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Abstract A Predictable Opportunistic Network (POppNet) is a network whe-
re end-to-end connectivity is not guaranteed, and node communication hap-
pens in an opportunistic manner, but the behavior of the network can be
predicted in advance. The predictability of such networks can be exploited to
simplify some mechanisms of more generic OppNets where there is no prior
knowledge on the network behavior. In this paper, we propose some solutions
to provide anonymity for messages on POppNets by using simple onion rout-
ing, and thus to increase the privacy of the nodes in communication.

Keywords Opportunistic networking, Predictable opportunistic networks,
Onion routing, Message anonymity.

1 Introduction

Opportunistic Networks (OppNets) are networks where communication hap-
pens opportunistically between nodes, end-to-end connectivity is not guar-
anteed and disruptions and delays are to be expected (Mota et al., 2014).
They are also denoted as Delay and Disruption Tolerant Networks (DTNs),
although the term DTNs usually describes OppNets which use the specific
Bundle protocol (Scott and Burleigh, 2007).
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Among OppNets there are those where the contacts between the nodes
follow an specific pattern (Jain et al., 2004). In such cases the behavior of the
network nodes can be predicted to some extend, and thus the communica-
tion and interactions between them can be known in advance. Such networks
are usually denoted as Predictable Opportunistic Networks (POppNets). This
predictability can be exploited to improve routing in the network for instance.
Predictability here, refers to the fact that the connectivity, the topology of the
network, and its evolution over time, can be predicted ahead of time.

We focus our work in the specific POppNet that raises from a network
build on public transportation systems. Consider that all public buses in a
city carry a simple network node allowing them to opportunistically exchange
messages. Given the routes and timetables of the buses one can predict when
interactions between nodes will occur during the day, and thus these networks
can be used as a low cost urban networks. Routing can be more efficiently
solved in POppNets than in generic OppNets due to their predictability, and
we believe that some security services can also be improved. More precisely,
anonymous routing is a difficult and complex problem in OppNets. Current
solutions to provide anonymous routing in OppNets require complex crypto-
graphic solutions, and complex setups. This is due to the fact that traditional
solutions such as onion routing (Goldschlag et al., 1996) cannot be directly ap-
plied in such networks. We will show however that the predictability in these
networks can be exploited to actually use a simplified onion routing approach
to provide anonymous routing for messages in POppNets. This idea was first
sketched in (Antunez-Veas and Navarro-Arribas, 2016; Chen et al., 2017).

The aim of our proposal is to support applications where one end needs
to send anonymous short messages in one direction. We assume that we can
directly use the nodes public keys to perform a simple onion routing since
establishing a session key incurs in more penalty than gain. Although these
might seem strong assumptions, they are commonly used in OppNet environ-
ments and protocols such as Bundle protocol (Scott and Burleigh, 2007). The
expected delivery time is also relatively large, which allows for more random-
ness in the path selection. Note that in traditional onion routing, nodes on the
onion path are randomly selected (or selected based on some random param-
eter). Such randomness is important because it ensures that an attacker will
not be able to easily guess the path of a given message.

The contribution of this paper is precisely the study of the application
of onion routing in POppNets to achieve message anonymity. We focus our
experimentation in a specific network of public transportation from the city
of Seattle, and conduct a thorough analysis based on different configurations
of this network with assorted network density. As we will show, the density of
the network is a key issue for our proposal. We provide methods to determine
the onion routing path, and introduce measures to study and quantify the
anonymity that can be achieved when using such paths, with the final goal of
increasing the privacy of the nodes in communication.

The paper is organized as follows. Section 2 introduces notations and the
model for OppNets. In Sect. 3 we introduce the algorithms to determine the
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path and Sect. 4 defines the anonymity measures. Section 5 shows the ex-
periments conducted in the Seattle bus POppNet network both in terms of
performance and anonymity. Finally, Sect. 6 describes the related work and
Sect. 7 concludes the paper.

2 A model for Opportunistic Networks

An OppNet can be modeled as a dynamic graph. That is, a graph with dynamic
components, which in our case are the presence of edges and nodes. Vertices
represent network nodes and edges represent the fact that there is a connection
between two nodes. These graphs are also denoted in the literature as temporal
networks (Holme and Saramki, 2012; Pan and Saramki, 2011), time-varying
graphs (Casteigts et al., 2012), temporal graphs (Kostakos, 2009), or evolving
graphs (Xuan et al., 2003). In our case, each edge has a temporal presence
based on the time that a connection can be established between the two nodes,
usually based on the coverage of the network nodes.

For our scenario we consider the dynamic graph to be undirected because
a connection between two nodes represents the fact that these two nodes can
communicate in both directions. We denote such an undirected dynamic graph
as G(V,E), where V is the set of nodes, and E is the set of edges. Each edge,
denoted as e = (u, v, t, λ), is a temporal edge between nodes u and v, starting
at time t, with a duration of λ. Note that (u, v, t, λ) = (v, u, t, λ). For simplicity
we will use λ(e) as the duration of the link in edge e, and t(e) as the starting
time for edge e, or simply λ and t if the edge can be easily inferred from the
context. We will not consider the timed presence of nodes. Note that a node
presence can be modeled by eliminating all its edges during the time when the
node disappears.

We also consider a unique transmission time τ for all messages to be sent
in the network. This can easily be extended to a variable transmission time
specific for each message, or edge. The transmission time includes the time
required to establish the connection, send, and receive the message. We also
assume that for all edge e ∈ E for a given graph G(V,E), λ(e) ≥ τ . That is, all
edges in the graph can be used to send a message. Edges that do not address
this constraint can be removed from the graph in a pre-processing step.

The graph G∗(V ∗, E∗) is the static undirected graph obtained from G by
considering all its edges without time constraints (all edges are in the graph
independently of time). We use N(v) to denote all neighbors of node v in G∗.
That is, N(v) = {u | (v, u, ti, λi) ∈ E∗,∀i}.

We provide some definitions here that will be used in the paper.

Definition 1 The time forward neighbors or future neighbors of a given node
u ∈ V at time tc for the dynamic graph G(V,E) are defined as: N t+(u, tc) =
{v | (u, v, t, λ) ∈ E, tc ≤ t+ λ− τ}.

Similarly,
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Definition 2 The time backward neighbors or past neighbors of v ∈ V at time
tc are defined as: N t−(v, tc) = {u | (u, v, t, λ) ∈ E, t+ τ ≤ tc}.

In general, N t+(u, ti)∪N t−(u, ti) = N(u). From a practical point of view,
we usually want to consider time forward and backward neighbors up to a
maximum delay or carry time. If a node wants to deliver a message to another
node, the first one can carry the message up to a maximum time. In such
case, for simplicity we define a unique maximum carry time for all nodes
denoted as δM . The extension to a variable carry time depending on the node
is straightforward.

Definition 3 The time forward neighbors with carry of node u ∈ V at time tc
considering a maximum delay or carry time δM for the dynamic graph G(V,E)
are the nodes: N t+

C (u, tc, δM ) = {v | (u, v, t, λ) ∈ E, t− δM ≤ tc ≤ t+ λ− τ}.

Definition 4 The time backward neighbors with carry of node u ∈ V at time
tc considering a maximum delay or carry time δM for the dynamic graph
G(V,E) are the nodes: N t−

C (u, tc, δM ) = {v | (u, v, t, λ) ∈ E, t + τ ≤ tc ≤
t+ λ+ τ + δM}.

We also consider the degree of a node at a given time. That is, the degree
of a node will be time dependent. In our case we are interested in looking for
the degree associated to time forward neighbors with carry, and time back-
ward neighbors with carry. We thus define the time forward degree and time
backward degree of a node as follows.

Definition 5 The time forward degree of a node u at time tc with a maxi-
mum delay δM is defined as: degt+C (u, tc, δM ) =| N t+

C (u, tc, δM ) |, and the time
backward degree is defined as degt−C (u, tc, δM ) =| N t−

C (u, tc, δM ) |

P = 〈(v1, t1), (v2, t2), . . . , (vl, tl)〉 denotes a path in the dynamic graph
G(V,E), where (vi, ti) represents the node in the path and the time that the
message arrives to such node. Given the path P the length of the path is the
number of nodes included in path. The duration of a path P is the time taken
by the message to arrive to destination. That is, for P = 〈(v1, t1), . . . , (vl, tl)〉,
duration(P ) = tl − t1.

3 Paths for onion routing in POppNets

Routing in OppNets is a difficult problem due to the unforeseeable nature of
contacts between nodes, which leads most of the times to the adoption of (lim-
ited) broadcast approaches for routing (Borrego et al., 2019; Sharma et al.,
2019; Borah et al., 2018). However, the fact that we are dealing with pre-
dictable opportunistic networks (POppNets) greatly simplifies such routing.
Routing can be seen as establishing paths in the time-based dynamic graph
that represents the network (Jain et al., 2004). Solutions exists to determine
shortest paths in such networks. This is however not a good solution from a
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privacy perspective if we consider an onion routing strategy. In this case, the
predictability of the chosen path is a key issue that needs to be protected. In
this section we introduce two stochastic strategies to determine paths in dy-
namic graphs, and thus, opportunistic networks. The main objective of these
approaches is to determine a path to be used for onion routing in such net-
works. The stochastic nature of both algorithms has the goal of keeping the
predictability of the path as low as possible.

3.1 Random Path Finder

The first strategy is to use a time-based random walk on the graph ensuring
that the predictability of the path is very low. This will be somehow similar
to randomly choosing the onion routing nodes in Tor.

Algorithm 1: Random path finder.

Data: G(V,E) is a dynamic graph; s ∈ V is the source node; d ∈ V is the destination
node; ts is the starting time; tc is the current time; Lmin is the minimum
path length; Lmax is the maximum path length; τ is the transmission time;

Result: Path P from s to d, such that Lmin ≤ length(P ) ≤ Lmax.
1 begin
2 P = 〈(s, ts)〉;
3 tc = ts;
4 continue = True;
5 while continue do
6 u = getLastNode(P );

7 select a random edge e = (u, v, t, λ) such that e ∈ Nt+(u, tc);
8 if tc > t(e) then
9 tc = tc + τ ;

10 else
11 tc = t(e) + τ ;

12 P = P + 〈(v, tc)〉;
13 if v is repeated in P then
14 P = mergeNodePath(P, v);

15 if v = d and Lmin < length(P ) < Lmax then
16 continue = False;

17 else if Nt+(u, tc) = ∅ or length(P ) > Lmax then
18 P = 〈(s, ts)〉;
19 tc = ts;

20 return P ;

This method, shown in Algorithm 1, allows inclusion of repeated nodes
but performs a shrink or merge of the path if a repeated node is found
(mergeNodePath(P, v)), eliminating the intermediate nodes. This intermedi-
ate nodes do not provide additional security in the path given that the repeated
node could correlate traffic received twice.
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For example, in path P = 〈(v0, t0), (v1, t1), (v2, t2), (v3, t3), (v4, t4), (v5, t5)〉,
if we know that node v2 is the same as node v4, the resulting merged path will
be: P = 〈(v0, t0), (v1, t1), (v2, t2), (v5, t5)〉. That is, node v2 carries the message
until time t4 to send it then to node v5. We have found this approach to be
faster than just backtracking or re-starting the path search if a repeated node
appears.

For practical reasons we bound the search to prevent very long paths (both
in time and number of nodes). This bound can be set based on different pa-
rameters: maximum path length, duration, computation time, . . . . In our case,
we have set the bound to a maximum path length (Lmax) and a maximum
number of executions of the main loop (set to 10M in the experiments of the
evaluation). As we will see in Section 5 the algorithm produces paths with
reasonable length and duration.

3.2 Forward-Backward Path Finder

In order to improve the random walk algorithm, we have designed another
stochastic approach using a meet-in-the-middle strategy. The idea is to use
information from both source and destination nodes to perform a stochastic
path search from both nodes at the same time. As we will see, this approach
is more likely to find the path in case it exists and can produce shorter paths.
This algorithm is denoted as the Forward-Backward search (FB), and shown
in Algorithm 2.

The algorithm performs a partial path search starting from the source node,
where a path will be randomly selected from potential forward neighbors. At
the same time the analogous procedure is performed from the destination node
selecting backward neighbors. Actually, to increase uncertainty, the algorithm
keeps track of all potential forward and backward partial paths to finally ran-
domly select an intersection, yielding the final path. In order to speed up the
process, both forward and backward searches are done at the same time, so
each step of the algorithm increases the path length by two new nodes.

In Algorithm 2, the partial paths are kept in an array-like structure, Pf [i]
and Pb[i], for forward and backward partial paths respectively, where i is
the number of nodes included in the partial path. This is shown to ease the
understanding of the algorithm, but from an implementation perspective, these
partial paths have to be stored in a more efficient data structure such as a tree.
A partial forward path tree keeps the source node for the forward paths an all
possible paths as successive branches. Each node stores the earliest time the
node is visited. The same is analogously done for the partial backward nodes.

The intersection between forward and backward partial paths can be done
looking for an intersecting node (yielding an odd path length) or edge (yielding
an even path length).

Given a partial path P ′ = 〈(v1, t1), . . . , (vl, tl)〉 of length l, we use last(P ′) =
(vl, tl) to denote the last node and associated time, and first(P ′) = (v0, t0)
to denote the first node and its associated time of the partial path.
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Algorithm 2: Forward-backward path finder.

Data: A dynamic graph G(V,E) ; the source node s ∈ V ; the destination node
d ∈ V ; the starting time ts; the maximum arriving time td; the transmission
time τ ; the minimum forward time tf ; the maximum backward time tb; the
forward-backward count cfb; the set of partial forward paths Pf ; the set of
partial backward paths Pb.

Result: A path P from s to d.
1 begin
2 cfb = 0;
3 tc = ts;
4 Pf [cfb] = {〈(s, ts)〉};
5 Pb[cfb] = {〈(d, tb)〉};
6 while True do
7 if cfb ≥ 2 then
8 Ln = commonNodes(Pf [cfb], Pb[cfb], G, τ);
9 if Ln 6= ∅ then

10 P = getPathByNodes(Pf [cfb], Pb[cfb], Ln);
11 return P ;

12 Le = commonEdges(Pf [cfb], Pb[cfb], G, τ);
13 if Le 6= ∅ then
14 P = getPathByEdges(Pf [cfb], Pb[cfb], Le);
15 return P ;

16 tmpForwardSet = ∅;
17 foreach tmpForwardPath ∈ Pf [cfb] do
18 tmpForwardSet =

tmpForwardSet ∪ extendForwardPath(G, tmpForwardPath, τ);

19 Pf [cfb + 1] = tmpForwardSet;
20 get the minimum forward time tf ;
21 tmpBackwardSet = ∅;
22 foreach tmpBackwardPath ∈ Pb[cfb] do
23 tmpBackwardSet =

tmpBackwardSet ∪ extendBackwardPath(G, tmpBackwardPath, τ);

24 Pb[cfb + 1] = tmpBackwardSet;
25 get the maximum backwardTime tb;

26 if tf > tb or cfb ≥
⌊
Lmax−2

2

⌋
then

27 there is no path between s and d;
28 return NULL;

29 Pf [Cfb + 1] = removeRedunantFpaths(Pf [Cfb + 1], tb);
30 Pb[Cfb + 1] = removeRedunantBpaths(Pb[Cfb + 1], tf );
31 cfb = cfb + 1;

32 return P;

The CommonNodes function, gets all common nodes that can be used to
intersect forward and backward paths. The function will use Pf and Pb and
try to compare the last node of partial paths in Pf , and the first node of
partials paths in Pb to check if there are common nodes. That is, if slast(Pf ) =
{vi|(vi, ti) = last(P ′),∀P ′ ∈ Pf} denotes the set of last nodes from the set of
partial paths Pf , and sfirst(Pb) = {vj |(vj , tj) = first(P ′′),∀P ′′ ∈ Pb} the
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set of first nodes of partials paths in Pb, then CommonNodes = slast(Pf ) ∩
sfirst(Pb).

Similarly, the function CommonEdges will attempt to find the path based on
common edges of the last nodes from Pf and first nodes from Pb. More specif-
ically, in this function it will check if there are some valid edges which satisfy
the time requirement of the path. CommonEdges = {e = (s, d, t, λ) | ei ∈
E, t + λ ≥ timePf (s) + τ, t ≤ timePb(d) − τ,∀s ∈ slast(Pf ), d ∈ sfirst(Pb)}.
Where timePf (v) returns the time associated to v in the corresponding partial
path from the set Pf , and timePb(v) the time associate to v in Pb.

Then, function getPathByNodes and getPathByEdges will select a random
node or edge from CommonNodes (Ln) or CommonEdges (Le) respectively to
construct the final path.

When the algorithm cannot get the path at the current iteration, it will
use extendForwardPath and extendBackwardPath functions to increase the
length of the partial paths both in Pf and Pb with all possible time-valid
neighbors. The presence of loops is avoided by avoiding repeating a node when
extending each path.

In order to reduce memory requirements the algorithm prunes partial
paths from the forward and backward set. Paths which will not be possi-
ble to use for node or edge intersection are removed in each loop by the func-
tions removeRedundantFpaths and removeRedundantBpaths. Forward partial
paths, where the time of the last node is greater than tb, and backward par-
tial paths, where the time of the first node is lower than tf are removed. As
described in the algorithm, tf is the minimum time of the last node among all
paths in Pf , and tb is the maximum time of the first node from all paths in
Pb.

4 Measuring anonymity

Determining the anonymity achieved by using onion routing with a given path
will depend on several factors. Even with our stochastic approaches from the
previous section, the topology and behavior of the network are key issues to
take into considerations. In this section we will describe measures that can
help in determining the anonymity achieved based on several aspects of the
chosen path and the network topology and temporal behavior.

4.1 Anonymity set and anonymity degree

In order to estimate the anonymity in onion routing schemes it is quite com-
mon to rely on k-anonymity models (Samarati, 2001) and entropy based met-
rics (Diaz et al., 2002; Serjantov and Danezis, 2002; Castillo-Perez and Garcia-
Alfaro, 2013). In our case we will assume two different and analogous adver-
sary models depending on the knowledge of the attacker. In general we assume
that the attacker knows the dynamic behavior of the network (which is usually
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public knowledge). Then, we consider two different cases, where the attacker
knows:

1. The destination node and the time the message arrives to such node. In
this case the goal of the attacker is to guess the source node of the com-
munication.

2. The source node and the time when the message departed from such node.
Now the attacker will attempt to guess the destination node.

The first model is the most commonly considered in generic onion routing
schemes. There, the common scenario is for a given client to use TOR to
connect to a given server. The client wants to hide its identity (IP address) from
the server. In our case, we have considered both cases in terms of completion.
The second case will be such that the attacker is observing (monitoring) the
source node and will try to guess the destination of the message.

In this section we will present the definition of anonymity set and anonymity
degree for the first model. The second one is analogous.

The anonymity set, S(v, t), of a node v ∈ V that has received a message at
time t, is the set of all possible source nodes (possible origins of the message).
In the general case, S(v, t) ⊆ V for any v and t. The size of S(v, t) can be used
as an estimation of privacy or anonymity as it is done in typical k-anonymity
models.

To complement this measure, we determine the entropy of the anonymity
set, by considering the probability associated to each possible source node,
which might not be uniform. We introduce the measure of such probability
based on the number of existing simple paths that can reach the destination
node from all possible source nodes. A simple path is a path that does not
repeat nodes.

As an example, in Figure 1, we can see two different scenarios with an
anonymity set of size 3 for the destination node d at time ts, S(d, ts) =
{v1, v2, v3}, the dashed arrows represent paths and we consider that all edges
are present all the time to simplify the example.

d

v1

v2

v3

(a) |S| = 3,H(S) = 1.25

d

v1

v2

v3

(b) |S| = 3, H(S) = 1.58

Fig. 1: Example of the same anonymity set with different entropy.

We denote the set of simple paths from v1 to d arriving at node d at time
td as Ptd(v1, d), so |Ptd(v1, d)| is the number of different simple paths from
v1 to d. With this in mind, it is clear that the anonymity degree should be
different in each case of Figure 1.
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We define the probability of a given node v of being the source node of a
path arriving at node d at time td as:

Pd,td(v, d) =
|Ptd(v, d)|∑

ui∈S |Ptd(ui, d)|
(1)

We can then compute the entropy of the anonymity set S for the destination
node d at time td as follows.

H(S(d, td)) = −
∑
vi∈S
Pd,td(vi, d) logPd,td(vi, d) (2)

Following with the example, we have that H(S(d, td)) for Figure 1a is 1.25
while for Figure 1b it is 1.58. Intuitively it is reasonable to have greater entropy
for the second case, where the uncertainty about the origin is greater based
on the possible paths to the destination node.

The maximum entropy of the anonymity set is achieved when S = V and
the probability for all vi ∈ S is uniform. Thus, we define the maximum entropy
for the anonymity set as:

HM = log(|V |) (3)

Now we can introduce the anonymity degree A for a given destination node
d ∈ V and time td as:

A(d, td) =
H(S(d, td))

HM
(4)

We are assuming here that the path is constructed following an stochastic
approach and all paths from source to destination are equally probable.

Thus, the minimum possible value of the anonymity degree is 0, and will
be achieved when there exists just one possible path ending at the destination
node v at time t. In this case, the entropy of the anonymity set is 0, because
there is no uncertainty about the source node. In turn, the maximum possible
value of the anonymity degree is 1− ε (for a small ε), and it is reached when
the entropy of the anonymity set is maximal, that is, when all nodes in the
graph are valid sources and the probability of a path starting in each of them
is exactly the same. Note that the entropy will never reach log (V ), since the
destination node v itself will never be a valid source node (we are requiring
paths to be simple paths). As a consequence, the maximum anonymity degree
tends to 1, but can not be exactly 1.

The anonymity degree informs about the privacy of a destination node at
a given time in the context of a network of a certain order. Therefore, it can
be used to compare the anonymity of nodes inside the same network or with
nodes of other networks of the same order.

Although networks with high density are intuitively better from a privacy
perspective, and will be so in the general case, we can not ensure that the
anonymity degree in higher density networks will always be better. Think, for
instance, in a very dense network where most of the paths end up at the same
node.
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On the contrary, if we only consider the size of the anonymity set, higher
density networks will always present bigger (or equal) anonymity sets.

An important drawback of this anonymity measure is that its computa-
tion is not feasible for high density networks. Finding all simple paths has
exponential memory requirements making it unfeasible for common desktop
computers. We have used a time constrained modification of the Rubin al-
gorithm (Rubin, 1978) to compute all simple paths in relatively low density
networks. For higher density networks we had to develop an approximated
method.

The approximated method computes the approximated anonymity set, en-
tropy of the anonymity set, and anonymity degree of a given destination node
d which receives a message at time td by repeatedly searching backwards for
simple paths ending at d. That is similarly as doing a time constraining re-
versed random walk repeatedly.

At each iteration of the algorithm, a new path ending at node d at td is
searched by randomly selecting the previous hop of the path between the time
backward neighbors (see Section 2) of the current node that have not been
visited previously (i.e., that are not already part of the path).

At each hop of the path, the current time is updated and each of the
iterations stops whenever one of the following conditions is reached: a) the
target number of hops is reached, b) the maximum duration time is exceeded.
When the target number of hops of the path is reached, the iteration finishes
and the last node is considered the source node of the path. On the contrary,
when the maximum duration time is exceeded, the path is discarded. The
approximated anonymity set of d at starting time td, S′(d, td), is then the set
of source nodes found during all the iterations of the algorithm.

Given an execution of the algorithm with n iterations, p(v) is the number
of times one of the iterations ends up in each source node v. Then, the esti-
mated probability of node v being a source for a path ending at d at time td,
P ′d,td(v, d), is p(v)/n.

Finally, the approximated entropy, H ′, and the approximated anonymity
degree, A′, can be computed with equations 2 and 4, using P ′ instead of P.

On the one hand, notice that |S′| will always be less than or equal to |S|,
but this relation does not necessarily hold for A and A′. On the other hand,
the greater the number of iterations n of the algorithm, the more closer the
results of the approximated algorithm should be with the exact ones.

We have seen how to compute S, A (and S′, A′) for the first adversary
model, where the attacker knows the destination node and the time that the
message arrives to such node. From now on we will denote these measures

as
←−
S ,
←−
A (and

←−
S′,
←−
A′). Analogous measures of the anonymity set and the

anonymity degree can be computed for the second adversary model. In this
case the attacker knows the source node and the starting time and we can find
all possible paths starting at such node in such given time. The definition of
these measures is analogous to the ones we have seen and will be denoted from

now on as
−→
S ,
−→
A (and

−→
S′,
−→
A′)
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4.2 Path-degree measure

We have considered another metric based on the degree of all the nodes of
a given path. In some sense these degrees give an estimation of the path
uncertainty in each node. If an attacker knows a partial path, or can identify
a given node in the path, the degree of the node and following unknown nodes
can be seen as the difficulty in guessing the rest of the path. Moreover, the
degree of a node in the path can be seen as the probability that an attacker
has in guessing the next node of the path knowing only the current node and
time.

Given a path P = 〈(v1, t1) . . . (vl, tl)〉, of length l, its path-degree measure
D is defined as:

D(P ) =
1

2

(
l∏

i=1

(
degt+C (vi, ti, δM )

)−1
+

l∏
i=1

(
degt−C (vi, ti, δM )

)−1)
(5)

The path-degree measure combines the time forward and backward degrees
of the nodes in the path in order to give a generic measure. The measure is
defined in the interval [0, 1]. The value 1 is given by the worst case, where the
degree of each node in the path, both forward and backward times, is 1. On
the contrary, values close to 0 are better from a privacy perspective since they
denote higher degrees in the path.

The measure is not normalized with respect to the path length because we
believe that such length should be taken into consideration. Higher lengths are
better for privacy and will yield lower values for the path-degree measure.

4.3 Discussion about the privacy measures

When considering privacy in our proposal, the anonymity set size measure can
be comparable to the well known k-anonymity model. The related anonymity
degree helps in better understand the actual distribution of probabilities within
such anonymity set. It is important to note that we need to provide both mea-
sures together, given that the anonymity degree is given as a ratio of the max-
imum possible entropy. As an example, we can have two different anonymity
sets with the same anonymity degree but with very different sizes. In such
case, clearly the case with the bigger set is better for privacy. When the size
of the anonymity set is the same, the cases with higher entropy are better
for privacy. In some sense, the anonymity degree can be seen as a measure
of diversity related to the anonymity set, similarly as l-diversity (Machanava-
jjhala et al., 2007) is related to k-anonymity. It gives information about the
distribution of probabilities within the anonymity set.

On the other hand, the path-degree measure, gives information about how
easy or difficult it might be to obtain a given path by a random walk (forward
and backwards). It gives information about the diversity of alternatives to
follow in the path. They main idea is to summarize in a very broad and general
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manner, the possible difficulties that an attacker observing a partial path can
have to complete the whole path.

Both types of measures are not directly related since they measure differ-
ent things. The anonymity set and anonymity degree are possible the most
interesting ones, and the ones that have more relation to how anonymity is
traditionally measured. We think however that the path-degree measure is an
interesting complement to the other ones.

As we will observe in the evaluation (see Section 5) in general all privacy
measures are highly related to the density of the network. Higher density will
yield better privacy measures.

5 Evaluation

In this section we present the evaluation of our proposal and the results we
obtain. First, we introduce the dataset and setup of the experiments, and then
the results regarding performance and anonymity.

5.1 Dataset

In our experiments we have used the CRAWDAD rice/ad hoc city dataset (Jetcheva
et al., 2003). This is a wireless ad hoc network based on the Seattle public bus
transportation. Each network node is located in a bus and contacts between
them are established based on the coverage of the two nodes (ability to send
a message between them). It can be considered as a POppNet due to the high
predictability in bus timetables and itineraries. The network contains round
1200 buses covering a 5100 square kilometer area. It is clear that there will be
errors in the predictability of the network but we assume these errors to be
tolerable in the application domain (e.g. the use of our proposal in live critical
communication systems is completely discouraged). This is something usually
assumed and accepted in opportunistic networking. Transmission time is as-
sumed to be 1 second (this includes establishing the connection and sending
a short message).

Network |V | |E| avg. degree graph density

N1 1179 543692 922.293 0.783
N2 1179 271813 461.091 0.391
N4 1177 135976 231.055 0.196
N8 1178 67896 115.273 0.098
N16 1170 34090 58.274 0.050
N32 1157 17064 29.497 0.026

Table 1: Datasets
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The network that we consider spans through 24 hours, and has a high
density with more than 500, 000 dynamic edges during this time interval. Net-
work density is a key issue in our proposal. Higher density means it is easier
to construct paths and more difficult for an attacker to predict possible po-
tential paths. In order to test our results with lower density networks we have
produced different versions of the same Seattle network with lower number of
edges. More precisely, we have obtained networks N2, N4, N8, N16, N32, by
randomly selecting 1/2, 1/4, 1/8, 1/16, 1/32 number of edges of the original
network denoted as N1. Table 1 shows the number of edges, average degree,
and graph density for each network taken from their corresponding static graph
G∗. Given that they correspond to the same network, with the same number
of nodes and the same overall behavior it makes the comparison between them
to be focused exclusively on the network density.

We also note that the distribution of the edges overtime is not uniform,
as expected in a real network based on a public transportation system. There
are hours with higher density than others, presumably corresponding to rush
hours as shown in Figure 2.

Fig. 2: Distribution of edges for networks N1, N4, N16, and N32 over 24
hours (time given in thousands of seconds).

We have performed our experiments in different time frames. We consider
two types of starting times for our experiments. The experiments denoted as
zero are paths that start at a random time from the interval [0, 10000], while
experiments denoted as rush are starting in the interval [20000, 35000].

The performance experiments from Section 5.2.1 have been executed in a
desktop computer, Intel i7 CPU at 3.4GHz, 16GB memory. For the exhaustive



Message Anonymity on Predictable Opportunistic Networks 15

computation of the anonymity degree (cf. Table 4) we used a computer with
an Intel Xeon E3-1230 V2 at 3.30GHz, and 30 GB of memory.

Given the stochastic nature of our proposed algorithms, and the different
scenarios that can happen in real networks, each experiment is composed of
100 cases for zero and rush starting times, giving a total of 200 executions. For
each case a different pair of nodes (source and target), and starting time are
randomly selected, then the average is usually considered. We also separate
zero and rush experiments in order to be able to appreciate different situations.

We will denote our random algorithm as R (Section 3.1), and the forward-
backward algorithm as FB (Section 3.2). In order to properly evaluate our
proposal, we need to consider the penalty introduced by using our algorithms.
That is, what do we have to sacrifice in terms of performance as compared
to a non-anonymous routing. For such purpose we have considered a shortest
path algorithm for dynamic graphs. We have used an adaptation of the Di-
jkstra algorithm to take into consideration time constraints, similarly to the
one from (Xuan et al., 2003). This algorithm is deterministic and thus, not
desirable for anonymous communications. We will denote it as X.

We have conducted experiments both in terms of performance and pri-
vacy. Performance experiments show how good are the stochastic algorithms
in terms of their efficiency, while privacy experiments attempt to evaluate their
security.

5.2 Performance

We show here the performance evaluation of finding paths using the algorithms
from Section 3 by evaluating several parameters or characteristics and usually
comparing them to the results obtained with the shortest path algorithm X.
The X algorithm can be considered in most cases the best performance achiev-
able.

5.2.1 Applicability related to network density

To be applicable, our algorithms need to be able to find a number of paths
from source to destination. An algorithm can fail in finding a path from source
to destination either due to the nonexistence of this path or because it is just
not able to find an existent path due to its stochastic nature. Not only we
need to find a path but a minim number of paths big enough to provide good
anonymity. We compare the behavior of R, and FB algorithms to that of X,
and related to the density of the network in Figure 3. The failure rate indicates
the average percentage of paths not found on each network. Clearly, if a path
exists between two nodes X will provide such path, while R, and FB might
fail.

We can see that any algorithm can be successfully applied more than 95%
of the times on networks with high density (N1 to N4), while, when density
decreases, the behavior of FB is very close to that of X and thus is preferable
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Fig. 3: Applicability of the algorithms on networks with different density.

(a) Execution time for FB. (b) Execution time for R.

(c) Execution time for X.

Fig. 4: Average execution time

over R. FB can still be successfully applied more than 90% of the times on N8
and N16. However, on N32, which has a very low density, the applicability of
any algorithm sharply decreases.

5.2.2 Execution time

Figure 4 shows the execution time of X, R, and FB on networks with different
density. In general our algorithms R and FB are faster than X, notably R.
As expected, execution time is proportional to the network density, although
the difference is less appreciable in R.
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5.2.3 Path length

The minimum path length should be always 5, since it is the minimum path
length required for onion routing to be secure. Even so, larger paths can be
found by R and FB given their stochastic behavior. We compare the results
of R and FB with the actual shortest path obtained from X.

Net FB R X

N1 5.0 (0.0) 6.8 (1.4) 4.0 (1.0)
N2 5.0 (0.0) 6.9 (1.5) 4.0 (1.0)
N4 5.0 (0.0) 7.1 (1.6) 4.0 (1.0)
N8 5.1 (0.6) 7.2 (1.7) 4.2 (1.7)
N16 5.2 (0.9) 6.8 (1.5) 5.0 (1.0)
N32 5.5 (1.3) 7.1 (1.3) 5.8 (2.5)

(a) Zero time

Net FB R X

N1 5.0 (0.0) 6.8 (1.0) 3.5 (1.1)
N2 5.0 (0.0) 6.7 (1.2) 3.7 (1.0)
N4 5.1 (0.4) 7.1 (1.7) 3.7 (1.1)
N8 5.1 (0.6) 7.3 (1.7) 4.4 (1.5)
N16 5.2 (0.9) 7.1 (1.2) 4.5 (1.5)
N32 5.5 (1.3) 7.2 (1.6) 5.0 (1.8)

(b) Rush time.

Table 2: Average path length. Standard deviation is shown in parenthesis.

Table 2 shows the average path length for each execution of FB and R
and the shortest path, X. FB obtains paths closest to the required minimum
due to its meet-in-the-middle strategy. Paths from R are larger but within a
reasonable range.

5.2.4 Duration time

Figure 5 shows the duration time (c.f. Section 2) for all the algorithms and
networks in zero and rush times.

(a) Zero time (b) Rush time

Fig. 5: Duration time

Shortest duration times are obtained in rush time experiments, and in
general FB paths have a shorter duration than R. In any case we consider the
penalty in duration time, as compared to X, to be quite acceptable for our
scenarios.
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5.3 Anonymity

As mentioned in Section 4.1, the anonymity set size and the anonymity degree
can be difficult to compute in high density networks. We can however use the
approximate method also introduced in Section 4.1. We have computed the
anonymity set size and anonymity degree for both adversarial scenarios from

Section 4.1, that is
←−
|S|,
←−
A , and

−→
|S|,
−→
A , and their respective approximated

values.
Table 4 shows the exact anonymity degree and anonymity set size for N32,

and N16. Those are the only networks where we could compute the exact
values with our equipment (cf Section 5.1). On the other hand, Table 6 shows
their approximation using the approach described in Section 4.1. The results
where obtained using a fixed path length of five nodes and fixing the maximum
duration of the path to the average of the cases obtained from algorithm R as
detailed in the previous section. One million iterations of the algorithm were
performed for each analyzed source node.

Net |
←−
S |

←−
A

N32 834.47 (228.5) 0.7969 (0.16)
N16 1045.61 (120.5) 0.8703 (0.10)

(a) Zero hours

Net |
←−
S |

←−
A

N32 712.36 (316.8) 0.7632 (0.21))
N16 1022.83 (141.6) 0.8717 (0.11)

(b) Rush hours

Table 3: Exact anonymity set size (|
←−
S |) and degree (

←−
A) for N32, N16, N8.

Standard deviation is shown in parentheses.

Net |
−→
S |

−→
A

N32 923.66 (272.4) 0.8229 (0.14)
N16 1096.6 (154.85) 0.8703 (0.10)

(a) Zero hours

Net |
−→
S |

−→
A

N32 822.03 (344.2) 0.7855 (0.22)
N16 1038.69 (226.6) 0.8551 (0.12)

(b) Rush hours

Table 4: Exact anonymity set size (|
−→
S |) and degree (

−→
A) for N32, N16, N8.

Standard deviation is shown in parentheses.

We consider the approximated approach to be very accurate for the anony-
mity degree. The estimation error is given in Table 7 for both adversary models
The estimation error on the anonymity set size is a bit bigger, but we consider
it also to be acceptable (see the relative error from Table 7). This is due to the
fact that finding all possible paths with the approximated approach is difficult.
This approach will more likely find destination nodes with higher number of
paths, which makes the anonymity degree more accurate that the anonymity
set approximations.
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Net |
←−
S′|

←−
A′

N32 801.19 (222.01) 0.854596 (0.12)
N16 951.89 (97.27) 0.904594 (0.03)
N8 1004.04 (81.24) 0.912801 (0.03)
N4 1025.11 (65.5) 0.916637 (0.02)
N2 1036.66 (46.6) 0.918900 (0.02)
N1 1043 (46.93) 0.919998 (0.02)

(a) Zero hours

Net |
←−
S′|

←−
A′

N32 566.5 (271.46) 0.746111 (0.23)
N16 849.6 (127.59) 0.875215 (0.05)
N8 930.81 (77.11) 0.895185 (0.03)
N4 964.9 (68.14) 0.901639 (0.03)
N2 969.28 (62.61) 0.902211 (0.03)
N1 989.09 (63.57) 0.905207 (0.03)

(b) Rush hours

Table 5: Approximated anonymity set size (|
←−
S′|) and degree (

←−
A′). Standard

deviation is shown in parentheses.

Net |
−→
S′|

−→
A′

N32 792.88 (297.7) 0.825724 (0.2)
N16 970.88 (253.8) 0.889494 (0.12)
N8 1027.2 (236.74) 0.908159 (0.07)
N4 1061.1 (203.28) 0.920988 (0.05)
N2 1067.69 (196.53) 0.922615 (0.04)
N1 1074.93 (195.42) 0.924665 (0.04)

(a) Zero hours

Net |
−→
S′|

−→
A′

N32 565.77 (304.9) 0.736670 (0.26)
N16 852.38 (292.27) 0.842796 (0.18)
N8 966.36 (241.81) 0.891140 (0.09)
N4 1020.53 (221.87) 0.909172 (0.05)
N2 1027.16 (218.55) 0.909134 (0.06)
N1 1042.02 (204.87) 0.913349 (0.05)

(b) Rush hours

Table 6: Approximated anonymity set size (|
−→
S′|) and degree (

−→
A′). Standard

deviation is shown in parentheses.

Note that the results of both privacy measures (namely, the anonymity set
size and the anonymity degree) increase with the density of the network. More-
over, in this scenario, utility can be understood as the ability to successfully
and efficiently send messages. Therefore, utility also increases with the density
of the network (see Section 5.2: when more edges are kept in the network, it
is more probable to find a valid path that can be used to send a message. As
a consequence, in this scenario privacy and utility go hand by hand.

We can also compute the path degree measure from Section 4.2 using the
paths found in Section 5.2. As an example, the averages of all cases for each
network and time interval for paths found with the FB algorithm are given in
Table 8.

We can see that, although the path-degree measure increases as the network
density decreases, the values for the lower density network are still very low.
This measure gives an idea of the degree of each node in the path, or the
difficulty for an attacker of guessing the next node (given a concrete node on
the path) in both directions, forward and backward.
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Net Time |
←−
S | error

←−
A error

absolute relative absolute relative

N32
Zero 33.28 0.0399 0.0577 0.0724
Rush 145.86 0.2048 0.0171 0.0224

N16
Zero 93.72 0.0896 0.0343 0.0394
Rush 173.23 0.1694 0.0035 0.0041

Net Time |
−→
S | error

−→
A error

absolute relative absolute relative

N32
Zero 130.78 0.1416 0.0028 0.0034
Rush 256.26 0.3117 0.0488 0.0621

N16
Zero 125.72 0.1146 0.0192 0.0220
Rush 186.31 0.1794 0.0123 0.0143

Table 7: Estimation error in the approximated calculations.

D(P )
Network Zero Rush

N1 1.26E − 20 1.22E − 18
N2 4.65E − 19 9.60E − 18
N4 2.96E − 16 1.78E − 15
N8 2.89E − 15 2.82E − 14
N16 4.94E − 11 3.26E − 09
N32 6.10E − 09 5.00E − 14

Table 8: Path-degree measure

6 Related Work

The study of POppNets in the literature is usually focused on improving rout-
ing as compared to generic OppNets. POppNets appear in specific scenarios,
such as satellite networks, public bus networks, or even human mobility (Song
et al., 2010). The use of such predictability to improve or design security re-
lated services or mechanisms in the context of OppNets has not be exploited
yet to our knowledge. Examples of the first case are (Huang et al., 2015), (Fan
et al., 2015), or (Fraire and Finochietto, February 2015).

Anonymous communications have been studied in the context of Oppor-
tunistic networks and Delay-tolerant networks. In general, due to the lack of
end-to-end connectivity on these kind of networks, security solutions for them
are difficult and complex. Furthermore, one cannot relay on common solu-
tions from more conventional connected networks due to the need to support
disruptions and delays.

In this regard, (Kate et al., 2007) proposes a security architecture for DTNs
using Identity-Based Encryption (IBE) with support for anonymous authen-
tication with pseudonyms. Anonymous routing is somehow achieved by using
gateways that hide the sender/receiver.
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A common approach in several works is to apply an onion routing strategy
in DTNs, but creating onion groups. That is, nodes are grouped and onion
layers are based on those groups. Any node of the group can forward the
message of the corresponding layer. This usually implies that all nodes of
the group can decrypt the layer. ARDEN (Shi et al., 2012) uses groups of
nodes to perform the layering process and broadcast messages between these
groups. The message route between groups is chosen randomly. To perform
the cryptographic layers attribute based encryption (ABE) is used. Similarly,
(Sakai et al., 2016) also uses onion groups and allows several copies of the
message. In (Vakde et al., 2011), authors allow such groups to be dynamic,
but use straightforward public key cryptography, having all members of the
group sharing the same private key.

Another interesting work is (Lu et al., 2010). Here authors want to hide
the physical location of the sender. They propose to fragment the message and
send the fragments to different receivers, with the aim of creating confusion
for the attacker.

In this line, another approach to achieve anonymous communications in
dynamic networks in general, is precisely to introduce noise in the commu-
nications. This approach is very common in traditional data privacy (includ-
ing Statistical Disclosure Control, or Privacy-preserving Data Mining) (Torra,
2017). As an example (van den Hooff et al., 2015) attempts to ensure differ-
ential privacy for several observable characteristics or metadata. These ap-
proaches are quite different from the ones presented in this paper, and can
be seen as alternate methods. We believe that knowing the network behavior
in advance makes our approach more suitable for fast transmission of single
short messages.

Most of the existing works on anonymous communications deal with gen-
eral OppNets, where predictability of network behavior is not considered. We
are not aware at the time of writing about publications on anonymous commu-
nication in POppNets. Solutions from non predictable networks can obviously
be applied to POppNets, but taking into account its predictability allows to
simplify and improve the anonymous routing in such networks.

Our proposal could be applied to other types of dynamic networks like
more general mobile ad-hoc networks (MANETs). In such networks however,
our proposal lacks interest since common onion routing can be applied quite
similarly as it is done in static networks such a the TOR network in the Inter-
net. We believe that the fact that we are dealing with opportunistic networks
is what makes our proposal valuable and interesting.

7 Conclusions

We have analyzed the use of simple onion routing in POppNets to achieve
message anonymity. We conducted our experiments on a concrete network from
the Seattle public bus transportation system. We evaluated path establishment
and anonymity degree in this network with variable network density. We have



22 D. Chen et al.

also provided tools to asses the anonymity for the paths. These are concrete
anonymity measures that can help in evaluating several characteristics related
to path anonymity. It is clear that our approach will be very dependent on the
actual network topology and behavior and thus, we provide tools to evaluate
the convenience of using onion routing in these types of networks. Our proposal
is especially suitable in high density networks, allowing anonymous routing
with relatively simple mechanisms as compared to other OppNet solutions.

We have used a very simplistic approach for onion routing using only the
public keys of the nodes to build the onion layers. We assume that we can
directly use each node public key instead of establishing a session key, as this
establishment incurs in more penalty than gain. This is convenient in our
scenario and in general in OppNets but more advanced solutions could be ex-
ploited for other applications. We have also not considered the performance
needed by nodes to perform the cryptographic operations since they are neg-
ligible if compared to the network delays. As future work we also consider
the combination of this approach with different anonymity techniques. One of
such techniques is the introduction of noise or confusion in the network through
synthetic network messages. The combination of these two approaches can be
useful in for example lower density networks where path predictability could
be more difficult to ensure.
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