
Constrained delegation in XML-based Access Control and Digital
Rights Management Standards

Guillermo Navarro∗

Universitat Autònoma
de Barcelona

gnavarro@ccd.uab.es

Babak Sadighi Firozabadi
Swedish Institute

of Computer Science
Babak.Sadighi@sics.se

Erik Rissanen
Swedish Institute

of Computer Science
Erik.Rissanen@sics.se

Joan Borrell
Universitat Autònoma

de Barcelona
Joan.Borrell@uab.es

ABSTRACT

In access control and digital rights management, del-
egation introduces the ability to decentralize the manage-
ment of the privileges in a system. Constrained delega-
tion presents a new approach to delegation, where the au-
thority to create a permission and the permission itself is
clearly differentiated. This allows the use of delegation
for scenarios where one may have the authority to create
a permission, but without having the permission for him-
self. In this paper we examine some of the most popular
XML standards for access control and digital rights man-
agement, and how constrained delegation can be supported
by them. Specifically we take a look at the Secure As-
sertion Markup Language (SAML), the eXtensible Access
Control Markup Language (XACML), and the eXtensible
rights Markup Language (XrML).

KEY WORDS
Delegation, Access Control, Digital Rights Management,
SAML, XACML, XRML

1 Introduction

Delegation introduces the ability to decentralize the man-
agement of access control privileges to various resources in
a system. A new approach for delegation and constrained
delegation is developed in [1, 6]. In this approach one dis-
tinguishes between the authority to create a permission and
the permission itself. This means that one may have the au-
thority to create a permission, for certain principals to ac-
cess a resource, without having the permission for himself
or without having the authority to create that permission
for himself. This is different from the approach in trust
management [2, 4] in which the right to delegate a privi-
lege can be given only to those that have the privilege for
themselves.

The constraint delegation model allows one to spec-
ify how a privilege can be distributed in several steps. The
source of authority for a privilege is able to define how an
access permission can be delegated by a number of prin-
cipals to a specific group of principals by expressing con-

∗Work carried out during a stage at the Swedish Institute of Computer
Science.

straints on the groups and time intervals of each delegation
in a delegation chain.

An example for the use of constrained delegation is
when one organization outsources the administration of its
information system to another company. The outsourcing
company may have the authority to create access permis-
sions to employees of the organization, but not to any other
people. This means also that the outsourcing company does
not have the right to create the access privileges for its own
employees. However, it may have the authority to delegate
the delegation authority for that access permissions within
its own organization, hence it has a way of organizing the
administration as it wish. This is possible because the or-
ganization that owns the information system is able to put
constraints on how the outsourcing company can manage
access permissions to the information system.

In this paper we will investigate how the constraint
delegation model can be encoded in a number of XML
standards for access privileges. We have chosen SAML,
XACML, and XrML because these are currently the most
popular standards for access control and digital rights man-
agement. We have not considered other XML approaches
out of the standardization efforts. Most notably, models
like the Semantic Access Control (SAC) model [10], which
present interesting novel approaches are out of the scope of
our study.

2 Delegation Model

In this section we provide an overview of the constrained
delegation model. A formal definition of the constrained
delegation model is given in [1] and [6].

The model uses a certificate based authority manage-
ment framework with only two types of actions: the issuing
of certificates and revoking of certificates. A certificate is
represented as:

certifies(issuer, p[I], timestamp, id).

The certificate expresses that the issuer makes an attempt
at the time timestamp to bring about that privilege p holds
for the time interval [I]. The time interval is called validity
interval, and id is a unique identifier for the certificate.

The privilege p can be an access-level permission or a
management level authority:

• Access-level permission: defines an access-level
action such as read or write file. Denoted as
perm(s,a,o)[I], where s is a subject or agent, a is an
action, o is an object, and [I] is a time interval (valid-
ity of the permission).

• Management-level authority: defines the author-
ity to declare an access-level permission, or an-
other management-level authority. It is denoted as
pow(s,φ)[I], where s is a subject, φ is either an access-
level permission, or another management-level au-
thority, and [I] is a time interval (validity of the au-
thority).

And the revocation of certificates can be expressed
as:

revokes(issuer, id, [I], timestamp)

The issuer revokes the certificate with the identifier id dur-
ing the time interval [I], called the disabling interval. The
revocation is issued at time timestamp.

The model provides the ability to determine whether
a privilege p holds at a given time, based on a historical
database of certificates and revocations. Informally: a priv-
ilege p holds at a time-point t when there is a certificate
c declaring that p holds for some interval [I] containing t;
the certificate c moreover must be effective at t, in the sense
that it was issued by s at a time when s had the authority to
declare p to hold for interval [I]. The authority of s, in turn,
requires a certificate that was effective at the time c was is-
sued – and so on, in a chain of effective certificates back to
some source whose authority can be accepted without cer-
tification (as determined by the organizational structure).

2.1 Delegation example

To show how a delegation can be expressed we give a sim-
ple example. Consider two different corporations: Com-
panyA, and CompanyB. Alice, who is the project leader of
CompanyA, has the authority to assign access-level permis-
sions to the project database (DB). For instance, consider
the following certificate:

certifies(Alice, perm(Bob, read,DB)[I0], t0, id0) (1)

It declares that Alice authorizes, at time t0, Bob to read

the DB during the time interval [I0].
Now consider that Carol is a project leader of Com-

panyB, whose employees need to access the resource DB
in CompanyA. Alice decides to delegate the right to is-
sue access-level permissions to Carol. This way Carol can
manage the access to DB for her employees, and Alice
does not need to do it. Alice can delegate to Carol the right
to issue read permissions for DB to CompanyB employees
(see certificate (2)).

certifies(Alice, pow(Carol,

perm(CompanyB employees, read, DB)[I1])[I2],

t1, id1)

(2)

Note that Alice limits the scope of the delegation, only
employees of CompanyB can receive an access-level autho-
rization from Carol. And by the other hand there is also a
time constraint imposed by the validity interval [I2], which
determines the valid period of time when Carol can issue
the access-level permission; and the interval [I1], which
limits the validity interval of the access-level permission.

The scope of the delegation can describe a whole del-
egation chain. For example, consider that Alice wants to
delegate to Bob the right to delegate to the head of en-
gineering of CompanyA the right to delegate access-level
permissions to engineers of CompanyA.

certifies(Alice, pow(Bob,

pow(head engineering CompanyA,

perm(engineers CompanyA, read,DB)[I3])[I4])[I5],

t2, id2)

(3)

With certificate 3, Alice defines a valid delegation chain,
which says that Bob can delegate the right to delegate the
access-level permission only to the head of engineering of
CompanyA. Each delegation step and access-level permis-
sion is limited by a time interval.

Figure 1. Delegation example

Figure 1 shows the example described with certifi-
cates (1,2,3). Solid arrows denote access level permissions
and dashed arrows denote management-level authority (the
right to delegate). Each arrow is numbered with the associ-
ated certificate number. Note that, although employees of
CompanyB have the access-level arrow, they cannot access
to DB. In order to do that, Carol has to issue the access-
level permission directly to the employees.

If an engineer of CompanyA wants to access to DB,
she will need a full delegation chain. That is, a part from
certificate (2), there must be another certificate issued by
Bob, giving the right to delegate the access-level permis-
sions to the head of engineering; and finally the head of
engineering has to issue the access-level permission to the
engineer. These three certificates, will form a valid dele-
gation chain for the engineer to access resource DB. It is

valid because the first certificate is issued by a source of
authority for the resource, it is called a rooted chain. If
a chain is not rooted it is called dormant chain. Dormant
chains are possible and may become rooted in the future
if the source of authority issues the root certificate for that
delegation chain.

In order to reason about the privileges, or in other
words, to determine if a given subject can access a given
resource, the calculus of privileges is used. The calculus
of privileges, presented in [6] and [5], assumes there is a
database which stores issued certificates and revocations.
The database may be stored in a distributed form: the only
requirement is that the reasoning engine for determining
whether a certain privilege holds, has access to the infor-
mation.

3 Constrained Delegations for Access Con-
trol

In this section we analyze the SAML and XACML stan-
dards. Both are seen from the access control perspective.

3.1 Secure Assertion Markup Language

The Secure Assertion Markup Language (SAML) is a
framework for exchanging authentication and authorization
information [8]. SAML information is expressed through
security assertions. An assertion is defined as a statement
(or declaration of facts) about a subject made by an issuer.

SAML provides three different kinds of assertion
statements: Authentication (the subject has been authen-
ticated by some means at a given time), Attribute (the
subject is associated with the given attributes and values),
and Authorization Decision (response to an access request,
whether the access has been granted or denied).

Figure 2. SAML assertion

The basic information contained in a SAML asser-
tion1 is: the issuer of the assertion, a condition that must
be fulfilled, and an unbounded choice of statements (see
Figure 2). Since it is unbounded, in one assertion we can
put several statements of the same type. The statement can

1Actually a SAML assertion provides more information like version,
time of issue, We only consider now the basic information relevant to
our work.

be: Statement, SubjectStatement, AuthenticationStatement,
AuthorizationDecisionStatement, and AttributeStatement.

The assertion has a timestamp or IssueInstant, which
determines when the assertion was issued. And may in-
clude a signature. As we can see, a SAML assertion is very
similar to what is normally called a certificate.

Delegation is not directly supported (not even men-
tioned) by the current SAML specification and the last draft
of version 1.1 published by the time of writing.

In order to encode delegations as SAML assertions
we need to extend the current specification of SAML. This
extension can be implemented by extending or rewriting
the SAML Assertion Schema [7].

Figure 3. Delegation assertion

In order to express a delegation statement we extend
the SubjectStatement, since the statement is made about a
specific subject. To do that, we extend the SubjectState-
ment with a new SubjectDelegationStatement, which can
be a DelegationStep, or a EndPointAuthorization. Figure 3
shows the main elements of a delegation assertion:

• Issuer: the issuer of the assertion.

• Subject: subject for whom the statement of the asser-
tion holds.

• Conditions: conditions and constraints to be enforced.

• DelegationStep: the delegation step allows to con-
straint the delegation chain, by defining each of the
following steps to be applied to the delegation. Each
delegation step includes the following information:

– Subject: subject of this delegation step.

– Conditions: conditions and constraints to be en-
forced in this delegation step.

• EndPointAuthorization: defines the final authorization
which can be delegated. It includes the following ele-
ments:

– Subject: subject of the authorization.

– Conditions: conditions and constraints to be en-
forced in the authorization.

– Resource: resource to which the authorization
applies.

– Action: action allowed over the object.

The subject of the delegation assertion can delegate
the authorization specified by the EndPointAuthorization to
the subject specified in the same EndPointAuthorization.
The DelegationStep elements allow to define intermediate
subjects in the delegation chain.

The delegation assertion could be included in the
SAML assertion schema as:

<e l e m e n t name=” S u b j e c t D e l e g a t i o n S t a t e m e n t ”
t y p e =” S u b j e c t D e l e g a t i o n S t a t e m e n t T y p e”/>

<complexType name=” S u b j e c t D e l e g a t i o n S t a t e m e n t T y p e”>
<complexConten t >

<e x t e n s i o n base =” s a m l : S u b j e c t S t a t e m e n t A b s t a c t y p e ”>
<sequence>

<e l e m e n t name=” s t a r ” t y p e =” x s d : b o o l e a n ”/>
<e l e m e n t name=” s a m l : D e l e g a t i o n S t e p ”

t y p e =” s a m l : D e l e g a t i o n S t e p T y p e ”
maxOccurs=” uboundend”/>

<e l e m e n t name=” s a m l : E n d P o i n t A u t h o r i z a t i o n ”
t y p e =” s a m l : E n d P o i n t A u t h o r i z a t i o n ”/>

<sequence>
</ e x t e n s i o n >

<complexConten t >
</complexType>

<complexType name=” s a m l : D e l e g a t i o n S t e p T y p e ”>
<sequence>

<e l e m e n t r e f =” s a m l : S u b j e c t ”/>
<e l e m e n t r e f =” s a m l : C o n d i t i o n s ” minOccurs=”0”/>
<e l e m e n t name=” s t a r ” t y p e =” x s d : b o o l e a n ”/>

</ s equence>
</complexType>

<complexType name=” s a m l : E n d P o i n t A u t h o r i z a t i o n ”>
<sequence>

<e l e m e n t r e f =” s a m l : S u b j e c t ”/>
<e l e m e n t r e f =” s a m l : C o n d i t i o n s ” minOccurs=”0”/>
<e l e m e n t r e f =” s a m l : A c t i o n ”/>

</ s equence>
<a t t r i b u t e name=” Resource ” t y p e =” anyURI”

use=” r e q u i r e d ”/>
<a t t r u b u t e name=” D e c i s i o n ” t y p e =” s a m l : D e c i s i o n T y p e ”

use=” r e q u i r e d ”/>
</complexType>

Listing 1. SAML Assertion

3.2 eXtensible Access Control Markup Lan-
guage

The eXtensible Access Control Markup Language
(XACML)[9], is an XML-based language, which describes
both an access control policy language and a request/re-
sponse protocol. The current specification of XACML

does not explicitly support delegation. In this case we pro-
pose to use the existing language constructs and semantics
of XACML to express constrained delegations.

XACML provides three top-level policy elements:
rule, policy, and policy set. Each one, with a target ele-
ment, which includes subject, resource, and action.

Figure 4. XACML top-level policy elements

We consider the delegation itself as an action. Thus,
we consider a delegation action over a resource in the target
element. The resource is the authorization to be delegated,
expressed as another target.

It is important to note that XACML is a language to
specify policies. The issuer of the policy is the owner of
the policy, and it is not explicitly specified in the policy.

4 Combining XACML and SAML

In this section we propose the use of a combination of
XACML and SAML. One of the main limitations of
XACML to express the constrained delegation model is
that it is difficult to express the idea of a certificate, and all
the rules have to be composed in a single policy with one
issuer or administrator authority. On the other hand, while
SAML supports the concept of a certificate, the language
provided to express conditions and constraints is more lim-
ited than XACML. XACML also provides richer functions
and mechanisms to reason about access control decisions.

We propose the use of XACML and SAML in dis-
tributed environments to support constrained delegations.
The main idea is based in a context handler engine re-
sponsible for translating SAML assertions and protocol el-
ements into XACML policies. Since XACML and SAML
are XML-based languages the context handler may use
XSLT to map SAML into XACML and vice versa.

All access control decisions are computed by a PDP
(Policy Decision Point) using XACML. And all the com-
munication between several entities of the system is done
by using SAML assertions.

A sample query to a PDP is outlined in Figure 5.
When a PDP receives a request to access a given resource
it queries the PDP using SAML. The SAML query is trans-
formed by the context handler into an XACML context

query with the addition of relevant SAML assertion. This
SAML assertions will normally be attributes such as groups
or roles, but can also contain delegation assertions.

Figure 5. XACML-SAML Request/response

The PDP is responsible for calculating privileges
based on XACML policies and attributes. This calculations
can be performing by implementing the privilege calculus
described in [6].

This schema can be applied to highly distributed sys-
tems. Each resource of the system may be associated with
a PDP. Since the decision of an access request may depend
on attributes issued by several authorities and stored in dis-
tributed databases, the PIP should include a SAML based
protocol to find all the relevant information for a PDP to
take an access decision.

5 Constrained Delegations for DRM

The eXtensible rights Markup Language (XrML) is an
XML-based language for specifying and managing rights,
to control the access to digital content and services[3].

5.1 Overview of XrML

The basic construct of XrML is the grant. A grant is used
to express that a right has been granted to a given entity, it
is composed of:

• Principal: entity receiving the grant. Principals are
normally represented as public keys, individually or
as a group.

• Resource: object to which the right may be applied.

• Right: the specific right granted.

• Condition: conditions that must be satisfied for the
right to be exercised.

A grant is issued by a given principal and both are con-
tained in a license element. Figure 6 shows the simplified
structure of an XrML License, which may include several
issuers, one or more grants, and additional information.

Figure 6. XrML License

5.2 Delegation in XrML

XrML supports delegation of grants from one principal to
another. The delegation is controlled by an optional ele-
ment of the grant called DelegationControl. If a grant in-
cludes the delegation control, the principal authorized by
the grant may issue another license with the given grant to
another principal.

It is important to note that in order to delegate a grant
to another principal, the former one has to be in possession
of the grant. Thus, constrained delegation is not supported
by the DelegationControl.

One of the rights described in the XrML Core Schema
is the issue right. This right may be used to specify that a
given principal has the right to issue a given right, but the
former principal does not necessary hold the right.

A license with an issue right, authorizes the granted
principal to issue another license with the right enclosed in
the issue right. We can see the issue right as a management
level authority (see Section 2). A right that specifies a spe-
cific action over an object may be seen as an access level
permission.

Figure 7. XrML issue right example

For example, imagine that Alice issues a license to
Bob with the right to issue the right to read secret-file. Fig-
ure 7 shows the license issued by Alice with the previous
issue right. Then, Bob can issue another license, which
grants Carol the right to read secret-file.

In this case, Bob is authorized to issue the right to
read secret-file, but it is important to note that Bob is not
authorized to read the file. In other words, Alice delegates
to Bob the management level authority to issue the right
read secret-file, and Bob delegates to Carol the access level
permission read secret-file.

Another important thing to note, is that the issue right
specifies the right, which can be issued, as a full grant ob-
ject. This way, the delegation can be restricted by means of
the subjects that may receive the access level permission.

By using the issue right we can achieve one step of
delegation. That is, the principal receiving the issue right
cannot directly delegate the management level authority,
the principal can only issue an access level permission. In
order to allow a full delegation chain, we can use the dele-
gation control of the grant.

5.3 Notes on constrained delegation in
XrML

The first thing to note is the expressiveness of the XrML
language. This expressiveness allow us to encode con-
strained delegations without having to redefine or even ex-
tend the current specifications. For instance, the delegation
path can be constrained in several ways:

• Groups: delegation can be scoped to a given group,
but we can not specify the scope of each step of dele-
gation.

• Time: XrML provides validity intervals, issuance
time, and several conditions related to time. Fine
grained time constraints can be implemented using
XrML.

This expressiveness may have some drawbacks. For
instance, in the example of Figure 7, the grant issued by
Alice with the issue right, could also have a delegation con-
trol. Then, the access level permission could also be dele-
gated. It is important to note that this issue may introduce
complexity to the management.

6 Conclusions

In this paper we have outlined how constrained delegation
can be used in several XML-based standards. We have seen
the use of SAML and XACML standards for access control
and the XrML standard for digital rights management.

XrML provides a complex and rich language, which
allows the encoding of constrained delegations. On the
other hand, neither SAML nor XACML directly support
delegation. We propose the extension of the SAML spec-
ification to support constrained delegations, and the use of

the existing XACML specification to express delegations
as actions.

7 Acknowledgments

The work of Guillermo Navarro and Joan Borrell has
been partially funded by the Spanish Government Commis-
sion CICYT, through its grant TIC2003-02041 and Cata-
lan Government Department DURSI, with grant 2001SGR
00219.

The work of Babak Sadighi Firozabadi and Erik Ris-
sanen has been funded by the Swedish Agency for Inno-
vation Systems in the Policy Based Network Management
project.

References

[1] O. Bandmann, M. Dam, and B. Sadighi Firozabadi.
Constrained delegation. In Proceedings of the IEEE
Symposium on Research in Security and Privacy,
pages 131–140, Oakland, CA, May 2002. IEEE Com-
puter Society Press.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The KeyNote Trust-Management Sys-
tem Version 2. RFC 2704, The Internet Society,
September 1999.

[3] ContentGuard. XrML 2.0 Technical Overview,
March 2002.

[4] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate Theory.
RFC 2693, The Internet Society, September 1999.

[5] B. Sadighi Firozabadi and M. Sergot. Revocation
schemes for delegated authorities. In Proceedings of
IEEE 3rd International Workshop on Policies for Dis-
tributed Systems and Networks, June 2002.

[6] B. Sadighi Firozabadi, M. Sergot, and O. Bandmann.
Using authority certificates to create management
structures. In Proceedings of Security Protocols, 9th
Internatinal Workshop, April 2002.

[7] OASIS. SAML Assertion Schema. SAML 1.0 Spec-
ification.

[8] OASIS. Assertions and Protocol for the OASIS Secu-
rity Assertion Markup Language (SAML) V1.0. OA-
SIS Standard, November 2002.

[9] OASIS. eXtensible Access Control Markup Lan-
guage (XACML) Version 1.0. OASIS Standard,
February 2003.

[10] M. I. Yagüe and J. M. Troya. A semantic approach
for access control in web services. In EuroWeb 2002,
pages 25–33, December 2002.

