model back to the agents, and then, the agents send to the
centralized entity the difference between their local models
and the global one. One of the advantages of this approach
is that is more privacy friendly than sending all agent’s data
to the centralized entity for it to compute the model.

Unfortunately, this privacy-based “guaranteed” federated
learning is an illusion. The fact that agents only send sum-
maries or differences between the central model and their
own model can be rather sensitive [10,18]. In addition, the
final central model can also lead to disclosure [1]. Computing
a differentially private central model can be a solution for the
latter, but not to the former problem. Multi-party computa-
tion can be seen as a solution of the former problem. In this
case, agents need to trust the central entity, the designers of
the protocol, as well as that there is no coalition between this
entity and the agents, or a large enough coalition of agents,
to make disclosure possible.

Thus, from a privacy perspective, agents need to trust all
the other agents as well as the centralized entity, or they
need to reduce both their communications and the quality
of the information they supply. Additional privacy models
[4,8,13,15] and technology are needed for this purpose.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00614-6&domain=pdf
http://orcid.org/0000-0002-0368-8037
http://orcid.org/0000-0003-3535-942X

1350

V.Torraetal.

In this paper, we consider a unified framework for particle
swarm optimization (PSO) [9] and federated learning, as a
kind of continuum between different privacy levels. Recall
that in PSO we have a set of agents each with its own position
in the space of solutions, and their global goal is to jointly
find an optimal solution. All share their positions, and the
best of their positions is stored and shared, and is the basis of
how each agent updates its own position. In our approach, we
range from the situation in which agents do not mind to share
all the information (i.e., PSO) to a strong privacy-preserving
PSO-like environment aligned with federated learning. In
this latter scenario, agents do not share their position, and
the information supplied is locally protected and the final
solution is differentially private.

Our analysis and experiments are in a two-dimensional
setting. That is, all agents are located in a two-dimensional
region. The goal is to minimize an optimization function in R.
We consider an homogeneous scenario where all agents have
the same behavior. All use the same rules for updating their
position and for deciding what and when information is trans-
mitted. In heterogeneous environments, different agents will
have different privacy preferences. That is, different agents
will apply different strategies in their communication with
a central authority. We can represent this situation in our
scenario. It corresponds to a mixture of strategies. Agents
can then reason on what and when to disclose i.e. their own
strategy.

This paper introduces and evaluates privacy-aware swarm
optimization (PAASO) in the context of federated learning
(FL). To this end, we consider and evaluate different pri-
vacy alternatives within this framework and study how they
affect the PSO optimization problem. Our results show that,
in general, the use of privacy mechanisms does not avoid
convergence although they make it slower.

The structure of the paper is as follows. In Sect. 2, we
review some definitions related to data privacy. In Sect. 3, we
introduce our approach. In Sect. 4, we describe our experi-
ments and results. Finally, Sect. 5 draws some conclusions.

2 Some privacy definitions

We consider privacy from different perspectives or dimen-
sions. In general, we would like to avoid the disclosure of
private data and information in all possible stages of the fed-
erated learning process. This includes the computations that
need to be performed, the final and partial outputs generated
by the process, and the data exchanged between the agents.

We rely in the well-known model of differential privacy
[5,6]. The classical definition of differential privacy considers
two databases D1, D5 that differ only in one record (denoted
asd(D1, D) = 1) and an interactive scenario where the user
sends queries to the database.

@ Springer

Definition 1 A randomized query function IC gives e-differential

privacy if for all § € Range(K), and for all Dy, D, such
that d(Dq, Dy) =1,

Pr[K(Dy) € §] < ¢ x Pr[K(D») € S] @8

Broadly speaking, it states that the addition or deletion of a
single record should not be noticeable from the answers to
the query KC up to a given bound determined by €. Lower
values of € provide more privacy, usually and as expected, at
expenses of higher information loss.

We usually assume that the randomization is performed by
a trusted data curator which has access to all the database. An
slightly different definition of differential privacy might be
more interesting in a federated learning environment, where
each agent generates its own, possibly protected, data. In
this case, differential privacy can be considered from a local
point of view giving up to the so called e-local differential
privacy. The difference is given by the fact that each user
randomizes its own data which is then stored in the database.
The definition is analogous to differential privacy, but in the
local case we consider that the randomized function K takes
as input data from a single user instead of taking the whole
database.

In our case, we consider the privacy that can be achieved
by a particle swarm optimization in a federated learning sce-
nario. To provide a broad privacy analysis, we can establish
different disclosure dimensions in the proposed framework.
Information can be disclosed in several stages as described
next.

2.1 Avoiding disclosure from the computation

It is relatively common to rely on secure multiparty compu-
tation (SMC) to provide privacy preserving computations in
federated learning scenarios [17]. Secure multiparty compu-
tation provides a safe tool for agents to jointly compute any
desired function without revealing each agent input.

Formally, given a function to be computed jointly by
several agents, a protocol is defined that specifies how the
function is computed. In typical secure multiparty scenarios,
the final result is then transferred to the agents. From a pri-
vacy point of view, no agent learns more than what can be
inferred from its own data and the output of the computation.
Partial computations and any information on the transmission
do not lead to additional knowledge.

Honest but curious, and malicious intruders are the usual
type of attacks considered. Honest but curious agents follow
the protocol. They try to acquire knowledge by means of
observing when the communications take place and analyz-
ing any information being transmitted (even encrypted ones).
Malicious intruders do not necessarily follow the protocol
and can e.g. inject noise to transmissions, provide wrong

PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware agent... 1351

information, or just sent meaningless messages to acquire
knowledge. Coalitions of agents are other types of attacks
because, naturally, joining their efforts a set of agents can be
able to acquire information on other ones.

It might seem that SMC techniques in general introduced
important penalties both in terms of efficiency and commu-
nication overhead. Despite this initial impression, currently
there are relatively efficient general solutions for secure mul-
tiparty computation [2], and it has been successfully used in
federated learning [3].

In our case, the computations to be performed are rel-
atively simple and can be addressed by well-known SMC
protocols. We will not get into detail about the actual tools
used in order to focus on the description and scope of our
proposal in disclosure from the output and communication’s
content and the privacy guaranties provided in terms of dif-
ferential privacy.

2.2 Avoiding disclosure from the output

When several agents need to decide on a given output, e.g.
based in a voting scheme, the whole procedure as well as
the output can disclose information about the agents. In the
case of PSO, as we will see, agents need to agree in a global
best position, which could likely yield information about the
actual position of some agents.

In [14], it is shown that a differentially private consen-
sus can be achieved based on a random dictatorship voting
scheme. The standard non-privacy preserving random dicta-
torship considers that a set of agents I vote on a given set of
alternatives A, so each agent i € I has a defined preference
>; defined in terms of A x A. An agenti is selected according
to a uniform distribution on the whole set of agents /, and
then, >; is used to select the alternative outcome (i.e., agent
i is randomly chosen as the dictatorship).

An alternative voting procedure that achieves differential
privacy is defined in [14] as:

Definition2 Let A = {ay, ..., a,,} be the set of alternatives.
Then, given the set of agents / with the corresponding pref-
erence relations >; fori € [on the alternatives A, enlarge 1
with a set of agents Iy = {ey, ..., e;} such that >; fori € Iy
has as its preferred alternative the ith alternative in A. Then,
apply uniform random dictatorship on 7 U Iy.

In this last definition, it can be shown that differential
privacy is achieved for any

211U I
€>log —— 2
|1 U]+ 1

2.3 Avoiding disclosure from communication’s
content

Agents need to communicate, for instance, in order to con-
duct the voting scheme described in the previous section. In
such case, agents send their data, which as we will see is a
direction based on their local position. Assuming agents want
to keep their position private, the direction helps in conceal-
ing the position but might not be enough. In order to provide
stronger privacy warranties, agents can mask the data they
send.

PRAM (Post-RAndomization Method) [4,7] is a well-
known statistical disclosure control technique, initially defined
for categorical data. Given a set of categories C = {c1, ..., ¢},
we define a ¢ x ¢ stochastic matrix (or Markov matrix) P so
Yc;ec P(ciicj) = 1. Then, the masking is produced by
replacing each ¢; for c¢; with probability P(c;, c;). When
this technique is performed by the respondent, it is usually
referred as randomized response (RR). The application by the
respondent has a drawback. The respondent can only access
its own data and protection is done in real time. Therefore,
the stochastic matrix cannot be generated taking into account
the distribution of the whole data set, but on our expectations
of this distribution. In our case, agents will apply RR to the
data they need to send (i.e., a discretized version of direc-
tion) in order to establish the global parameter of the PSO.
Sections 3.4 and 3.3 will provide more detail on the use of
PRAM in our proposal.

It is know that RR provides e-local differential privacy if

. max; P(ci,cj)
ef >max ————
c ming; P(ci, ¢j)

3

This means that we can provide strong privacy require-
ment in the data locally released by agents.

We will apply PRAM where the matrix is defined in terms
of a probability parameter (p,,). Then, given the value c;, we
have that P(c;, ¢;) = pyand P(ci, cj) = (1 — pm)/(c—1).
In other words, the probability that the masking does not
modify a category is p,,. Then, with probability 1 — p,, the
category will be replaced by any other. The selection of any
other category follows a uniform distribution. Naturally, this
definition applies to all i. Therefore, the Markov transition
matrix has the value p,, in each element of the diagonal and
(1—=pm)/(c—1)inall other positions. If p,,, > (1—p;;)/(c—
1),thene > In(c — 1)/(1 — pp).-

3 An scenario
Our starting point is to observe particle swarm optimiza-

tion (PSO) and see that it fits well in the federated learning
(FL) framework. This is so because in both PSO and FL

@ Springer

1352

V.Torraetal.

we are optimizing a function that is defined by means of
the behavior of a set of independent agents (i.e., the parti-
cles in PSO and different devices in FL). This observation
permits to define a PSO a la FL. Then, these agents have
privacy requirements. They are local ones, that can be imple-
mented locally by each agent, and global ones, that need
agreement. Taking these requirements into consideration, we
define privacy-aware agent swarm optimization (PAASO).

3.1 No-privacy PSO

Let us start reviewing particle swarm optimization and con-
sider an example. To make the case simple, we consider in our
experiments functions in the two dimensional space. Never-
theless, our proposal is general. Then, each agent has its own
position in the space and each agent knows the value of the
function to be optimized on its current own position (and in
previous positions as well, if the agent has not forgotten).
Standard PSO follows the following schema.

11 Assign agents positions x; to agentsi = 1, ..., s;
— 12 p; := x;; # Assign best agent position to x;
13 ¢ = argmin, f(p;); # g is the best known position

— 14 Assign agents velocities v; to agentsi = 1,...,s;
— 15 iterate
— 151 foreach agenti = 1,...,s

e 15.1.1 (rp, r¢):= random numbers, uniform in
([0, 11, [0, 1)

15.1.2v; := wv; +¢prp(pi —xi) +dgre (8 —X;);
15.1.3 x; := x; + v;;

15.1.4if (f(x;) < f(p;)) then p; := x;;
15.1.5if (f(p;) < f(g)) then g := p;; # p; is
shared

— 16 until (end-condition);

We denote by x;, v; and p; the position and velocity of
the ith agent, and the best position found so far, respectively.
Then, g is the best global position found so far. Function f
denotes the function to be optimized (minimized in our study)
and s the number of agents. Then, w is the inertia weight, ¢,
and ¢, are acceleration coefficients.

Lines 11-14 correspond to initialization, and lines 1.5.* are
the iterative process to find the optimal solution to the prob-
lem. Lines 15.1.1-15.1.3 are to establish the new velocity and
position of the agent and lines 15.1.4 and 15.1.5 the updating
of agent’s best position (p;) and of the global best position
(gP)

If we consider situations in which privacy is not an issue,
any agent can send at any time any information about its
current and past positions (i.e., x; and p;), as well as the

@ Springer

value of the function evaluated at them. Therefore, we can
follow without any problem the PSO protocol.

3.2 PSO lacking trust: PSO a la FL

When the agent trusts the central entity, and the multiparty
computation protocol, the agent presumes that all the sup-
plied information will not lead to a direct inference from the
central entity i.e. that disclosure will not take place. There-
fore, we can build a cryptographic protocol using secure
multiparty computation that computes the minimum func-
tion from the values supplied by the agents at any time and
stores the corresponding position if the evaluation is better
than the last stored one.

Still, lack of trust may prevent an agent to send its posi-
tion and its evaluation. Also, it is not only a lack of trust on
the central entity and the multiparty computation model; it
is also about the trust to other agents that matters. For exam-
ple, a coalition of all but one agent can of course be used
to determine the position of the one left out. Smaller coali-
tions can build estimations of other agents positions. This
would correspond to honest but curious intruders. Malicious
intruders and dynamic adversaries (that can fool the proto-
col and/or make others to also fool the protocol) may have
greater advantage.

An approach more privacy-friendly and in line with fed-
erated learning would be that agents do not supply their own
position but a direction between the current global best one
and their own. Recall that in federated learning agents do not
share data but gradients. In our context, that is, each agent
supplies the direction d; = p; — g as well as f(p;). This con-
ceals p; and avoids any unintentional disclosure of agent’s
position. To do so, we need to revise the previous PSO defini-
tion as g cannot be correctly updated. Instead, we introduce
the position of the central entity which is now public together
with its evaluation. We call this position pg. This position
is iteratively updated using the directions of the agents. A
multiparty computation protocol would ensure that agent’s
directions are not disclosed; the objective function is locally
computed by the central authority. Then, the central author-
ity shares the global position and its evaluation (i.e., pg and
F(pa)).

If all agents have as its goal to optimize the same function,
then they will update all their positions in a similar way. Oth-
erwise, if different agents have different objectives, different
approaches can be used for moving to the next position. In
the next algorithm, we consider the case that all agents want
to optimize the same function.

— 15 iterate

— 15.1 foreach agenti = 1,...,s

PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware agent...

1353

e 15.1.1 (rp, rg):= random numbers uniform in

([0, 11, [0, 1)
e 15.1.2

vi e | @Vt berg(pG — pi) if(pe) < f(pi)
" | wvi + ¢prp(bi — pi) otherwise.

o 15.1.3 x; := x; + v;;
e 15.1.4if (f(x;) < f(pi)) then p; := x;;
e 15.1.5 v; is transmitted

— 152 v:=(1/s)) ; vi; # v; is shared

- 153 pg := pg + wgv

— 16 until (end-condition);

Nevertheless, also in line with what happens in feder-
ated learning: when we send only directions (subtractions),
they can lead to disclosure. Agents (and coalitions of agents)
can use these directions to learn the position of a particular
agent. In addition, the final solution (i.e., the final outcome
of the system with its position and evaluation) can lead to
sensitive information. In particular, the solution will not be
differentially private. Note that when a solution can be used
to infer the participation (or absence) of an agent, then the
solution is not differentially private. To see that the approach
is non-differential privacy, we can consider an agent located
in regions of large values of the objective function, while all
other agents are in other regions.

3.3 A differentially private solution

We can solve the problem just reported by reducing the
dimensionality of the space of agents’ opinions (i.e., in this
case the space of directions | subtractions) and proceeding
with a differentially private aggregation procedure. More pre-
cisely, instead of allowing the agents to provide any direction,
we will only allow for a few finite set of alternatives. In our
example, we consider a discrete set of directions. For exam-
ple, 4 possible directions would be: front, right, left, back.
So, each agent computes its vote «; and casts it. Then, instead
of aggregation, we consider voting. A differentially private
voting mechanism (as the one described in Definition 2) will
provide privacy to agents. We use dpv to denote the differ-
entially private voting mechanism, and a function velocity to
transform the decision into a velocity. So, we replace lines
15.1.5 and 15.2 above by:

— 15.1.5 o; = vote(v;) is transmitted; # agent casts vote
— 15.2 v := velocity(dpv(e;))

To implement this approach, we consider the differentially
private mechanism discussed in Sect. 2.2.

3.4 Agents mask their vote

The approach above still assumes that an agent trusts the
entire system, the multiparty computation protocol, and that
neither the central authority nor the other agents are sniffing
the communications to learn their positions. If this is not the
case, an agent can mask its vote using a masking method mm.
This corresponds to apply the following:

— 15.1.5 o; = vote(mm(v;)) is transmitted; # agent casts
vote

To implement this approach, we will use the masking pro-
cedure discussed in Sect. 2.3.

3.5 PAASO: Privacy-aware agent (swarm)
optimization

As a summary, there are the following different protection
mechanisms for the agent.

— An agent votes for a direction within a reduced set of
possibilities.

— An agent may reduce additional need of communication
if the vote is only sent when its own position is better
than the best current one,

— An agent can conceal its real vote by means of a masking
technique.

The last one is the most privacy-friendly for an agent.
The first one reduces the information supplied, the second
one reduces the information supplied still further, but in
both cases the information supplied is correct. Differentially
private voting makes the aggregation private, but the data
supplied by agents are unprotected (except for SMC proto-
cols). The third case introduces randomization (by means of
data masking—Ilocal differential privacy). In this paper, we
compare these approaches.

As a summary, from the lowest to the highest level of
privacy guarantees. We have the following types of privacy-
aware agents.

— Standard PSO (PSO). Agents inform of their position at
any time, and the objective function for that position is
shared or computed by the central authority.

— Federated learning-like PSO (FL). Agents inform of their
direction toward a global/consensus position at any time
and of the objective function for that position.

— Differentially private PSO (aDRD). Agents inform of
their direction toward a global/consensus position using
a differentially private mechanism. Agent’s decision on
whether or not to vote is made according to a probabil-

@ Springer

1354

ity. Here, DRD stands for Differentially Private Random
Dictatorship.

— Differentially private PSO voting only when better
(bDRD). Similar to the previous case, but vote can only
be casted if agent’s solution is preferable. As in the previ-
ous case, agent’s decision on whether or not to vote also
depends on a probability.

— Differentially private and masked voting for PSO (PbDRD).

Asin the previous case, agents vote when they have a con-
tribution to make but in this case they can obfuscate their
opinion. The voting procedure is as in the previous case
differentially private.

4 Experiments and analysis

In this section, we describe the experiments we have con-
sidered to evaluate our proposal. In general, as usual in the
privacy literature, the more the privacy level, the less the qual-
ity of the solution. Although this is so in most of the cases, the
literature also shows that in some situations and scenarios,
the introduction of privacy constraints does not imply a sig-
nificant reduction in the quality of the solutions. In fact, the
literature on privacy for databases has shown that some per-
turbation on the original data to guarantee some privacy level
can have no effect on data-driven machine learning models,
and in some cases [11], the perturbation even increases the
accuracy of the models. Unfortunately, this will not be the
case in our experiments. We have loss of quality in terms of
slowing convergence.

Notice that we have evaluated the utility of our proposal by
considering the performance of the PSO optimization. This
is a specific information loss (or utility) measure commonly
used for computation an data-driven protection methods [13].
Other generic utility measures might not be so relevant in this
context, where the computation to be performed is clearly
defined.

In order to evaluate different privacy levels of agent
(swarm) optimization, we have considered different opti-
mization problems. The global goal of the system is to find
the optimal solution. In addition, agents have also interest on
finding this optimal solution and have as their local objective
function the same objective function of the whole system.

In order to make analysis and computation simple, all
agents have the same behavior. That is, all agents apply the
same approach to update their own position and velocity.
They all apply the same masking technique (if any) and vote
using the same strategy (in case of voting). In this sense,
the multiagent system can be seen as homogeneous. Nat-
urally, more complex and heterogeneous scenarios can be
considered. In particular, from a privacy point of view, it is
relevant to consider more complex decisions on what infor-
mation needs to be shared and when the information needs

@ Springer

V.Torraetal.
o |
o |
o
3
2 37
©
>
©
= 3|
= <
Q o
© x
\
{
e
o | \\—‘
o
T T T T T T
0 100 200 300 400 500
Time
2 4 ‘ — PSO
‘ — FL
aDRD
‘ —— bDRD
© ‘ PbDRD
NI
. |
S
g |
5 ﬂ
£ \
= < | H
Q o
S |
\
N \
o 7| Lﬂk
o | MJHWLMwaLAWu}LMM\MJWVLA,M..
o
T T T T T I]
0 100 200 300 400 500

Time

Fig.1 Optimal values (y-axis) achieved for the different Agent Swarm
Optimization approaches (PSO, FL, aDRD, bDRD, PbDRD) with
respect to time (x-axis) in two different executions. The parameters
are as follows: function f4, number of voting alternatives k, = 8, 50
agents, = 4.00, ¢, = ¢, = 2.00, wg = 0.005, p. = 1.0, and
pm = 0.9

to be considered. Also, different users have different privacy
preferences and that needs to affect agent’s decisions.

In the remaining part of this section, we describe the prob-
lems considered, the parameters of the system, and also the
results obtained.

4.1 Problems considered

As explained above, we have considered functions with two
inputs and evaluated in R. That is, functions of the form

PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware agent... 1355

f : R xR — R. All functions are to be minimized. The
eight problems considered are the following:

1. Quadratic function (x1, x3 € [—100.0, 100.0]):
fi(xr,x) = x{ +x3

2. Schwefel’s problem 2.22 (x1, x € [—10.0, 10.0]):
fa(xi, x2) = lxrl + |x2| + [x1] - [x2

3. Schwefel’s problem 1.2 (x1, x5 € [—100.0, 100.0]):
f(x1, x2) = x7 + (x1 4+ x2)?

4. Generalized Rosenbrock’s function

[—2.0, 2.0]):

(x1, x2 €

fa(xr, x2) = 100 % (x2 — x1 % x1) + (v — 1)?

5. Generalized Schwefel’s problem 2.26 (x;,x2 €
[—500.0, 500.0]):

fs(x1, x2) = —xysin(y/[x1]) — x2 sin(y/|x2])
6. Rastrigin’s function (x1, xo € [—5.12, 5.12]):

Sfo(x1,x2) =2-10 +x12 — 10cos(2x) + x%
—10cos(2xym)

7. Ackley’s function (x1, xp € [—32.768, 32.768]):

- S
fa(x1, x2) = — 20e OQW

_ eO.Scos(2x1n)+cos(2xzﬂ) +20+e

8. Griewank function (x1, xo» € [—600.0, 600]):

fa(x1, x2) = 1 4 (1/4000)(x? 4 x3)
— cos(xq) * cos(xz/x/i)

These problems are of different complexity. Details on
these functions are given in the work by Sengupta et al. [12].
Function f can be considered the simplest one while some
others are multimodal with some level of deceptiveness. All
optimal solutions have an objective function equal to zero,
except for function f5 that has its global minimum with a
value of —12569.5. We have chosen this functions as they
are commonly used unimodal and multimodal benchmark
functions for PSO [12].

4.2 Agent (swarm) optimization

For implementing different types of privacy-aware agent
optimization, we have considered different algorithms
described in Sect. 3. We will denote them using the names
in Sect. 3.5. That is, PSO (no privacy), FL (privacy of posi-
tion), aDRD (directions shared, differentially private voting),
bDRD (only voting direction in a better position, differ-
entially private voting), PbDRD (PRAM-based masking +
differentially private voting, if better). The implementation
of the system is based on differentially private random dicta-
torship (as described in Definition 2) for the private voting,
and PRAM for agent’s individual privacy (and, thus, local
differential privacy, Sect. 2.3).

The implementation of the system requires fixing a num-
ber of parameters. We have selected these parameters heuris-
tically with the goal of having a generous range of parameters
to find good solutions and also being computationally feasi-
ble. In particular, we have considered the number of agents
to be 50, 100, and 200. Note that the more agents, the most
computationally intensive the problem results. A different
number of iterations have been considered, up to 1000. In
the figures, shorter sequences of values are displayed.

As explained above, all agents have the same behavior
and use the same strategy. Therefore, we need a single set of
parameters for the whole system. In our case, this means that
we need to establish w (the inertia weight), ¢, and ¢, (the
velocities), wg (the global inertia weight), &, is the number
of voting options (that is, it permits us to represent the angles
2m-i/ky fori =0, ..., ky—1fromdirection (1, 0)), p. is the
probability to cast a vote and p,, the probability associated
with the masking method. Not all privacy-aware solutions
use all parameters, as we have seen in the aforementioned
definitions.

Then, we have considered for w and wg the values
{0.005, 0.001, 0.05, 0.1, 0.2, 0.4}, and we have considered
¢p = ¢¢ and the values {0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0}.
These set of values have been found heuristically. They have
been selected to include some parameterizations that are suit-
able for PSO, other parameterizations that are suitable for FL,
and other good for other type of privacy-aware solutions. In
relation to k,, we have used k, = 8 in most of the experi-
ments. We have also used k, = 4, 16, and 32. The masking
method used is PRAM. Then, the probabilities p. and p,,
have been selected among the values {0.6, 0.7, 0.8, 0.9, 1.0}.
Naturally, when p. = 1, the agent always communicates. In
addition, a probability of p,, = 1in PRAM means no protec-
tion. From a differential privacy perspective, these values of
pm different to one correspond to € = 2.35,2.79, 3.33, 4.14.

For each configuration of values, we performed 20 inde-
pendent runs. Each run with 1000 iterations and 50 agents
has taken 0.033 seconds, and thus, a configuration takes 0.66
seconds.

@ Springer

1356

4.3 Discussion of results

As we have mentioned above, we have considered different
types of privacy-aware agents, that is, from the PSO solution
in which agents share all information to the case of agents
masking their votes and considering a differentially private
voting mechanism with only a few alternatives.

As a first illustration, we show different executions of
problem f4. Figure 1 (top and bottom) displays the solu-
tions of PSO, FL, aDRD, bDRD, and PbDRD with
pm = 0.9 for two different executions. The other param-
eters correspond to ky = 8, w = 4.00, ¢, = ¢, = 2.00,
and wg = 0.005. This figure shows this convergence for all
methods after 500 iterations. We see the fastest convergence
for PSO and the slowest for the most privacy-friendly one
(PbDRD with p,, = 0.9). Convergence for the federated
learning F'L solution is slower than the one of PSO but
faster than the others. The two alternatives with a differen-
tial privacy voting strategy are similar. Comparing the two
figures, we can see the variability of the solution.

Due to this variability of the solution in different execu-
tions, Fig. 2 displays the mean objective function achieved for
the 20 different executions considered for the same problem
fa (using the same parameters as above). This figure clearly
shows the difference of convergence for the three alternative
approaches FL,aDRD, and bDRD.

Figure 3 displays mean results for the PbD R D with dif-
ferent values of the parameter p,, considered. In particular,
we have considered p,, = {0.6, 0.7, 0.8, 0.9, 1.0}. The stan-
dard deviations of the objective function in the last iteration
for each of the p,, range between 0.03 and 0.05. From the
figure, we get the impression that there are no fundamental
differences on the parameter used for masking the own data.
That is, that a strong protection (i.e., with p,, = 0.6) and no
protection at all (p,, = 1.0) gives mainly the same results.
This is not completely true as a change of scale would show
that the convergence is a little bit slower when the protection
is higher. Nevertheless, the trend is similar for all values of
Pm- A consequence of this result is that the use of a masking
method /local differential privacy by the agent does not have
amajor influence on the outcome if the final result is obtained
using a differentially private voting mechanism. We discuss
the need of applying this masking in Sect. 5.1.

In general, all different privacy-aware strategies converge
to the desired solution. What differs is the speed of con-
vergence. Among the problems, f5 is the most difficult and
the optimal solution found with any voting mechanism is far
from the optimum.

P SO is the one with the fastest convergence for the prob-
lems considered. F L is next, it has a slower convergence, but
it is quite similar. Other privacy strategies have significantly
slower convergence.

@ Springer

V.Torraetal.
2 4 \‘ — FL
| —— aDRD
\ bDRD
\
o \
° \
|
\
0 \
) |
2 31 \
© \
> \
E \
£ - \
(@) \\
~ \
=} N\\
|
o |
o
T T T T T
0 100 200 300 400

Time

Fig. 2 Mean objective function for 20 executions for FL, aDRD, and
bDRD. Function f4, number of voting alternatives k, = 8, 50 agents,
o =4.00, ¢, = ¢y = 2.00, and wg = 0.005. We use p. = 1.0

20
0000 =
o Nwoo

T T TTDT

15

Optimal values
10

0 100 200 300 400
Time

Fig. 3 Mean objective function for 20 executions for PbDRD and

different values of the parameter p,,. Function f4, number of voting

alternatives k, = 8, 50 agents, ® = 4.00, ¢, = ¢, = 2.00, and
wc = 0.005. We use p, = 1.0

This is a general rule, but different parameterizations have
different effects and some are not suitable to e.g. achieve the
best optimal solution e.g. in Fig. 4 we see that for parameters
o = 0.005, ¢p = ¢y = 2.00, and wg = 0.01 the mean
performance of FL is worse than the other privacy-aware
strategies for the same parameters. In fact, a close look to the
20 executions of FL with these parameterizations shows that
convergence almost never takes place. The standard devia-

PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware agent... 1357

2 4 — PSO
— FL
aDRD
—— bDRD
o |
o
3
= 87‘
©
>
g |
IS
= v,‘
Q o
57|
\
~]
S &
— A
R
Q,k
o
T T T T T
0 100 200 300 400

Time

Fig. 4 Mean objective function for 20 executions for PSO, FL,
aDRD,bDRD.Function f4, number of voting alternatives k, = 8, 50
agents, w = 0.005, ¢, = ¢, = 2.00, and wg = 0.01. We use p. = 1.0

tions of the objective function at the last iteration of each of
the curves range between 0 and 0.030.

We have also compared different values for &, for several
combinations of the other parameters. In particular, we have
considered the following values 4, 8, 16, 32 for k. For these
values, there is no significant difference in the results. In some
cases, even larger options give a slightly worse convergence.
A reason for this somehow unexpected behavior can be the
differentially private voting mechanism. The more possible
options, the more noise is added by the mechanism. The
noise is, roughly speaking, linear on the set of options (see
Definition 2).

What has a clear effect on the convergence is the number of
agents considered. Most experiments reported here consider
a set of 50 agents. Figure 5 shows the results of a problem
when the number of agents is s = 50, 100, and s = 200, and
we clearly see a quicker convergence each time we double
the size of the set of agents.

To conclude this section, we represent in Fig. 6 some of
the configurations that achieve the best convergences for the
problems fi—fg considered. The figure represents only the
first 400 iterations. As stated above, the solution for f5 is far
from the optimum. For all privacy-aware solutions, we get a
minimum value of —7.9, while for PSO we get —837 and as
stated above the optimal solution has an objective function
of —12569.5.

[te}
N

15 20

10

Optimal values

0 100 200 300 400
Time

Fig.5 Mean objective function for 20 executions for bDRD. Function
f4, number of voting alternatives k, = 8, ® = 0.005, ¢, = ¢po = 2.00,
and wg = 0.01. We use p. = 1.0. The figure illustrates different
number of agents s = 50, 100, 200

5 Conclusions

The results of our experiments discussed in the previous sec-
tion can be summarized in the following terms.

— In general, the use of privacy mechanisms does not
avoid convergence. These mechanisms make conver-
gence slower.

— The most effective way in terms of converge is PSO and
then FL.

— Theuse of additional mechanisms as reducing the number
of options to a few (i.e., the parameter k) and differential
privacy voting makes convergence more difficult.

— Additional privacy mechanisms as local protection by
means of PRAM do not seem to have a strong effect in
the convergence.

In relation to the parameters of the system.

— The exact value of k, has low effect on the convergence.

— The number of agents in the system is a key factor in the
convergence. We have seen that doubling the number of
agents can speed the convergence up significantly.

— Optimal values for parameters , ¢, ¢, and wg depend
on the problem and the type of privacy strategy. There-
fore, they need to be optimized for each architecture.

@ Springer

1358 V.Torra etal.
f1 f2 3 f4
© - © © © -
<~ <~ <~ < -
SV SO N ~
o o \\\..________ ° \\ o
¥ - ¥ - ¥ - ¥ -
T T T T T T T T T T T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
5 6 f7 8
© - © - ©o - ©o -
< - < - < - <+ -
o [~ \\\M“ o~
o - o - o - o
ol T] 4 ¥ - ¥
T T T T T T T T T T T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

Fig. 6 Mean objective function for 20 executions for PbDRD with p,, = 0.9 for all problems fi—f3 considered and considering s = 50 agents.
Function f4, number of voting alternatives k, = 8. Parameters w, ¢, = ¢, and w¢ selected to obtain one of the best convergences

5.1 Local and global privacy

We have seen that when we use of a differentially private
voting mechanism to aggregate the opinions of the agents,
agent’s use of local masking methods does not make a sig-
nificant difference on the result.

The use of two different approaches (the local one and the
global one) may be seen as a disproportionate zeal to ensure
the privacy of agents. We consider that this is not the case.
Local privacy is to ensure that the information supplied by
an agent is not revealed if the system is compromised. Thus,
in case of an architecture that is not trusted or that may be
compromised, local protection is the best option. In this way,
agent’s privacy is not fully in hands of third parties.

Nevertheless, local protection may not be enough. An
agent has only partial information on the whole system and
of other’s information. That is, the agent has its information
on itself (e.g., its preferences) and partial information on the
others. So, agents’ knowledge on what information is sensi-
tive is limited. The sensitivity of information can depend on
the value itself. For example, reidentification from a trans-
mitted value can only be done if this value is known to be
unique. So, in general, agents may have not enough global
knowledge to protect the data at an appropriate level. In con-
trast, the central authority can have this information available
when gathers the preferences of all agents. By means of mul-
tiparty computation mechanisms (see Sect. 2), the votes of
all agents can be aggregated, and using a differential privacy
voting mechanism (or any other appropriate mechanism) a
final decision is made. This global information can then be
used to avoid other disclosure.

When databases are protected in a centralized environ-
ment, masking methods such as PRAM can be enough for

@ Springer

data protection. This is so, because among different masking
strategies we can select the ones that avoid reidentification
doing appropriate risk analysis. The analysis of reidentifica-
tion of a single record will take into account the other records
in the database (and their masked counterparts). This is not
possible by a single agent without information on the other’s
agent information. So, PRAM and randomized response may
not be enough for ensuring agents privacy.

Naturally, more complex processes can be designed for
agents so that they can collaborate (sharing information to
trusted agents) so that decisions about their own protection
is more learned.

Therefore, on the light of the results given and taking into
account that the masking parameter does not affect so much
the quality of the solution, we consider that the use of masking
is a clear advantage.

5.2 Future work

One of the conclusions outlined above states that, in general,
the use of privacy mechanisms does not prevent the system to
converge into the optimal solution. While in a standard appli-
cation, a slow convergence just means more time required.
In the case of privacy solutions, we need to take into account
that additional iterations can increase the risk of disclosure.

Differential privacy has nice properties with respect to
composability. So, if two queries/functions are computed
with €] and €, each, the privacy guarantee of both together (in
a sequential composition) is €] + €. Randomization should
be independent for each query/function. Therefore, we can
consider a privacy budget and agents only informing of their
position when they consider appropriate to do so. Here, with
appropriate to do so we mean that agents need to take into

PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware agent... 1359

account their privacy budget as well as other considerations.
Note here agents supply information related to their trajec-
tory, so, voting for different directions is about releasing
information that may lead to reidentification. Privacy bud-
gets for agents may need to take into account the surface of
the function being optimized.

We have worked with an homogeneous architecture where
all agents have the same set of rules for updating their posi-
tions and for deciding where and what to communicate. In the
real world, with agents representing individuals interests, dif-
ferent agents need to consider different privacy preferences
and, therefore, different rules about transmitting information.
We need to consider heterogeneous systems.

Funding Open access funding provided by Umea University. This
study was partially funded by the Swedish Research Council (Veten-
skapsradet) (Grant Number VR 2016-03346), the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, and the Spanish Ministry of
Science and Innovation (PID2021-1259620B-C33).

Data availability Not applicable.

Declarations

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Blanco-Justicia, A., Domingo-Ferrer, J., Martinez, S., Sdnchez,
D., Flanagan, A., Tan, K.E.: Achieving security and privacy in
federated learning systems: survey, research challenges and future
directions. Eng. Appl. Artif. Intell. 106, 104468 (2021)

2. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a frame-
work for fast privacy-preserving computations. In: Proceedings of
ESORICS 2008, LNCS (2008)

3. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,
H. B., Patel, S., Ramage, D., Segal, A., Seth, K.: Practical secure
aggregation for privacy-preserving machine learning. In: Proceed-
ings of CCS’17 (2017)

4. Duncan, G.T., Elliot, M., Salazar, J.J.: Statistical Confidentiality.
Springer (2011)

5. Dwork, C.: Differential privacy. In: Proceedings of ICALP 2006.
LNCS, vol. 4052, pp. 1-12 (2006)

6. Dwork, C.: Differential privacy: a survey of results. In: Proceedings
of TAMC 2008. LNCS, vol. 4978, pp. 1-19 (2008)

7. Gouweleeuw, J.M., Kooiman, P., Willenborg, L.C.R.J., De Wolf,
P.-P.: Post randomisation for statistical disclosure control: theory
and implementation. J. Off. Stat. 14(4), 463—478 (1998). Also as
Research Paper No. 9731, Voorburg: Statistics Netherlands (1997)

8. Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S.,
Nordholt, E.S., Spicer, K., de Wolf, P.-P.: Statistical Disclosure
Control. Wiley (2012)

9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc.
IEEE Int. Conf. Neural Networks, pp. 1942—-1948 (1995)

10. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning:
challenges, methods, and future directions. IEEE Signal Process.
Mag. 37(3), 50-60 (2020)

11. Sakuma, J., Osame, T.: Recommendation with k-anonymized rat-
ings. Trans. Data Privacy 11, 47-60 (2018)

12. Sengupta, S., Basak, S., Peters, R.A., IL.: Particle swarm opti-
mization: a survey of historical and recent developments with
hybridization perspectives. Mach. Learn. Knowl. Extr. 1, 157-191
(2018)

13. Torra, V.: Data Privacy: Foundations, New Developments and the
Big Data Challenge. Springer (2017)

14. Torra, V.: Random dictatorship for privacy-preserving social
choice. Int. J. Inf. Secur. 19, 537-545 (2020)

15. Vaidya, J., Clifton, C., Zhu, M.: Privacy Preserving Data Mining.
Springer (2006)

16. Warner, S.L.: A survey technique for eliminating evasive answer
bias. J. Am. Stat. Assoc. 60(309), 63—69 (1965)

17. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning:
concept and applications. ACM Trans. Intell. Syst. Technol. 10,
1-19 (2019). arxiv:1902.04885

18. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Pro-
ceedings of NeurIPS (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1902.04885

	PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware agent swarm optimization
	Abstract
	1 Introduction
	2 Some privacy definitions
	2.1 Avoiding disclosure from the computation
	2.2 Avoiding disclosure from the output
	2.3 Avoiding disclosure from communication's content

	3 An scenario
	3.1 No-privacy PSO
	3.2 PSO lacking trust: PSO à la FL
	3.3 A differentially private solution
	3.4 Agents mask their vote
	3.5 PAASO: Privacy-aware agent (swarm) optimization

	4 Experiments and analysis
	4.1 Problems considered
	4.2 Agent (swarm) optimization
	4.3 Discussion of results

	5 Conclusions
	5.1 Local and global privacy
	5.2 Future work

	References

