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Abstract—Scanning orders of bitplane image coding engines
are commonly envisaged from theoretical or experimental in-
sights, and assessed in practice in terms of coding performance.
This work evaluates classic scanning strategies of modern bit-
plane image codecs using several theoretical-practical mecha-
nisms conceived from rate-distortion theory. The use of these
mechanisms allows distinguishing those features of the bitplane
coder that are essential from those that are not. This discernment
can aid the design of new bitplane coding engines with some
special purposes and/or requirements. To emphasize this point,
a low-complexity scanning strategy is proposed. Experimental
evidence illustrates, assesses, and validates the proposed mecha-
nisms and scanning orders.

Index Terms—Bitplane image coding, scanning orders, proba-
bility models, JPEG2000.

I. INTRODUCTION

B ITPLANE image coding is the prevailing technology in

lossy and lossy-to-lossless image compression. In the last

two decades, a myriad of coding systems (e.g., [1]–[21]) and

several compression standards [22]–[24] have adopted such

technology in the core of their coding schemes. Arguably, the

extent of bitplane image coding is due to two main factors:

1) the use of the binary representation of coefficients, which

is very convenient for current hardware architectures; and 2)

theoretical work that enhanced coding efficiency and furthered

features of such coding systems.

The main insight behind bitplane coding is to refine the dis-

tortion of a transformed image transmitting each coefficient bit

by bit. More precisely, let [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1}
be the binary representation for an integer u that corresponds

to the magnitude of the index obtained by quantizing a

coefficient w, with M denoting a sufficient number of bits

to represent all coefficients. Let d ∈ {+,−} be the sign of

that coefficient. Bitplane coding strategies generally define

bitplane j as the collection of bits bj from all coefficients, and

encode coefficients from the most significant bitplane M − 1
to the least significant bitplane 0. The first non-zero bit of a

coefficient, i.e., that bs = 1 such that ∄ s′ > s with bs′ = 1,
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is called the significant bit of the coefficient. The sign of the

coefficient is coded immediately after its significant bit. The

remaining bits br, r < s are called refinement bits.

When the codestream is truncated, all bits of a coefficient

may not be available. This may arise naturally during the

transmission of a compressed image. Thus, the decoder carries

out an approximate dequantization operation consisting of

assigning a reconstruction value ŵ that lies somewhere in the

indexed quantization interval. If bj′ denotes the last available

bit of u, in the case of a deadzone scalar quantization with

step size λ, the reconstruction procedure is expressed as

ŵ =

{

0 if j′ > s

sign(w) (û+ δ) · λ2j
′

otherwise
, (1)

where û = [bM−1, bM−2, ..., bj′ ], and δ ∈ [0, 1) adjusts

the reconstruction value ŵ within the indexed quantization

interval [λ2j
′

, λ2j
′
+1). Typically, δ = 1/2. Inherently, such a

coding procedure generates a quality progressive codestream

that improves the quality of the decoded image successively

as more data are decoded.

In general, image coding systems can be evaluated consider-

ing three main characteristics: coding performance, computa-

tional complexity, and scalability. Coding performance refers

to the system’s compression efficiency, whereas computational

complexity refers to its throughput for fixed computational

resources. Scalability is the ability to identify and decode some

aspect of the image without reading the entire compressed

codestream. Scalability is desirable to enable the partial trans-

mission and/or decoding of different components and/or spatial

regions of an image at different levels of resolution and/or

degrees of quality.

Unfortunately, some of these characteristics are opposed.

High coding performance commonly requires computationally

intensive procedures, for instance. Therefore, coding systems

typically represent a trade-off. Without aiming to be exhaus-

tive, we roughly classify bitplane image coding systems in

four groups that include codecs by similar technology1.

The first group of codecs [1], [2] includes those that

introduced bitplane coding in the context of trees of coeffi-

cients from the wavelet transform [25]. The coding engine of

those codecs uses hierarchically partitioned sets of coefficients

among wavelet subbands. The significance state of coefficients

is coded via a tree, which reduces the number of emitted

1We note that some works may not be chronologically ordered and may
belong to more than one group. The sole purpose of this taxonomy is to
synthesize and describe the main advances produced in the bitplane coding
literature throughout the years.
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symbols. After significance coding, the engine carries out a

second coding pass in each bitplane to emit the refinement

bits of those coefficients that became significant in previous

bitplanes. This scheme has low computational complexity and

achieves good coding performance. Furthermore, it generates

a quality progressive codestream (a particular form of quality

scalability), which was a novel feature that became popular

rapidly.

The second group of codecs focused on coding perfor-

mance. Most works [3]–[6] deploy statistical models to eval-

uate probabilities of emitted symbols. Feeding the emitted bit

and its probability to an arithmetic coder reduces the amount of

information needed to represent the original message, thereby

achieving compression. Another ingenious mechanism is the

use of fractional bitplanes. Instead of coding each bitplane

using two coding passes (significance and refinement), [7]

proposes to fraction bitplanes in four coding passes that finely

granulate the distortion emitted in each pass. To code coeffi-

cients from the first to the last coding pass in each bitplane

produces a codestream with better rate-distortion performance.

Some of these codecs [8]–[11] deploy scanning orders based

on sorting strategies different from hierarchical trees, which

explicitly or implicitly provide resolution scalability. Gener-

ally, the improvement on coding performance comes at the

expense of higher computational costs.

The technology used by the third group of codecs was born

during the standardization process of the image compression

standard JPEG2000 [26]. Until then, coding systems attained

high coding performance at an acceptable degree of com-

putational complexity, and supported scalability by quality,

by resolution, and by component. To fully gain interactive

transmission, spatial scalability is required. It can be brought

into the coding system by means of a conceptual division

of wavelet subbands in small sets of coefficients, commonly

called codeblocks. Codeblocks can be decoded independently

and are stored in the codestream in small groups, so spatial re-

gions of the image can be identified in the compressed domain

without decoding. This mechanism is introduced in [12] and

is implemented in the core of JPEG2000 [23]. Other spatially

scalable codecs using different scanning strategies are [13],

[14].

A fourth group of codecs have recently emerged broadening

their goals and providing new features. Among many other

capabilities, some of these codecs provide support for the

coding of 3D or N-dimensional images [15], [16], resilience

to transmission errors [17], [18], hardware-friendly architec-

tures [19], [20], or high throughput [21].

As indicated by many works [7], [12], essential to achieving

competitive coding performance are: 1) the scanning order

followed by the coding engine; 2) the number of coding

passes deployed per bitplane; and, 3) the model to estimate

the probability mass function (pmf) of emitted symbols.

Notwithstanding the numerous mechanisms and techniques

available nowadays, we must bear in mind that complex scan-

ning orders, too many coding passes, or complex probability

models may increase the computational complexity of the

coder unnecessarily. In spite of the great interest and the

considerable extent and diversity of codecs based on bitplane

coding technology, to the best of our knowledge there is no

work that evaluates within a unified framework which is the

right amount of complexity required for the coding engine

to achieve competitive coding performance without sacrificing

features in modern codecs.

The first part of this paper uses recent advances in con-

text modeling and distortion estimation to appraise modern

bitplane coding engines from different perspectives. The aim

of this study is to disclose which are the particularities of the

scanning order that make it efficient. Our assessment begins

with the premise that coding systems should provide the same

features as those of JPEG2000, which are considered excellent.

Consequently, the framework of JPEG2000 is borrowed and its

bitplane coding engine is substituted by other strategies. Two

probability models are used to estimate the pmf of emitted

symbols: the classic context-adaptive approach [6], [12], [27],

[28], and the recently proposed local average approach [29].

The knowledge acquired in the aforementioned analysis can

aid the design of new bitplane coders. To illustrate this point,

the second contribution of this paper is a scanning order

for bitplane coding engines that is conceptually simple and

has low computational costs. The proposed scanning order

provides the same features as JPEG2000 without sacrificing

coding performance. The third contribution of this work is the

introduction of the proposed scanning order into a 3D image

coding scheme, which demonstrates that –in that context–

the proposed strategy can speedup the JPEG2000 bitplane

coder by a factor of 1.6. Key to reducing complexity without

sacrificing performance is to carry out the scanning procedure

only once per bitplane whilst producing many points where the

codestream generated for each codeblock can be truncated.

The paper is structured as follows: Section II describes

necessary theory; Section III evaluates four classic scanning

orders; and Section IV introduces a simple yet efficient scan-

ning order for bitplane coding. Section V assesses coding

performance and throughput, and the last section concludes

by summarizing this work.

II. RATE-DISTORTION THEORY

A. Distortion estimators

Important to image codecs is the possibility to quantify the

distortion produced when partial coefficients are transmitted.

This is useful, for instance, to optimize the construction of the

codestream, estimate the distortion after coding, or transcode

already compressed images. When the distortion metric is

Mean Squared Error (MSE), the distortion can be determined

as the square of the difference between the original and the

quantized coefficient, i.e., G · (w − ŵ)2, with G denoting the

energy gain factor of the subband to which the coefficient

belongs. When computational resources are constrained, or

when the original image is not available, distortion can be

estimated rather than actually computed. One strategy is to

estimate decreases in squared error at quantization intervals

corresponding to bitplanes, so that the coder can determine the

distortion decrease expected for significant and refinement bits.

Such an approach was first proposed in [8], and was further
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developed in [30]. Its main advantages are that expected error

decreases can be computed beforehand so that the application

can use them through computationally efficient lookup tables,

and that such estimators are computed without the need of the

original image. Thus they are available at both the coder and

decoder.

For notational simplicity, we assume that coefficients are

normalized by the quantization step size λ in what follows. Let

us first consider the squared error decrease produced by those

coefficients that become significant at bitplane j∗. If v denotes

the magnitude of such a coefficient, then 2j
∗

≤ v < 2j
∗
+1. Let

p(v) denote the marginal probability density function (pdf) for

v. The squared error decrease that can be expected when such

coefficients are encoded to bitplane j∗ is then determined as

△Dj∗

sig =

∫ 2
j∗+1

2j
∗

p(v)

[

v2 −
(

v − (2j
∗

+ δ · 2j
∗

)
)2

]

dv.

(2)

Distortion decreases for refinement coding △Dj
ref , j < j∗ can

be derived similarly.

When assuming a uniform probability distribution within

the significance interval, p(v) = 1/2j
∗

and the δ value that

maximizes the average distortion decrease is at the center of

the interval, i.e., δ = 1/2. The approach in [30] shows that

distortion estimators △Dj∗

sig and △Dj
ref can be more finely

adjusted by determining p(v) and δ using a model for densities

of coefficients in wavelet subbands. That model approximates

the actual coefficients’ distribution within quantization in-

tervals, leading to a more precise estimation of distortion

decreases. Due to page constraints, we refer the reader to [30]

for a detailed description, and we adopt △Dj∗

sig and △Dj
ref

as determined in that work.

B. Probability models

Commonly, image codecs exploit high-order statistics of

symbols emitted by the bitplane coding engine to achieve

compression. The most popular approach to exploit statistical

redundancy is context-adaptive arithmetic coding [6], [12],

[27], [28]. The main idea behind it is to adaptively adjust

the probabilities of emitted bits depending on the context of

the coefficient. Let wn, 1 ≤ n ≤ N denote N neighbors of

w, let Φ(w, j) denote the significance state of w in bitplane j
according to

Φ(w, j) =

{

0 if j > s

1 otherwise
, (3)

ant let φ(w, j) represent the sign of w at bitplane j as

φ(w, j) =











unknown if j > s

+ if j ≤ s and w > 0

− if j ≤ s and w < 0

. (4)

In general, contexts are selected as some function of wn.

Often, this function considers {Φ(wn, j)} for significance

and refinement coding, and {φ(wn, j)} for sign coding. The

context is passed to the arithmetic coder, which (if adaptive)

adjusts probabilities as more symbols are coded. This mech-

anism approximates the pmf of emitted symbols given their

context. The pmf of the currently emitted symbol bj is denoted

as Psig(bj), j ≥ s for significance coding, as Pref (bj), j < s
for refinement coding, and as Psign(d) for sign coding.

Mechanisms that exploit coefficient magnitudes, rather than

significance states, include the Tarp-filter [31]–[33] and the

local average approach [29], [34]. The analysis carried out in

the next section employs the local average approach due to its

convenience to describe some aspects of the coding procedure.

The local average of wavelet coefficients is defined as the

arithmetic mean of the neighbors’ magnitudes according to

ϕ =
1

N

N
∑

n=1

|wn| . (5)

In our previous work [29], ϕ is determined using the four

immediate neighbors that are above, below, to the right, and

left of the current coefficient, though other configurations

may obtain similar results. The local average-based probability

model characterizes the signal produced by a wavelet trans-

form using the marginal pdf of coefficients, denoted as g(w),
and the conditional pdf of ϕ given w, denoted as h(ϕ | w).
Probabilities for significant bits are determined according to

Psig(bj = 0 | ϕ) = P (w < 2j | w < 2j+1, ϕ) =

P (w < 2j | ϕ)

P (w < 2j+1 | ϕ)
=

∫ 2
j

0

g(w) · h(ϕ | w) dw

∫ 2
j+1

0

g(w) · h(ϕ | w) dw

.

(6)

Probabilities for refinement bits emitted at bitplane j for coef-

ficients that became significant at bitplane j∗ are determined

similarly and denoted as Pref (bj = 0 | ϕ), j < j∗.

Evidently, the actual magnitude of wavelet coefficients is not

available for the decoder until all bitplanes are transmitted, so

the coding process computes ϕ using the magnitude of par-

tially transmitted coefficients and an estimate of insignificant

coefficients. It is then denoted as ϕ̂. Again, we refer the reader

to [29] for an extended description, and we adopt probabilities

P ′

sig(bj = 0 | ϕ̂) and P ′

ref (bj = 0 | ϕ̂) as they are determined

in that work.

Sign coding is not tackled in our previous work. Analysis

carried out in the next section compares the coding perfor-

mance achieved by a context-adaptive probability model to

that achieved by a local average-based probability model. To

do so, the local average probability model employed in the

next section performs sign coding by estimating Psign(d)
using statistics of a corpus and considering {φ(wn, j)} for

four immediate neighbors of w. Although its performance

is slightly inferior to that achieved with context-adaptive

coding, the sole intention of this comparison is to illustrate the

behavior of these models when used with different scanning

orders.
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III. CLASSIC CODING STRATEGIES

A typical coding system for JPEG2000 [26] is constituted

by three main stages: sample data transformation, sample data

coding, and codestream re-organization. The main operation

carried out in the first stage is the application of the wavelet

transform. Then, the image is logically partitioned in code-

blocks, that are independently coded in the second stage.

The third stage codes auxiliary data and organizes the final

codestream into quality layers. Typically, the minimization of

image distortion for a given target bitrate is conducted by a

rate-distortion optimization process.

A. Optimal scanning order

As stated previously, this study borrows the framework of

JPEG2000 and substitutes the sample data coding stage by

other strategies. The first question that arises when contem-

plating a bitplane coding engine is in which order should

bits be transmitted. Let us begin devising a scanning order

that produces an optimal quality embedded codestream, i.e.,

a codestream that truncated at any bitrate guarantees that the

quality of the decoded image can not be improved more. From

a rate-distortion optimization perspective, that scanning order

should always select the next coefficient to visit so that it

maximizes the ratio between the decrease in image distortion

and the increase in codestream length [7], [8]. More precisely,

let △D(w) be the decrease produced in image distortion when

coding one more bit of coefficient w, and let △L(w) be

the increase in codestream length produced when such bit is

coded. The distortion-length slope of coefficient w for the next

to-be-coded bit is defined as S(w) = △D(w)/△L(w). The

scanning sequence that visits every next coefficient selecting

that w⋆ with highest S(w⋆) produces an optimal codestream.

From a practical perspective, however, scanning orders must

take into account that the sequence of visited coefficients must

be followed by coder and decoder in strict order. This renders

impractical the above approach since neither △D(w) nor

△L(w) are available for the decoder, and to explicitly transmit

the order would penalize coding efficiency significantly. [8]

proposed the use of distortion estimators and probability

estimates for emitted symbols to approximate △D(w) and

△L(w) in the decoder. That approach assumes only uniform

probability distributions. It also employs parent-child relations

among coefficients belonging to different resolution levels,

which makes it impractical herein. Our previous work [35]

implemented the scanning strategy proposed in [8] using

highly precise distortion estimators [30] together with the

local average-based probability model [29] to allow its use

in codeblocks. Here, [35] is extended to allow the use of

either the local average-based probability model (LAV), or

the context-adaptive probability model (CAD). Specifically,

△D(w) is estimated as

△D′(w) =

{

△Dj
sig ·

(

1− P ′

sig(bj = 0)
)

if j ≥ s

△Dj
ref otherwise

, (7)

where P ′

sig(bj = 0) is the estimate of Psig(bj = 0) con-

ditioned on either the local average ϕ̂ as described above

(LAV) or the adaptive contexts employed in JPEG2000 (CAD).

The first line of (7) can be understood as the conditioned

expected distortion decrease (given the coefficient is signifi-

cant) multiplied by the probability that the coefficient becomes

significant.

On the other hand, knowing the probability for the coded

symbol in conjunction with the use of arithmetic coding aids

in the determination of the △L(w) estimate. Arithmetic coders

are commonly able to approach entropy. Therefore, the cost

of coding binary symbols can be estimated by the symbol

entropy, which in turn can be estimated using the conditional

probabilities employed by the arithmetic coder according to

△Lj
sig = H

(

P ′

sig(bj = 0)
)

+
(

1− P ′

sig(bj = 0)
)

· H
(

P ′

sign(d)
)

(8)

and

△Lj
ref = H

(

P ′

ref (bj = 0)
)

, (9)

for significance and refinement coding, respectively. H(·) in

the expressions above denotes the binary entropy function. The

cost of coding the sign is accounted for in the second line of

Equation (8) since the sign is emitted just after the coefficient

is found significant. △L(w) is then estimated as

△L′(w) =

{

△Lj
sig if j ≥ s

△Lj
ref otherwise

. (10)

Employing the above development, the encoder can seek the

next coefficient to be coded as that one that has the highest

estimated distortion-length slope, i.e., that w⋆ with highest

S ′(w⋆) =
△D′(w⋆)

△L′(w⋆)
=























△Dj
sig ·

(

1− P ′

sig(bj = 0)
)

△Lj
sig

if j ≥ s

△Dj
ref

△Lj
ref

otherwise

.

(11)

The use of S ′(w) allows that the visiting sequence is

adapted as more data are coded, without restricting which bits

(significant or refinement) are transmitted first. Our experience

suggests that S ′(w) is a sufficiently good estimator of S(w),
especially when using LAV. Although at high bitplanes the

local average used in the computation of S ′(w) is approxi-

mated roughly, experimental evidence indicates that at medium

bitplanes, the error in ϕ̂ is less than 50% of ϕ, on average.

At the lowest bitplanes, this error is generally below 8%. The

impact of this estimation error is discussed in Section III-B.

S ′(w) determines the scanning order of the optimal strategy,

so an analysis of S ′(w) is of interest. As seen in Equations (7)-

(11), S ′(w) utilizes distortion estimators △Dj
sig and △Dj

ref ,
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which are constant in each bitplane, and P ′

sig(bj = 0),
P ′

ref (bj = 0), and P ′

sign(d), which are variable. Figure 1(a)

depicts S ′(w) with respect to P ′

sig(bj = 0) and P ′

ref (bj = 0)2

for irreversible transforms. Let us begin by describing S ′(w)
for significance coding. The more skewed P ′

sig(bj = 0) toward

0, the larger the S ′(w) since these symbols can be encoded

using few bits and the decrease in distortion is very large.

Contrarily, the more skewed the probability P ′

sig(bj = 0) to-

ward 1, the smaller the S ′(w). A similar shape is achieved for

all bitplanes. On the other hand, S ′(w) for refinement coding

is larger as P ′

ref (bj = 0) is more skewed, and is symmetric

around P ′

ref (bj = 0) = 0.5 since 0 and 1 refinement bits

have equal expected distortion decrease. Note that the analysis

of Figure 1(a) suggests that some refinement bits should be

coded before some significant bits within each bitplane, or

even before some significant bits of higher bitplanes. This

seems to question the separation of bits into bitplanes.

Even though Figure 1(a) depicts S ′(w) for all possible

values of P ′

sig(bj = 0) and P ′

ref (bj = 0), these prob-

abilities typically take values above 0.5. Specifically, the

higher the bitplane, the more biased the probabilities are

toward 1, for both significance and refinement coding. This

is intuitively explained considering the density of coefficients

within wavelet subbands [29], which is nominally two-sided

exponential (Laplacian). For significance coding this implies

that the higher the bitplane, the fewer significant coefficients

are found, and that the first refinement bit of coefficients has

a higher probability to be 0 than 1.

To indicate this, S ′(w) is emphasized in Figure 1(a) with a

thicker line in the regions where the probabilities of emitted

bits at that bitplane are relevant. Otherwise stated, the thicker

lines represent common values for S ′(w) at those bitplanes.

Considering only these relevant probabilities, Figure 1(a) sug-

gests that ordering the emission of bits in bitplanes is adequate

from a rate-distortion optimization point of view. Within

each bitplane, significant bits should be transmitted before

refinement bits. Only when P ′

sig(bj = 0) and P ′

ref (bj = 0)
are very high, typically at high bitplanes, refinement bits may

be transmitted before significant bits.

Figure 1(b) depicts the same analysis as above but using

distortion estimators determined for reversible transforms [30].

Similar conclusions are drawn except at the lowest bitplane,

in which refinement bits should be transmitted before signifi-

cant bits. This is triggered by the reconstruction quantization

interval for significance coding at bitplane j = 0, which is

[1, 1] for reversible transforms instead of the typical [1, 2)
available for irreversible transforms. This causes reversible

transforms to reconstruct significant coefficients at bitplane

j = 0 as 1, whereas irreversible transforms reconstruct coeffi-

cients as 1.5 (or similar). This produces a smaller decrease

in distortion for reversible transforms than for irreversible

ones [30]. Furthermore, refined bits decrease the squared error

in bitplane j = 0 by 0.5 for reversible transforms and only

0.25 for irreversible ones, on average, which accentuates more

the difference between significance and refinement coding at

2P ′

sign(d) is set to 0.5 to simplify the analysis of Figure 1. Allowing

P ′

sign(d) to vary does not change the results significantly.
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Fig. 1: Evaluation of S ′(w) depending on the probability

of emitted symbols. Both figures depict S ′(w) distinguishing

between significance coding (continuous line), and refinement

coding (dotted line) at each bitplane.

bitplane j = 0. Experimental evidence suggests that to reverse

the order of significance and refinement bits in the lowest

bitplane improves coding performance slightly.

B. Low complexity scanning orders

Figure 1 justifies the transmission of bits in bitplanes, but

it indicates little with regard to the sequence of visited coeffi-

cients. As hinted in [29], ϕ̂ is closely related to P ′

sig(bj = 0)
and P ′

ref (bj = 0), which in turn are closely related to S ′(w)
and, by extension, to the sequence of visited coefficients. ϕ̂
will serve to illustrate and assess the efficacy of scanning

orders followed by different strategies.

The first scanning order that we assess is the optimal one

described above using the LAV probability model. We begin

by using ϕ instead of ϕ̂ when selecting the next coefficient

to visit. The use of ϕ is not possible in an actual system, but

provides and idea of the scanning order that the scheme strives

to achieve in theory. Figure 2(a) depicts visited coefficients

when coding one representative codeblock.3 The horizontal

axis on this graph depicts scanned coefficients. The vertical

black lines represent the beginning of bitplanes. The vertical

axis depicts ϕ for the corresponding coefficient. Significance

coding is depicted in yellow (and red) for coefficients that

do not become (and do become) significant at that bitplane,

respectively. Refinement coding is depicted in green.

The scanning order followed by this theoretical-optimal

strategy visits first those insignificant coefficients with highest

ϕ, since those are most likely to become significant and

3Demonstrations of the scanning order strategies depicted in Figure 2 can
be found at http://www.deic.uab.es/∼francesc
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Fig. 2: Evaluation of different scanning orders. The horizontal axis of these figures represents the order of visited coefficients

in each bitplane, whereas the vertical axis depicts ϕ of the visited coefficient. Data belong to one codeblock (size 64× 64) of

the High-vertical Low-horizontal frequencies subband of the second decomposition level (subband HL2) produced when the

irreversible 9/7 wavelet transform is applied to the “Portrait” image of the ISO 12640-1 corpus.

provide the largest distortion decreases. Obviously, distortion

decreases are not known in advance. Even though the model

sometimes fails (note that yellow coefficients provide no

decrease), on average it achieves the maximum efficiency.

Significant coefficients depicted in red generally provide larger

distortion decreases than refined coefficients, which are de-

picted in green. At the highest bitplanes, refinement coding is

carried out in the middle of the scanning sequence, whereas

at the lowest bitplanes refinement coding is carried out after

significance coding, which corresponds with the analysis of

Figure 1. Contrarily to significance coding, refinement coding

visits first those coefficients with lowest ϕ since Pref (bj) is

more biased for these coefficients than for coefficients with

higher ϕ [29].

Figure 2(b) depicts the results when the scanning order uses

ϕ̂ instead of ϕ when selecting the next coefficient to visit.

In the vertical axis of this and following figures, ϕ (and not

ϕ̂) is still plotted to provide an idea of the efficacy of the

visiting sequence compared to that reported in Figure 2(a).

Mostly at high bitplanes, the visiting sequence of Figure 2(b)

is not as effective as in the previous case. At medium and low

bitplanes the magnitude of most coefficients is estimated with

reasonable precision, so the scanning pattern becomes closer

to that depicted in Figure 2(a).

Though being very effective, the optimal scanning order

requires computationally intensive procedures. Practical strate-

gies should try to approximate the visiting sequence followed

by the optimal one but using simple operations to select the

next coefficient to visit. The scanning order of JPEG2000, for

example, has three subbitplane coding passes called Signif-

icance Propagation Pass (SPP), Magnitude Refinement Pass

(MRP), and Cleanup Pass (CP). Each coefficient is scanned

only once in each bitplane. SPP visits those insignificant

coefficients that have at least one significant neighbor. MRP

refines the magnitude of already significant coefficients, and

CP visits insignificant coefficients that were not scanned by

SPP. The CP coding pass also has a special scanning mode

called run mode that codes several insignificant coefficients

with a single binary symbol. The visiting sequence is ordered

in stripes of coefficients, each containing four rows of coef-

ficients. Coefficients are scanned column-by-column from the
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top-left to the bottom-right corner in each stripe.

Stripes in JPEG2000 were introduced for hardware-friendly

implementations. The division in three fractional bitplanes

has its origins in the same roots as the optimal scanning

strategy: the better the division in fractional bitplanes, the

better the coding performance of the final codestream. In

addition, coding passes provide suitable truncation points for

the codestream that can be exploited by the rate-distortion

optimization process [12].

The sequence of visited coefficients followed by JPEG2000

is depicted in Figure 2(c). To distinguish SPP and CP, coeffi-

cients scanned in CP are depicted in blue. Points depicted in

light and dark blue represent, respectively, coefficients that do

not become and do become significant. The use of three coding

passes produces a trend similar to that of Figure 2(a). SPP

scans those coefficients with highest ϕ, whereas coefficients

with lowest ϕ are scanned in CP. MRP is scheduled between

SPP and CP, which at high and medium bitplanes obtains a

similar behavior to that of Figure 2(a). Since at the lower

bitplanes most insignificant coefficients are scanned in SPP,

refinement coding is carried out after significance coding,

which also coincides with Figure 2(a). Since JPEG2000 uses a

deterministic order within each coding pass, a rougher discrim-

ination is produced within each coding pass (especially at the

lowest bitplanes), though in general the scanning sequence of

JPEG2000 is similar to that followed by the optimal strategy.

To provide a complete assessment of bitplane coding in

this context, two more strategies are described: 1) a scanning

order with two passes that carries out significance coding first

followed by refinement coding; 2) a scanning order with one

pass that carries out significance and refinement coding at the

same time. Both strategies scan coefficients in raster mode

(row by row). Figures 2(e) and 2(f) depict the visiting sequence

of these two strategies, which are not well adapted to the data.

We note that the scanning orders followed by JPEG2000 and

the last two strategies are not affected by the probability model

used for arithmetic coding (Figures 2(c), 2(e), and 2(f)). Only

the optimal scanning order (Figures 2(a), and 2(b)) adapts the

visiting sequence depending on the probability model. Figure 2

depicts the optimal scanning strategy only using LAV for

illustration purposes.

C. Coding performance evaluation

The scanning strategies outlined above have decreasing

computational complexity in the order of their description.

The next evaluation assesses their compression efficiency to

ascertain whether their complexity is rewarded with coding

performance or not. First, coding performance is assessed

individually for codeblocks. Figure 3(a) depicts the PSNR

difference between the 3-pass strategy of JPEG2000 and the

other strategies. The performance of the three-pass JPEG2000

strategy is depicted as the horizontal (zero) line in this figure,

whereas the other strategies are plotted above or below the

horizontal line depending on whether they achieve better

or worse coding performance, respectively, than three-pass

JPEG2000. The PSNR difference is reported after each byte

emitted by a bitplane coder. The ends of bitplanes are marked

with horizontal lines in Figure 3(a). The practical version of

the optimal strategy using ϕ̂ attains better coding performance

than the strategy of JPEG2000 at almost all bitrates, whereas

the strategies that deploy two or one coding passes are

generally worse. Figure 3(a) evaluates coding performance

when the LAV probability model is used. Figure 3(b) evaluates

coding performance for CAD. As noted above, the probability

model does not affect the scanning order for three of the four

schemes (including the 3-pass JPEG2000 scheme). However,

it does affect the arithmetic coding in all cases. Thus, the 3-

pass strategy is exactly JPEG2000 in Figure 3(b), but not in

Figure 3(a).

Although achieving different results byte-by-byte, it is

worth noting that the coding performance achieved by all

strategies is virtually identical at the end of each bitplane,

resulting in the quasi-periodic variations shown in Figure 3.

This is consistent with [36], [37], which also indicate that

bitplane boundaries are near-optimal truncation points from

a rate-distortion point of view. When post-compression rate-

distortion optimization is used to form the final codestream,

only the coding performance achieved at the truncation points

of the codeblock codestreams is considered. If codeblock

codestreams could only be truncated at the end of bitplanes, all

strategies would attain virtually the same coding performance

for the whole image. However, truncation is typically allowed

at the end of coding passes, which provides more segments

to the rate-distortion optimization process to better optimize

the quality of the final image. Figure 3(c) depicts distortion

achieved byte-by-byte when coding bitplane j = 1 of the same

codeblock as above. Distortion decreases roughly linearly

from the end of one bitplane to the next when using the

single pass strategy. When two passes are employed, the

distortion decreases roughly linearly within each coding pass.

The JPEG2000 strategy (not shown to avoid cluttering the

figure) yields three linearly decreasing segments in the rate

distortion curve. Evidently, two or three such segments are

sufficient to provide a close approximation to the optimal

strategy, which decreases roughly exponentially throughout the

bitplane. Coding performance achieved at the end of coding

passes (marked with circles) commonly coincides with that

achieved by the optimal strategy. Similar results are obtained

for other bitplanes and codeblocks.

Figure 4 evaluates coding performance obtained for an

entire image when using different codeblock sizes. In this case,

only the CAD probability model is used, though results are

similar for LAV. Truncation is allowed at the end of coding

passes for the three-pass JPEG2000, two passes, and single

pass strategies, and every 4 bytes for the optimal strategy.

Clearly, the single pass scanning order that provides one

coding pass per bitplane does not achieve competitive coding

performance in any case. When the codeblock size is 16× 16
or 32 × 32, results seem to suggest that two coding passes

per bitplane are enough to achieve good coding performance.

The performance of the optimal strategy is slightly better than

that of JPEG2000, except for codeblocks of 16× 16, which is

degraded due to header overhead caused by the generation of

too many truncation points.
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Fig. 3: Evaluation of the coding performance achieved by

different scanning strategies when coding the same codeblock

as in Figure 2.

IV. HYBRID CODING STRATEGY

A. General description

Some observations drawn from the previous study are:

• Significant bits should be emitted before refinement bits.

Only at high bitplanes is it profitable for refinement to

be interleaved with significant bits. Nonetheless, we note

that few refinement bits are emitted at high bitplanes.

• The scanning order followed in significance coding

should visit coefficients from the highest to the lowest

ϕ (or ϕ̂).

• The scanning order followed in refinement coding should

visit coefficients from the lowest to the highest ϕ (or ϕ̂).

• The size of the codeblock dictates the complexity of

the scanning order required to obtain competitive coding
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Fig. 4: Evaluation of the coding performance achieved by

different scanning strategies when using different codeblock

sizes, for the “Portrait” image. The irreversible 9/7 wavelet

transform, and the CAD probability model are used.

performance. Simple scanning strategies serve for small

codeblocks, whereas large codeblocks profit from elabo-

rate scanning orders.

• Small codeblocks (up to 32 × 32) require at least two

truncation points per bitplane, whereas larger codeblocks



9

require three or more truncation points.

• The main advantage of elaborate scanning orders is in

providing more truncation points.

• Truncation points should lie on the convex hull of the

rate-distortion function of the codeblock.

• Techniques that group the emission of several insignif-

icant coefficients with a single symbol (e.g., the run

mode of JPEG2000) do not produce a significant increase

on coding performance compared to the use of precise

probability models4.

• Probability models have only minor influence on the

efficacy of the scanning order, although they may impact

the computational complexity of the coding engine.

Considering the points drawn from the previous analysis,

the purpose of this section is to devise a scanning strategy

with low computational complexity and competitive coding

performance. The more complicated approaches to do so

are perhaps the generation of more or less truncation points

depending on the size of the codeblock, and to use a visiting

sequence that depends on ϕ or other similar indicator. On

the other hand, throughput assessments detailed in Section V

point to a strategy that “evaluates” coefficients only once per

bitplane. By this, we mean that the proposed strategy should

avoid the use of context-based subbitplane coding passes

(e.g., [7], [12], [23]), since a straightforward implementation

of such scanning orders visits each coefficient in every coding

pass in order to decide whether it is to be coded in that pass

or not.

Our main insight to devise such a scanning order is to

conceptually divide codeblocks into small sets of coefficients

called cells. Cells provide a cost-effective representation of the

codeblock. Our implementation uses cells of 8×8 coefficients,

though other configurations may achieve similar results.

Most coding systems that employ bitplane coding require a

step that computes the number of bitplanes M , or equivalently,

the most significant bitplane (MSBP), denoted as M − 1. The

use of cells requires that the MSBP be calculated for each cell

c. These quantities are denoted by m[c]. Clearly then, M − 1
is the maximum m[c] over all cells c in the codeblock to be

encoded. This step has negligible computational costs. Cells

are only used to code significant bits, which are emitted before

refinement bits in each bitplane. As explained later, this can

be accomplished easily with the aid of a single list containing

locations of significant coefficients. From bitplane M−1 down

to m⋄+1 (see below), the coder emits a binary symbol inform-

ing the decoder whether m[c] is reached for cell c or not. This

step does not enhance coding performance, though it reduces

computational costs. Evidently, this step is not required for

cell c when the current bitplane, say j⋄, is j⋄ < m[c]. Indeed,

this step is only carried out until bitplane m⋄ is reached,

which can be in the range m⋄ ∈
[

max{m[c]},min{m[c]}
]

. If

m⋄ 6= min{m[c]}, there will be at least one bitplane of at least

one cell for which a zero is coded at every location in that cell.

In our implementation m⋄ is chosen for a codeblock as the

most numerous MSBP (the mode of m[c]) of that codeblock.

4Though this point is not directly extracted from the analysis carried out
in Section III, our experience indicates so.

Fig. 5: Representation of the conceptual division of one

codeblock into cells. Data belong to a codeblock of size 64×64
in subband HL2 of the “Portrait” image.

TABLE I: Percentage of bitplanes in each cell skipped by the

proposed algorithm. Results are reported on average per each

resolution level (5 levels of irreversible 9/7 wavelet transform

are used). Recall that the largest resolution level contains 75%

of image coefficients, the next one 18.75%, and so on. Results

are reported for the ISO 12640-1 corpus (images are 8 bit,

gray-scale, size 2560× 2048).

resolution level

image 0 1 2 3 4 5

(LL subband)

“Portrait” 4 10 22 25 27 30

“Cafeteria” 0 8 9 14 16 23

“Fruit Basket” 0 7 26 29 25 28

“Wine and Tableware” 8 8 29 35 31 30

“Bicycle” 0 10 14 19 27 35

“Orchid” 0 22 37 41 37 36

“Musicians” 4 8 16 20 23 23

“Candle” 4 8 12 13 14 22

AVERAGE 2 10 21 24 25 28

The value of m⋄ is transmitted at the beginning of coding.

Figure 5 illustrates the conceptual division of one repre-

sentative codeblock into cells. In this figure, each building

(i.e., each pile of boxes in the same position) represents one

cell, and each floor of the building (i.e., each box) represents

one bitplane. Buildings are split into two parts: the higher

part (in light green) represents those bitplanes that do not

contain any significant coefficient in that cell; the lower part

(in dark green) represents those bitplanes that contain at least

one significant coefficient. The main advantage of the division

of the codeblock into cells is that most bitplanes in the part

above can be completely avoided by the scanning process. To

demonstrate this fact, Table I shows the percentage of bitplanes

that are not visited by the scanning order thanks to the use of

cells, on average for each resolution level. On average, more

than 25% of the bitplanes in each cell can be avoided.



10

At each bitplane, cells are sorted in list Gcells by the number

of coefficients that became significant in previous bitplanes,

say q[c]. Cells are visited following this order. That is, the cell

that contains the largest number of significant coefficients is

visited first. This may vary bitplane-by-bitplane. The intention

of this sorting process is to first visit coefficients that are

surrounded by many significant neighbors, and thus with

(typically) high values of ϕ. Within each cell, coefficients are

visited in raster mode. Allowing the truncation of the code-

stream at the end of the coding of each cell (or after a fixed

number of cells) produces codestream segments from generally

higher to lower distortion-length slopes in that bitplane. We

note that scanning orders with fractional bitplanes provide

truncation points at the end of each coding pass [7], [12],

[23]. Small codeblocks have few cells, so few truncation points

are provided in each bitplane. Large codeblocks contain many

cells, providing many truncation points. Thus, cells provide

more or less truncation points depending on the size of the

codeblock. The sorting procedure has very low computational

complexity.

Once a coefficient becomes significant, it is added to the

end of a list of coefficients to be refined, referred to as Grefs.

The use of such a list is not new [2]. Here, its purpose is two-

fold. On the one hand, it saves computational time, especially

at high bitplanes, since it avoids scanning all coefficients

of the codeblock when only a few need refinement. On the

other hand, it stores coefficients in the order that they become

significant and allows visiting coefficients (roughly) from the

lowest to the highest ϕ (as prescribed in Figure 2(a)). This

can be seen by noting that ϕ is related to the magnitude of the

coefficient [29], so coefficients that become significant at low

bitplanes generally have lower ϕ than coefficients that become

significant at high bitplanes. Thus, it is desirable to visit

coefficients starting from the end of list Grefs. Experimental

evidence indicates that one truncation point for refinement

coding is sufficient.

B. Algorithm

Our coding system uses a combination of CAD and LAV to

adjust probabilities of emitted symbols, although the proposed

scanning order is not influenced by the probability model.

This combination of CAD and LAV is chosen here to il-

lustrate the coding performance that can be achieved with

this algorithm without impacting computational load. LAV

is used for significance and refinement coding, whereas sign

coding employs CAD. As it is formulated in [29], LAV implies

a slight increment on computational complexity compared

to CAD. In this work the computational gap between LAV

and CAD for significance and refinement coding is removed

through the simplified model described in Appendix A. Sign

coding achieves very high coding performance when it is

used with the context configuration deployed in JPEG2000,

so that configuration is employed here. Symbols and their

probabilities, or contexts, are feed to the arithmetic coder

MQ [26]. The algorithm proceeds as follows:

Algorithm 1 Hybrid coder

1: emit m⋄

2: Q← 0
3: for j⋄ ←M − 1 to 0 do
4: /∗ significance coding ∗/
5: Q′

← 0
6: for c← first cell in Gcells to last cell in Gcells do
7: if m⋄ < j⋄ AND m[c] < j⋄ then
8: emit 0 with CAD(context 0)
9: else

10: if m⋄ < j⋄ AND m[c] = j⋄ then
11: emit 1 with CAD(context 0)
12: end if
13: for w∗

← first insignificant coefficient in c to the last
insignificant coefficient in c do

14: emit bj⋄ with LAV(ϕ̂)
15: if bj⋄ = 1 then
16: emit d with CAD(JPEG2000 context configuration)
17: add w∗ to Grefs
18: q[c]← q[c] + 1
19: Q′

← Q′ + 1
20: end if
21: end for
22: end if
23: end for
24: sort Gcells by q[·]
25: /∗ refinement coding ∗/
26: for w⋆

← coefficient Q in Grefs to the first coefficient in Grefs
do

27: emit bj⋄ with LAV(ϕ̂)
28: end for
29: Q← Q+Q′

30: end for

The algorithm scans coefficients in the loop of lines 13-

21. The conditional in line 7 avoids visiting those cells that

have no significant coefficients. Truncation of the codestream

is allowed at the end of each cell when the loop of lines 13-21

is executed. To reduce the number of truncation points in large

codeblocks, the algorithm may restrict truncation points after

the coding of every 2 or 4 cells, for instance. The proposed

algorithm is named hybrid due to the diversity of techniques

that it deploys.

We remark that the principal mechanisms that reduce com-

putational load are the skipping of significance coding for

many coefficients at high bitplanes, and the reduction of

the number of coefficients visited in the refinement pass.

The implementation of these mechanisms with simple data

structures leads to low-complexity implementations of the

hybrid algorithm.5

Figure 2(d) depicts the visiting sequence of coefficients

followed by the hybrid algorithm. Both for significance and

refinement coding, the algorithm is well-adapted to the data,

visiting coefficients following an order similar to that followed

by the optimal strategy.

C. Extension to 3D image coding

The work presented in [38] demonstrates that the LAV

probability model can be extended to 3D image coding as

well. The main idea behind the scheme introduced in [38]

5Our implementation of the hybrid codec is available at http://www.deic.
uab.es/∼francesc
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is that redundancy among components of a 3D image can be

exploited by the probability model instead of a transform. The

proposed probability model is based on the same principles

as LAV, but using the prior coefficient instead of the local

average. Denote samples of a 3D image arising from the

application of (only) a 2D transform to each spatial component

as wz,y,x, with z, y, x denoting the position of the sample

in the depth, vertical, and horizontal coordinate axes of the

volume, respectively. Each 2D component is then encoded as

described above for LAV, but substituting the magnitude of

the quantized “prior coefficient” for the local average ϕ̂ when

encoding wz,y,x. The prior coefficient of wz,y,x is defined as

wz−1,y,x. Due to page constraints, we refer the reader to [38]

for an extended description of the 3D image coding scheme.

V. EXPERIMENTAL RESULTS

A. Coding performance

The coding performance of the hybrid strategy is evaluated

for the corpus ISO 12640-1 (images are 8 bit, gray-scale, size

2560×2048)6. Figures 6(a), 6(b), and 6(c) depict the difference

in PSNR between the hybrid scanning order and JPEG2000

for different sizes of codeblock when using lossy compression.

At low bitrates the coding performance of both strategies is

almost the same, whereas at medium and high bitrates, the

performance of the hybrid strategy is slightly better, especially

for small codeblocks. We remark that the differences on coding

performance are mostly not caused by the scanning order,

but by the probability model. See in Figure 6(d) the results

achieved when the hybrid algorithm employs CAD (as defined

in JPEG2000) to code significant and refinement bits. Hybrid

achieves virtually the same coding performance as that of

JPEG2000. Figures 7(a), and 7(b) report the same evaluation

for lossy-to-lossless compression. Results are similar as those

achieved with lossy compression.

The coding performance of the hybrid algorithm when

coding 3D images is assessed with two types of images: three

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) im-

ages of size 512× 512 with 224 components and a bit-depth

of 16 bits per sample (bps) that belong to the remote sensing

field; and three Computed Tomography (CT) images of size

512×512 with 112 components and a bit-depth of 12 bps that

belong to the medical community. Table II reports lossless

results when these image are compressed with JPEG2000

and with the hybrid algorithm. The column “JPEG2000 2D”

reports results when no transform is applied along the z axis,

whereas column “JPEG2000 1D+2D” reports results when

5 levels of wavelet transform are applied along the z axis.

As described above, hybrid does not use a transform along

the z axis. In all cases, 5 levels of wavelet decomposition

are applied spatially. Results indicate that hybrid achieves the

best coding performance for CT images (slightly better than

“JPEG2000 1D+2D”). For hyperspectral images, hybrid is

significantly better than “JPEG2000 2D,” and somewhat worse

6Except when indicated, coding parameters are: 5 levels of irreversible 9/7,
or reversible 5/3 wavelet transform, codeblock size of 64×64, single quality
layer codestreams, no precincts. The dequantization procedure is carried out
as defined in [30].

TABLE II: Evaluation of the lossless coding performance

achieved by the hybrid strategy and JPEG2000. Results are

reported as the bitrate of the compressed codestream, in bps.

JPEG2000 hybrid

2D 1D+2D

AVIRIS - cuprite 7.01 5.28 5.74

AVIRIS - jasper 7.66 5.54 6.08

AVIRIS - lowAltitude 7.83 5.95 6.56

AVERAGE 7.50 5.59 6.13

CT - A 8.38 8.07 8.00

CT - B 8.41 8.07 8.04

CT - C 8.33 8.01 7.99

AVERAGE 8.37 8.05 8.01

than “JPEG2000 1D+2D,” though hybrid has significantly

lower complexity as detailed below.

B. Computational complexity

Achieving competitive coding performance commonly

means high computational complexity. Hybrid is devised to

achieve state-of-the-art coding performance with reduced com-

plexity. The evaluation of computational costs is performed

on an Intel Core i7 870 CPU at 2.93 GHz. All methods

are implemented in our Java implementation BOI [39], and

executed on a Java Virtual Machine v1.6 using GNU/Linux

v2.6. Results report the CPU processing time spent by the

bitplane coder. The implementation of the JPEG2000 context-

adaptive approach uses several software optimizations as sug-

gested in [26]. Hybrid uses a similar degree of optimization.

Figure 8 reports results when coding the images of the

ISO 12640-1 corpus. This figure assesses JPEG2000, hybrid,

and the single pass strategy. JPEG2000 uses its original CAD

probability model for the arithmetic coder. Hybrid and the

single pass strategy use the probability model described in

Section IV. The single pass strategy is reported in this figure

to indicate the minimum costs required by a bitplane image

coder. On average, hybrid requires only 7% more computa-

tional time than the single pass strategy, whereas JPEG2000

requires 27% more time. Recall that the single pass strategy

achieves significantly poorer coding performance than that

achieved by hybrid, as reported in Figure 4 for the “Portrait”

image. Similar results hold for the other images of the corpus.

Commonly, the computational costs of the bitplane coder are

partially attributed to the arithmetic coder. Internal columns

depicted in Figure 8(a) report computational time when the

arithmetic coder MQ is replaced by a raw coder. This is not

practical, but gives an approximation of the complexity added

by the arithmetic coder. Results suggest that hybrid with MQ

is only slightly more computationally complex than JPEG2000

without MQ. Profiling of the software modules indicates that

the scanning order, the probability model, and the MQ coder

in our implementation spend roughly 40%, 35%, and 25% of

the overall computational time, respectively.

Figure 9 depicts the same evaluation as above for the

coding of 3D images. For the three AVIRIS images, hybrid
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Fig. 6: Evaluation of the lossy coding performance achieved by the hybrid scanning order compared to JPEG2000, for all

images of the ISO 12640-1 corpus. (a), (b), and (c) report results when hybrid uses a combination of LAV and CAD probability

models, with codeblocks of different size. (d) reports results when hybrid uses exclusively CAD.
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Fig. 7: Evaluation of the lossy-to-lossless coding performance achieved by the hybrid scanning order compared to JPEG2000,

for all images of the ISO 12640-1 corpus. Hybrid uses a combination of LAV and CAD probability models.

and JPEG2000 spend, respectively, 54% and 154% more

computational time than the single pass strategy, on average.

For the medical images, these percentages are 40% and 116%,

respectively. In both cases the speedup of Hybrid with respect

to JPEG2000 is approximately 1.6.

VI. CONCLUSIONS

Bitplane image coding is the core technology in many

state-of-the-art coding schemes and standards. The interest

raised in many different scenarios for such a technology is

the main motivation behind this work to assess the efficacy of

scanning orders deployed in coding engines. To do so, several

mechanisms based on rate-distortion theory are proposed,

namely, the distortion-length slope S ′(w) to evaluate the

transmission order in each bitplane, the local average ϕ̂ to

evaluate the visiting sequence of coefficients, and an optimal

coding strategy that approximates the convex hull of the rate-

distortion function of codeblocks.

The evaluation of classic scanning orders reveals the effi-

cacy of the techniques deployed in the bitplane coder from dif-

ferent perspectives. This may help to enhance bitplane image

codecs with special purposes or requirements. To illustrate this

point, a low complexity scanning order is proposed. The main

insights used to devise the proposed strategy are taken from

our previous analysis. Experimental evidence suggests that the

proposed algorithm achieves competitive coding performance

while reducing the use of computational resources.

APPENDIX A

The local average of coefficients is computed using the

magnitude of partially transmitted coefficients, i.e., ϕ̂ =
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Fig. 8: Evaluation of the computational costs of JPEG2000,

hybrid, and a single pass strategy, for the corpus ISO 12640-1.

(a) reports results for the encoder. (b) reports results for the

decoder. External columns report execution time when using

the arithmetic coder MQ, whereas internal columns report

execution time when avoiding the use of MQ.
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1

N

N
∑

n=1

|ŵn|. This does not impact coding efficiency except

at the highest bitplanes, when little information has been

transmitted and most coefficients are still quantized as 0. This

penalty can be avoided in practice by assumptions described

in [29], which generally predict that the magnitude of ŵn

should be less than w. In that work, this is used to approximate

the eight immediate neighbors of w as ŵ′n = ŵ∗β if they are

insignificant when computing the local average, with β = 0.4.

To reduce computational costs, the hybrid algorithm only uses

the four neighbors that are above, below, to the right, and

left of w, and computes ŵ′n as ŵ′n = ŵ/2, which can be

implemented as a bit-wise operation. Experimental evidence

suggests that coding performance is only slightly penalized

compared to [29].

REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Image Process., vol. 41, no. 12, pp. 3445–
3462, Dec. 1993.

[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits

Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[3] A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek, “CREW:
compression with reversible embedded wavelets,” in Proc. IEEE Data

Compression Conference, Mar. 1995, pp. 212–221.

[4] X. Wu and J. hua Chen, “Context modeling and entropy coding of
wavelet coefficients for image compression,” in Proc. IEEE International

Conference Acoustics, Speech, and Signal Processing, vol. 4, Apr. 1997,
pp. 3097–3100.

[5] R. W. Buccigrossi and E. P. Simoncelli, “Image compression via joint
statistical characterization in the wavelet domain,” IEEE Trans. Image

Process., vol. 8, no. 12, pp. 1688–1701, Dec. 1999.

[6] X. Wu, “Context quantization with Fisher discriminant for adaptive
embedded wavelet image coding,” in Proc. IEEE Data Compression

Conference, Mar. 1999, pp. 102–111.

[7] E. Ordentlich, M. Weinberger, and G. Seroussi, “A low-complexity
modeling approach for embedded coding of wavelet coefficients,” in
Proc. IEEE Data Compression Conference, Apr. 1998, pp. 408–417.

[8] J. Li and S. Lei, “An embedded still image coder with rate-distortion
optimization,” IEEE Trans. Image Process., vol. 8, no. 7, pp. 913–924,
Jul. 1999.

[9] S.-T. Hsiang, “Embedded image coding using zeroblocks of sub-
band/wavelet coefficients and context modeling,” in Proc. IEEE Data

Compression Conference, Mar. 2001, pp. 83–92.

[10] ——, “Highly scalable subband/wavelet image and video coding,” Ph.D.
dissertation, Rensselaer Polytechnic Institue, Troy, NY, Jan. 2002.

[11] H. Danyali and A. Mertins, “Fully spatial and SNR scalable, SPIHT-
based image coding for transmission over heterogenous networks,”
Journal of Telecommuncations and Information Technology, pp. 92–98,
Feb. 2003.

[12] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[13] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11, pp. 1219–
1235, Nov. 2004.

[14] N. Mehrseresht and D. Taubman, “A flexible structure for fully scalable
motion-compensated 3-D DWT with emphasis on the impact of spatial
scalability,” IEEE Trans. Image Process., vol. 15, no. 3, pp. 740–753,
Mar. 2006.

[15] R. Leung and D. Taubman, “Transform and embedded coding techniques
for maximum efficiency and random accessibility in 3-D scalable
compression,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 1632–
1646, Oct. 2005.

[16] H. G. Lalgudi, A. Bilgin, M. W. Marcellin, and M. S. Nadar, “Com-
pression of multidimensional images using JPEG2000,” IEEE Signal

Process. Lett., vol. 15, pp. 393–396, Apr. 2008.

[17] M. Farshchian, S. Cho, and W. A. Pearlman, “Optimal error protection
for real-time image and video transmission,” IEEE Signal Process. Lett.,
vol. 11, no. 10, pp. 780–783, Oct. 2004.

[18] Z. Wu, A. Bilgin, and M. W. Marcellin, “Error resilient decoding of
JPEG2000,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 12,
pp. 1752–1757, Dec. 2007.

[19] M. Dyer, S. Nooshabadi, and D. Taubman, “Design and analysis of
system on a chip encoder for JPEG2000,” IEEE Trans. Circuits Syst.

Video Technol., vol. 19, no. 2, pp. 215–225, Feb. 2009.

[20] A. Abrardo, M. Barni, E. Magli, and F. Nencini, “Error-resilient and
low-complexity onboard lossless compression of hyperspectral images
by means of distributed source coding,” IEEE Trans. Geosci. Remote

Sens., vol. 48, no. 4, pp. 1892–1904, Apr. 2010.

[21] J. Oliver and M. P. Malumbres, “Low-complexity multiresolution image
compression using wavelet lower trees,” IEEE Trans. Circuits Syst. Video

Technol., vol. 16, no. 11, pp. 1437–1444, Nov. 2006.

[22] Digital compression and coding for continuous-tone still images,
ISO/IEC Std. 10 918-1, 1992.

[23] Information technology - JPEG 2000 image coding system - Part 1:

Core coding system, ISO/IEC Std. 15 444-1, Dec. 2000.



14

[24] Image Data Compression, Consultative Committee for Space Data
Systems Std. CCSDS 122.0-B-1, Nov. 2005.

[25] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,” IEEE Trans. Image Process., vol. 1, no. 2, pp.
205–220, Apr. 1992.

[26] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression

fundamentals, standards and practice. Norwell, Massachusetts 02061
USA: Kluwer Academic Publishers, 2002.

[27] Z. Liu and L. J. Karam, “Mutual information-based analysis of
JPEG2000 contexts,” IEEE Trans. Image Process., vol. 14, no. 4, pp.
411–422, Apr. 2005.

[28] M. Cagnazzo, M. Antonini, and M. Barlaud, “Mutual information-based
context quantization,” ELSEVIER Signal Processing: Image Communi-

cation, vol. 25, no. 1, pp. 64–74, Jan. 2010.
[29] F. Auli-Llinas, “Stationary probability model for bitplane image coding

through local average of wavelet coefficients,” IEEE Trans. Image

Process., vol. 20, no. 8, pp. 2153–2165, Aug. 2011.
[30] F. Auli-Llinas and M. W. Marcellin, “Distortion estimators for bitplane

image coding,” IEEE Trans. Image Process., vol. 18, no. 8, pp. 1772–
1781, Aug. 2009.

[31] P. Simard, D. Steinkraus, and H. Malvar, “On-line adaptation in image
coding with a 2-D tarp filter,” in Proc. IEEE Data Compression

Conference, Apr. 2002, pp. 23–32.
[32] C. Tian and S. S. Hemami, “An embedded image coding system based

on tarp filter with classification,” in Proc. IEEE International Conference

on Acoustics, Speech, and Signal Processing, vol. 3, May 2004, pp. 17–
21.

[33] J. Zhang, J. E. Fowler, and G. Liu, “Lossy-to-lossless compression
of hyperspectral imagery using three-dimensional TCE and an integer
KLT,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 814–818, Oct.
2008.

[34] F. Auli-Llinas, “Local average-based model of probabilities for
JPEG2000 bitplane coder,” in Proc. IEEE Data Compression Confer-

ence, Mar. 2010, pp. 59–68.
[35] F. Auli-Llinas and M. W. Marcellin, “Rate-distortion optimized adaptive

scanning order for bitplane image coding engines,” in Proc. IEEE Data

Compression Conference, Mar. 2011, pp. 163–172.
[36] Y. Yeung and O. C. Au, “Efficient rate control for JPEG2000 image

coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 3, pp.
335–344, Mar. 2005.

[37] F. Auli-Llinas and J. Serra-Sagrista, “JPEG2000 quality scalability
without quality layers,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 7, pp. 923–936, Jul. 2008.

[38] F. Auli-Llinas, M. W. Marcellin, J. Serra-Sagrista, and J. Bartrina-
Rapesta, “Lossy-to-lossless 3D image coding through prior coefficient
lookup tables,” ELSEVIER Information Sciences, 2011, under revision.

[39] F. Auli-Llinas. (2011) BOI software. [Online]. Available: http:
//www.deic.uab.es/∼francesc
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Barcelona (Spain), and for which he was granted

with two extraordinary awards of Bachelor (awards given to the first students
of the promotion). In 2004 and 2006 he respectively received the M.S. degree
and the Ph.D. degree (with honors), both in Computer Science from the
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