Role-based Access Control for E-commerce Sea-of-Data
Applications

G. Navarro, S. Robles, and J. Borrell

Dept. of Computer Science
Universitat Autonoma de Barcelona
Edifici-Q, 08193 Bellaterra, Spain.
gnavarro@ccd.uab.es, Sergi.Robles@uab.es, Joan.Borrell@uab.es

Abstract. Sea-of-Data (SoD) applications (those that need to process huge quan-
tities of distributed data) present specific restrictions, which make mobile agent
systems one of the most feasible technologies to implement them. On the other
hand mobile agent technologies are in a hot research state, specially concerning
security. We present an access control method for mobile agent systems. It is
based on Role-based Access Control and trust management to provide a reliable
solution for e-commerce SoD applications. It uses SPKI certificates to implement
the role system and the delegation of authorization. It is proposed as an extension
of the MARISM-A project, a secure mobile agent platform for SoD application.
We also show its functionality with an e-commerce SoD medical imaging data
application, which is based on a scenario of the IST project INTERPRET.

1 Introduction

Sea-of-Data (SoD) applications have this common characteristics. The user is just in-
terested in the outcomes resulting from processing a huge amount of data distributed
among internetworked locations. Data never leaves these locations because a number
of reasons, including legal requirements (medical images, for instance), bandwidth lim-
itations, or even physical restrictions (data could be acquired on demand). The user is
not on-line during all the time required for data processing: this process might take
a considerable amount of time, or the user might be connected through a non reliable
network link. SoD applications are extremely useful in many areas such as intrusion de-
tection systems, medical image processing or satellite imagery analysis. Furthermore,
SoD applications provide a new prospect for electronic commerce. Data (resource) pro-
cessing can be charged to users establishing a new variant of selling of indirect services.

Restrictions in SoD applications make them hard, if not impossible, to be imple-
mented with traditional technologies. Mobile agents systems appear to be the only fea-
sible solution to implement SoD applications. In these systems, autonomous software
entities (agents) can travel through a network of execution platforms (agencies), allow-
ing the code in SoD applications to be borne to the data. After an agent is launched, the
initial agency can be off-line. Thus, the user may be disconnected during the execution
of the application. It is also possible to parallelize the execution of processes allowing a
high degree of scalability. But mobile agents systems are not a panacea. They introduce
a new branch of issues concerning security [3].

One of the most important challenges that needs to be solved is the resource access
control. We need a lightweight, flexible, and scalable method to control the access to
data and resources in general. Traditional methods are normally based on the authenti-
cation of global identities (X.509 certificates). They allow to explicitly limit access to a
given resource, through attribute certificates or Access Control Lists (ACLs). They also
require a Certification Authority (CA) and a centralized control. This approach makes
the system closed from the clients point of view. To be a reliable e-commerce applica-
tion, it needs to provide a good solution to deal with a great variety of clients. It will
be desirable for the clients to access the resource without having to be registered in a
CA. Clients may be able to have a simpler key management. On the other hand, we will
have a reduced and controlled number of agencies. They can afford to have keys with
relatively long validity time ranges and be registered in a CA.

An alternative to implement access control are authorization infrastructures. These
infrastructures are based on trust management and allow to assign authorizations (per-
missions or credentials) to entities and delegate trust from one entity to another. One of
these infrastructures is the Simple Public Key Infrastructure (SPKI) [5], which seems to
be one of the most accepted. SPKI provides a good base to implement the access con-
trol method. There are security frameworks providing SPKI functionalities [8], an it is
probably the most standard solution to implement trust management mechanisms, such
as delegation of authorizations. There are also some approaches using authorization
infrastructures to implement access control methods [1], [9].

In order to make access control easier, it is also interesting to use an approach sim-
ilar to Role-based Access Control (RBAC) [11]. Instead of having to provide and/or
revoke specific permission to a principal, RBAC allows to determine the privileges of a
principal by its role membership.

In this article, we present a solution for e-commerce SoD applications. We adapt
RBAC for mobile agents using SPKI. Our model allows to authorize a mobile agent to
access a given resource and control its access with quite flexibility. The mobile agent
does not need to carry any kind of information with regard to the resource access. This
avoids the inconveniences of storing sensitive information in the mobile agent. Our
model is going to be implemented as an extension of the MARISM-A platform [14], a
secure mobile agents platform. To clarify and explain our proposal, we will explain an
example application based on a scenario of the project INTERPRET IST-1999-10310
(International network for Pattern Recognition of Tumors Using Magnetic Resonance,
http://www.carbon.uab.es/interpret).

In Section 2 we give an overview of SPKI. Section 3 introduces the MARISM-A
platform and the extension added to support the RBAC model through SPKI. We present
our adapted RBAC model in Section 4 and the example SoD application in Section 5.
Section 6 shows the functionality of the proposed model over the example application
and considerations about the distribution of the model. And finally Section 7 contains
our conclusions.

2 SPKI

The base to our proposal is SPKI (more formally named SPKI/SDSI) [5]. It is an infras-
tructure which provides an authorization system based on the delegation of authoriza-
tions and a local name model. It provides mainly two kind of certificates, authorization
and name certificates. Any individual, software agent or active entity in general is called
a principal. It is a key-oriented system, each principal is represented and may be glob-
ally identified by its public key. We can say that in SPKI a principal is its public key.
Since it does not need a certification authority, each principal can generate and manage
its keys. A key is a generic cryptographic key pair (public and private). Currently the
SPKI specification supports RSA and DSA keys. The representation format used by
SPKI is S-expressions [13].
An authorization certificate has the following fields:

— Issuer (): principal granting the authorization.

— Subject (S): principal receiving the authorization.

— Authorization tag (fag): specific authorization granted by the certificate.

— Delegation bit (p): if it is active, the subject may forward delegate the authorization
received.

— Validity specification (V): specifies the validity of the certificate through a time
range and on-line tests.

It is signed by the issuer. The on-line tests from the validity specification field, provide
the possibility of checking, at verification time, the validity or revocation of the cer-
tificate. We will use the 5-tuple notation: (7,S,tag,p,V), to denote a SPKI authorization
certificate.

In a normal situation there will be a principal controlling a resource, which dele-
gates an authorization. The authorization may be further delegated to other principals.
If a principal wants to access the resource, it needs to provide an authorization proof.
Te proof is a certificate chain, which binds the principal controlling the resource to the
one requesting the access. To find this certificate chain there is a deterministic algo-
rithm. Certificate Chain Discovery Algorithm[4], which finds the authorization proof in
polynomial time.

In SPKI a principal may have a local name space and define local names to refer
to other principals. To define a name, a principal issues a name certificate. It has an
issuer, subject, validity specification, (just as an authorization certificate) and a name.
The issuer defines the name to be equivalent to the subject. For example a principal
with public key K may define the name Alice to be equivalent to the the principal with
public key K 4. Now K can refer to the principal K 4 by the name Alice instead of the
public key. Such a name certificate can be denoted as:

K Alice — K4

meaning that K defines the name Alice in its local name space to be equivalent to K 4.
If a principal wants to refer to a name defined in another name space, it just has to add
the local name space owner’s public key to the name as a prefix. When we say K Alice,
we mean the name Alice defined in K’s local name space.

SPKI also provides the ability of defining compound names. Names that refer to
other names which may also reference other names and so on. For example, the princi-
pal Kp can define the following name in its local name space:

Kp employee — K Alice

It defines the name employee to be equivalent to the name Alice defined in K’s local
name space. Note that it is referring to K 4 without knowing it.

This is a key concept in our proposal since we will consider a role as a SPKI local
name.

3 MARISM-A

As said before the proposed access control model is an extension of our MARISM-

A platform [14] (http://www.marism-a.org). MARISM-A is a secure mobile

agent platform implemented in Java, it is implemented on top of the JADE-LEAP sys-

tem (http://sharon.cselt.it/projects/jade,http://leap.crmparis.com),
which follows the standards proposed by FIPA [6].

The basic element of the MARISM-A platform is the agency, the environment for
the execution of agents. An agency consists of a directory service, an agent manager,
and a message transport service. An agent system has several agencies distributed on a
network. Each agency in controlled by an entity (its owner).

Agents are software units executing in the agencies on behalf of their owners.
Agents in MARISM-A can be mobile or static, depending on the need of the agent to
visit other agencies to fulfill its task. There are several types of mobile agents according
to the characteristics of its architecture: basic or recursive structure, plain or encrypted,
itinerary representation method, etc. Agents can communicate each other through the
agency communication service.

One of the novel aspects introduced in the MARISM-A platform is the flexibility
of the agent architecture. Different security solutions have some especial agent require-
ments. Instead of focusing on a specific type of agent, there are different agent architec-
tures. Some security mechanisms are applicable only for certain types of agents. Even
mobility is a feature of only some agent architectures. Moreover, our design allows to
have several types of agents living together in a heterogeneous environment.

Most bibliographic references on agents do not make a clear distinction between
different parts of an agent. Some of them suggest the need of considering independent
some internal parts, especially for mobile agents. This is the case of agent data in [15],
of agent code in [2], or agent itinerary in [10]. The independence of these parts plays
an important role for some agent protection mechanisms, whereas it is unnecessary for
others. In MARISM-A, the architecture of the agent is an adaptable model that deter-
mines the different parts in which an agent is divided and the combination of security,
integrity, or other mechanisms included in it.

All mobile agent architectures share some basic aspects, such as the differentiation
of internal parts and migration mechanisms. A mobile agent consists of code, data, state,
and an explicit itinerary. Code is the set of instruction describing the execution of the
agent. Data is an information storage area that can be used by the agent at any moment

for reading and writing and goes with it all the time. Results of executions are stored
in this area, normally using some convenient protection mechanisms. State is like the
data part of the agent but reserved to store the agent information related with its state.
Explicit itinerary is a structure containing all agencies that are going to be visited by
the agent on its life cycle. Itineraries consist of several basic structures: sequences, sets,
and alternatives. These structures can be combined to build complex itineraries. In a
sequence, the agent will migrate to each agency one after the other. In a set, a group of
agencies will be visited by the agent in no special order. On the other hand, only one
agency of those listed in an alternative will be visited by an agent, depending on some
conditions.

MARISM-A considers a minimal security infrastructure to protect the communi-
cations between agencies. All the agencies are registered in a CA, and we use SSL to
provide both confidentiality and authentication for agency communications.

It is important to assume that agencies untrust each other. Therefore, they might try
to modify results carried by the agent, or to gain knowledge about its itinerary, to favor
themselves to the detriment of the rest. It is also reasonable to assume that agencies
are not malicious and they do not seek to adversely affect the owner of the agent (the
client), or the agent itself.

From now on we will use the following notation:

E;(m): encryption of m using a symmetric cipher with ¢’s secret key.
P;(m): encryption of m using an asymmetric cipher with 4’s public key.
Si(m): signature of m using ¢’s private key.

hash(m): hash function of m.

hashg,(m): keyed hash function of m using 4’s secret key.

Subsections 3.1 and 3.2 introduce the architecture of MARISM-A static agents and
the mobile agents with explicit itinerary as an extension to MARISM-A mobile agents.

3.1 Static Agents

A MARISM-A static agent has the following form:
Agent = ControlCode, State, Code, Data

Because agent management code is in the agent itself, it is indifferent for the plat-
form to deal with mobile or static agents. There are not many words to say about security
in static agents. Communication and interface with other agents are provided by secure
services of the agency. Data protection is assured by the agency too, and there is no
itinerary to protect here.

3.2 Mobile Agents with explicit itinerary

Agent code is split into several pieces. There is a main code that will be executed
in all agencies (Common Code), and as many code fragments as agencies are in the
itinerary, each one to be executed in a particular agency (Local Code). This feature

makes MARISM-A very useful in some types of application where execution is con-
text dependent. The agent changes after a migration. This agent aspect dynamism allow
several security mechanisms to be applied.

The agent has the following structure:

Agent; = ControlCode, StateData,
CommonCode, GlobalData, ResultsData,
(LocalCodeg, LocalDatag, Agenciesy), ... ,
(LocalCode,, 1, LocalData;, Agencies,,),
(LocalCode,,, Nil)

Agencies; is the agency (or agencies, depending on the type of itinerary) the agent
is going to visit (migrate) next. The agent that is sent to the next hop of the itinerary
(Agent; 1) has the same structure. The last host is identified because of a Nil next agent.
CommonCode is executed by all agencies when the agent immigrates and before the
specific LocalCode. Programming is simplified by using this common code to include
the non agency dependent code only once. The control code in the agent deals with the
functions of agent management, in this case extracting the relevant parts of the agent.

It might be interesting to protect integrity and secrecy of data that has been written
in some agency. In an e-commerce application, for instance, where agencies represent
shops and agents act on behalf of buyers, it might be necessary to protect offers from
rival shops. The method to provide the secrecy and integrity required for this data in
this agent architecture is based on a hash chain. Some of the data area is reserved to
store results from executions (Results Data). Results are not stored plain, but they are
firstly encrypted using agent’s owner cryptographic information. Only the owner of the
agent will be able to read these results. Once the result has been written a hash of
the Result and previous hashed information is calculated, signed and written also. This
hash has information about the identity of next agency in the itinerary, so that no agency
can neither modify the result area nor remove some result. Each agency verifies during
immigration that all hashes in the Results Data are correct. This is the format of the
Results Data area:

Results Data = P,(Ry), S1(hash(P,(Ry), 1d2)),
P,(R2), Sa(hash(P,(Rs), hash(P,(Ry1), Id2), 1d3)),. ..
P,(R,), Sn(hash(P,(Ry), -.., hash(P,(Ry), 1d2), Id 0)))

where P,(R;) is the encryption of the result of agency ¢ using the public key of the
owner of the agent (PubKey,) and hash() is a hash function.

We also need a way to ensure the agent’s integrity. The owner, before sending
the agent, computes a keyed hash of the whole agent excluding the Results Data,
hashg,(initial_agent). Then when the agent finishes its execution, the owner can
verify the agent’s keyed hash.

To protect the itinerary we use the following encryption schema:

Agent; = PubKey,, ControlCode, StateData,
CommonCode, GlobalData, ResultsData
FE;(LocalCodey, LocalDatag, Agencies;), .. .,
E,_1(LocalCode,,_1, LocalData,,_;, Agencies,,),
E,,(LocalCode,,,Nil),
hashg, (initial_agent).

where E; is a symmetric encryption function using agency ¢ symmetric key. As
we will see the encryption is performed by the agency itself before the whole agent is
constructed. So the symmetric key is only used by the agency and it does not need to be
distributed.

A variant of this agent is the mixed one, where the list of information for agencies
is scrambled. This makes it not possible to know which is the part of the agent that will
be executed in a given agency.

4 Access Control for SoD applications

One of the first problems we found when planning the authorization model, is if the
mobile agents should have a SPKI key and be considered as principals. A mobile agent
cannot trivially store a private key, so it cannot perform cryptographic operations such
as digital signatures. There are some propositions to store sensitive information (private
keys) in mobile agents [12]. But the problem arises when the mobile agent uses the
private key to compute a cryptographic operation. The agency where the agent is in
execution will be able to see the private key. As a result we consider that a mobile agent
should not have a private key.

Our solution is to delegate authorizations directly to the agent. This way the mobile
agent does not need to carry any kind of authorization information, making the agent
more simple and lightweight. This issue will be discussed in section 6.2.

The main components of the access control method can be seen as independent
modules. Each module is implemented as an static agent, has a SPKI key, and it is
considered as a SPKI principal. The modules are:

Authorization Manager (AM) it manages the delegation of authorizations, issuing
SPKI authorization certificates. It follows a local authorization policy.

Role Manager (RM) it manages the roles (mainly the role membership) by issuing
name certificates. It follows a local role policy.

Certificate Repository Manager (CRM) it manages a certificate repository. Provides
services such as certificate chain discovery.

Resource Manager (DM) it is an authorization manager, which controls a resource
(data), it has to verify resource access requests. Normally its authorization policy
will be quite restrictive, delegating to an authorization manager the responsibility
of performing complex authorization tasks.

Figure 1 shows a simple schema of the model with two DMs, an AM, a RM, and
a CRM. The RM defines the roles and determines its membership. The DMs delegate
the authorizations related to the resources to the AM, and the AM delegates authoriza-
tions to the roles. Each static agent stores the issued SPKI certificates in the certificate
repository through the CRM (denoted by broken lines).

Local
authorization
policy

Local

authorization
policy Role-A
Define
Delegate role
Delegate authorizations
authorizations
Delegate Define
authorizations Role-B "¢
Delegate

authorizations < Delegate
authorizations Define

role
e

Local
role policy
,,,,,,,,,,,,,,,,,,,,,,,,,,,, = Certificate
Repository

Local
authorization
policy

Fig. 1. Access control modules

4.1 Authorization Manager (AM)

The main functionality of the AM is to provide authorization certificates under request.
To obtain an authorization certificate, a principal sends a request to the AM specifying
the specific authorization, it wants to obtain. Then the AM decides whether to issue the
certificate or not, and under what conditions it has to be issued. To do that, it follows its
local authorization policy. Since the policy is local to the AM agent, it does not need to
follow any specification and its format is implementation dependent.

We propose an authorization policy, described as a SPKI ACL, where each rule
can be expressed as an ACL entry in S-expression format. A SPKI ACL entry is an
authorization certificate without the issuer and it does not need to be signed because it
is local to the AM and stored in secure memory. It has the following fields:

— Subject: the principal receiving the authorization. It may be a role or another AM.
— Authorization tag: specifies the specific authorization that the subject can obtain.
SPKI allows quite flexibility to specify the authorization tag with S-expressions.

— Delegation bit: determines whether the subject may receive the right to delegate the

authorization or not.
— Validity specification: allows to limit the authorization to a time range, and include
some on-line tests to verify the validity or revocation of the authorization certificate.

To be more specifics, the AM will receive authorization delegation requests from a
RM or another AMs. It has to delegate authorizations to roles or to other AM which
will finally authorize roles.

4.2 Role Manager (RM)

The RM is responsible for assigning and managing roles, and determines the role mem-
bership. The use of roles facilitates the access control management and the specification
of policies. The main idea is to exploit the advantages of Role Based Access Control
(RBAC) [11] and trust management. The RM assigns a role by issuing a SPKI name
certificate following its local role policy. It can also assign a role to a role defined by

another RM, thus allowing the delegation of role membership management. Section 6.1
details how roles are assigned and used.

Each RM has a local role policy which determines what roles does it manage. It
also includes rules to determine if a given principal requesting a role membership has
to be granted or not. If we choose to describe the role policy as a SPKI ACL, it is quite
similar to an authorization policy. Now the subject of the SPKI ACL entry is a principal
or another role and the authorization tag determines the role that the subject can have.

4.3 Certificate Repository Manager (CRM)

A CRM implements a certificate repository. For example, one agency may have one
CRM to collect all the certificates issued by agents inside the agency. The CRM pro-
vides the repository and all the services needed to query, store or retrieve the certificates
in the repository. It also provides a certificate chain discovery service. A principal can
make a query to the CRM to find a specific certificate chain. This way we solve the
problems derived from certificate distribution and leave the task to perform chain dis-
coveries to the CRM and not to the other principals. It decreases the communication
traffic, certificates do not need to travel from one principal to another and reduces the
task that generic principals need to perform.

4.4 Resource Manager (DM)

The main task of a DM is to control the access to a resource (data). It holds the master
SPKI key to access the resource, delegates authorizations to AMs, and verifies that an
agent requesting access to the resource has a proper authorization.

Another important feature of a DM is to issue Certificate Result Certificates (CRC)
to agent hashes, see 6.2.

As it has to delegate authorizations issuing authorization certificates it also acts like
an AM and follows a local authorization policy. But this policy is much more restricted.
A DM only has to issue authorization certificates to AMs and a special certificate to
mobile agents (see 6.2), which are quite straightforward operations.

S Example Application

This example is derived from the project IST INTERPRET, which provides a clear
example of a SoD application. The example application is going to be developed using
the extensions of the MARISM-A platform to support the proposed access control.
Consider a medical SoD application for radiology images. There are several hospitals,
research centers, and companies with a radiology department which produces some
kind of sensitive, and possibly expensive, radiology images such a magnetic resonances
or high resolution radiologies. Each center organizes the data in a database accessed
by at least one agency with DMs. The application may provide the ability for clients
to process the distributed data in a variety of ways, for example testing a classification
algorithm. The owner of the data may also provide itself classification services. It may

have a trained classification system, which a client may use to classify a reduced set of
data provided by herself.

The reason for using a mobile agent approach in this application, is due to the high
quantity of distributed data, which is difficult to centralize. Also because it is quite sen-
sitive medical data, which the hospitals are normally not allowed to give it to someone
else. That is, a mobile agent processing the data, may get back to the client with the
obtained results, but not with the data.

We will consider each participating entity as a principal. A principal may be a static
agent or an individual (normally the owner of a mobile agent) with its own SPKI key.
We consider three kinds of principals, data producers, data consumers, and process
consumers:

— data producer: updates the database, adding new images or replacing existing ones.

— process consumer: provides a reduced set of data, and wants to use some processing
service provided by the agency (normally a complex trained algorithm such as a
classification one).

— data consumer: it provides a code to be executed with the data provided by the
agency.

A simple definition of roles for the example application may be:

physician: authorized as data and process consumer for all the resources.
external_physician: authorized as process consumer for a reduced set of data.
radiography_technologist: authorized as a data provider.
external_researcher: authorized as data consumer for a restricted set of data.

These roles may be hierarchically extended, for example as radiography_technolo-
gist, there may be radiographer, which provides only radiographies and mr_technolo-
gist, which provides only magnetic resonances. Specially the external researcher role,
which may be seen as a client, may have several sub-roles to be able to specify several
specific authorizations for different kinds of clients.

6 Access Control Management

Given the example application we will show the functionality of the access control
method. The main features are the role system and the delegation of authorizations to
mobile agents. A principal may be authorized to access a resource as a role member.
The AM may give several authorizations to an specific role. Then a principal belonging
to that role, has all the authorizations of the role. We already said that we do not consider
a mobile agent as a SPKI principal. Thus we need a way to authorize mobile agents and
control its access to resources.

We also consider the distribution of the access control management by distributing
the modules. We can distribute several modules, or just one, for example. This makes
the model easily adaptable to specific applications. Since a module is implemented in
a static agent, to distribute a module means to use several static agents, which may
operate independently.

6.1 Roles

An important issue of the RM is that it is the main responsible to grant access per-
missions to principals. When a principal requests a role membership and succeeds,
it automatically has all the authorizations of the role. In some cases, specially ex-
ternal_researcher membership, the RM will need to perform some kind of economic
transaction to grant the membership. That is, granting membership will require a spe-
cial protocol involving a payment processes through, for example, a third party credit
card issuer.

Another important issue is that the role membership can be restricted through the
validity specification of the name certificate, which grants the membership. That is, it
can have a not-after and not-before time range and some on-line tests [5].

6.2 Mobile agent authorization

A client as a principal may be member of a role or roles, say external_client. It may
be authorized to access resource A with a mobile agent. Since mobile agents cannot
have private keys, we can not delegate authorizations to the mobile agent or make it
member of a role. Our approach is to delegate the authorization to a hash of the agent.
The subject of a SPKI authorization certificate and any SPKI principal in general can
be a public key or a hash of a public key. So a hash may be seen as a principal, subject
of a certificate. This idea does not really follow the SPKI specifications, since it is
not the hash of the public key, it is not a principal. Thus we need to extend the SPKI
specifications to introduce this idea.

As we said before the mobile agent is constructed from the itinerary, separately in-
cluding the code to be executed in each agency. Let m; be the code to be executed in the
agency ¢. The client already has an authorization to access resource A, which is con-
trolled by DM 4. Once the client has specified all the m;s it constructs the itinerary and
proceeds to get the authorization for the agent. The main idea is to request a Certificate
Result Certificate(CRC) to DM 4 having the hash of m; as the subject. The CRC is an
authorization certificate, which resumes a certificate chain, in this case the authorization
proof for the client to access resource A. The process involves the following steps:

1. The client sends a CRC-request to DM 4. It includes the specific authorization it
wants to obtain, the code m;, and the client’s public key. This request is signed by
the client.

2. The DM 4 requests the CRM to verify if the client is authorized to access the re-
source. That is, verifies if there is an authorization proof which allows the client to
access the resource.

3. If the authorization is correctly verified, the DM 4 computes the hash of the code,
and issues an authorization certificate which has DM 4 as the issuer and the hash
of the code as the subject. The specification tag and the validity specification is the
intersection between the ones from the client’s CRC-request and the ones returned
in the authorization proof request.

4. Finally the DM 4 encrypts the code m; with a symmetric cipher. It uses a private
key only known by the DM 4. The D M 4 is the only one who is able to decrypt m;.

Once the mobile agent is constructed it will be able to access the resource. The mobile
agent will travel to the agency and request access to DM 4. The DM 4 just has to de-
crypt and compute the hash of the agent code (m;); and check if there is an authorization
certificate, which directly authorizes the hash to access. This authorization verification
is straightforward, since it does not require the generation of a full authorization proof.

This approach allows to delegate authorizations to mobile agents. Note that the
mobile agent does not need to include any kind of authorization information, it just
has to provide the specific code so DM 4 can compute the hash.

One thing we have not explicitly talked about is how to control the proper behav-
ior of the mobile agents. In our example, how do we know that a mobile agent is not
stealing data?. First of all, the process of authorizing a mobile agent involves the com-
puting of the hash of the piece of code of the agent, which is going to be executed in
the agency. So we can easily log this code for auditing purposes. It is also feasible for
an agency to include a local monitoring system looking for anomalies in the behavior
of the agents.

6.3 Distribution of Role Management

Due to the local names provided by SPKI, the role management can be easily dis-
tributed. We can have several RMs managing its local roles and use compound names
to reference one local role to another. For example, consider we have two RMs, named
RM 4 and RM . Each one has its local roles definitions, RM 4 may define:

RM 4 radiography_technologist — K;

RM 4 physician — K,

RM 4 physician — K3

RM 4 companyB _client — RMp ext. researcher

That is, it says that the principal K is member of the radiology_technologist role;
the principals K2 and K3 are members of the role physician. And that the name ex-
ternal_researcher (which is also a role) defined in the local name space of RMp is
member of the role companyB _client. Then RM g may define:

RMp external_researcher — K,
RMpg external _researcher — Ky

So the principals K4 and K5 are members of the role external_researcher defined by
RMp. And they are also members of the role companyB client defined by RM 4. Note
that each RM defines independent roles, both RMs could define locally two roles with
the same name, and they will be considered as different roles by the system. Is impor-
tant to notice that all the roles, as SPKI names, are local to each RM. We can globally
identify the role by adding the public key of the RM as a prefix of the role (just as a
SPKI name). This independence of role definitions makes the system easily scalable
and distributed. Note that in the example we can say that the role management is dis-
tributed over the two RMs since both of them take part in the hole role management. So
independent RMs can interact in the same model without having to redefine roles.

This can be also seen as trust management, in some way RM 4 trusts RMp to
manage the role RM 4 companyB _client.

6.4 Distribution of Authorization Management

The distribution of the authorization management is achieved by distributing the man-
agement over several AMs. This distribution is straightforward. Each AM manages au-
thorizations following its local policy. It can only delegate an authorizations that it has
received. To be more precise an AM or any principal may delegate a certificate granting
an authorization it does not have. But any principal receiving the authorization will not
be able to have the proper authorization proof, since the certificate chain will be broken.

There will be no conflict between several AMs. If there is an authorization proof for
one principal to access a resource, the principal will be able to access no matter which
AMs or principals have interfered.

6.5 Distribution of the Certificate Repository

The distribution of the certificate repository is a complex task. All the authorization
proofs are obtained from the repository. In fact it is the CRM, which performs the
certificate chain discovery. To distribute the repository will considerably increase the
complexity. We need to use a distributed certificate chain discovery algorithm, which
adds not only complexity to the implementation but also introduces the need for more
communication and process resources.

The application we are implementing does not impose the distribution of the cer-
tificate as a must. In fact it can easily be implemented with a centralized repository. So
there is no need to add complexity to the system by distributing the repository.

There is some work done in relation to distributed certificate repositories and chain
discovery, such as dRBAC [7], which could be used if an specific application really
needs to distribute the certificate repository.

7 Conclusions and further work

We have proposed an access control model for e-commerce SoD applications, based on
a mobile agents platform. It provides a simple, flexible, and scalable way of control-
ling the access to resources. It takes the advantages of RBAC and trust management
ideas. The proposed model is an extension of the MARISM-A project. A secure mobile
agents platform for SoD applications. We have also introduced an example application,
a medical SoD imaging application based on the IST project INTERPRET.

Our solution provides a secure migration for agents with protected itineraries and
we solve the secure resources access control and the authorization management. Even
though, there are some problems which still being unsolved, like for example some sub-
tle and limited replay attacks from one agency to another; or open problems like mali-
cious hosts acting against agents. Some existing solution can solve the former problems
[16] with a high cost in scalability, distribution, and complexity, but the later ones are
still open problems [3].

We are working on the implementation of the proposed model. This process involves

the study of additional aspects. For example considering alternatives to implement the
local policies. By using SPKI ACLs, the policy is based on SPKI keys. This may be
reflected in limitations of the key management. We also want to consider issues such as
anonymity, specially relevant in key-oriented systems.

Acknowledgments

This work has been partially funded by the Spanish Government Commission CICYT,
through its grant TIC2000-0232-P4-02, and Catalan Government Department DURSI,
with grant 2001SGR 00219.

References

1.

10.

11.

12.

13.

14.

T. Aura. Distributed access-rights management with delegation certificates. In J. Vitek and
C. Jensen, editors, Secure Internet Programming: Security Issues for Distributed and Mobile
Objects, volume 1603 of LNCS, pages 211-235. Springer, 1999.

J. Baumann, F. Hohl, K. Rothermel, and M. Straler. Mole - Concepts of a Mobile Agent Sys-
tem. Special Issue on Distributed World Wide Web Processing: Applications and Techniques
of Web Agents, 1(3):123-137, 1998.

D. Chess. Security issues of mobile agents. In Mobile Agents, volume 1477 of LNCS, pages
1-12. Springer-Verlang, 1998.

D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer Security, 9(9):285-322, 2001.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. RFC 2693: SPKI
certificate theory. The Internet Society, September 1999.

Foundation for Intelligent Physical Agents. FIPA Specifications, 2000.
http://www.FIPA.org.

E. Freudenthal, T Pesin, L Port, E Keenan, and V Karamcheti. dRBAC: Distributed role-
based access control for dynamic coalition environments. New York University, Technical
Report TR2001-819.(to appear ICDCS 2002), 2001.

Intel Architecture Labs. Intel Common Data Security Architecture.
http://developer.intel.com/ial/security/.

L. Kagal, T. Finn, and A. Joshi. Trust-Based Security in Pervasive Computing Environments.
IEEE Computer, pages 154—157, Dec. 2001.

G. Karjoth, N. Asokan, and C. Glc. Protecting the Computation of Free-Roaming Agents.
In Proceedings of the Second International Workshop on Mobile Agents, LNCS 1477, pages
194-207. Springer-Verlag, 1998.

D. Rerraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R Chandramouli. Proposed NIST standard
for role-based access control. In ACM Transactions on Information and System Security,
volume 4, pages 224-274, August 2001.

J. Riordan and B. Schneier. Environmental key generation towards clueless agents. In Mobile
Agents and Security, pages 15-24, 1998.

R. Rivest. S-expressions. Internet-draft: <draft-rivest-sexp-00.txt>. The Inter-
net Society, 1997.

S. Robles, J. Mir, and J. Borrell. Marism-a: An architecture for mobile agents with recur-
sive itinerary and secure migration. In 2nd. IW on Security of Mobile Multiagent Systems,
Bologna, 2002.

15. M. StraBer and K. Rothermel. Reliability Concepts for Mobile Agents. International Journal
of Cooperative Information Systems (IJCIS), 7(4):355-382, 1998.

16. M. StraBer, K. Rothermel, and C. Maifer. Providing Reliable Agents for Electronic Com-
merce. In Trends in Distributed Systems for Electronic Commerce, LNCS 1402, pages 241-
253. Springer-Verlag, 1998.

