An XML Standards Based Authorization Framework
for Mobile Agents

G. Navarro and J. Borrell

Dept. of Information and Communications Engineering
Universitat Autdonoma de Barcelona, 08193 Bellaterra, Spain
{gnavarro, jborrell}@ccd.uab.es

Abstract. An outstanding security problem in mobile agent systems is resource
access control, or authorization in its broader sense. In this paper we present
an authorization framework for mobile agents. The system takes as a base dis-
tributed RBAC policies allowing the discretionary delegation of authorizations.
A solution is provided to assign authorizations to mobile agents in a safe man-
ner. Mobile agents do not need to carry sensitive information such as private
keys nor they have to perform sensitive cryptographic operations. The proposed
framework makes extensive use of security standards, introducing XACML and
SAML in mobile agent system. These are widely accepted standards currently
used in Web Services and Grid.

Keywords: Mobile Agents, Authorization, Access Control, XACML, SAML.

1 Introduction

During the last years, mobile agent technologies have witnessed an steady, if not fast,
increase in popularity. Probably, the main hurdle to a wider adoption are the security
issues that mobility brings to the picture [7]. Among them, an outstanding one is re-
source access control. Traditional access control methods rely on the use of centralized
solutions based on the authentication of global identities (for example, via X.509 cer-
tificates). These methods allow to explicitly limit access to a given resource through
attribute certificates or Access Control Lists, and rely on a centralized control via a
single authority. Despite providing effective means of protection, these techniques suf-
fer from serious drawbacks; in particular, they give raise to closed and hardly scalable
systems. Practical mobile agent systems demand lightweight, flexible and scalable so-
lutions for access control, in order to cope with the highly heterogeneous nature of their
clients. In the same vein, solutions depending on centralized entities (such as traditional
Certification Authorities) should be avoided.

Recent developments in the area of access control, in an attempt to further ease ac-
cess control management, have brought into the picture Role-based Access Control
(RBAC) [L1]. In these schemes, privileges of principals requesting access to a resource
are determined by their membership to predefined roles. The use of RBAC greatly sim-
plifies access control management and is specially suited to mobile agents scenarios,
where agents privileges are subsumed in a possibly more general RBAC system.

M. Burmester and A. Yasinsac (Eds.): MADNES 2005, LNCS 4074, pp. 54-[66l 2006.
(© Springer-Verlag Berlin Heidelberg 2006

An XML Standards Based Authorization Framework for Mobile Agents 55

Even in RBAC environments, there may be some situations where more flexibility
is required. Discretionary delegation of authorizations between users may provide flex-
ibility beyond RBAC policies. A user may temporary delegate some rights to another
one without having to modify the system policies. Delegation of authorizations has been
successfully introduced by frust management systems such as Simple Public Key Infras-
tructure/Simple Distributed Secure Infrastructure (SPKI/SDSI) [9] and KeyNote [3].

This article presents an access control framework for mobile agents. We combine
RBAC and discretionary delegation of authorizations to provide a flexible, and dis-
tributed system for access control in such scenarios. In our approach, mobile agents
do not carry explicit information regarding resources access control, avoiding the pri-
vacy concerns associated with sensitive data embedded in mobile code. We have im-
plemented our proposed scheme on MARISM-A, a JADE-based agent platform. Our
framework is called XMAS (XML-based Mobile agents Authorization System).

In Section2lwe explain the motivations behind XMAS. Sections[Bland@ describe the
main naming and authorization issues. We describe the main components and function-
ality of XMAS in Section[3] Section [l details how roles are assigned to mobile agents.
Finally, Section[7] summarizes our conclusions.

2 Motivations and Related Work

Proposals for access control in multiagent systems supporting agent mobility are scanty.
Most of the security work in mobile agents deals with protecting communications,
itineraries, and so on, but few of them deal with the protection of resources and the
management of access control rights.

Usually, proposed systems rely on ad-hoc and centralized solutions. As an example,
in [23] the authors propose a solution based on proprietary credentials, which are carried
by the agent as authorizations. These credentials are combined with the Java protection
domains to provide resource access control. The solution is interesting but it relies too
much on the platform itself, and more precisely in Java. The system cannot be applied to
other platforms and it is not distributed, since it requires a centralized policy. A similar
approach was adopted in [21]]. And most notably [[14].

JADE (http://jade.tilab.it) also provides a security add-on[13], which
is also based on the Java security architecture and does not support agent mobility.
FIPA (Foundation for Intelligent Physical Agents: http://fipa.org) also began
to consider agent security through a technical committee, but the work has not been
finished, and there is no FIPA recommendation at the moment on security related topics.

Other mobile agent platforms, such as NOMADS [21]], provide access control based
on Java-specific solutions and eventually used KAoS to provide high level policy lan-
guages and tools. KAoS [4] is a high level policy language currently focused on seman-
tic web services. Despite its complexity, KAoS does not support mobile agents.

On the other hand, several communities have substantially contributed to access
control and authorization management in distributed environments, most notably in
Web Services and Grid. Systems such as Shibboleth [[10], PRIMA [16], PERMIS [6],
or Cardea [[15]], are just an example. These systems tend to be policy-based and provide
support for Role-based Access Control (RBAC).

56 G. Navarro and J. Borrell

Another important initiative has been the development of standards for express-
ing authorization information. For instances the eXtensible Access Control Markup
Language (XACML)[22] is a general purpose access control policy language specified
in XML. XACML is intended to accommodate a wide variety of applications and envi-
ronments. Together with the policy specification language it also provides a query and
response format for authorization decision requests. The expressiveness, semantics for
determining policy applicability, support for advanced features, and the fact that it was
designed with distributed environments in mind, makes XACML a great standardized
base for large-scale authorization frameworks.

At the same time, the Secure Assertion Markup Language (SAML)[19], provides
a standard XML-based framework for exchanging security information between on-
line business partners. Security information is exchanged in form of assertions. SAML
provides three types of assertion statements: Authentication, Attribute, and Authoriza-
tionDecision. Broadly speaking an assertion has an issuer, a subject or subjects, some
conditions that express the validity specification of the assertion, and the statement. The
assertion may be signed by the issuer. SAML also provides query/response protocols to
exchange assertions and bindings over SOAP and HTTP.

XACML and SAML are being widely adopted by the previous projects in web and
grid services, as well as other industry solutions (Liberty Alliance, for instance). These
two standards are also well suited to coexists together. For instance, Cardea uses SAML
protocols in an XACML policy based environment. In XMAS, we have choose to adopt
a combination of XACML and SAML. XACML is used to express the main authoriza-
tion policy, which is an RBAC policy. While SAML is used to express discretionary
delegation statements and provides the protocols to exchange all the information.

This work is the continuation of a previous framework for authorization management
in mobile agent systems [[17], based on SPKI/SDSI. From this previous experience, we
have developed a more scalable system making use of current standards and introducing
a more powerful delegation model, among other things.

The main contributions of XMAS is to provide a novel authorization framework
for mobile agents. It presents the combination of RBAC with discretionary delegation
of permissions or authorizations. The proposed use of XACML and SAML standards
in mobile agent system, will allow agents to interact with other systems such as Web
Services or Grids. We also describe a safe way to assign roles to mobile agents, so the
mobile agent does not need to carry sensitive information.

3 Naming Schema

XMAS uses a distributed naming schema strongly influenced by SPKI/SDSI, which is
used to create and manage roles and groups. Each entity, (agent, platform, human user,
etc.) is denoted as a principal. All principals (including static agents) have a pair of
cryptographic keys, except mobile agents. The public key acts as a global identifier of
the principal. In order to make it more manageable one can use the hash of the public
key as an abbreviation for the public key. Each principal generates by itself the keys and
is responsible of its own identity, so there is no need for a centralized CA, although it
can be used if it is needed. Mobile agents are identified by a hash of its code.

An XML Standards Based Authorization Framework for Mobile Agents 57

A principal can define local names of entities under its own responsibility. In order to
do that, an entity has an associated local name space called name container. The name
container has entries of the type: (<principal>, <local-name>).The principal
corresponds to the principal for whom the local name is being defined, and local-name
is an arbitrary string. The principal can be specified as a public key or as a fully qualified
name (see below).

For example, consider a principal with public key P K, which creates an agent with
public key PK; and wants to name it my-agent. The name container of the entity will
have an entry of the form: (PK;, my-agent). Now on, the agent PK; can be
referenced by the name my-agent in the local name space of P K. An important issues
is that a third party can make a reference to a name defined in other name containers
through a fully qualified name. A name container is identified by the public key of
the owner, so the fully qualified name P K my-agent makes reference to the name
my-agent defined in the name container of PKj. It is important to note that given the
properties of cryptographic keys, it is commonly assumed the uniqueness of the public
key, so fully qualified names are globally unique.

These names, make it very easy for a principal to create groups or roles. For in-
stances, a user P K, q4min can create a group employees with members PK,, PK} and
the agent P K1, by adding the following entries in its name container:

(PKa, employee)
(PKy, employee)
(P Ko my-agent, employee)

In our framework names are expressed not only as identifiers of a principal but also
as attributes in the case of roles. A name container entry can be expressed as a SAML
assertion, where the issuer is the owner of the name container, the subject is the principal
and the name is expressed as an AttributeStatement. We denote such an assertion as:

{(PKadmin security-staff, employee)} . —1

admin

where PK ;dlmm denotes the private key corresponding to the public key PKyqmin.,
which digitally sings the assertion determining the issuer or the owner of the name
container where the name is defined (note that this assertion can only be issued by the
owner of the container). The assertion may also contain validity conditions, which are
not shown for clarity reasons.

Although any principal may create and manage roles for its own purpose, in order
to make them available to the XMAS framework, they need to be introduced into an

XACML policy managed by a special entity, the Role Manager (see Section[3.2)).

4 Delegation of Authorization

Authorizations may be assigned to principals either through an XACML policy rule or
through a SAML assertion. An authorization will have an issuer, the principal granting
the authorization, which in the case of an XACML rule will be the policy owner, and
in the case of a SAML assertion will be the issuer of the assertion. It also has a subject,
and the authorization itself.

58 G. Navarro and J. Borrell

A key point of XMAS is the ability to allow delegation of authorizations between
principals. Furthermore, we adopt a constrained delegation model, which provides a
powerful delegation mechanism. It allows to differentiate between the right to delegate
an authorization and the authorization itself. That is, a principal can have the authority
to delegate a given authorization but may not be able to hold (and use) the authorization.
This is different from the approach in trust management systems [319] in which the right
to delegate a privilege can be given only to those that have the privilege for themselves.
A formal definition and a full description of the constrained delegation model can be
found in [2.20]].

In short, there are two types of authorizations:

— Access-level authorization: defines an access-level permission such as read file,
assigned to a principal. It is denoted as: authz(s,a), where s is the subject (a
principal) and a is the specific access-level permission.

— Management-level authorization: defines the authority to declare an access-level
authorization. That is, the right to delegate an access-level authorization. We denote
it as: pow(s, ¢), where s is the subject (a principal) and ¢ is either an access-level
authorization or another management-level authorization.

A complete authorization can be denoted as:
{(Ks, p)} Kt

Where the subject K receives the authorization p from the issuer K;. Again, K, !
denotes the private key associated with K;, which issues the authorization. Both names
and authorizations are denoted with a 2-tuple, the main difference between them being
the second element. In the case of an authorization it will be of the form of: auth(. . .),
or pow(...).

The flexibility and the power introduced by this constrained delegation model comes
with a cost. In order to determine if a principal has gained an authorization through
delegation, we have to find a delegation chain from a source of authority to the princi-
pal. Finding this authorization proof may become very complex. In order to simplify
it we rely on a combination a privilege calculus [20]], to find authorization proofs in
the presence of constrained delegation, and the name resolution and reduction rules of
the SPKI/SDSI certificate chain discovery algorithm[§]. Broadly speaking, in order to
find delegation chains, we use the name resolution algorithms to resolve all the names
into public keys (or hashes in the case of mobile agents), and then apply the privilege
calculus to find the authorization proof. The procedure is computationally feasible pre-
senting a polynomial order of complexity, an it is performed by an special entity, the
delegation Assertion Repository Manager (see Section [5.4)).

5 XMAS Components

The XMAS system is implemented on top of MARISM-A [18]], a secure mobile agent
platform implemented in Java. It provides extensions on top of the JADE system. JADE
implements the standard elements of the FIPA specification and provides additional

An XML Standards Based Authorization Framework for Mobile Agents 59

services for the management of the platform. Mobility is achieved by the MARISM-
A mobility component which is integrated into JADE. On top of JADE there are the
main MARISM-A components such as the authorization framework presented in this
paper, and other MARISM-A services such as: cryptographic service, directory service,
service discovery, etc.

Agents in MARISM-A can be mobile or static, depending on the need of the agent to
visit other agencies to fulfill its task. There are several types of mobile agents according
to the characteristics of its architecture: basic or recursive structure, plain or encrypted,
itinerary representation method, etc. Agents can communicate with each other through
the agency communication service.

XMAS is made up of five independent components, which interact to perform all
the required functionality. This components are implemented as static agents. The mes-
sages exchanged between these components are SAML protocol messages, enclosed in
FIPA Agent Communication Language, and using FIPA ontologies. The SAML proto-
cols already provide bindings for transport over SOAP and HTTP, which are used to
communicate XMAS components with entities outside the multi-agent domain, such as
external authorities, normally in the form of web services or grid services, where the use
of SAML and SOAP is widespread. The reason why we choose FIPA ACL is that it has
become an standard in multi-agent environments. Most of the existing agents platforms
support the FIPA specifications, which provide transport over IIOP, HTTP, and WAP.

In order to locate required information and modules. XMAS relies on a service dis-
covery infrastructure. It is provided by the underlying agent-platform implementing the
FIPA agent discovery specification [[12]. This is specially relevant in the presence of
mobile agents because an authorization decision may involve the gathering of infor-
mation from components located in different platforms. In the case of XACML, the
XACML policies already provide mechanisms to easily distribute policies through ref-
erences, without the need for discovery services. But for example, the delegation chain
discovery can use the service to locate an specific authorization manager.

5.1 Authorization Manager (AM)

The Authorization Manager (AM) manages the assignment of a set of specific autho-
rizations to specific roles. It may also provide the ability to delegate authorizations to
other AMs in order to distribute the authorization management. Since the authorization
policy is local to the AM agent, it does not need to follow any specification and its for-
mat could be implementation-dependent. Even so, we use XACML policies to provide
a standardized, and uniform approach.

The AM has two different local policies, expressed in XACML. The first one is the
XML Authorization Policy (XAP). The XAP specifies the authorization assignment to
roles. In other words determine, which roles hold which permissions or authorizations.
The second one is the Administrative XML Authorization Policy (XAP-adm). The XAP-
adm determines the administrative authorities for the authorizations managed by the
AM. An AM may receive a request to issue an authorization for an specific role, if the
authorization comes (directly or indirectly) from one of the authorities for that specific
authorization, it is granted and the XAP is modified accordingly.

60 G. Navarro and J. Borrell

Principals sending requests to the AM will normally be other agents using SAML
protocols. Even so, we have provided a GUI tool for the easy specification of the AM
policies by human administrators: the AM-console.

As Figure [I] shows, the XAP is possibly the most complex policy of the system.
Originally we used a proprietary definition of the XAP policy, but we have recently
adopted the proposal on RBAC profile for XACML [l1]. It is currently a Committee
Draft in the XACML version 2.0 specification.

/_Authorizatiun M Policies.

-

AM-Console

XAP

Role <PolicySet> (RPS)

Role A
\ Target: Role A

SAML ' Permission <PolicySet> (RPS)

protocols

Reference: O -
permission-rules for Role A

Fig. 1. Authorization Manager (AM) policies

The XAP is made up of several <PolicySet>s. For each role there is a Role <Policy-
Set> (RPS) associating the role to a Permission <PolicySet> (PPS), which determines
the actual permissions associated with the role. It is important to note that the entry
point to query the XAP is the RPS and never the PPS. Or in other word, a PPS cannot
be directly consulted, the only way to access it is through an RPS. This allows to support
role hierarchies, ensuring that only principals of the given role can gain access to the
permissions in the given PPS. Role hierarchy is thus defined by including a reference to
the PPS associated with the junior (or sub) role in the PPS of the senior (or super) role.

5.2 Role Manager (RM)

The Role Manager (RM) manages a set of roles, mainly role membership (Section
details how roles are assigned to mobile agents).It has an XML Role Policy (XRP) and
an Administrative XML Role Policy (XRP-adm). The XRP-adm policy specifies ad-
ministrative role authorities. That is, principals that can request the creation of roles,
the assignment of principals to roles, or the specification of constraints on the role
assignment.

The XRP policy has two types of XACML policies. It has policies to define role
membership and a Role Assignment Policy. The role membership is expressed as an
XACML Attribute, associated to the given principal (see Section[3). On the other hand,
the Role Assignment Policy, is used to answer the question “Is subject X allowed to
have role R; enabled?”[1].

As in the case of the AM, there is a GUI tool (RM-console) specially designed so RM
policies can be managed by a human, although they are mainly intended to be managed
by autonomous agents through SAML protocols.

An XML Standards Based Authorization Framework for Mobile Agents 61

Role M Policies\

= D
—
e

RM-Console

XRP

SAML Role memebership: XACML Attributes
protocols

Role Assignment <Policy> or <PolicySet>

\ J

Fig. 2. Role Manager (RM) policies

5.3 Resource Controller (RC)

The Resource Controller (RC) main task is to control the access to a set of resource. It
acts as a Policy Enforcement Point [24]], receives access requests from principals and al-
lows or denies the request depending on authorization responses from the Authorization
Decision Engine.

5.4 Delegation Assertion Repository Manager (ARM)

In XMAS, principals may delegate authorizations in a discretionary way as SAML as-
sertions. This assertions need to be gathered to perform the authorization decision. Al-
though each principal can maintain a local cache of issued assertions, having to search
and query all principals for assertions relating a given request can be too expensive
in terms of communications due to the high complexity and possibilities imposed by
possible delegation paths.

The delegation Assertion Repository Manager (ARM), keeps and updated reposi-
tory of SAML delegation assertions. When a principal issues a delegation assertion it
stores the assertion in the repository. Furthermore the ARM can find partial authoriza-
tion proofs by finding delegation chains from the repository (see Sectiond). This way
we solve the problems derived from assertion distribution and leave the task to perform
chain discoveries to the ARM and not to the other principals. It decreases communi-
cation traffic, assertions do not need to travel constantly from one principal to another,
and reduces the task that generic principals need to perform.

5.5 Authorization Decision Engine (ADE)

The Authorization Decision Engine (ADE) is the main responsible for determining au-
thorization decisions acting as a Policy Decision Point [24]. Given an authorization
request, normally coming from an RC, the ADE is able to determine if the request has
to be granted or denied by retrieving information from required AMs, RMs, ARMs, and
other possible sources of information such as external Attribute Authorities.

An important issue with the ADE is that it is unique for a single agent platform.
XMAS allows to place any number of AM, RM, ARM and RC in a single platform,
they may be set up by different principals, or for different applications. But there is
only one ADE in the platform. This ADE is the one used by all the RCs in the platform.
Note that there is an implicit trust relation between the resources or service owners and
the platform where they are placed.

62 G. Navarro and J. Borrell

Conflict Resolution. Delegation of authorizations was introduced to provide more flex-
ibility in the system, but at the same time it may introduce possible inconsistencies. It
is possible to find conflicts between the RBAC policies and the delegation assertions.
For instance, we can find a principal who has received an authorization from a dele-
gation assertion, but at the same time has enabled a role, which explicitly denies such
authorization.

We adopt a closed policy, all authorizations are denied by default, and the policies
express permitted authorizations. In XACML it is possible to specify deny rules, but this
rules are normally used to express exceptions and are not used in a normal base. Even
so, the ADE provides a conflict resolution procedure to resolve possible inconsistencies.
The ADE can obtain three different evaluation results: an XACML deny or XACML
permit from the RBAC policies, and an explicit permit from delegation assertions. The
ADE uses the following order of precedence:

begin
if (XACML-decision == Deny) then return Deny;
if (XACML-decision == Permit) then return Permit;
if (there is a delegation chain == Permit) then return Permit;

else return Deny;
end

Algorithm 1. ADE combining algorithm

Note that negative rules from the RBAC policies supersede the delegation statements.
It is possible to apply constraints on delegations in the RBAC policies. For example it
is possible to define a deny rule in the RBAC policies for a role, so principals cannot
delegate authorizations received as a result of being members of that role.

Authorization
Manager

authorized‘L Check if user
holds role
Authorization Decision _®_> Role
Engine (PDP) < Manager
)‘

A
@ Check if user authorized
through a delegation chain

Access
request

Resource Controller
(PEP)

A 4
Assertion Repository
Manager (ARM)

Fig. 3. ADE data flow

Figure[3lshows a simplified data flow for the decision engine. Note that, for example,
querying the AM to check the roles authorized, may involve the interaction with several
AMs depending on the one that handles the specific authorization.

An XML Standards Based Authorization Framework for Mobile Agents 63

6 Establishing Mobile Agents Role Membership

One of the first problems we found when planning the authorization model, is if a mo-
bile agent should have a cryptographic key pair and be considered as a principal. A
mobile agent cannot trivially store a private key, as well as perform cryptographic oper-
ations such as digital signatures. There are some proposals to store sensitive information
(private keys) in mobile agents [S]. But the problem arises when the mobile agent uses
the private key to compute a cryptographic operation. The agency where the agent is in
execution will be able to see the private key or at least, reproduce the operation. As a
result we consider that a mobile agent should not have a private key.

Since mobile agents cannot have private keys, we can not delegate authorizations to
a mobile agent or make it member of a role. Our approach is to set, as member of the
role, a hash of the agent’s code. A principal can be identified by a a public key or a hash
of a public key. So a hash may be seen as a principal, subject of a certificate. This is
even supported by certificate frameworks such as SPKI/SDSI or even X.509, where a
hash of an object can be considered as a principal.

In order to establish the role membership of a mobile agent we consider two different
approaches. To show them we use a simple example where a user K, is member of the
role physician defined by a Role Manager R M) of the agency ¢, which has a resource
controlled by a given RC'. The role physician allows its members to access the given
resource in agency ¢. The user has a mobile agent with the code m; to be executed in
platform 7. The goal is to set the hash of m; as member of the role physician.

User-managed Role. R makes member of the role physician a role (or group)
defined by the user K, say agent. Then, the user K, can make member of its role
agent any hash of agent’s code:

{(Ky agent, physician)}RM(;l

{(hash(mi), agent)} -

RM-managed Role. RM, makes member of the role physician the user K,. Then
the users sends a request to the R to set the agent code’s hash as member of the
role:

{(Ku, physzczan)}RMgl

{(hash(m;), physician)}RM(; 1

The user-managed role, is quite straightforward, gives the user full flexibility to man-
age the role K,, agent, and does not require any special mechanism or protocol. The
user may add to the role any agent (or even user) she wants. The main problem with this
first approach is related to the accountability of the system. In e-commerce application
there will be different degrees of trust between users. For example, a hospital may trust
an internal physician to manage its role agent, but a client from an external research
center may not be so trusted. In the first case we will use a user-managed role, while in
the second one we will use an RM-managed role.

64 G. Navarro and J. Borrell

This last approach requires an additional protocol, which is implemented as a SAML
protocol. The user sends an agent role assignment request to the RM, including m;.
The RM verifies the client’s request, if permitted, it computes the hash of m; and issues
the corresponding XACML attribute, in its XRP.

The RM may store the code m; to use it for further security audits (or a hash of the
code). Note that this approach does not allow the user to manage the role and extend it
to other agents. The user needs to send a request for each agent.

When the mobile agent arrives to agency ¢, it will send an access request to the RC
controlling the resource. The RC just has to compute the hash of the code m; and check,
through a request to the ADE, if the agent is authorized to access the resource.

The main drawback of this approach is that a mobile agent is not capable of issuing
a delegation assertions by itself, since the agent can not sign them. But note that this
does not mean that the agent cannot issue or delegate an authorization, which may be
certified by a trustee.

Authorizations associated to an agent are normally determined by its role member-
ship. This way we can say that the agent will have dynamically assigned authorizations
during its lifetime. If the authorizations associated with a role change, the authorizations
related to the agent also change.

7 Conclusions

In this paper we have presented a novel authorization framework for mobile agent sys-
tems, XMAS. The main contributions in the field of mobile agents can be summa-
rized in three points. First, it presents an RBAC-like distributed policy and at the same
time adds support for discretionary delegation of authorizations. Second, the frame-
work makes extensive use of current security standards for distributed systems, more
specially XACML and SAML, which easies the interoperation with other systems such
as Web Services or Grid. Finally we propose a mechanism to authorize and assign roles
to mobile agents, so the agent does not need to carry sensitive information (such as pri-
vate keys) or perform cryptographic operations. The proposed framework is currently
implemented on top of the MARISM-A project, a secure mobile agent platform based
on JADE.

The use of XACML has greatly contributed to provide a uniform and standardized
manner to handle distributed RBAC policies. As a side effect we have find that XACML
documents are quite complex and bloated, and cannot be manually edited by adminis-
trators without a good knowledge of the language. This has forced us to create graphical
user interfaces to manipulate the policy documents.

Acknowledgments

The authors would like to thank Dr. Jose Antonio Ortega-Ruiz for his comments on
previous drafts of the paper and for suggesting the name XMAS.

This work has been partially funded by the Spanish Ministry of Science and Tech-
nology (MCYT) though the project TIC2003-02041.

An XML Standards Based Authorization Framework for Mobile Agents 65

References

10.
11.

12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

A. Anderson, ed. Core and Hierarchical Role Based Access Control (RBAC) profile of
XACML, Version 2.0. OASIS XACML-TC, Committee Draft 01, September 2004.

. O. Bandmann, M. Dam, and B. Sadighi-Firozabadi. Constrained delegation. In Proceedings

of the IEEE Symposium on Research in Security and Privacy, pages 131-140, Oakland, CA,
May 2002. IEEE Computer Society Press.

. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust Management

System. RFC 2704, IETF, September 1999.

. J.M. Bradshaw, S. Dutfield, P. Benoit, and J.D. Woolley. KAoS: Toward an industrial-

strength open agent architecture. Software Agents, 1997.

. K. Cartrysse and J.C.A. van der Lubbe. Privacy in mobile agents. In First IEEE Symposium

on Multi-Agent Security and Survivability, 2004.

. David W. Chadwick and Alexander Otenko. The PERMIS X.509 role based privilege man-

agement infrastructure. In SACMAT ’02: Proceedings of the seventh ACM symposium on
Access control models and technologies. ACM Press, 2002.

. D. Chess. Security issues of mobile agents. In Mobile Agents, volume 1477 of LNCS.

Springer-Verlag, 1998.

. D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. Rivest. Certificate chain

discovery in SPKI/SDSI. Journal of Computer Security, 9(9):285-322, 2001.

. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. RFC 2693: SPKI

certificate theory. The Internet Society, September 1999.

M. Erdos and S. Cantor. Shibboleth architecture v05. Internet2/MACE, May 2002.

D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R Chandramouli. Proposed NIST standard
for role-based access control. In ACM Transactions on Information and System Security,
volume 4, 2001.

FIPA TC Ad Hoc. Fipa agent discovery service specification, November 2003.

JADE Board. Jade security guide. JADE-S Version 2 add-on, 2005.

G. Karjoth, D.B. Lange, and M. Oshima. Mobile Agents and Security, volume 1419 of LNCS,
chapter A Security Model for Aglets. Springer-Verlag, 1998.

R. Lepro. Cardea: Dynamic access control in distributed systems. Technical report, NASA
Advanced Supercomputing (NAS) Division, 2003.

M. Lorch, D. B. Adams, D. Kafura, M. S. R. Koneni, A. Rathi, and S. Shah. The prima
system for privilege management, authorization and enforcement in grid environments. In
Fourth International Workshop on Grid Computing, 2003.

G. Navarro, S. Robles, and J. Borrell. Role-based access control for e-commerce sea-of-data
applications. In Information Security Conference 2002, September/October 2002.

S. Robles, J. Mir, J. Ametller, and J. Borrell. Implementation of Secure Architectures for
Mobile Agents in MARISM-A. In Fourth Int. Workshop on Mobile Agents for Telecommu-
nication Applications, 2002.

S. Cantor, J. Kemp, R. Philpott and E. Maler, ed. Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0. OASIS XACML-TC, Committee Draft
04, March 2005.

B. Sadighi-Firozabadi, M. Sergot, and O. Bandmann. Using authority certificates to create
management structures. In Proceedings of Security Protocols, 9th Internatinal Workshop,
April 2002.

N. Suri, J. Bradshaw, M. Breedya, P. Groth, G. Hill, R. Jeffers, and T. Mitrovich. An overview
of the NOMADS mobile agent system. In Proceedings of 14th European Conference on
Object-Oriented Programming, 2000.

66

22.

23.

24.

G. Navarro and J. Borrell

T. Moses, ed. eXtensible Access Control Markup Language (XACML), Version 2.0. OASIS
XACML-TC, Committee Draft 04, December 2004.

A. Tripathi and N. Karnik. Protected resource access for mobile agent-based distributed
computing. In Proceedings of the ICPP workshop on Wireless Networking and Mobile
Computing, 1998.

J. Vollbrecht, P. Calhoun, S. Farrell, L Gommans, G. Gross, B. de Bruijn, C. de Laat,
M. Holdrege, and D. Spence. AAA Authorization Framework. RFC-2904, The Internet
Society, August 2000.

	Introduction
	Motivations and Related Work
	Naming Schema
	Delegation of Authorization
	XMAS Components
	Authorization Manager (AM)
	Role Manager (RM)
	Resource Controller (RC)
	Delegation Assertion Repository Manager (ARM)
	Authorization Decision Engine (ADE)

	Establishing Mobile Agents Role Membership
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

