
Distributed Authorization Framework for Mobile
Agents?

G. Navarro1, J. A. Ortega-Ruiz2, J. Ametller1, and S. Robles1

1 Dept. of Information and Communications Engineering
Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

2 Institute for Space Studies of Catalonia (IEEC),
80034 Barcelona, Spain.

gnavarro@ccd.uab.es,jao@gnu.org,{jametller,srobles}@ccd.uab.es

Abstract. Mobile agent systems provide new perspectives for distributed e-com-
merce applications. These applications may present specific restrictions, making
mobile agent systems a feasible solution. Even so, mobile agents present some se-
curity related problems. An important one is resource access control. The ability
for mobile agents to provide a simple, scalable, flexible, and secure access control
system is a key point for the widespread adoption of mobile agents. In this paper
we propose a mechanism to safely assign roles to mobile agents and an access
control method based on Role-based Access Control (RBAC). The access control
method provides a simple, lightweight and distributed model for mobile agent ap-
plications. It is proposed as an extension of the MARISM-A (An Architecture for
Mobile Agents with Recursive Itineraries and Secure Migration) project, a secure
mobile agent platform.

Keywords: Access Control, Mobile Agents, Trust management, Security.

1 Introduction

During the last years, mobile agent technologies have witnessed an steady, if not fast,
increase in popularity. Probably, the main hurdle to a wider adoption are the security
issues that mobility brings to the picture [1]. Among them, an outstanding one is re-
source access control. Traditional access control methods rely on the use of centralized
solutions based on the authentication of global identities (for example, via X.509 cer-
tificates). These methods allow to explicitly limit access to a given resource through
attribute certificates or Access Control Lists, and rely on a centralized control via a
single authority. Despite providing effective means of protection, these techniques suf-
fer from serious drawbacks; in particular, they give raise to closed and hardly scalable
systems. Practical mobile agent systems demand lightweight, flexible and scalable so-
lutions for access control, in order to cope with the highly heterogeneous nature of their
clients. In the same vein, solutions depending on centralized entities (such as traditional
Certification Authorities) should be avoided.
? This work has been partially funded by the Spanish Ministry of Science and Technology

(MCYT) though the project TIC2003-02041.



There are alternatives based on trust management, which allow to assign autho-
rizations (permissions or credentials) to concrete entities, as well as trust delegation
among entities. Well-known implementations of these infrastructures are the Simple
Public Key Infrastructure/Simple Distributed Secure Infrastructure (SPKI/SDSI)[2] and
KeyNote[3], and several security frameworks are based upon it. Recent developments
in this area, in an attempt to further ease access control management, have brought
into the picture Role-based Access Control (RBAC) [4]. In these schemes, privileges
of principals requesting access to a resource are determined by their membership to
predefined roles. The use of RBAC greatly simplifies access control management and
is specially suited to mobile agents scenarios, where agents privileges are subsumed in
a possibly more general RBAC system.

This article presents an access control framework for mobile agents. We combine
RBAC and trust management to provide a flexible, lightweight methodology for ac-
cess control in such scenarios. In our approach, mobile agents do not carry any explicit
information regarding resources access, avoiding the privacy concerns associated with
sensitive data embedded in mobile code. In addition, our framework allows dynami-
cal binding of authorizations to agents, providing thus great flexibility when it comes
to define resource access control policies based on it. We have implemented our pro-
posed scheme on MARISM-A, a JADE-based agent platform. Our framework is called
DAFMA (Distributed Authorization Framework for Mobile Agents).

In Section 2 we introduce the main motivations behind DAFMA. Sections 3 and 4
introduce the main concepts and the base to our systems. We describe DAFMA and its
components in Section 5. Finally, Section 6 summarizes our conclusions.

2 Motivations

DAFMA is intended to provide a suitable access control framework for distributed en-
vironments, and more specifically, mobile agent systems. There are not much proposals
for access control systems for multiagent systems supporting agent mobility. Most of
the security works in mobile agents deal with protecting communications, itineraries,
and so on, but less of them deal with the protection of resources and the management
of access control rights. Usually, proposed system rely on ad-hoc and centralized so-
lutions. Just as an example, in [5] the authors propose a solution based on credentials,
which are carried by the agent as authorizations. This credentials are combined with the
Java protection domains to provide resource access control. The solution seem interest-
ing but it relies too much on the platform itself, and specially Java. The system cannot
be applied to other platforms and it is not distributed, since it requires a centralized
policy.

In [6], the author presents a framework for building a secure infrastructure for agent
systems based on SPKI/SDSI. Related to delegation it considers: chain-ruled delega-
tion [7], threshold delegation, and conditional delegation. This approach does not con-
sider mobile agent systems or even heterogeneous multiagent systems. The fact that
agents are able to sign certificates with private keys, makes the whole system too much
dependent in the trust relation between the agent and the execution platform.



JADE (http://jade.tilab.it) also provides a security add-on[8], which is
also based on the Java security architecture and does not support agent mobility. FIPA
(Foundation for Intelligent Physical Agents: http://fipa.org) also began to con-
sider agent security through a technical committee, but the work has not been finished,
and there is no FIPA recommendation at the moment on security related topics.

Other mobile agent platforms, such as NOMADS [9], provide access control based
on Java-specific solutions and eventually used KAoS to provide high level policy lan-
guages and tools. KAoS [10] is a high level policy language currently focused on se-
mantic web services. Despite its complexity, KAoS does not explicitly support mobile
agents.

Our proposal provides a simple distributed architecture for the management of au-
thorizations in mobile agent environments. Its ideas are, indeed, applicable to generic
mobile code systems. A key factor is simplicity. We tried to simplify as much as possi-
ble the components and interactions, so the system becomes more easily implementable
and scalable. DAFMA does not rely in implementation-dependent solutions such as the
security architecture of Java, what makes it suitable for heterogeneous systems. And at
the same time provides enough flexibility to accommodate a wide range of applications.

3 Distributed Naming Scheme

In DAFMA, we use a distributed naming scheme strongly influenced by SPKI/SDSI,
which is used to create and manage roles and groups. We denote each entity (agent,
platform, human user, etc.) as a principal, which has a pair of cryptographic keys (this
is not exactly the case for mobile agents, see Section 5.5). The public key acts as a
global identifier of the principal. In order to make it more manageable one can use the
hash of the public key as an abbreviation for the public key. Each principal generates by
itself the keys and is responsible of its own identity, so there is no need for a centralized
CA, although it can be used if it is needed.

A principal can define local names of entities under its own responsibility. In order
to do that, an entity has an associated local name space called name container, which
can be made public to the rest of the world. The name container has entries of the type:
(<principal>,<local-name>). The principal corresponds to the principal for
whom, the local name is being defined, and local-name is an arbitrary string. The prin-
cipal can be specified as a public key or as a fully qualified name (see below).

For example, consider a principal with public key PK0, which creates an agent
with public key PK1 and wants to name it my-agent. The name container of the entity
will have an entry of the form: (PK1, my-agent). Now on, the agent PK1 can
be referenced by the name my-agent in the local name space of PK0. One of the most
interesting issues is that a third party can make a reference to a name defined in other
name containers through a fully qualified name. A name container is identified by the
public key of the owner, so the fully qualified name PK0 my-agent makes reference to
the name my-agent defined in the name container of PK0. It is important to note that
given the properties of cryptographic keys, it is commonly assumed the uniqueness of
the public key, so fully qualified names are globally unique.

These names, make it very easy for a principal to create groups or roles. For in-
stances, a user PKadmin can create a group employees with members PKa, PKb and



the agent PK1, by adding the following entries in its name container:

(PK1, employee)

(PK2, employee)

(PK0 my-agent, employee)

In order to support role hierarchies, we use group or role inclusion. That is, to de-
clare a role as member of another role. For example consider the role security-staff,
which is a super-role of employees. That is, members of security-staff also have the
permissions or authorizations associated to employees. This could be expressed as:

(PKadmin security-staff , employee)

In order to make public an entry of a name container, we need to ensure that it cannot
be forged. A name certificate is a name container entry signed by the owner of the
container and including a validity specification. We denote such a certificate as:

{(PKadmin security-staff , employee)}
PK

−1

admin

where PK−1

admin
denotes the private key corresponding to the public key PKadmin,

which digitally sings the certificate determining the issuer of the certificate or the owner
of the name container where the name is defined. We do not show the validity specifi-
cation for clarity reasons.

4 Authorization Certificates

The base to our proposal are authorizations. Authorizations are expressed through
SPKI/SDSI authorization certificates. An authorization certificate has the following
fields:

– Issuer (I): principal granting the authorization.
– Subject (S): principal receiving the authorization.
– Authorization tag (tag): specific authorization granted by the certificate.
– Delegation bit (p): if it is active, the subject may forward delegate the authorization

received.
– Validity specification (V ): validity of the certificate (time range and on-line tests).

The certificate is signed by the issuer. The on-line tests from the validity speci-
fication field, provide the possibility of checking, at verification time, the validity or
revocation state of the certificate. For clarity reasons we will denote an authorization
certificate as:

{(Ks, p,+)}
K

−1

i

Where the subject Ks received the authorization p from the issuer Ki. Again, K−1

i

denotes the private key associated with Ki, which signs the certificate. The plus symbol



denotes that the delegation bit is active otherwise a single dash is used. Note that we
represent an authorization certificate as a 3-tuple, while a name certificate is a 2-tuple.

Delegation introduces a lot of flexibility to the system. One principal can delegate
authorizations to others without the intervention of a third party, authority, or without
needing to modify any policy of the system. Despite its benefits, delegation comes with
a cost. Suppose we have a bunch of name and authorization certificates and want to
find if some principal is authorized to do something. Finding a certificate chain from a
source of authority to the principal, that is, finding an authorization proof may become
very complex, as it is in most sophisticated policy languages. In our case, we take as
a base the SPKI/SDSI certificate chain discovery algorithm, which has a polynomial
complexity and is easily implementable. It is based on simple reduction rules, such as:

{(KB , a, +)}
K

−1

A

; b ¹ a

{(KB , b, +)}
K

−1

A

;
{(KB , a, +)}

K
−1

A

; {(KC , b, +)}
K

−1

B

{(KC , a ∧ b, +)}
K

−1

A

Where ’¹’ denotes a partial order on authorizations (such as in lattice-based permis-
sions), and ’∧’ denotes the intersection of authorizations. Previous to the reduction
rules, there is a name resolution phase, which resolves names to public keys making
use of name certificates. The reader may note that there is a little informality in this
notation, for example the result of the first rule does not mean that there is a certificate
signed by KA granting permission b to KB , but that this certificate (or its consequences)
could be deduced from the previous statements.

5 DAFMA

The DAFMA system is implemented on top of MARISM-A, a secure mobile agent
platform implemented in Java [11]. It provides extensions on top of the JADE system,
a Java multiagent platform, which follows the standards proposed by FIPA. Mobility
is achieved by the MARISM-A mobility component which is integrated into JADE.
On top of JADE there are the main MARISM-A components such as the authorization
framework presented in this paper, and other MARISM-A services such as: crypto-
graphic service, directory service, service discovery, etc.

One of the first problems we found when planning the authorization model, is if a
mobile agent should have a cryptographic key pair and be considered as a principal.
A mobile agent cannot trivially store a private key, and cannot perform cryptographic
operations such as digital signatures. There are some proposals to store sensitive infor-
mation (private keys) in mobile agents [12]. But the problem arises when the mobile
agent uses the private key to compute a cryptographic operation. The agency where
the agent is in execution will be able to see the private key or at least, reproduce the
operation. As a result we consider that a mobile agent should not have a private key.

Our solution is to establish the role membership of a mobile agent directly, in a
way that the agent does not need to carry authorization related information, making the
agent more simple and lightweight. This issue will be discussed in Section 5.5.

DAFMA is made up of four independent components, which interact to perform all
the required functionality. This components are implemented as static agents. The in-
teraction between this components is done using the FIPA ACL (Agent Communication



Language) and FIPA ontologies. Figure 1 shows the components, which are described
in the next sections.

Fig. 1. DAFMA Architecture

5.1 Authorization Manager (AM)

The Authorization Manager (AM) manages the delegation of authorizations, issuing
authorization certificates. It follows a local authorization policy, and its main responsi-
bility is to delegate authorizations to specific roles following its local policy. It may also
provide the ability to delegate authorizations to other AM in order to distribute the au-
thorization management. Since the authorization policy is local to the AM agent, it does
not need to follow any specification and its format can be implementation-dependent.

We propose an authorization policy, expressed as a sort of ACL (Access Control
List) entry in S-expression format, similar to the SPKI/SDSI ACLs. An ACL entry is
an authorization certificate without the issuer and it does not need to be signed because
it is local to the AM and is not going to be transmitted. It has the following fields:

– Subject: the principal, who can request the AM to issue a certificate. Note that it
does not need to be the principal receiving the authorization. This allows to separate
the management of the authorization certificates (who makes the request) from the
authorization itself (who receives the authorization).

– Authorization tag: the authorization tag matches the authorization-request issued
by the principal asking for the certificate.

– Delegation bit: it indicates if the Subject can delegate the right to request the cer-
tificate.

– Validity: indicates the validity conditions (time range, . . . ) under which the certifi-
cate can be requested.

For example, suppose principal Ka wants to request to the authorization manager
AM the certificate {(Kb, dummy,−)}AM−1 , Ka will issue the following authorization-
request S-expression:
(authorization-request
(issuer AM)
(subject Kb )
(tag dummy)



(validity V1 ))

Then AM could have the following SPKI ACL:
(acl
...
(entry

(subject Ka )
(tag (authorization-request ...))
(validity V2 )))

Note that the subject of the ACL entry and the certificate are not the same (a princi-
pal may request a certificate issued to another principal). The validity specifications V1,
and V2 may also differ. V1 indicates the validity for the request of the certificate and V2

indicates the validity for the authorization granted by the certificate.

5.2 Role Manager (RM)

The Role Manager (RM) manages the roles (mainly role membership) by issuing name
certificates following a local role policy. It can also assign a role to another role defined
by itself or by another RM. Thus allowing the definition of role hierarchies or the del-
egation of role membership management. Section 5.5 details how roles are assigned to
mobile agents.

Each RM has a local role policy, which determines what roles does it manage. It
also includes rules to determine if a given principal requesting a role membership has
to be granted or not. This is done by using a membership-request, which is equivalent
to an authorization-request, and specifies the name certificate requested. If we choose
to describe the role policy as a S-expression ACL, it is analogous to an authorization
policy. The policy will determine which principal has authority to request memberships
for a given role.

Now the subject of the SPKI ACL entry is a principal or another role, and the au-
thorization tag determines the role that the subject can have.

An agent or principal, may belong to several roles. This is possible and adds lot of
flexibility to the system. Since the system only uses positive authorizations or permis-
sions, it is not possible to find conflicting authorizations for the same agent.

5.3 Resource Controller (RC)

The Resource Controller (RC) main task is to control the access to a resource. It holds
the master SPKI key to access the resource, delegates authorizations to AMs, and veri-
fies that an agent requesting access to the resource has a proper authorization.

It delegates authorizations to one or more AM following a local authorization policy.
Note that this policy is quite simple because the main authorization management is
performed by the AM. For example a RC controlling resource R1 may delegate full
control to AM1 and read authorizations to AM2.



5.4 Certificate Repository Manager (CRM)

The Certificate Repository Manager (CRM) implements and manages a certificate re-
pository. For example, one agency may have one CRM to collect all the certificates
issued by agents inside the agency. The CRM provides the repository and all the ser-
vices needed to query, store or retrieve the certificates in the repository. It also provides
a certificate chain discovery service. A principal can make a query to the CRM to find a
specific certificate chain. This way we solve the problems derived from certificate distri-
bution and leave the task to perform chain discoveries to the CRM and not to the other
principals. It decreases communication traffic, certificates do not need to travel from
one principal to another, and reduces the task that generic principals need to perform.

It is important to note that a distributed version of this module presents some prob-
lems mainly regarding with performance. Existing solutions [13] to provide distributed
certificate chain discovery introduce limitations and complexity to the system. Another
feasible approach is to use other mechanisms like a distributed LDAP directory, or use
discovery services from the underlying agent platform [14].

5.5 Establishing Mobile Agents Role Membership

Since mobile agents cannot have private keys, we can not delegate authorizations to the
mobile agent or make it member of a role. Our approach is to set, as member of the role,
a hash of the agent’s code. A principal can be identified by a a public key or a hash of
a public key. So a hash may be seen as a principal, subject of a certificate. This is even
supported by certificate frameworks, where a hash of an object can be considered as a
principal, such as SPKI/SDSI, or even X.509.

In order to establish the role membership of a mobile agent we consider two differ-
ent approaches. To show them we use a simple example where a user Ku is member
of the role physician defined by a Role Manager RM of the agency i, which has a re-
source controlled by a RC. The role physician allows its members to access the given
resource in agency i. The user has a mobile agent with the code mi to be executed in
platform i. The goal is to set the hash of mi as member of the role physician.

User-managed role The RM makes member of the role physician a role (or group)
defined by the user Ku, say agent. Then, the user Ku can make member of its role
agent any hash of agent’s code.

{(Ku agent, physician)}RM−1

{(hash(mi), agent)}
K

−1
u

RM-managed role The RM makes member of the role physician the user Ku. Then
the users sends a request to the RM to set the agent code’s hash as member of the
role.

{(Ku, physician)}RM−1

{(hash(mi), physician)}RM−1



The user-managed role, is quite straightforward, gives the user full flexibility to
manage the role Ku agent, and does not require any special mechanism or protocol.
The user may add to the role any agent (or even user) she wants. The main problem with
this approach is related to the accountability of the system. In e-commerce application
there will be different degrees of trust between users. For example an hospital may trust
an internal physician to manage its role agent, but a client from an external research
center may not be so trusted. In the first case we will use user-managed role, while in
the second one we will use RM-managed roles.

This last approach requires an additional protocol, which is implemented as an
Agent Communication Language Interaction Protocol. It can be described in three
steps:

1. The client sends an agent role assignment request (ara-request) to the role manager
RM . Including mi and the role she wants to obtain for the agent.

2. The RM requests the CRM to verify the client’s role, and checks if he is member
of the role requested in the ara-request.

3. If it succeeds, the RM computes the hash of mi and issues a name certificate such
as:

{(hash(mi), physician)}RM−1

In the last step, the RM stores the code mi, which may be used for further security
audits. Note that this approach does not allow the user to manage the role and extend it
to other agents. The user needs to send a request for each agent.

Later, the agent arrives to agency i, it will send an access request to the RC con-
trolling the resource. The RC just has to compute the hash of the code mi and check,
through a request to the CRM, if the agent is member of a role authorized to access the
resource.

The RM-managed approach can be used to directly authorize an agent. If the opera-
tion is carried out by an authorization manager it can delegate an authorization directly
to the agent hash. The agent does not need to belong to a role. This does not intro-
duce any conflict or problem to the system, since it is fully supported by SPKI/SDSI
resolution and reduction algorithms.

The main drawback of this approach is that a mobile agent is no capable of issuing
certificates, since the agent can not sign them. But note that this does not mean, that the
agent cannot issue or delegate an authorization, which may be certified by a trustee.

Note that the authorizations associated to an agent may be determined by its role
membership. This way we can say that the agent will have dynamically assigned au-
thorizations during its lifetime. If the authorizations associated with a role change, the
authorizations related to the agent also change.

6 Conclusions

We have proposed an access control system for a mobile agent platform. It provides
a simple, flexible and scalable way of controlling the access to resources. It takes the
ideas from RBAC and trust management. The proposed model is an extension of the
MARISM-A project, a secure mobile agent platform based on JADE.



Currently we have implemented the main MARISM-A platform components (mo-
bility, services, etc.), and a prototype of the authorization framework for access control
proposed in this paper. Our solution provides a secure migration for agents with pro-
tected itineraries and we solve the secure resources access control and the authorization
management. We provide a lightweight mechanism to authorize mobile agents, where
the agent does not need to carry any kind of information regarding the access control.
It introduces a method to establish and manage roles, which may be used in an open
system with unknown users. This kind of users are normally untrusted and by the way
authorizations are assigned, it will be feasible to introduce some accountability mech-
anisms to the system. The definition of access control policies also allows to separate
the right of requesting an authorization from the authorization itself.

As a future work we plan to incorporate support for standard security languages,
such as SAML to introduce more interoperability. Given the simplicity of the current
framework this should not be a difficult issue.

References

1. Chess, D.: Security issues of mobile agents. In: Mobile Agents. Volume 1477 of LNCS.,
Springer-Verlag (1998)

2. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: RFC 2693: SPKI
certificate theory. IETF (1999)

3. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust Management
System. RFC 2704, IETF (1999)

4. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed NIST standard
for role-based access control. In: ACM Transactions on Information and System Security.
Volume 4. (2001)

5. Tripathi, A., Karnik, N.: Protected resource access for mobile agent-based distributed com-
puting. In: Proceedings of the ICPP workshop on Wireless Networking and Mobile Com-
puting. (1998)

6. Hu, Y.J.: Some thoughts on agent trust and delegation. In: Proceedings of the fifth Interna-
tional Conference on Autonomous Agents. (2001)

7. Aura, T.: Distributed access-rights management with delegation certificates. In: Secure
Internet Programming: Security Issues for Distributed and Mobile Objects. Volume 1603 of
LNCS. Springer-Verlag (1999)

8. JADE Board: Jade security guide. JADE-S Version 2 add-on (2005)
9. Suri, N., Bradshaw, J., Breedya, M., Groth, P., Hill, G., Jeffers, R., Mitrovich, T.: An

overview of the nomads mobile agent system. In: Proceedings of 14th European Confer-
ence on Object-Oriented Programming. (2000)

10. Bradshaw, J. M., D.S.B.P..W.J.D.: KAoS: Toward an industrial-strength open agent archi-
tecture. Software Agents (1997)

11. Robles, S., Mir, J., Ametller, J., Borrell, J.: Implementation of Secure Architectures for
Mobile Agents in MARISM-A. In: Fourth Int. Workshop on Mobile Agents for Telecommu-
nication Applications. (2002)

12. Cartrysse, K., van der Lubbe, J.: Privacy in mobile agents. In: First IEEE Symposium on
Multi-Agent Security and Survivability. (2004)

13. Li, N., Winsborough, W., Mitchell, J.: Distributed credential chain discovery in trust man-
agement. In: ACM Conference on Computer and Communications Security. (2001)

14. FIPA TC Ad Hoc: Fipa agent discovery service specification (2003)


