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Abstract. The protection of network security components, such asfirewallsand
Intrusion Detection Systems, is a serious problem which, if not solved, may lead
a remote adversary to compromise the security of other components, and even
to obtain the control of the system itself. We are actually working on the devel-
opment of a kernel based access control method, which intercepts and cancels
forbidden system calls potentially launched by a remote attacker. This way, even
if the attacker gains administration permissions, she willnot achieve her purpose.
To solve the administration constraints of our approach, weuse a smart card based
authentication mechanism for ensuring the administrator’s identity. In this paper,
we present an enhanced version of our authentication mechanism, based on a
public key cryptographic protocol. Through this protocol,our protection module
efficiently verifies administrator’s actions before granting her the privileges to
manipulate a component.

1 Introduction

Network security components, such as andfirewallsandIntrusion Detection Systems,
are almost always working with special privileges to execute their tasks. This situation
can allow remote attackers to acquire these privileges and perform unauthorized activi-
ties [2]. The existence of programming errors within the code of these components, the
illicit manipulation of their related resources (e.g., processes, executables, and config-
uration files), or even the increase of privileges through operating system’s errors, are
just a few examples regarding means in which a remote adversary can bypass traditional
security policy controls.

In [4] we presented a protection module integrated into the kernel of an attack pre-
vention system intended to intercept and cancel forbidden system calls launched by a
remote attacker. More specifically, the mechanism we presented avoids escalation at-
tacks through an access control scheme which handles the protection of the system’s el-
ements. Indeed, this scheme prevents that potentially dangerous system calls (e.g., can-
cellation of a process) could be produced from one element against another one. The
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protection is hence achieved by incorporating an access control mechanism that may al-
low or deny a system call based on several criteria – such as the identifier of the process
making the call or some of the parameters passed to it.

The approach presented in [4] allows, moreover, to keep awayfrom the necessity of
trusting special users with privileged rights, by delegating the authorization for the exe-
cution of a given system call to the internal access control mechanisms. Therefore, and
contrary to other approaches, it provides a unified solution, avoiding the implementation
of different specific mechanisms for each component, and enforcing the compartmen-
talization principle [10]. This principle is based in the segmentation of a system, so
several elements can be protected independently one from another. This ensures that
even if one of the elements is compromised, the rest of them can operate in a trusted
way. For our job, several elements from each component are executed as processes. By
specifying the proper permission based on the process ID, for instance, we can limit the
interaction between these elements of the component. If an attacker takes control of a
process associated to a given component (through a buffer overflow, for example), she
will be limited to make the system call for this given process.

Nevertheless, it is not always possible to achieve a complete independence between
the elements. There is a need to determine which system callsmay be considered as a
threat when launched against an element from the component.This requires a meticu-
lous study of each one of the system calls provided by the kernel of a given operating
system, and how they can be misused. We must also define the access control rules for
each one of these system calls. For our approach, we proposedthe following protection
levels to classify the system calls: (1) critical processesprotection; (2) communication
mechanisms protection; and (3) protection of files associated to the elements.

According to these protection levels, we then presented in [5] a prototype imple-
mentation of our kernel based access control mechanism developed for GNU/Linux
systems and called SMARTCOP (which stands forSmart Card Enhanced Linux Secu-
rity Module for Component Protection). This implementation was developed over the
Linux Security Modules(LSM) framework [11]. This framework does not consist of
a single specific access control mechanism; instead it provides a generic framework,
which can accommodate several approaches. It supplies several hooks (i.e., intercep-
tion points) across the kernel that can be used to implement different access control
strategies. Such hooks are:Task hooks, Program Loading Hooks, File systems Hooks
andNetwork hooks. This set of LSM hooks can be used to provide protection at the
three different levels proposed above.

Furthermore, the LSM framework adds a set of benefits to our implementation.
First of all, it introduces a minimum load to the system when comparing it to kernels
without LSM, and does not interfere with the normal system activities [11]; second, the
access control mechanism can be integrated in the system as amodule, without having
to recompile the kernel; third, it provides a high degree of flexibility and portability
to our implementation when compared to other proposals for the Linux kernel, such
as [7] and [9], where the implementation may require some kernel modifications; and
fourth, the LSM interface provides an abstraction which allows the modules to mediate
between the users and the internal objects from the operating system kernel – to this
effect, before accessing the internal object, a hook may call functions provided by a



given module and which may decide whether allow or deny the access to the internal
object, for example.

Through the use of SMARTCOP as a LSM module, the component’s processes
are allowed to make operations only permitted to the administrator officer – such as
packet filtering and application cancellation. The internal access control mechanisms at
the kernel are based in the process identifier (PID) that makes the system call, which
will be associated to a specific element. Each function registered by a LSM module,
determines which component is making the call from the PID ofthe associated process.
It then, applies the access control constraints taking alsointo account the parameters of
the system call. Thus, for example, a given element can access its own configuration
files but not configuration files from other elements.

Our protection strategy introduces, however, some administration constraints, since
officers are not longer allowed to throw system calls which may suppose a threat to the
protected component. To solve these constraints, we also presented in [5] a smart card
based authentication mechanism, based on secret-key cryptography, which acts as a
reinforcement of the kernel-based access control. The objective of this complementary
mechanism is twofold. First, it holds to the administrator the indispensable privileges
to carry out management and configuration activities just when she verifies her identity
through a two-factor authentication mechanism. Second, itallows us to avoid those
attacks focused on getting the rights of the administrativeentity, such as dictionary-
based attacks and buffer overflows.

Nevertheless, and although the authentication mechanism proposed in [5] solves
the administration constraints of our approach, it presents important drawbacks. For
instance, there is a need for the entities to share a secret-key, and this is a serious
disadvantage for the administration officer, who may be in charge of managing such
keys. The process of changing or updating the shared secret-key of all the entities, for
instance, over the complete set of components of a network will be very awkward, mak-
ing it even unfeasible when using our authentication mechanism on huge corporation
networks with multiple resources to protect. For this reason, and in order to make easier
the administration tasks of our protection approach, we extend in this paper our previ-
ous authentication mechanism by using a new authenticationprotocol based on public
key cryptography. Indeed, our new proposal solves the administration constraints of
SMARTCOP by using a hierarchical structure with several domains, where the nodes
of each domain can independently be administrated by using X.509 certificates [12].
Through this new authentication mechanism, some of the previous drawbacks, such
as the sharing of the protocol’s information, should be moreefficiently performed by
means of certificate revocation, for example.

The remainder of this paper is organized as follows. We first define in Section 2 the
structure and elements for our new authentication proposal, and present the crypto-
graphic protocol intended to solve the administration constraints introduced by the pro-
tection approach described above. We then continue in Section 3 by presenting some
configuration issues of our proposal and showing the resultsof an evaluation of the
overhead introduced by our approach on a given setup. We finally summarize in Sec-
tion 4 some related works, and close the paper in Section 5 with a list of conclusions
and future work.



2 Smart Card Based Authentication Mechanism

In order to verify the administrator’s identity of SMARTCOP, we propose a two-factor
authentication mechanism based on the cryptographic functions of a smart card. This
mechanism is intended for authenticating the administrator to the LSM modules and
holds with the following requirements: (1) the actions mustbe authorized by the use of
a smart card; (2) the smart card only authorizes one action whenever the PIN would be
correct; and (3) the LSM module only authorizes the action whenever the smart card
response would be valid, i.e., the cryptographic operationis correct.

Let us start the description of our authentication mechanism by introducing the nec-
essary structure and elements for our proposal. We first define the necessary architecture
for our authentication protocol as a hierarchical structure with several organizational
units, where the network is divided, in turn, in hierarchical domains, and where each
domain of the network has several components that must be protected. We name such
a component as SMARTCOP Node (SCN). Each domain has moreovera SMARTCOP
Server (SCS), and each potential administrator holds a SMARTCOP Card (SCC). These
component are briefly described next.

SMARTCOP Server (SCS) – Each SCS owns a cryptographic key pairmaster key
and the corresponding certificate. This certificate has beenissued by the upper SCS in
the hierarchy and identifies the lower SCS as a valid SCS. Thiscertificate is encoded as
an X.509 Attribute Certificate [12], where the issuer is the upper SCS master key and
the subject is the lower SCS master key. The SCS of domain B canissue certificates
authorizing a concrete SCC as an administration of the domain B (similar to the certifi-
cates between SCSs). The SCS must usually be managed by the network administration
officer of the given domain – or organizational unit. That is,the person who has more
knowledge about the network domain and its potential administrators, and, at the same
time, the one that has the greatest interest in performing a good administration. This is
a key point of the extended authentication proposal, which enables the distribution of
the administrative management between domains or organizational units.

SMARTCOP Node (SCN) –Each SCN is a component which has the SMARTCOP
LSM module. The security parameters of the LSM module are properly initialized when
it is installed. The main parameter is theSource-of-Authority(SoA), which is repre-
sented by amaster-key. More precisely, themaster-keyof the top SCS. When an ad-
ministrator requests a protected action on a given SCN, by using Protocol 1, the SCN
verifies the certificate from the SCC. Then, if it comes from a certificate path rooted at
the SoA’smaster-key, the operation is accepted.

SMARTCOP Card (SCC) – The SCC is owned by potential administrators. In order to
be able to perform administrative tasks on a given domain, the SCC must be authorized
(i.e., certified) by the SCS of the domain or an upper one in thehierarchy. Each SCC has
a key pair, which has to be certified by amaster-key(i.e., a key from a SCS). Let us recall
that the cryptographic engine of such a smart card is capableof performing several
cryptographic functions, such as asymmetric key generation, asymmetric cryptographic
algorithms execution, and so on.



The SCC has anoperation PINand anadministration password. The operation
PIN is at least six digits long and is used to authorize the protected actions. On the
other hand, the administration password is used to change the operation PIN and other
management tasks. The system administrator has three consecutive chances to enter the
operation PIN. In the third entry, if the smart card receivesan incorrect operation PIN, it
blocks itself. The smart card can only be unblocked with the administration password.
Again, there are three chances to enter the correct administration password. Otherwise,
after the failing of three consecutive wrong administration passwords, the smart card
blocks itself and becomes useless.

2.1 Protocol Description

We give here a detailed description of the cryptographic protocol that leads our smart
card based authentication mechanism. It starts in Step 1 when the system administrator
requests an action to the LSM module. We assume here that action X must be autho-
rized by using the smart card. The LSM module blocks immediately in Step 2a the
communication channel between the smart card reader and theLSM module. In this
way, we can assure that the data sent between the module and the smart card can nei-
ther be sniffed nor tampered. The module also forces to remove the smart card when
is not necessary. In Step 2c, the LSM module waits for the smart card insertion, and in
Step 4e the LSM module does not proceed until the smart card has been removed. In
Step 3 the operation PIN travels in a secure way from the keyboard because the LSM
module has blocked the channel between the keyboard and the module itself. Then,
LSM sends a NONCE obtained at random and the PIN in step 4c. Thesmart card re-
turns the digital signature of the NONCE computed with the smart card’s private key.
The protocol concludes in Step 4g where the LSM module verifies whether the digital
signature has been computed properly and the digital certificate is valid.

Protocol 1

1. The system administrator opens a new console and she requests an actionX ;
2. LSM receives the request from the console and it does the following steps:

(a) Block the channel and open a connection with the smart card reader;
(b) Print a message asking to insert the smart card into the reader;
(c) While the smart card has not been inserted do;

i. Detect the insertion of the smart card;
(d) Print a message asking for the operation PIN;

3. The system administrator types the operation PIN in the keyboard;
4. The LSM does the following steps:

(a) Obtain the operation PIN;
(b) Obtain a NONCE value at random;
(c) Execute the Procedure 1 inside the smart card by using theoperation PIN and

the NONCE, and obtain a responseµ;
(d) Print a message to remove the smart card from the smart card reader;
(e) While the smart card has not been removed do;

i. Detect the removing of the smart card;



(f) if µ is ERROR the LSM does not authorize the actionX ;
(g) else do:

i. Check if the digital signature has been computed with a public key, which
belongs to a certification path rooted at themaster key(SoA).

ii. Verify the smart card certificate against a valid CRL.
iii. Verify the digital signatureµ with the public keyPK obtained from the

smart card certificate,PK(µ)
?
= H(NONCE);

iv. if the verification is correct the LSM authorizes the actionX

v. if the verification is not correct the LSM does not authorize the actionX ;

We show next the procedure that is executed within the smart card (cf. Procedure 1).
Through such a procedure, the smart card can validate the operation PIN. Whenever the
operation PIN is valid, it computes the digital signature ofNONCE with the smart card
private key.

Procedure 1 [PIN , NONCE]

1. Validate the operation PIN;
2. If the operation PIN is correct do:

(a) Compute the digital signature of NONCE with the private keySK ,
µ = SK(NONCE);

(b) returnµ;

3. If the operation PIN is no correct returnERROR;

To ensure the proper execution of both Protocol 1 and Procedure 1, we have also
considered the protection of the entities and the channels involved in such a process,
avoiding attacks such as impersonation and channel data manipulation. First, the LSM
module guarantees that the binary file of the console can not be overwritten by any-
one (even the security officer), remaining the permissions as read-only. Second, the
console’s executable is compiled in a static fashion. This allows us to reduce the com-
plexity of the protection’s console process, since we do notneed to consider extra tasks
introduced by the loading of shared libraries and its associated files. It also allows us to
centralize and reduce the failure points that could be used by a remote attacker which
tries to tamper the console’s process. Third, the LSM modulealso controls that each
system call launched by any other process in the system does not interfere the normal
execution flow of the console’s process, such as keyboard keycapture, cancellation, or
debugging process system calls.

It is also important to recall that the communication channel can not be manipulated
by any opponent, since the LSM mediates between the system calls related with the
communication channels and the entities that take part within the protocol. Furthermore,
and as pointed out in [5], the LSM module does not need to be directly protected since
we can assume the kernel environment as a trusted area – sinceit is mandatory for the
kernel security model of any modern operating system.



3 Configuration and Performance Evaluation

In order to define the objects and resources to protect, SMARTCOP can actually be
configured through a set of security rules. Each rule defines an actionin {deny, accept}
that applies over a set ofconditionattributes, such as userid (UID), processid (PID),
device, i-node, etc. We can also define, through these security rules, either open or
closed default policies. The complete set of rules are stored in a set of configuration files
that are loaded at boot time through theproc file system. Theproc file system(procfs)
is a special virtual file system in the Linux kernel which allows user space programs to
access kernel data structures.

Up to now, we have defined different points through procfs forconfiguring the pro-
tection of the three basic levels of protection stated in Section 1. More specifically, we
have defined the following entries:iperms, iren, isetattr, iunlink, tcreate, andtkill . The
four first labels refer to i-node related operations (resp.,i-node permission verification,
i-node renaming, i-node permission changing, and i-node removing). They can be used
not only for the protection of file resources, but also for theprotection of communica-
tion operations through, for example, sockets and pipes. The last two labels (i.e., tcreate
and tkill) are related to the managing of processes (such as creation, suspending, re-
suming, termination, and spawning of processes). Through these configuration points,
we conducted several tests steered towards measuring the penalty introduced by the in-
stallation of SMARTCOP as a LSM module, over the normal operation of the system.
The tests and benchmarks were based on LMbench [8] and other related administration
tools. The evaluation was carried out on a single machine with an Intel-Pentium M 1.4
GHz, with 512 MB of RAM memory and an IDE hard disc of 5400 rpm, running a
Debian GNU/Linux operating system and ext3 file system.

During these tests, we measured the overhead of our approachwith an instance of
SMARTCOP configured with a closed default policy and loaded with different pro-
tection rules. More specifically, each configuration point was charged with a set of
auto-generatedacceptrules, initially empty, and which incremented to more than three
hundred rules. Therefore, a progressive set of auto-generatedacceptrules from zero
to more than one thousand rules was globally loaded. We consider that the overlaps
between rules, related with the single operations we measured during these tests, rep-
resent the worst case scenario we can actually measure. We show in Figure 1(a) and
Figure 1(b) the overhead evolution of some actions that we consider representative re-
garding the set of configuration points we described above.

The first three curves we show in Figure 1(a) represent the overhead evolution of the
system callkill when we, resp., suspended, resumed, and cancelled a set of processes
under the different load of rules. Notice that such actions,especially when suspending
processes, reported an acceptable penalty (aprox. a 40% fora global average of al-
most two thousand rules). The other three curves in Figure 1(a) represent the overhead
evolution of the set of operations related to the creation ofprocesses throughfork(),
fork()+exec()andfork()+/bin/sh. Notice that the two first operations supposed a penalty
even lower (aprox. a 20% for the highest average of rules); and the third operation re-
mained close the 30% for the same number of rules. Similarly,the results we show in
Figure 1(b) are related to the evolution of operations for the managing of i-nodes (such
as files, pipes, and sockets’ managing). We can appreciate inthese results, however, that



the penalty introduced by SMARTCOP for the managing of i-nodes seems much higher
than the overhead introduced for the managing of processes –it even reached more than
an 80% in the operations of file creation and removing. However, we consider that these
differences are reasonable, taking into account that therewas an overlap between pro-
cesses protection’s rules and i-nodes protection’s rules –expressly introduced during
our experiments to simulate the worst case scenario. This overlap between rules defini-
tively exercises a bad influence on the measured i-node operations, compared to the
processes operations, and it explains the differences between both results.

(a) Processes tests

(b) Filesystem and communication tests

Fig. 1. Performance evaluation of SMARTCOP.



4 Related Work

There are two main approaches to safely execute processes with special privileges on
modern operating systems. A first approach is the creation ofrestricted environments,
in which the processes will be executed and controlled outside the trusted system space.
In [6], for instance, we can find a traditional mechanism for the creation of restricted
environments within Unix setups. These proposals require,however, a replicated file
system tree for the protected environments. Hence, the administrator in charge of the
system must reproduce the original file system tree to include, for example, shared
libraries or configuration files, and copy them to the new path. Other disadvantage of
these proposals is that they do not guarantee the correct execution flow of processes, i.e.,
the behavior of a given process can be modified by using, for example, a buffer overflow.
Hence, the attacker can overwrite the configuration or log files of such a process by
simply using an arbitrary code execution attack – since these files remain in the same
environment of the protected security component process.

A second approach, as the one presented in this paper, is to apply a kernel based
access control to outcoming system calls. In [7] and [9], forinstance, two similar pro-
posals to ours are presented. The main goal behind these two proposals is to reinforce
the complete system by controlling the system calls and ensuring which process or user
does the system call and against what it will be done. The ability to control the access to
the resources allows to protect system’s elements and to avoid that nobody (including an
attacker with administrator privileges) can disable them.Nevertheless, both approaches
differ from ours in a number of ways. First, and to our best knowledge, neither [7] nor
[9] do not address the management of administration constraints, as our proposal does
through the two-factor authentication mechanism we present in Section 2. Second, our
approach, entirely based on theLinux Security Modules(LSM) framework [11], guar-
antees the compatibility with previous applications and kernel modules without the ne-
cessity of modifications. Both [7] and [9] require the rewriting of some features of the
original operating system’s kernel to properly work. This situation may force to recom-
pile existing code and/or modules in order to obtain the new security features. Although
it exists a LSM-based prototype for the approach presented in [7], it does not seem to
be actively maintained for the current Linux-2.6 kernel series.

5 Conclusions

We have presented in this paper an access control mechanism specially suited for the
protection of network security components, such asfirewalls and Intrusion Detection
Systems. Whenever one of these components, or one of its elements, iscompromised by
a remote attacker, it may lead her to obtain the full control of the network [2]. The pro-
tection of these components is not easy, specially when dealing with distributed setups,
made up of different elements distributed over a complex network. Like for example,
the attack prevention platform presented in [3]. The solution we provided proposes the
protection of the components by making use of theLinux Security Modules(LSM)
framework for the Linux kernel over GNU/Linux systems [11].The developed mecha-
nism works by providing and enforcing access control rules at system calls, and is based



on a protection module integrated into the operating system’s kernel, providing a high
degree of modularity and independence between elements. Furthermore, the use of a
complementary authentication method, based on smart card technology and a public-
key cryptographic protocol, allows us to properly verify administrator’s actions when
officers need to do administration tasks. This additional enhancement also allows us
to prevent some logical attacks against the protection mechanism itself (e.g., password
forgery). The integration of our approach on a normal systemsetup proved, moreover,
a good degree of transparency to the administrator in charge, and a reasonable perfor-
mance penalty for the managing of processes, files, and communication resources.

As a future extension of our work, we are considering improving the customizing
of policies. Up to now, the specific policy that is enforced byour protection module
is loaded at boot time through theproc file system(procfs). We are planning to extend
this feature to add the possibility of using text-based configuration files and the reload
of policies at runtime. We are also considering to continue our study to address the
security of the system from an intrusion tolerance point of view [1].
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