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Abstract. Machine learning, data mining and statistics are used to ana-
lyze the data and to build models from them. Data privacy for big data
needs to find a compromise between data analysis and disclosure risk.
Privacy by design machine learning algorithms need to take into account
the space of models and the relationship between the data that generates
the models and the models themselves. In this paper we propose the use
of probabilistic metric spaces for comparing these models.
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1 Introduction

Machine learning and statistics are powerful tools to extract knowledge from
data. Knowledge is expressed in terms of models or indices from the data. Never-
theless, as it is well known, these models and indices can compromise information
and can lead to disclosure [14].

Differential privacy [4] and integral privacy [13,16] are privacy models pro-
vided to avoid inferences from models and statistics. Other tools are to evaluate
the analysis of disclosure risk from models. For example, membership attacks
are about inferring the presence of a record in the database that was used to
generate a model.

Machine learning and statistics build models from data, which are analyzed
and compared by researchers and users, for example, with respect to their accu-
racy. Privacy by design machine learning algorithms [15] need to take into
account additional aspects. In particular, the space of models, and how these
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models are generated. We consider that there are two additional aspects to take
into account besides just applying an algorithm and deliver the resulting model.

One is the direct comparison of the models. For example, there are works
that study regression coeflicients and how the regression coeflicients are modified
when data is perturbed by a masking method (e.g., microaggregation [3,9] or
recoding [10] are applied to achieve k-anonymity [12]).

Another is the comparison of models with respect to the similarity of the
databases that have generated them. Up to our knowledge, this aspect has
not been studied in the literature until now. This topic is of relevance because
databases are dynamic and it is usual that changes are applied to them. Changes
can be due to different causes. E.g., the GDPR (e.g., right to rectification or dele-
tion) can require businesses to update their data. When databases change, we
may need to revise the models. Therefore, it is useful to know when two models
can be generated with similar databases. I.e., how changes in the database are
propagated to the models.

In this paper we propose the use of probabilistic metric spaces for modeling
the relationships between machine learning models and statistics. This type of
spaces define metrics in terms of a distance distribution function, which permits
us to represent randomness. We will define the distance between two models in
terms of distances between the databases that generate the models. Randomness
permits us to represent the fact that the possible modifications that are applied
to a database are not know. As we will see, in the context of data privacy, these
distances can be applied to measure similarities between models with respect to
their training set, or to define disclosure measures on anonymized models.

The structure of the paper is as follows. In Sect. 2 we discuss distances and
metrics. In Sect.3 we introduce a definition of probabilistic metric spaces for
machine learning models. The paper finishes with a discussion.

2 Distances and Metrics

Metric spaces are defined in terms of a non-empty set and a distance function
or metric. Let (5,d) be a metric space, then d(a,b) for a,b € S measures the
distance between the two elements ¢ and b in S. It is known that d needs to satisfy
some properties: positiveness, symmetry, and triangle inequality. Also, that if
a and b are different then the distance should be strictly positive. Naturally,
triangle inequality is that d(a,b) < d(a,c) + d(c,b) for any a,b, ¢ in S. When the
distance does not satisfy the symmetry condition, (S, d) is a quasimetric space. If
the distance does not satisfy the triangle inequality, (.9, d) is a semimetric space.

2.1 Metrics for Sets of Objects

Given a metric space (S,d), its extension to a set of elements of S is not
trivial. Several distances have been defined on sets but not all of them sat-
isfy the triangle inequality, thus, do not lead to metrics. For example, with
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dm(z, A) = minye 4 d(x,y) we can define the Hausdorft distance, dH, and the
sum of minimum distances, ds, as

H(A, B) = B A
dH (A, B) max{ryneaﬁ(dm(y7 ),r;leaécdm(y, )}

ds(A, B) = % > dm(y, B)+ Y dm(y, A)

yeA yEB

However, these distances are not metrics (triangle inequality does not hold).

Eiter and Mannila [5] introduced a way to define a metric. It is based on
considering a finite sequence P = (Py,..., P,,) with m > 2 and P; C S for all
i € {1,...,m}. The cost of such P is ¢q(P) = Z;’:ll d(P;, Pi+1). The distance
d¥ : pg(S) x pg(S) — RT is defined as follows where pg(S) is the power set of
S without the emptyset, and P(A, B) denotes all paths between A and B.

d¥(A, B) = min{cy(P) : P € P(A, B)}.

The authors prove in [5] that this definition is a metric when d is a distance.

2.2 Probabilistic Metric Spaces

Probabilistic metric spaces generalize the concept of a metric. Informally, they
are based on distribution functions. So, the distance is not a number but a
distribution on these numbers.

Definition 1. [11] A nondecreasing function F defined on R that satisfies (i)
F(0) =0; (i) F(oo) =1, and (iii) that is left continuous on (0,00) is a distance
distribution function. AT denotes the set of all distance distribution functions.

We can interpret F'(z) as the probability that the distance is less than or equal
to x. In this way, this definition is a generalization of a distance.

We will use €, to denote the distance distribution function that can be said
to represent the classical distance a. This € function is just a step function at a.

Definition 2. [11] For any a in R, we define €, as the function given by

() = 0,—0o<z<a
€all) = 1, a<z<o0

Probabilistic metric spaces are defined by means of distance distribution
functions. In order to define a counterpart of the triangle equality we introduce
triangle functions. They are defined as follows.

Definition 3. [11] Let AT be defined as above, then a binary operation on AT
18 a triangle function if it is commutative, associative, and nondecreasing in each
place, and has €y as the identity.
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Triangle functions has close links with t-norms [2]. If T is a t-norm, then
mr(F,G)(x) = T(F(z),G(x)) is a triangle function. See Def. 7.1.3 and Sect. 7.1
in [11]. The maximal triangle function is Tin.

We are now in conditions to define probabilistic metric spaces.

Definition 4. [11] Let (S,F,7) be a triple where S is a nonempty set, F is
a function from S x S into AV, T is a triangle function; then (S,F,T) is a
probabilistic metric space if the following conditions are satisfied for all p, q, and
rin S:

- (i) F(p,p) = €0

- (i) F(p,q) #eo if p#q

- (iii) F(p,q) = F(q,p)

B (“)) f(p,r) 27—('7:<p’Q)7-7:(Q7T))'

We will use F),, instead of F(p,q) and, then, the value of the latter at = by the
expression: Fp,(z).

3 Probabilistic Metric Spaces for Machine Learning
Models

In this section we define a probabilistic metric space for machine learning models
based on the databases that permit to build these models. So, we are considering
two spaces. On the one hand we have the space of databases. In this space we can
consider transitions from one database to another. These transitions correspond
to changes in the database. Naturally, they correspond to record deletion, record
addition, and record modification. On the other hand we have the space of
models. Each model can be generated by one or more databases in the space of
databases. Figure 1 represent these two spaces and some relationships between
them.

Formally, the space of databases is a graph. Note that each possible database
can be considered the vertex or node in the graph; and that any type of database
transformation is represented in terms of an edge (transforms a database into
another one). In the figure, we only include directed edges that represent dele-
tions.

Definition 5. Let D represent the space of possible databases. I.e., db € D are
the possible databases we may encounter. Let O represent the possible minimal
set of modifications. More particularly, O will typically include erasure of a single
record, addition of a single record, and rectification of a value of a variable in a
record. Then, given db € D, we have that og, are the operations in O that are
valid for db. For each o € ogp, we have that o(db) € D and o(db) # db.

With these definitions, we can define the graph associated to a space of
databases as follows. We assume that the construction leads to a proper graph.
That is, there are no multiedges. Formally, 01(db) # 02(db) for any 01,05 € O
with 07 # 0s.
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DB8

DB1

Fig. 1. Space of databases (top) and space of models (bottom) generated from the
databases (dotted lines). Some transitions between databases (DB) are represented in
the figure (arrows). For the sake of simplicity, we only consider directed transitions
(e.g., as the only allowed transition is deletion of a single record) between databases.

Definition 6. Let D be a space of databases, and O be the minimal set of con-
sidered modifications. Then, we define the graph for the space D inferred from
O as the graph Gp o = (V, E) with the set of vertices defined by V =D and the
set of edges defined by

E = Uapep Uoeoy, {(db,o(db))}.

We say that the set O is reversible if for any o € O such that db' = o(db)
with db € D, we have an o’ € O such that db = o'(db’). If O is reversible, the
graph Gp o = (V, E) can be seen as an undirected graph. When O contains only
deletions, it is not reversible; while with deletions and additions, it is reversible.

Given a space of databases and an algorithm that generates a model for each
database, we can build a space of models. The definition of the space of models
is based on a deterministic algorithm A. That is, the algorithm always returns
the same model when the same database is used.

Definition 7. Let D be a space of databases, and let A be a deterministic algo-
rithm that applied to any db € D builds a model m. Then, Mp_4 is the space of
models that can be inferred from D using A. Naturally,

M= UdbeD{A(db)}.

Now, let us consider a pair of models. As stated above, our goal is to define a dis-
tance between pairs of models in terms of the similarities between the databases
that have generated them. Then, it is relevant to us how these models are con-
structed. In our context, this means finding pairs of databases that can generate
our pair of models. We formalize this below.

Given two models m; and mo, we define t(my, m2) as the pairs of databases
that permit us to transit from my to mg. That is, pairs of databases (dby, dbs)
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such that m; is the model generated from db; and ms is the model generated
by dbg:
t(ml,mg) = {(dbl,de)|A(db1) = ml,A(dbg) = m2}

Then, for each pair (db;,dbs), we consider all paths from db; to dby and
the corresponding lengths. We define [(mq,m2) as the multiset of these lengths.
Let paths(dby,dbs) represent all paths from db; to dbe. Then, I(my, msa) is the
following multiset:

l(m1, mg) = {length(path)|path € paths(db,dbsy) for (dby,dbs) € t(mq,ms2)}.

Note that this is a multiset as when there are several paths for a pair of
databases, it is possible that several of these paths have the same length. For
example, there are two paths of length two between DB1 and DBS5 in Fig. 1.
When edges represent record deletion, we can find several paths between two
databases as records can be removed in different order.

Finally, we define I*(mq,mg)(z) as the function that counts how many ele-
ments in [(my, mg) are less or equal to x. That is,

I*(my, mo) () = > count(d). (1)

del(mq,mo)&d<z

Here count(d) is the function that gives the number of occurrences of d in the
multiset. This function is also known as multiplicity.
We now introduce a distance distribution function.

Definition 8. Let D be the space of databases, and let O be the set of minimal
modifications. Let Gp o = (V, E) be the graph on D inferred from O. Let I* be
defined as in Eq. 1 above. Let K be a constant such that K > 0, then, we define
F as follows:

€0 if mi = mo

F(my,ms)(z) = {min (17 z*(ml,}?m(m)) ifmy 4 mo (2)
We can prove the following result.

Proposition 1. Let D be the space of databases, O be the set of minimal mod-
ifications, A be a deterministic algorithm, Mp a be the space of models inferred
from D and A, Gp.o = (V, E) be the graph on D inferred from O, and let I* and
F defined as in Definition 8. Then, the following holds:

- F(m,m) =€y for allm € M,
- F(mi,msg) # €o for all my, ma € M such that my # mao,
- F(my,mg) = F(mg, my) when O is reversible.

Proof. The proof that F'(m, m) = €y is by construction.
Let us now consider the proof of F(my, ma) # € for my # mo. In this case,
if my1 # mo, we will have that there are at least two different databases db; and
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dbs that generate my and meo, respectively, and dby # dby. Therefore, there will
be at least a path with a distance at least one between db; and db,. Therefore,
if K >0, F(my,m2)(0) # 1, which proves the equation.

Let us now consider the proof of the third condition. In this case, we have
that for each path path in paths(dby,dbs) we will have a path in paths(dbs, dby).
This naturally follows from the fact that if path = (dby = db',db?, . .., dby = db")
with o = (db®, dbi*1) € O fori =1,...,7—1, then by the reversibility condition
there are o'* = (db**!,db’) € O so that path’ = (dby = db",...,db?, db' = dby),
and path’ € paths(dbs, dby). O

As a corollary of this proposition, we have that the distance in Definition 8
leads to a probabilistic semimetric space when O is reversible.

Corollary 1. Given D,0, A, F as in Definition 8, then (Mp_ a,F) is a proba-
bilistic semimetric space.

In general, (Mp_ 4, F') is not a probabilistic metric space because condition (iv) in
Definition 4 does not follow. A counterexample of this condition for three models
m1, mo and mg is as follows: Some databases generating m; are connected to
databases generating to mg, and some generating mg are connected to databases
generating mo. This implies that F'(mq,ms)(u) + F(mg, ma)(v) is finite. When
there is no connection between databases generating m; and those generating
me, the direct distance will be oco.

4 Discussion and Conclusions

Machine learning is about building models from data. Given a data set, the goal
is to find a model that represents the data in an appropriate way. This problem
is usually formulated as finding a model that has a good accuracy.

Nevertheless, this is not the only aspect taken into account in machine learn-
ing. As the bias-variance trade-off explains, one may have a high accuracy at the
expenses of over-fitting. To avoid this over-fitting, we may select a model with
less accuracy but with a good bias-variance trade-off.

In addition to that, other aspects are often taken into account. E.g., explain-
ability [8]. We may be interested in a model with less accuracy if decisions are
better explained. The same applies to fairness [7] and no-discrimination [6].

Within the privacy context, models need to avoid disclosure, and this require-
ment can be formally defined into different ways. Differential privacy [4] is one
way, that is that the model does not differ much whether a record is present
or not. Integral privacy [13,16] is another way, that is that the model can be
generated by a sufficiently large number of possible data sets. Resistant to mem-
bership attacks is another way. This means that we cannot infer that a particular
record was present in the training set.

Under this perspective, it is relevant to compare the models and their sim-
ilarities with respect to the training data sets. To do so, we need to define a
distance for models based on a distance on the training data sets. In this paper
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we have proposed the use of probabilistic metric spaces for this purpose. We
have proposed a first definition in this direction.

More broadly, in the privacy context, these distances can also be used to
define disclosure or information loss metrics (see e.g. [1]). By measuring the
differences between a privacy preserving model and the original model, one can
establish the information that has been lost in the anonymization process.

Further work is needed in this direction. Actual computation of distance
distribution functions can only be done easily for small data sets. So, we need to
develop solutions for larger data sets. Secondly, we have assumed in this work
that A is an algorithm that builds a model deterministically. This assumption
does not always apply. On the one hand there are machine learning algorithms
that include some randomness. This is the case, precisely, of some algorithms for
big data based on sampling. On the other hand, there are randomized algorithms
as the ones used in differential privacy. Appropriate models need to be developed
to deal with this situation.

We have shown that our distance does not satisfy Equation (iv) in Definition 4.
Definition of d¥ in Sect.2.1 satisfies triangle inequality for a distance d, so d*
could lead to a probabilistic metric space (see Definition 8.4.1 in [2]), but we need
to explore if this distance is actually computable with actual data. Its cost, based
on the set of all paths P(A, B), seems too costly in our context.
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