
Chained and Delegable Authorization Tokens
G. Navarro, J. Garcia, J. A. Ortega-Ruiz

Dept. Informàtica, Universitat Autònoma de Barcelona,
Edifici Q, 08193 Bellaterra - Spain

Email: {gnavarro,jgarcia,jao}@ccd.uab.es

Abstract— In this paper we present an overview of an access
control system based on tokens and delegable hash chains.
This system takes advantage of hash chains in a similar way
as the micropayment systems. On the other hand it uses an
authorization infrastructure which allows to delegate authority
and permissions by means of authorization certificates and
delegation. The system is named CADAT (Chained and Delegable
Authorization Tokens). We also describe one of the applications
of CADAT, which is used as a token based access control for a
secure mobile agent platform.

Index Terms— Access Control, Authorization, Delegation, Hash
Chains.

I. INTRODUCTION

The access control and protection of computerized system is
an active field of research, development and application. Lately
there have been proposals for models, techniques and novel
systems about access control in distributed systems. Normally
they tend to look for the design of more flexible, scalable, and
user-friendly systems while keeping a high degree of security.

Delegation, for example, introduces a lot of flexibility
to a system, where the permission can be transfered or
delegated between the users of the systems. Some of the
first systems introducing delegation of authorization and the
required infrastructure where KeyNote [1] and SPKI/SDSI
(Simple Public Key Infrastructure/Simple Distributed Secure
Infrastructure)[2]. Some authors refer to these systems as
trust-management.

Another interesting field in access control is the use of
access tokens. In these systems a user receives a token or
ticket, which allows her to access a given resource or service.
Token-based access control has been successfully used in
several scenarios. For instance, Kerberos [3] is a popular
system which makes use of access tickets.

An application, somehow similar to access tokens, are the
micropayments. A micropayment system allows the payment
of small amounts of money. Although micropayment systems
have been around for a considerable time and have received
some critics, they are still an interesting research field [4].
As a proof of concept, just consider companies that have
appeared lately offering micropayment based systems, such as
Peppercoin (http://www.peppercoin.com) or Bitpass
(http://www.bitpass.com). One of the most interesting
issues of the micropayment systems has been the introduction
of hash chains to represent the transactions [5], [6], [7]. The
use of hash chains allows to make the issuing of micropayment
more flexible, since it substitutes computationally expensive

cryptographic operations by simpler operations (hash func-
tions).

There have been recently some propositions to use autho-
rization infrastructures to implement micropayment systems.
One of these proposals [8], introduces a model for using
delegation in micropayment systems.

In this paper we present a token-based access control
system. This system presents some advantages from micro-
payment systems and the delegation of authorizations. Our
proposed system is called CADAT (Chained and Delegable
Authorization Tokens). In CADAT the authorization tokens
are constructed from a hash chain, which makes it faster and
efficient to issue and verify tokens. Furthermore, we introduce
the possibility to delegate token chains between users of the
system in several ways, which adds flexibility to the system.
CADAT is implemented by using SPKI/SDSI (Simple Public
Key Infrastructure / Simple Distributed Secure Infrastructure),
which provides the main framework to express authorizations
and delegations. We also describe the application of CADAT
as a token-based access control system in an specific scenario,
a secure mobile agent application.

In Section II we introduce the main bases of the CADAT
system. Section III introduces the SPKI/SDSI framework in
relation to CADAT. In Section IV we show how to encode
the hash chain based permissions into SPKI/SDSI certificates,
providing the necessary modifications to SPKI/SDSI. Next, we
show the main functionality of CADAT through an example
in Section V. And in Section VI we discuss the application
of CADAT in mobile agent systems. Finally, Section VII
summarizes our conclusions and further work.

II. HASH CHAINS AND DELEGATION

In this section we show how we can use delegation and
hash chains together. It is based on the model and notation of
[8]. We have simplified the model a little bit to make it more
readable. The main idea is to consider the elements of a hash
chain as permissions or authorizations.

We adopt the following notation and definitions:
• KA: public key of the user A.
• sKA: private key of the user A.
• {m}sKA

: digital signature of message m, signed by user
A with the private key sKA.

• (|KB , p|)KA
a direct delegation, where the user A, del-

egates permissions p to the user B. This relation can be
established by means of an authorization certificate. At
the moment we denote such a certificate as {|KB , p|}sKA

.



• h(m): one-way cryptographic hash function applied to
m.

• [hn(m), hn−1(m), . . . , h1(m), h0(m)]: hash chain con-
structed from the initial message m (the seed of the hash
chain). Normally, m may include information such as
some random value (or nonce) to ensure its uniqueness.

• P: set of all the permissions managed by the system.
There is an partial ordering in the set (¹) determined by
the inclusion of one permission into another. For instance,
x ¹ y, intuitively means that if a user holds permission
y she also holds permission x. There is a least upper
bound defined by the intersection (∧) of permissions, and
a greatest lower bound defined by the union of (∨). The
order relation and the set of permissions form a lattice.

• PH: subset of permissions (PH ⊆ P), where each
permissions is expressed as an element of a hash chain.
The order relation between elements of PH is defined as:
given x, y ∈ PH, x ¹ y in relation to principal P , if and
only if P , knowing y, can easily determine some x and
i, such that hi(x) = y[8]. It means that principal P can
find x and i without having to invert the hash function.

Following with these notation we can express the reduction
rules of SPKI/SDSI [2], given the set of permissions PH, in
the following way:

(|KB , x|)KA
; y ¹ x

(|KB , y|)KA

(1)

(|KC , x|)KB
; (|KB , y|)KA

(|KC , x ∧ y|)KA

(2)

The use of hash chain elements as permissions has several
advantages, such as the possibility to issue specific permissions
without having to issue any kind of certificate. We can also
delegate (or transfer) parts of the hash chain to other principals.

To show the use of hash chains with delegation, we consider
the following example. There are three users Alice, Bob and
Carol, with their own public keys KA, KB , KC . We assume
that Alice is some authorization authority. Alice generates
the following hash chain from the initial seed m: [h5(m),
h4(m), h3(m),h2(m),h1(m)], where each element of the
chain corresponds to an specific permission.

Alice can issue the following certificate:

{|KB , h5(m)|}sKA
(3)

With this certificate, Alice delegates h5(m) to Bob, who
now, holds the permission h5(m). If Alice wants to delegate
permission h4(m) to Bob, there is no need for Alice to issue
another certificate. Alice just has to make public the value
h4(m). Once it is public, Bob becomes automatically the
holder of the permission h4(m). Bob is in the position of
demonstrating that he holds such a permission because of
certificate (3). In a same way, Alice can make public the
successive permission, for instance, h3(m).

In a more general formulation, if Bob has a certificate,
which directly grants him the permission hi(m), and Alice
makes public the value hj(m), where i > j, Bob becomes the
holder of permissions hi(m), . . . , hj(m). Given the reduction

rule (1), we have that (|KB , hi(m)|)sKA
, and hj(m) ¹ hi(m),

so (|KB , hj(m)|)sKA
.

Another important issue is the introduction of delegation.
Bob could delegate part of the permissions to another prin-
cipal. Following with the example, Bob is in possession of
h5(m), h4(m) and h3(m). He can delegate the last permission
to Carol by issuing the following certificate:

{|KC , h3(m)|}sKB
(4)

Bob delegates h3(m) to Carol. If Alice makes public the
value h2(m), Carol can demonstrate that she is in possession
of such permission, because of the certificates (3) and (4). It is
important to note that in no case, Carol can demonstrate she
holds permissions h5(m) and h4(m). She can only receive
permission of the chain which have and index lower or equal
to h3(m).

We have seen how hash chains have important advantages
when combining them with authorization or trust management
systems. In the following section we show how this model can
be implemented by using SPKI/SDSI. In [9], the authors show
how to implement a similar system in KeyNote.

III. SPKI/SDSI AUTHORIZATION CERTIFICATES

SPKI/SDSI (Simple Public Key Infrastructure/Simple Dis-
tributed Secure Infrastructure), is a certificate-based autho-
rization infrastructure, which can express authorizations and
its delegation by means of authorization certificates. It also
provides a distributed name system based on local names, by
means of name certificates.

In SPKI/SDSI each principal has a pair of cryptographic
keys, and its represented by its public key. In other words, we
can say that in SPKI/SDSI each principal is its public key,
and it is represented by the key or a hash of the key. An au-
thorization certificate binds a public key with an authorization
or permission. This way we can avoid the indirection present
in traditional PKIs, where there is a binding between a public
key and a global identifier (or distinguished name) and another
one between the identifier and the authorization (permission
or attribute). We can denote an authorization certificate as:

(I, S, tag, p, V ) (5)

Where:

• I: issuer. The principal granting the authorization.
• S: subject. The principal receiving the authorization.
• tag: authorization tag. The specific authorization being

granted by the certificate.
• p: delegation bit. If it is active, the subject of the

certificate can further delegate the authorization (or a
subset) to another principal.

• V : validity specification. It includes the validity time
range (not-after and not-before) of the certificate and
other possible conditions (currently online tests for re-
vocation, revalidation and one-time revalidation).

• Comment: although we do not show it in the notation,
the certificates include a field of arbitrary information.



As one can see, the authorization certificates of SPKI/SDSI
allows us to easily express the authorization certificates com-
mented in Section II. For instance, certificate {|KB , p|}sKA

can be expressed in SPKI/SDSI, for a given validity time V

as: (KA,KB , p, 1, V ). Note that the delegation bit is active,
so KB can further delegate the authorization, KA could avoid
this by setting the delegation bit to 0 if needed.

IV. HASH CHAINS AS SPKI/SDSI AUTHORIZATIONS

As we have seen permissions are expressed in SPKI/SDSI as
the element tag. The format used by SPKI/SDSI to represent
all the information is S-expression. In order to make it easy
to process the authorizations, we include the index of the
hash chain component , and an identifier of the chain in the
authorization tag. This way a permission p ∈ PH will have
the following format:

p = (cid, i, hi(m)) (6)

Where i is the index of the element in the chain and cid

is the identifier of the whole hash chain. All the elements of
the same hash chain have the same cid, which is a random
bit string big enough to ensure its uniqueness. The seed, m

includes additional information such as the public key of the
principal that generated the chain, etc. The hash on m also
includes i and cid in each step, making it more difficult to
forge it. We do not get into details on how is the concrete
information in m and how is the hash exactly computed, to
keep the notation more readable, and because it may depend
in the specific application of the permission. The reader may
refer to [5], [6], [7] for specific ways to build such a hash
chain.

SPKI/SDSI provides a certificate chain discovery algorithm
to find authorization proofs in delegation networks [10]. This
algorithm is based on basic intersection operations to provide
certificate reduction rules. In [2] the intersection of the tag
element is determined by the operation AIntersect.

In order to represent the authorization (6) in a SPKI/SDSI
tag, we consider two alternatives. These alternatives are based
on the need of verifying the hash of the permission in the
tag intersection operation. When we have to intersect two
permissions with the hash elements hi(m) and hj(m), if i ≥ j

the resulting tag will be the hi(m). The intersection operation
can also verify that (hj)x(m) = hi(m) for some x. This
verification allows to immediately dismiss forged or erroneous
permissions. If the verification is not carried by the intersection
operation, it is important to note that the verification has to be
done afterwards to validate an authorization proof.

A. Tag intersection without hash verification
In this case we can encode the permissions by using

existing SPKI/SDSI structures. For example, a straightforward
representation of the a permission like (6) in SPKI/SDSI S-
expression format can be:

(tag
(h-chain-id |123456789|)
(h-chain-index (* range numeric ge 7)))
(h-val (hash

md5 |899b786bf7dfad58aa3844f2489aa5bf|))

Where h-chain-id is the identifier of the hash chain,
h-chain-index is the index of the element in the hash chain
and h-val is the value of the hash itself. The most important
element is the index, which is expressed as a numeric range
that will intersect with a range greater or equal to 7 in this
case.

The only problem of the previous example is that if we
include the value h7(m) in the tag, the intersection operation
will not properly work. What we do is to introduce a little
modification. The value h-val has to be treated in a different
way. Thus, we put the h-val as the comment of the certificate.
The certificate may look something like this:
(cert
(issuer

(hash
md5 |1ac461a2e12a77ad54c67128b5060f28|))

(subject
(hash
md5 |b0a746de2d5f6038e49a87c9c826bf4e|))

(tag
(h-chain-id |123456789|)
(h-chain-index (* range numeric ge 7)))

(comment
(h-val

(hash
md5 |899b786bf7dfad58aa3844f2489aa5bf|)))

(not-after "2004-01-01_00:00:00")
(not-before "2005-01-01_00:00:00")

)

This allows us to use the SPKI/SDSI decision engine di-
rectly, without any lose of information. The main disadvantage
of this approach is that in order to verify an authorization
proof, the verifier needs to do an additional operation: verify
the integrity of the hash chain (or subchain).

B. Tag intersection with hash verification

In this case, it is necessary to redefine the tag intersection
operation for authorizations corresponding to elements of a
hash chain. To do this we introduce a new kind of tag, the
<tag-hash-auth>. The BNF definition of this new tag,
according to the SPKI/SDSI tag definition [11] is given in
Figure 1.

<tag>:: <tag-star> | "(" "tag" <tag-expr> ")";
<tag-star>:: "(" "tag" "(*)" ")" ;
<tag-expr>:: <simple-tag> | <tag-set> |

<tag-string> | <tag-hash-auth>;
<tag-hash-auth>:: "(" "hash-auth" <chain-id>

<chain-index> <hash>")";
<chain-index>:: "(" "chain-index" <decimal> ")";
<chain-id>:: "(" "chain-id" <byte-string> ")";

Fig. 1. Definitionn of <tag-hash-auth>.

We also introduce a new intersection operation: HCAInter-
sect (Hash Chained Authorization Intersection). The intersec-
tion of two tags representing permissions of PH will result
in the tag with the greatest hash chain index, if the hash chain
identifier is the same and we can verify the hash values. For
example, given the following tags:
(tag
(hash-auth

(hchain-id |lksjfSDFIsdfkj0sndKIShfoMSKJSD|)
(hchain-index 14)
(hash md5 |899b786bf7dfad58aa3844f2489aa5bf|)))



(tag
(hash-auth
(hchain-id |lksjfSDFIsdfkj0sndKIShfoMSKJSD|)
(hchain-index 15)
(hash md5 |d52885e0c4bc097f6ba3b4622e147c30|)))

Its intersection (HCAIntersect) will be equal to the second
tag, because the identifier is equal and the index of the second
tag is greater that the first one. And we can verify the hash
value of the tag. Note that the MD5 of the first value is equal
to the second one.

We show the algorithm used by HCAIntersect with hash
verification (HCAIntersect full algorithm).

Algorithm 1: HCAIntersect full algorithm
input : p = (idp, i, h

i(m)p), q = (idq, j, h
j(m)q), such

that p, q ∈ PH

output: r such that r = HCAIntersect(p, q)

begin
if idp 6= idq then r ← NULL ;
if i ≥ j then

if verifyHashSubChain(p,q) then r ← p ;
else r ← NULL ;

end
else

if verifyHashSubChain(q,p) then r ← q ;
else r ← NULL ;

end
end

Algorithm 2: verifyHashSubChain function
input : p = (idp, i, h

i(mp)), q = (idq, j, h
j(mq)),

where i ≥ j

output: res = true if hi(m) and hj(m) belong to the
same hash chain, res = false otherwise

begin
res← false ;
aux← hj(mp) ;
for x ∈ [(j − 1)..i] do

if aux = hi(mq) then res← true;
aux← h(aux) ;

end
end

The implementation of the hash chain elements as autho-
rizations and the HCAIntersect algorithms, has been done in
Java using the JSDSI [12] library. JSDSI is an open source
implementation of SPKI/SDSI in Java, which has lately been
under active development. The implementation of the new
tag and the algorithm just represented a few modifications
of JSDSI.

V. APPLICATION TO ACCESS TOKENS: CADAT

The main motivation for the design of CADAT is its
application as a token based access control system. In this
section we show the basic functionality of CADAT through
an example. We consider an scenario where news agencies
allow access to the news databases to their clients. The access

is controlled by tokens, that is, each time a user accesses (or
reads) a new he needs to issue a token (depending on the case
a given new may require several tokens).

For example the headquarters for the news agency Acme-
News wants to issue 9 access tokens (note that normally
token chains will be much larger) to the user Alice, so she
can access all the agencies worldwide (AcmeNews-SudAfrica,
AcmeNews-India, . . . ). To do that, AcmeNews issues a con-
tract to Alice authorizing her to use 10 access tokens acme
(the first token is not used as an access token) for a given
validity specification V0. This contract is represented as an
SPKI/SDSI authorization certificate.

(AcmeNews,Alice, authstar, p = true, V0) (7)

Where authstar corresponds to: (acmeID, 10, ∗). This is a
<tag-hash-auth>, with the hash value equal to “*”. It
stands for an especial tag symbol used in SPKI/SDSI, which
intersects with any kind of character string.

We denote this first certificate as
chain-contract-cert or chain contract certificate,
because it establishes a contract which allows Alice to
demonstrate that she has been authorized by AcmeNews to
use 9 tokens acmeID.

Now, Alice can generate the hash chain with 10 elements:

[(acmeID, 1, h1(m)), (acmeID, 2, h2(m)), . . . ,
(acmeID, 10, h10(m))]

(8)

The initial message or seed m will normally include informa-
tion from the certificate (7), or specific information shared by
AcmeNews and Alice.

Suppose that Alice goes to the AcmeNews-Antartida agency
to look for news regarding the habits of the Aptenodytes
forsteri1. To do that, Alice, establishes and initial contract
with AcmeNews-Antartida with the following authorization
certificate:

(Alice,AcmeNews−Antartida, auth10, p = true, V1) (9)

Where auth10 = (acmeID, 10, h10(m)). This certificate is
denoted as a token-contract-cert or token contract certificate.
It allows Alice to establish against AcmeNews-Antartida that
she is in the position of spending 10 tokens acme. The agency
AcmeNews-Antartida can verify such a claim by means of
the certificates (7) and (9) by using the SPKI/SDSI decision
engine.

Once, the token-contract-cert has been issued, Alice can
begin to spend tokens to access the resources of AcmeNews-
Antartida. For example, Alice can send the value auth9 =
(acmeID, 9, h9(m)) and auth8 = (acmeID, 8, h8(m)).
AcmeNews-Antartida can verify that h(h9(m)) = h10(m) and
that h(h8(m)) = h9(m), and together with the certificates (7)
and (9) can allow the requested access to Alice. By making the
elements of the chain public, Alice has implicitly delegated the
tokens to AcmeNews-Antartida based on the initial contract
token-contract-cert (9).

1Also known as emperor penguin.



A. Delegation of token-contract-cert

Imagine now, that AcmeNews-Antartida decides to trans-
fer the initial contract with Alice, token-contract-cert (9)
to AcmeNews-Zoology because Alice needs to access some
records of the zoology department. To do that AcmeNews-
Antartida, issues a new token-contract-cert to AcmeNews-
Zoology with the last token that it has received from Alice:

(AcmeNews−Antardtida,AcmeNewsZoology, auth8,

p = true, V2)
(10)

AcmeNews-Zoology can verify together with the token-
contract-cert (9) and the chain-contract-cert (7), that Alice
is properly authorized to spend 7 tokens acme. Now Alice
issues the next token auth7, which is accepted by AcmeNews-
Zoology, who can make all the pertinent verifications.

By means of the token-contract-cert (10), AcmeNews-
Antartida has been able to delegate part of its initial contract
with Alice to AcmeNews-Zoology. Normally this delegation
can be transparent to Alice, allowing AcmeNews to easily
subcontract services.

Figure 2 shows both token-contract-certs issued, and the
tokens delivered by Alice.

token-contract-cert(9)

token-contract-cert(10)

auth_9

auth_8

auth_7

Alice

AcmeNewsAntartida

AcmeNews
Zoology

Fig. 2. token-contract-cert delegation example.

B. Delegation of chain-contract-cert

There is another contract delegation possible, the delegation
of the chain-contract-cert by Alice. Imagine that Alice decides
to transfer (delegate) the rest of the tokens to her colleague
Bob, so he can use them. To do that, she just has to delegate
the chain-contract-cert (7) that she received directly from
AcmeNews by issuing the following certificate:

(Alice,Bob, auth7, p = true, V3) (11)

It authorizes Bob to spend the remaining 6 tokens from the
chain. It is important to note that Alice has to let Bob know
somehow the hash chain (8) or the initial seed m. This value
could, for example, be encrypted in the comment field of the
certificate.

Now Bob can issue the value auth6. This token will be
accepted by AcmeNews-Zoology, who can verify that Bob is
authorized to issue it due to the chain-contract-cert (7) and
(11). Figure 3 shows the chain-contract-cert and the tokens
issued by Alice and Bob.

chain-contract-cert(11)

auth_7

Alice

AcmeNews
Zoology

Bob

auth_6

Fig. 3. chain-contract-cert delegation example.

C. Comments on delegation

In the previous section we have introduced both the chain-
contract-cert and the token-contract-cert. Although both cer-
tificates look very similar, their differentiation is a key concept
determined by the use of the contract. Summarizing:

• chain-contract-cert: allows to delegate the hash chain o
a subchain to a principal. The principal receiving the
contract will be the one using the tokens to access or
use a given service. An special case is the first certificate,
which establishes the trust that the authority (AcmeNews)
places in a given principal (Alice).

• token-contract-cert: this certificate also allows to delegate
the hash chain or a subchain, to a principal. But in
this case, the principal receiving the contract is the con-
sumer of the tokens. This situation is specially interesting
because allows the outsourcing of services from one
organization to another in a transparent way.

Note that each contract certificate has an specific validity
specification, which allows for a fine-grained control of the
delegations.

As we have seen, the ability of delegating the permissions
as hash chains (or subchains) in two different ways introduces
one of the key issues of CADAT. As another way to view the
two types of delegation supported by the system, we can say
that there is a client-side delegation (chain-contract-cert) and
a server-side delegation (token-contract-cert).

Although we have used SPKI/SDSI as the underlying in-
frastructure, a similar approach could be used with other trust
management technologies such as KeyNote. And in general,
in other infrastructures supporting delegation, for instance the
last X.509 specification describes extensions to support the
delegation of attributes.

There may be the possibility of double spending. That is, a
user that uses a token more than once. In order to avoid it, we
consider that the principal making the original contract keeps
track of the tokens used by all its contractors. In the above
example, AcmeNews is the authority granting the tokens to
Alice, we can say that AcmeNews is the authority for acme
tokens. In order to accept tokens AcmeNews-Antartida and
AcmeNews-Zoology, check the corresponding contract certifi-
cates. They will only accept acme tokens if the authorization
root for those tokens is AcmeNews. The system should provide
the ability for AcmeNews to keep track of spent tokens, for
example, by means of online notifications.



VI. APPLICATION OF CADAT

CADAT attempts to be a generic system, which can be
applied in several scenarios. Given its nature, it can be
easily used as a micropayment system, introducing the ability
to delegate payment tokens. In [8], the authors describe a
micropayment system implemented in KeyNote that makes use
of what we call delegation of token-contract-cert, but does not
uses the chain-contract-cert delegation. CADAT can be seen
as an extension of this system.

But the CADAT system can also be used as a generic token
based system. One of the current implementations of CADAT
is as a token-based access control in a secure mobile agent
platform. Access control in mobile agent systems involves
lots of security problems. One of them is the fact that if
mobile agents are able to perform digital signatures, either
their private key is visible to the underlying platform, or the
agent has to use a third party cryptographic proxy.

There are some alternatives as [13], which allows to delegate
authorizations to a hash of the agent’s code, but presents some
constraints in the system. We have implemented CADAT on
top of a secure mobile agent system, which at the same time
makes use of the JADE (Java Agent Development Framework)
framework[14], which supports the main FIPA (Foundation
for Intelligent Agents)[15] specifications. JADE is a popular
open source generic agent platform developed in Java, which
lacks support for mobility and security. The implementation is
done within the MARISM-A project, which attempts to bring
mobility and several security solutions to the JADE platform.
The mobility implemented in top of JADE is described in [16],
and some existing security solutions in [17]. In the context of
MARISM-A, CADAT provides a token based authorization
mechanism specially interesting for mobile agents.

Figure 4 outlines the scheme used in the mobile agent
application. A user Alice establishes a chain-contract-cert
with a token authority, which will allow her to generate the
specified number of tokens for her mobile agents. In order to
access a resource in a given agent platform, Alice establishes a
token-contract-cert with the platform. Tokens are made public
by Alice when one of its agents has to access the platform
resource. The platform verifies all the contracts and the tokens
published by Alice to allow the agent to access the requested
service or resource.

Alice

Alice’s mobile
agent

Agent Platform 1
token-contract-cert

token
Authority

initial
chain-contrac-cert

publish
access tokens
for her agents

verify contract,
and accept tokens
for M, if all verifications
are successful

Fig. 4. CADAT in mobile agent applications.

In this case, the initial seed of the hash chain includes a
hash of the agent code, which is used by the agent platform
to authenticate the mobile agent. When the agent accesses the
platform’s resources, it does not have to perform any kind
of cryptographic operation. The agent itself, does not need to
carry any kind of sensitive information such as cryptographic
keys or even the access tokens.

CADAT provides an extension of more general authoriza-
tion frameworks such as [13] for mobile agent applications. It
is specially suited for open environments, where authorizations
are granted by a previous agreement with some application
authority. It avoids common problems such as the maintenance
of complex policies and certificate based infrastructures. The
use of delegation also provides a lot of flexibility. An agent
platform can outsource services or resources from other plat-
forms by delegating the token-contract-cert, and the user can
transfer part of the tokens to other users by delegating the
chain-contract-cert.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have presented the ideas behind the CADAT
system. We have described its main base and it use and
general functionality. The main idea behind CADAT is the
use of elements of a hash chain as authorization tokens, the
possibility to delegate those tokens in different ways.

One of the applications of CADAT is its use as a token
based access control system in a secure mobile agent platform.
Mobile agents do not need to carry any kind of sensible
information as cryptographic keys. Furthermore the agents do
not even have to perform costly cryptographic operations. The
delegation introduced in CADAT allows a user to delegate ac-
cess tokens to other users, and platform agencies (or servers in
general) to outsource services and resources to other platforms
(or server) in a way that is transparent to the user.

We are currently working on the improvement of the
prototype implementation of CADAT in the mobile agent
application. In relation to SPKI/SDSI, we have not discussed
the implications of the use of threshold certificates and name
certificates, which could add extra value to the system. We are
also considering other possible implementations of CADAT
such as a generic micropayment system for web services.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish Gov-
ernment Commission CICYT, through its grants TIC2003-
02041 and TIC2001-5108-E, and the Catalan Government
Department DURSI, with its grant 2001SGR-219.

REFERENCES

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The KeyNote
Trust Management System,” RFC 2704, IETF, Sept. 1999.

[2] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
“SPKI Certificate Theory,” RFC 2693, IETF, September 1999.

[3] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” IEEE Communications, pp. 33–38, 1994.

[4] M. Lesk, “Micropayments: An Idea Whose Time Has Passed Twice?”
IEEE Security & Privacy, January/February 2004.

[5] R. Anderson, H. Manifavas, and C. Shutherland, “Netcard - a practical
electronic cash system.” in Cambridge Workshop on Security Protocols,
1995.



[6] T. P. Pedersen, “Electronic payments of small amounts,” in Proc. 4th
International Security Protocols Conference, 1996, pp. 59–68.

[7] R. L. Rivest and A. Shamir, “PayWord and MicroMint: Two simple
micropayment schemes,” in Proc. 4th International Security Protocols
Conference, 1996, pp. 69–87.

[8] S. Foley, “Using trust management to support transferable hash-based
micropayments,” in Financial Cryptography 2003, 2003, pp. 1–14.

[9] S. Foley and T. B. Quillinan, “Using trust management to support
micropayments,” in Annual Conference on Information Technology and
Telecommunications, Oct. 2002.

[10] D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. Rivest,
“Certificate chain discovery in SPKI/SDSI,” Journal of Computer Secu-
rity, vol. 9, no. 4, pp. 285–322, Jan. 2001.

[11] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
“Simple Public Key Certificate,” Internet Draft, July 2000.

[12] “JSDSI: A Java implementation of the SPKI/SDSI standard,”
http://jsdsi.sourceforge.net.

[13] G. Navarro, S. Robles, and J. Borrell, “Role-based access control for e-
commerce sea-of-data applications,” in Information Security Conference
2002, ser. Lecture Notes in Computer Science, vol. 2433. Springer
Verlag, September/October 2002, pp. 102–116.

[14] “JADE, Java Agent DEvelopemnt Framework,”
http://jade.tilab.com, telecom Italia Lab.

[15] “Foundation for Intelligent Physical Agents,”
http://www.fipa.org, fIPA Specifications.

[16] J. Ametller, S. Robles, and J. Borrell, “Agent Migration over FIPA
ACL Messages,” in Mobile Agents for Telecommunication Applications
(MATA), ser. Lecture Notes in Computer Science, vol. 2881. Springer
Verlag, October 2003, pp. 210–219.

[17] J. Ametller, S. Robles, and J. Ortega-Ruiz, “Self-protected mobile
agents,” in 3rd International Conference on Autonomous Agents and
Multi Agents Systems. ACM Press, 2004.


