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Lossy-to-Lossless 3D Image Coding through

Prior Coefficient Lookup Tables
Francesc Aulı́-Llinàs, Michael W. Marcellin, Joan Serra-Sagristà, and Joan Bartrina-Rapesta

Abstract—This paper describes a low-complexity, high-
efficiency, lossy-to-lossless 3D image coding system. The proposed
system is based on a novel probability model for the symbols that
are emitted by bitplane coding engines. This probability model
uses partially reconstructed coefficients from previous compo-
nents together with a mathematical framework that captures
the statistical behavior of the image. An important aspect of
this mathematical framework is its generality, which makes the
proposed scheme suitable for different types of 3D images. The
main advantages of the proposed scheme are competitive coding
performance, low computational load, very low memory require-
ments, straightforward implementation, and simple adaptation
to most sensors.

Index Terms—3D image coding, entropy coding, bitplane image
coding, JPEG2000.

I. INTRODUCTION

Specialized devices that capture images with many spatial,

spectral, or temporal components are prevalent in several

fields. Any image with more than one component is referred to

in this paper as a three-dimensional (3D) image. Treating a 3D

image as a volume, let samples of the image be referred to as

Wz,y,x, with z, y, x denoting the position of the sample in the

depth, vertical, and horizontal coordinate axes of the volume,

respectively. One component is defined as those samples

situated at the same depth z′ or, more precisely, component

z′ is defined as all samples Wz,y,x such that z = z′. By con-

vention, one component comprises the vertical and horizontal

dimensions of space, respectively, in the y and x coordinates,

whereas the depth axis provides a spatial, spectral, or temporal

dimension depending on the capturing device.

Lossy/lossy-to-lossless compression of 3D images is a topic

of interest in several communities. In the medical field, many

efforts have explored the use of 3D wavelet transforms to

decorrelate redundancy among components [1]–[3]. Other

proposals have adapted popular bitplane coding systems to

three dimensions [4]–[6]. Rapid access and remote volume

visualization was studied in [7]–[9]. More recently, enhanced

coding efficiency has been achieved by means of exploiting the

symmetry of the human body [10], or using the Karhunen-

Loève transform [11]. Among currently deployed standards,
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JPEG2000 [12] attracts the most attention due to its advanced

features and due to its inclusion in DICOM (Digital Imaging

and Communications in Medicine). Hence, compression of

3D medical images with JPEG2000 has been extensively

explored [5], [9], [13], [14].

In the remote sensing field, several bitplane coding schemes

have been adapted to multi-dimensional data [15], [16]. The

Karhunen-Loève transform has proven to be especially suit-

able to decorrelate spectral information [17]–[19]. Meanwhile,

efficient approaches to exploit the intrinsic nature of remote

sensing images have been proposed, including pixel classi-

fication [20] and models of anomalous pixels [21]. Again,

JPEG2000 is widely known in the community due to the provi-

sion of advanced features such as multi-component transforms

and effective interactive transmission protocols. Work that uses

JPEG2000 to code 3D remote sensing images includes [17],

[22]–[24]. Additionally, the recently published JPEG2000 Part

10 [25] provides specialized features aimed at the coding of

volumetric data sets.

In the case of video coding, the temporal redundancy among

frames of a video sequence is typically removed via motion

compensation mechanisms. H.264/AVC [26] is currently the

most advanced standard employing such mechanisms. Inter-

frame redundancy can also be reduced by means of other

mechanisms such as (motion-adaptive) transforms [14], or

conditional replenishment [27]. JPEG2000 provides an excel-

lent framework to explore these latter cases. Furthermore, for

video sequences with little motion, such as those produced in

videoconference or surveillance applications, JPEG2000 also

provides an ideal framework [28].

Compression and/or display of 3D images often needs to

be carried out using devices with limited resources. Therefore,

coding systems should be devised while keeping in mind the

device in which they will be executed [29], [30]. There are

many works concerned with the computational complexity of

techniques and algorithms [31], [32] deployed to code 3D

images [11], [14], [19], [20], [22], [33]–[36].

In most works, the study of 3D images is carried out

for one particular type of 3D image, or for one particular

type of sensor, due to the statistically different nature of

these images. The purpose of this paper is to introduce a

low-complexity lossy/lossy-to-lossless coding strategy based

on bitplane coding for the compression of different types

of 3D images. The proposed strategy is implemented in the

JPEG2000 framework due to its suitability for coding 3D

images and its widespread use. The resulting system has very

low memory requirements (only two components need to
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be maintained in memory), lower computational complexity

than JPEG2000 (with about 2/3 of the computational costs),

and provides competitive coding performance. The main idea

behind the proposed method is to not use any transform

along the depth axis. Instead, we use an effective probability

model for the bits emitted by the bitplane coding engine. This

probability model considers solely the magnitude and sign of

the coefficient at the same spatial location in the previous

component. An important contribution of this research is the

generality of the proposed approach. Specifically, it provides

a common mathematical framework to model and capture the

statistical nature of different types of signals.

The remainder of the paper is structured as follows. Sec-

tion II briefly reviews common probability models employed

in lossy/lossy-to-lossless image coding systems, and intro-

duces the theoretical underpinnings of our model. Section III

describes practical considerations for implementation in the

JPEG2000 framework, and discusses scalability and complex-

ity issues. Coding performance, computational complexity, and

memory requirements are assessed in Section IV. Medical

images, remote sensing images, and video are considered.

The final section summarizes the work and gives concluding

remarks.

II. PROBABILITY MODEL BASED ON PRIOR COEFFICIENT

LOOKUP TABLES

A. Review of classic probability models

Let Wz,y,x be a wavelet coefficient from a 3D image.

Let υ be the magnitude of the index obtained by quantizing

Wz,y,x. Let [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1}, be the binary

representation of υ, with M denoting a sufficient number of

bits to represent all coefficients. Finally, let d ∈ {+,−} be

the sign of Wz,y,x. Bitplane coding strategies generally define

bitplane j as the collection of bits bj from all coefficients, and

encode the image from the most significant bitplane M − 1
to the least significant bitplane 0. The first non-zero bit of a

coefficient, i.e., that bs = 1 such that ∄ s′ > s with bs′ = 1,

is called the significance bit of the coefficient. The sign of

the coefficient is coded immediately after its significance bit.

The remaining bits br, r < s, are called refinement bits. The

significance state Φ(·) of coefficient Wz,y,x in bitplane j is

defined as

Φ(Wz,y,x, j) =

{

0 if j > s

1 otherwise
. (1)

Commonly, bits emitted by a bitplane coding engine are

fed to an entropy coder able to exploit high-order statistics of

symbols. The most popular approach to exploit such statistical

redundancy is context-adaptive arithmetic coding. The main

idea is to adaptively adjust the probabilities of emitted bits

depending on the context of the coefficient. In more detail,

let Wn
z,y,x, 1 ≤ n ≤ N , denote N neighbors of Wz,y,x.

In general, contexts are selected as some function of these

neighbors. Often, this function employs only {Φ(Wn
z,y,x, j)}

and considers the number and the position of neighbors that

are significant in the current or previous bitplanes. The context

is passed to the arithmetic coder, which (if adaptive) adjusts

probabilities as more symbols are coded. The probability

mass function of the currently emitted symbol is denoted as

Psig(bj), j ≥ s, for significance coding, as Pref (bj), j < s,

for refinement coding, and as Psign(d) for sign coding.

Key to the compression efficiency is the context formation

approach. The approach used in JPEG2000, for example, em-

ploys a heuristic based on the image features captured in each

wavelet subband [37, Ch. 8.3.2]. Context-adaptive arithmetic

coding is a technology mostly employed for lossy/lossy-to-

lossless regimes. Lossless (only) compression, on the other

hand, commonly employs predictive techniques to estimate

the magnitude of the current sample [38], [39]. For the case of

3D images, context formation approaches are studied in [14],

[40] for lossy regimes, and predictive techniques that consider

neighbors in previously coded components are studied in [41],

[42] for lossless regimes.

B. Proposed model

Lossy-to-lossless compression schemes have not commonly

been able to exploit the high correlation among components

of a 3D image via probability models. It is conjectured that

the significance state Φ(·) of a 3D neighborhood is not an

adequate indicator of the underlying signal [14]. The main

insight of our research is a probability model that captures the

statistical behavior of a 3D image by employing the magnitude

–rather than the significance state– of partially reconstructed

coefficients in previous components. To do so, the probability

of the symbols emitted for Wz,y,x is determined solely with

the magnitude and sign of the prior coefficient at the same

location, i.e., Wz−1,y,x. Specifically, no spatial neighbors are

employed. Additionally, no transform or prediction is used

along the depth axis. If the magnitude and sign of Wz−1,y,x

are respectively denoted as ϕ and φ, the encoder uses only

Psig(bj | ϕ), Pref (bj | ϕ), and Psign(d | φ) in the encoding

of Wz,y,x.

Our model assumes that probabilities of emitted symbols

can be determined by considering only the probability density

function (pdf) for the coefficient to be coded and the prior

coefficient at the same location. More precisely, let p(w)
denote the marginal pdf for coefficient w. We assume that

all coefficients within the same wavelet subband of all com-

ponents of an image are identically distributed. Let g(ϕ | w)
denote the conditional pdf for the prior coefficient given w.

p(w) and g(ϕ | w) consider only the density of the magnitude

of w and ϕ. The sign is treated separately (see below).

Table I describes test images having 5 different sensor

types belonging to the remote sensing, medical, and video-

conferencing fields. To illustrate the nature of the different

3D image types, Figure 1(a) depicts p(w) for one image

of each type. The data used in Figure 1 correspond to the

high vertical-, low horizontal-frequency subband (HL) of the

first decomposition level produced by the irreversible 2D

CDF 9/7 wavelet transform. This transform is applied to each

component of the image. Again, no transform is used along the

depth axis of the volume. Figures 1(b)-(f) depict g(ϕ | w) for
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TABLE I: Characteristics of the images employed in experiments. (Z, Y, X) denotes the number of samples on the corresponding

coordinate axes.

field type size (Z, Y, X) dimensions bit depth image names

remote sensing AVIRIS 224, 512, 512 1D spectral + 2D spatial 16 bps

cuprite, jasper sc01, jasper sc02,

lowAltitude sc01, lowAltitude sc02,

lunarLake

remote sensing Hyperion 242, 768, 256 1D spectral + 2D spatial 12 bps
agricultural, urban, flooding,

forestry, coastal, tornado

medical Computed Tomography 112, 512, 512 3D spatial 12 bps A, B, C, D, E, F

medical Angiography (X-RAY) 151, 512, 512 1D temporal + 2D spatial 12 bps A, B, C, D, E, F

videoconferencing CIF 449, 288, 352 1D temporal + 2D spatial 8 bps
bridge, paris, salesman,

closed bridge, news, waterfall

the wavelet subband described above. Despite the differences

among these 3D image types, the statistical behavior is similar

for all images of the same type (not shown in the figures).

For each image type, the joint pdf h(w,ϕ) = p(w)·g(ϕ | w)
is used below to determine Psig(bj | ϕ) and Pref (bj | ϕ).
Other work using the joint pdf h(w,ϕ) also indicates that

h(w,ϕ) may be a suitable indicator of the signal’s nature [43],

[44]. Probabilities for significance coding at bitplane j are de-

termined as the probability of insignificant coefficients coded

at bitplane j divided by all coefficients coded in that bitplane

as

Psig(bj = 0 | ϕ) = P (w < 2j | w < 2j+1 , ϕ) =

P (w < 2j , w < 2j+1 | ϕ)

P (w < 2j+1 | ϕ)
=

P (w < 2j | ϕ)

P (w < 2j+1 | ϕ)
=

∫ 2j

0

p(w) · g(ϕ | w) dw

∫ 2j+1

0

p(w) · g(ϕ | w) dw

.

(2)

The conditioning event w < 2j+1 in the first line of (2)

arises by noting that to become significant in bitplane j,

the coefficient must be insignificant in bitplane j + 1. Both

dividend and divisor in the last line of (2) consider the density

of coefficient w within the subband and the density of ϕ for

a known value of w.

Probabilities for the first refinement bit of coefficients that

become significant at bitplane j are determined according to

Pref (bj−1 = 0 | ϕ) =

P (2j ≤ w < 2j + 2j−1 | 2j ≤ w < 2j+1 , ϕ) =

P (2j ≤ w < 2j + 2j−1 , 2j ≤ w < 2j+1 | ϕ)

P (2j ≤ w < 2j+1 | ϕ)
=

∫ 2j+2j−1

2j
p(w) · g(ϕ | w) dw

∫ 2j+1

2j
p(w) · g(ϕ | w) dw

.

(3)

Extension to other refinement bitplanes entails the considera-

tion of intervals with refinement bits equal to 0 in the dividend

of the last equation of (3).

Figures 2(a) and 2(b) respectively depict Psig(bj = 0 | ϕ)
and Pref (bj = 0 | ϕ) for the coding of one bitplane

of the same wavelet subband reported previously. In these

graphics, the horizontal axis depicts the magnitude of the

prior coefficient ϕ, and the vertical axis depicts probabilities

of emitted symbols. These graphics report probabilities for

different representative bitplanes depending on the image bit-

depth. It is worth noting the differences among image types.

As an example, let us elaborate the case for the “cuprite”

image. Figure 2(a) depicts probabilities for significance coding

for bitplane j = 7. When ϕ is in the interval ϕ ∈ [0, 27),
coded coefficients have low probability to become significant

(i.e., Psig(b7 = 0 | ϕ) ≥ 0.5), whilst when ϕ ∈ [27,∞) the

probability to become significant is higher (i.e., Psig(b7 =
0 | ϕ) < 0.5). Extended to other bitplanes, this observation

seems to indicate that (probabilistically) coefficient Wz,y,x has

a magnitude similar to Wz−1,y,x. Similar evidence is found

for the angiography image and the video sequence, but not

for the Hyperion and Computed Tomography images, which

have different statistical behavior.

For the “cuprite” image, Figure 2(b) indicates that the

probability of the first refinement bit j′ = j − 1 of coeffi-

cients that became significant at bitplane j = 7 vary widely

depending upon ϕ. Analyzed in more detail, probabilities

oscillate, crossing above and below 0.5, in intervals of length

2j
′

, or 26 = 64. More formally, Pref (b6 = 0 | ϕ) ≥
0.5 for ϕ ∈ {[0, 192), [256, 320), [384, 448)} and Pref (b6 =
0 | ϕ) < 0.5 for ϕ ∈ {[192, 256), [320, 384), [448, 512)}.

This observation indicates that there exists correlation between

refinement bits of the current coefficient and the previous

coefficient that became significant at j = 7 and also at

j = 8. We remark that this strong correlation is not due to the

calibration process carried out in these AVIRIS images [45]

since similar behavior is achieved with uncalibrated AVIRIS

images. Again, the statistical behavior and probabilities vary

depending on the image type.

The model employed for sign coding is as follows. Our

main assumptions are that the sign of the current coefficient

(i.e., d) is very likely to be the same as that of the prior

coefficient (i.e., φ), and that these probabilities vary depending

on the significant bitplane of coefficients. Figure 2(c) depicts

Psign(d = φ | φ) in different bitplanes for the same images

evaluated above. The dependence between d and φ is, in gen-
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Fig. 1: Statistical analysis of different 3D image types. (a) reports p(w) for all images and (b)-(f) reports g(ϕ | w) separately

for each image.

eral, strong at high bitplanes and weak at low bitplanes. This is

intuitively explained by considering that the difference (as the

non-absolute magnitude) between coefficients with opposite

signs is smaller for coefficients that become significant at low

bitplanes than for coefficients that become significant at high

bitplanes. Though probabilities are different depending on the

image type, in the case of signs, the statistical behavior is more

similar for all image types than that found for significance and

refinement coding.

III. PRIOR COEFFICIENT LOOKUP TABLES CODING SCHEME

A. Practical considerations

The prior coefficient-based probability model can be im-

plemented with very low complexity as follows. First, pdfs

are extracted for wavelet subbands of all components for

only one image of the sensor in question. This procedure

generates one p(w) and one g(ϕ | w) per wavelet subband,

irrespective of the number of components. For each subband,

one lookup table (LUT) containing Psig(bj = 0 | ϕ) is

generated for significance coding, and one LUT containing

Pref (bj = 0 | ϕ) is generated for refinement coding, via
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Fig. 2: Probabilities of symbols emitted by a bitplane coding engine for different types of images: (a) reports Psig(bj = 0 | ϕ),
where j is the coded bitplane; (b) reports Pref (bj′ = 0 | ϕ), where j is the significant bitplane and j′ is the first refinement

bitplane; (c) reports Psign(d = φ | φ) for different significant bitplanes j.

Equations (2), (3) and the extracted pdfs.1 Let us denote

the LUT for significance coding as Lsig,u, with u standing

for the wavelet subband to which coefficients belong. Lsig,u

contains Mu rows, which refers to the number of bitplanes

needed to represent all coefficients in that subband. For each

row, there are 2Mu columns representing all possible values

of ϕ. Cells of the LUT contain pre-computed probabilities,

so that Psig(bj = 0 | ϕ) is accessed as Lsig,u[j][ϕ]. The

LUT for refinement coding has the same structure with an

extra dimension that accounts for the bitplane at which the

refined coefficient became significant. The refinement LUT

is referred to as Lref,u, and is accessed as Lref,u[j][j
′][ϕ],

with j denoting the bitplane at which the coefficient became

significant, and j′ denoting the current refinement bitplane.

For sign coding the procedure is similar. The LUT containing

Psign(d = φ | φ) is generated per wavelet subband. This LUT

is denoted as Lsign,u, and contains Mu rows and one column.

Lsign,u[j] contains Psign(d = φ | φ) for bitplane j.

LUTs are computed offline and are assumed to be known by

coder and decoder, without need to explicitly transmit them.

In the experiments described in the next section, we use (all

1In practice, the probability values of the LUTs can be estimated using
relative frequencies conditioned on ϕ, avoiding the need for numerical
integration.

components) of one image from a given sensor to populate the

LUTs for that sensor. Results are then generated by applying

the LUTs to other images from that sensor. We note that the

generation of the LUTs requires only one image, which leads

to a rapid training stage. We call this method prior coefficient

lookup tables (PCLUT).

B. Implementation in JPEG2000 framework

We now describe the implementation of PCLUT in

the JPEG2000 framework. A typical coding system for

JPEG2000 [12] is constituted by three main stages: sample

data transformation, sample data coding, and codestream re-

organization. The sample data transformation stage compacts

image energy and prepares samples for the next stage. The

main operation carried out in this first stage is the application

of the wavelet transform to decorrelate spatial redundancy of

components. Two filter-banks are supported for 2D decor-

relation in JPEG2000 Part 1 [12]: the CDF 9/7 irreversible

wavelet transform for lossy compression, and the CDF 5/3

reversible wavelet transform for lossy-to-lossless compression.

JPEG2000 Part 2 [46] supports a wider variety of transforms

that can be applied spatially and/or in the depth axis, which are

especially suitable for the coding of 3D images. After the first

stage, the image is logically partitioned in small 2D sets of
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Fig. 3: Illustrative representation of the steps carried out by a context-adaptive approach and PCLUT when determining

probabilities of emitted symbols. The currently encoded symbol is denoted as bj and the probability determined for this

symbol is denoted as P (bj).

wavelet coefficients, called codeblocks that are independently

coded by the sample data coding stage.

The purpose of the sample data coding stage, also called

tier-1, is to produce an embedded codestream for each code-

block. Tier-1 carries out three sub-bitplane coding passes

at each bitplane called Significance Propagation Pass (SPP),

Magnitude Refinement Pass (MRP), and Cleanup Pass (CP).

Each coefficient is scanned only once in each bitplane. SPP

and CP are devised for significance coding, whereas MRP is

devised for refinement coding. Probabilities of emitted sym-

bols are determined using the context-adaptive mechanisms of

JPEG2000.

Our model is integrated in tier-1 by feeding the arithmetic

coder with the symbol and its probability determined through

the pre-computed LUTs. Figure 3 depicts the steps commonly

required by a traditional context-adaptive approach and by

PCLUT. The context-adaptive approach codes the symbol bj
employing two steps. The first step, which is named “context

formation” in the figure, computes the context of the current

coefficient using the significance map of its neighbors. This

is illustrated in the figure as the black (significant) and white

(insignificant) neighbors of the coefficient currently encoded.

The context of the coefficient is then mapped to one context

from the set defined by JPEG2000. Each context employs

a different probability, which is adaptively adjusted in the

second step of this approach as more data are coded. Both

the probability and the symbol are fed to the arithmetic coder.

This process requires access to eight neighboring coefficients

and computational resources to calculate the context and the

probability. As seen in the figure, PCLUT requires access to

only one previous coefficient and one access to the LUT to

determine the probability of the emitted symbol. We remark

that this operation is repeated intensively during the coding

process. Specifically, it is carried out once for each coeffi-

cient in each bitplane. Thus, simplification of this process is

essential to reduce computational costs.

The third stage of the JPEG2000 coding system is code-

stream re-organization, also known as tier-2, which codes

auxiliary data and organizes the final codestream into quality

layers. Typically, the minimization of image distortion for a

given target bitrate is conducted by a rate-distortion optimiza-

tion process.

C. Scalability considerations

An important feature provided by JPEG2000 is scalability

in terms of spatial location, resolution, component, and qual-

ity [37]. Spatial location scalability and resolution scalability

are not compromised by our probability model, but mecha-

nisms for component scalability and quality scalability are

affected. Component scalability is the ability to access and

decode selected components of the image without needing to

decode the full codestream.

Our model determines probabilities for Wz,y,x using

Wz−1,y,x, which produces a causal effect that encompasses

the full 3D volume. For instance, if component z′′ needs

to be recovered, all previous components z′′′ < z′′ also

need to be decoded. Obviously, the first component of the
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TABLE II: Component scalability for different wavelet filter-

banks and the proposed coding scheme. The table reports

the average number of components decoded when only one

component is selected for extraction. Results are approximate

(image boundaries may reduce dependencies). l denotes the

number of wavelet decomposition levels, whereas C is the

size of clusters employed by PCLUT.

general l = 1 l = 3 l = 5

Haar wavelet l + 1 2 4 6

CDF 9/7 irrev. 7l + 1 8 22 36

CDF 5/3 rev. 3l + 1 4 10 16

general C = 2 C = 8 C = 32

PCLUT (ave., max) (C/2, C) (1, 2) (4, 8) (16, 32)

full volume is not coded using the prior coefficient-based

approach since there is no prior coefficient. In the experimental

results reported in the next section, the first component is

coded using the normal JPEG2000 context-based approach.

When component scalability is needed, this same strategy can

be employed in selected components of the image. This is

akin to using key frames in video coding. For example, the

first of every C components of the volume might be coded

without using the prior coefficient approach. In the worst case,

to recover one selected component, C components have to

be decoded. On average, only C/2 components have to be

decoded.

As seen in the next section, this strategy does not penal-

ize coding performance significantly except when C is very

small. Due to the non-zero-length impulse response of wavelet

filters, the degree of scalability achieved with our strategy is

often similar to that achieved when the image is decorrelated

along the depth axis using wavelet transforms. See Table II

for an evaluation of the component scalability achieved by

three common wavelet filter-banks (employed in the following

experiments) when they are used to decorrelate along the depth

axis of a volume. As can be seen, component scalability can

be impacted significantly when moderate to large numbers

of decomposition levels are applied. Our approach achieves

a high degree of component scalability for C ≤ 8 without

penalizing coding performance (see below).

JPEG2000 achieves quality scalability through the use of

quality layers. The formation of quality layers entails partial

transmission of coefficient magnitudes, so that the decoder

can successively refine the magnitude of coefficients as more

layers are transmitted. In previous sections we assumed that

the magnitude (i.e., ϕ) and the sign (i.e., φ) of the prior

coefficient are available at the moment that bits for Wz,y,x

are encoded/decoded. This assumption holds when the image

is decoded losslessly, since all bits of the previous component

are decoded before decoding the current one. Nonetheless,

when forming quality layers or when lossy compression is

used, the exact magnitude of the prior coefficient may not be

available. Let us assume that the prior coefficient has been only

partially encoded/decoded until bit j′′. The encoder/decoder

then reconstructs the magnitude of the prior coefficient as

ϕ̂ =

{

0 if j′′ > s

(υ̂ + δ) · λ2j
′′

if j′′ ≤ s
, (4)

where υ̂ = [bM−1, bM−2, ..., bj′′ ], δ is the reconstruction factor

(determined in this work according to [47]), and λ is the

quantization step size. The sign is reconstructed as

φ̂ =

{

unknown if j′′ > s

φ if j′′ ≤ s
. (5)

Pre-computed LUTs for significance and refinement coding

can still be utilized when coefficients are partially transmitted

by using ϕ̂ instead of ϕ. For sign coding, pre-computed LUTs

are used when φ̂ = φ, while equal probability Psign(d) = 0.5
is used when φ̂ = unknown. As seen in the next section, the

degradation of coding performance due to the use of ϕ̂ and φ̂
is modest.

A simple strategy to form quality layers with PCLUT is

to use ϕ̂ and φ̂ as described previously in combination with

the method proposed in [48]. The main assumption behind that

rate-distortion optimization method is that bitplane boundaries

are nearly optimal as truncation points for the whole image.

This implies that truncating all codeblocks at the same bitplane

roughly minimizes image distortion for the corresponding

bitrate, so that quality layers may be formed at bitplane

boundaries as in [49]. Of course, encoding rates or distortions

can then only be controlled relatively coarsely. The advantage

is that each coefficient can be coded assuming that ϕ̂ and

φ̂ are reconstructed with the information transmitted for the

current layer or, equivalently, for the current bitplane, so both

coder and decoder can easily use the same ϕ̂ and φ̂ when

coding/decoding coefficients.

To summarize, the probability model based on the prior

coefficient can be employed in the following modes:

1) Lossless compression without component scalability:

this mode uses the 2D reversible CDF 5/3 wavelet

transform and ϕ and φ to determine probabilities of

emitted symbols.

2) Lossless compression with component scalability: same

strategy as above but the first of every set of C com-

ponents is encoded with the un-modified JPEG2000

context-based approach.

3) Lossy compression without component scalability: this

mode uses the 2D irreversible CDF 9/7 or the 2D

reversible CDF 5/3 wavelet transform and ϕ̂ and φ̂ to

determine probabilities of emitted symbols.

4) Lossy compression with component scalability: same

strategy as above but the first of every set of C com-

ponents is encoded with the un-modified JPEG2000

context-based approach.

D. Computational complexity

In general, three stages of the coding system require the

major computational efforts. These three stages correspond

to the operations needed to: 1) remove redundancy along
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the depth axis; 2) remove redundancy of components in the

vertical and horizontal axes; and 3) code the transformed

coefficients using bitplane and entropy coding techniques.

The complexity of these operations is O(N) (linear) in the

number (N ) of samples encoded. However, the slope varies

dramatically depending on the details of the procedures. Thus,

a more careful accounting of complexity is required.

The computational complexity of JPEG2000, as well as

the proposed image codec, can be roughly approximated as

the number of operations needed by the wavelet transform

to decorrelate the image information plus the number of

operations needed by the bitplane coding engine to code

the emitted symbols. The computational complexity is then

roughly (#Wz +#Wy,x) + (#S · θ), with #Wz and #Wy,x

denoting the number of operations carried out by the wavelet

transform to decorrelate the image along the depth and the

spatial axes, respectively, #S denoting the number of emitted

symbols, and θ denoting the number of operations carried out

by the bitplane coding engine when coding one symbol.

As described in the next section, the wavelet transform

is commonly applied first in the depth axis, and then in

the vertical and horizontal axes, producing an anisotropic

decomposition that is referred to as “1D+2D.” With this type

of decomposition, #Wz and #Wy,x can be approximated as

the length of the wavelet filter-bank kernels multiplied by

the total number of samples and then multiplied by 2 and

8/3, respectively. 2 and 8/3 account for the application of

the wavelet transform in successive levels of decomposition.

An extended analysis on the computational complexity of

transforms for remote sensing images can be found in [19].

A transform strategy that applies the “1D+2D” decomposition

with the reversible CDF 5/3 wavelet transform then requires

roughly (2 ·4+8/3 ·4) ·N operations, where N = X ·Y ·Z is

the number of samples in the image. The effective length of

the CDF 5/3 filter-bank is 4 since half of the operations are

done with a filter length of 5, and half with a filter length of

3.

The number of symbols emitted per each coefficient coded

is dependent on the image, but is upperbounded by the bit

depth of the original image. More realistically, the number

of symbols emitted per coefficient averages around one half

the bit depth as indicated in Table III. This table reports the

average number of emitted symbols per coefficient when the

“1D+2D” strategy is employed to code one image of each type

losslessly with a conventional JPEG2000 implementation. On

average, 6.22 symbols are emitted per coefficient coded.

The value of θ is also dependent on the image coded, but

can be roughly approximated by appealing to Figure 3. In

this figure, it can be seen that in addition to the symbol

to be coded, 8 neighboring symbols are considered. This,

together with probability adaptation and arithmetic coding,

implies on the order of 12 memory accesses and an equal

number of arithmetic operations (including bit manipulation).

Our implementation employs optimization tricks from [37]

resulting in about 12 total operations per symbol emitted,

as determined using software profiling tools. The computa-

tional complexity of a 3D image codec using a conventional

JPEG2000 implementation that employs the “1D+2D” strategy

is then roughly

(2 · 4 + 8/3 · 4) ·N + 6.22 · 12 ·N , (6)

which is linear in the number of samples of the image as

mentioned previously.

As discussed previously, the probability model of PCLUT

is devised to remove the redundancy of the image along the

depth axis and to simplify the coding of symbols emitted by

the bitplane coding engine. The former avoids the use of a

transform along the depth axis of the volume, while the latter

results in a reduction of θ. Appealing again to Figure 3, in

place of the 8 spatial neighbors, only one prior coefficient is

considered, and no probability adaptation is carried out. The

figure implies on the order of 4 memory accesses and as many

calculations. The simplicity of the method does not admit

much further optimization. Indeed, software profiling tools

indicate that roughly 7 total operations are carried out in our

implementation. As reported in Table III, the average number

of emitted symbols per coefficient when decorrelating only

the spatial axes of the volume is 7.16. Such a strategy emits

more symbols than “1D+2D” due to the existing redundancy

among the components of the 3D image. The computational

complexity of a 3D image codec using PCLUT is then roughly

8/3 · 4 ·N + 7.16 · 7 ·N , (7)

which is also linear in the number of samples N .

Even though the computational complexity of (6) and (7) are

both linear in N , the difference in computational complexity

between the two codecs is approximately 35%.

IV. EXPERIMENTAL RESULTS

A. Coding performance

The coding performance of PCLUT is evaluated for five

different types of 3D images, as reported in Table I. Detailed

results are reported for the images of Table I. Summary results

are reported for a much larger corpus of images. LUTs are

generated using data from the first image of each type (as

reported in the last column of Table I) and employed for the

remaining ones. For the Computed Tomography (CT) images,

the LUTs are generated from image “A” and “D” and used

to code images “B,”“C” and “E,”“F,” respectively, due to the

use of two different types of CT sensors. Results are reported

only for images that are not in the training set.

PCLUT is compared to three transform strategies that are

employed in the literature to assess the performance of 3D

coding schemes. These strategies are:

1) No transform along the depth axis, and 5 levels of

wavelet transform in the spatial axes (denoted by “2D”).

2) 1 level of Haar transform along the depth axis, and 5

levels of wavelet transform in the spatial axes (denoted

by “Haar+2D”).

3) 5 levels of wavelet transform along the depth axis, and 5

levels of wavelet transform in the spatial axes (denoted

by “1D+2D”).
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TABLE III: Average number of emitted symbols per coded coefficient when PCLUT and JPEG2000 code images losslessly

using a transform strategy that decorrelates image information along two and three axes of the volume, respectively.

PCLUT 2D JPEG2000 1D+2D

AVIRIS - cuprite 7.6 5.6

Hyperion - agricultural 7.6 6.2

Computed Tomography - A 8.9 8.5

Angiography - A 6.9 6.6

CIF - bridge 4.8 4.2

AVERAGE 7.16 6.22

In addition to the Haar transform mentioned above, two

different wavelet transforms are considered as discussed be-

low. Wavelet transforms are first applied in the depth axis,

and then in the vertical and horizontal axes, producing an

anisotropic decomposition. The anisotropic decomposition is

chosen herein because it generally achieves better performance

than other types of decomposition structures [16].

The first strategy above is supported in Part 1 of JPEG2000

and is the most common approach to code gray or YCbCr

images. The other two strategies are supported by JPEG2000

Part 2 and are commonly employed in the medical and

remote sensing fields to code data acquired by 3D-specific

sensors. The modification of the probability model proposed

by PCLUT goes beyond the scope of the JPEG2000 standard,

though, as stated previously, PCLUT can be implemented in

any bitplane image coding engine. JPEG2000 is chosen here

due to its suitability to code 3D images, its widespread use, and

to provide a fair comparison with the other strategies. Also,

JPEG2000 provides an appropriate framework since it is com-

monly adopted in many scenarios that use 3D images. The first

transform strategy is the simplest and is employed by memory-

constrained applications. The second strategy employs a short

filter-bank on the depth axis, leading to high component

scalability and moderate memory requirements. We note that

the memory requirements and component scalability of this

strategy are very similar to the proposed PCLUT strategy

(see below). The third strategy is used when neither memory

requirements nor component scalability are restrictive.

Coding performance of JPEG2000 is evaluated for the three

transform strategies, and is compared to that of PCLUT.

JPEG2000 coding parameters are: irreversible CDF 9/7, or

reversible CDF 5/3 wavelet transform depending on lossy or

lossless compression, codeblock size of 64×64, single quality

layer codestreams, no precincts. The base quantization step

sizes, corresponding to bitplane 0, when the CDF 9/7 filter-

bank is used are chosen according to the L2-norm of the

synthesis basis vectors of the subband [37, Ch. 10.5.1], which

is a common practice in JPEG2000.

First, we evaluate coding performance for lossless compres-

sion (mode 1 of Section III-C). Columns 3-5 of Table IV

report the codestream length, in bits per sample (bps), gen-

erated when encoding the 3D images with the three transform

strategies described above. The 6th column reports the perfor-

mance of PCLUT. Experimental results suggest that PCLUT

achieves a significant gain in coding efficiency compared to

many other strategies, especially those that employ only 2D

transforms. For two of the five image types (namely, Hyperion

and Angiography), PCLUT achieves the best lossless results,

surpassing “1D+2D” strategies. For four of the five image

types, PCLUT surpasses the efficiency of the “Haar+2D”

strategy. These results suggest that the proposed probability

model is well suited for 3D images with spectral and spa-

tial information along the depth axis. Even though PCLUT

achieves a coding gain of approximately 11% compared to

a “2D” strategy for video sequences, results suggest that

temporal correlation among frames of a video sequence is

more efficiently decorrelated with filters that consider many

previous/following components. As indicated by these results,

PCLUT is not especially indicated for video sequences. Even

so, video coding results are reported to show the increase in

efficiency with respect to a “2D” strategy and to perform a

more general assessment on different types of 3D images.

The last three columns of Table IV report the coding per-

formance of PCLUT for lossless compression with component

scalability (mode 2 of Section III-C). Representative values for

parameter C are selected. Coding performance is only slightly

penalized for C = 32 and C = 8, which indicates that PCLUT

can provide component scalability with competitive coding

performance.

To further validate the achieved results, an extended corpus

containing 93 images is employed to perform the same test as

that of Table IV. This corpus contains 18 AVIRIS images, 21

Hyperion images, 16 CT images, 23 Angiography images, and

15 CIF video sequences. Table V reports the results achieved

with the extended corpus, on average for each type of 3D

image. The results obtained are similar to those of Table IV,

which confirms the effectiveness of PCLUT to code these

types of 3D images.

Figure 4 depicts lossy coding performance for the same

strategies as above, in terms of Signal to Noise Ratio (SNR).2

The figure depicts performance for selected images that do

not correspond to those used to extract the LUTs. Results for

a wider variety of images are discussed below. The graphs in

Figure 4 report the lossy coding performance with and without

component scalability (modes 4 and 3 of Section III-C, respec-

tively). Again, results suggest that the proposed probability

model significantly improves the performance of the coding

2The “Haar+2D” strategy for the angiography and videoconferencing im-
ages in Figures 4(d) and (e) uses the reversible Haar transform since it achieves
slightly superior coding performance than the irreversible Haar transform.
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TABLE IV: Evaluation of lossless coding performance. Results reported in bits per sample (bps).

JPEG2000 PCLUT PCLUT

C = 32 C = 8 C = 2

2D Haar+2D 1D+2D 2D 2D 2D 2D

AVIRIS

jasper sc01 7.66 6.56 5.54 5.88 5.92 6.08 6.74

jasper sc02 7.01 6.15 5.28 5.57 5.60 5.73 6.27

lowAltitude sc01 7.83 6.86 5.95 6.39 6.42 6.55 7.10

lowAltitude sc02 7.66 6.56 5.54 5.88 5.92 6.08 6.74

lunarLake 7.83 6.86 5.95 6.39 6.42 6.55 7.10

AVERAGE 7.60 6.60 5.65 6.02 6.06 6.20 6.79

Hyperion

urban 7.09 6.37 6.27 6.03 6.03 6.11 6.46

flooding 6.58 6.02 6.10 5.86 5.86 5.91 6.12

forestry 6.73 6.09 6.06 5.79 5.80 5.86 6.15

coastal 7.09 6.37 6.27 6.03 6.03 6.11 6.46

tornado 6.58 6.02 6.10 5.87 5.86 5.91 6.12

AVERAGE 6.81 6.17 6.16 5.92 5.92 5.98 6.26

Computed Tomography

B 8.41 8.23 8.07 8.00 8.02 8.05 8.20

C 8.33 8.16 8.01 7.97 7.97 8.01 8.14

E 4.04 3.80 3.60 3.90 3.90 3.92 3.99

F 3.84 3.60 3.40 3.67 3.67 3.69 3.77

AVERAGE 6.16 5.95 5.77 5.89 5.89 5.92 6.03

Angiography

B 6.48 6.40 6.33 6.21 6.22 6.24 6.35

C 6.35 6.28 6.22 6.09 6.09 6.12 6.22

D 6.37 6.30 6.23 6.09 6.10 6.12 6.23

E 6.48 6.40 6.33 6.21 6.22 6.24 6.35

F 6.35 6.28 6.22 6.09 6.09 6.12 6.22

AVERAGE 6.41 6.33 6.27 6.14 6.14 6.17 6.27

CIF

paris 4.85 3.92 3.06 3.94 3.97 4.05 4.40

salesman 4.44 3.78 3.10 4.13 4.13 4.16 4.29

closed bridge 4.28 3.86 3.36 3.85 3.86 3.90 4.06

news 3.56 2.64 1.86 3.25 3.25 3.28 3.40

waterfall 4.70 4.15 3.60 4.25 4.26 4.30 4.47

AVERAGE 4.37 3.67 3.00 3.88 3.89 3.94 4.12

TABLE V: Evaluation of lossless coding performance for an extended corpus of images. Results reported in bits per sample

(bps).

JPEG2000 PCLUT PCLUT

C = 32 C = 8 C = 2

2D Haar+2D 1D+2D 2D 2D 2D 2D

AVIRIS (18 images) 7.47 6.52 5.60 5.95 5.99 6.12 6.69

Hyperion (21 images) 6.58 6.02 6.10 5.86 5.86 5.91 6.12

Computed Tomography (16 images) 5.88 5.68 5.52 5.80 5.80 5.81 5.84

Angiography (23 images) 6.46 6.38 6.32 6.19 6.20 6.23 6.33

CIF (15 images) 4.31 3.71 3.12 3.80 3.81 3.86 4.05

system. Note that PCLUT uses the same transform strategy as

that labeled “2D.” By changing only the probability models of

emitted symbols, PCLUT boosts coding performance to that

achieved by a more sophisticated transform strategy that uses 1

level of wavelet transform along the depth axis of the volume.

Classic approaches of context-adaptive coding achieve much

less coding gain when 3D context models are employed (see,

for instance, [14]). The transform strategy “1D+2D” achieves

better rate-distortion performance than PCLUT at low bitrates

for most images. Nonetheless “1D+2D” strategies have very

high memory requirements and low component scalability (see

below), which may render them impractical in devices with

limited resources.

In addition to the aforementioned coding strategies, Fig-

ure 4(e) also reports the results achieved when using two

profiles of the video coding standard H.264.3 The H.264

profile “baseline” achieves coding performance similar to

that of the “1D+2D” strategy, whereas the H.264 “high”

profile achieves the highest results reported in that figure.

Even though PCLUT improves over the performance of both

the “2D” and “Haar+2D” strategies, results suggest that the

“1D+2D” strategy and H.264 achieve better coding perfor-

mance for this particular type of 3D images.

It is also apparent from Figure 4 that the difference between

3The free libraries x264 (see http://www.videolan.org/developers/x264.html)
have been employed to code the sequences with H.264. Coding parameters
are selected to achieve highest compression efficiency regardless of the
computation time spent.
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Fig. 4: Evaluation of lossy coding performance.

using and not using component scalability is small for most

images. For the selected computed tomography and angiog-

raphy images this difference is not discernible, so only one

PCLUT mode is shown. We note that the points depicted in the

graphs of Figure 4 are the natural truncation points achieved at

the bitplane boundaries, which are used for quality scalability

purposes.

Results for other images of Table I, as well as the extended

corpus discussed above, are similar to those shown in Figure 4,

confirming the effectiveness of PCLUT to code these 3D

images. Results obtained for the images of Table I can be

found at [50].

The enhancement of coding performance achieved by

PCLUT leads to images with better visual appearance. Fig-

ure 5 depicts three images belonging to the remote sensing,

medical, and videoconferencing fields. Each image is coded

using the “1D+2D,” and “2D” transform strategies, as well

as PCLUT. At the selected target bitrates, the image decoded

with the “2D” strategy is blurry and ringing artifacts are clearly

visible. The image decoded with the “1D+2D” strategy is more

visually appealing and does not present visual artifacts. While

requiring significantly less computational resources than the

“1D+2D” and “2D” strategies (see below), PCLUT achieves

an image that is significantly clearer than that achieved with

the “2D” strategy and similar, though not as good as, to that
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achieved with the “1D+2D” strategy.

The last test assessing coding performance employs im-

ages in which the correlation along the depth axis has been

decreased artificially. The aim of this test is to evaluate

whether the proposed scheme is effective for images that have

low correlation between components. The AVIRIS images

employed in Table IV are subsampled in the component

direction selecting one out of two, three, and five components.

Since the original images have 224 components, this produces

three artificial images for each original having 112, 75, and

45 components, respectively. As expected, the correlation in

the component direction decreases as fewer components are

included in the image. Table VI reports the results achieved

when these images are coded losslessly by the aforementioned

strategies. For completeness, the table also provides the re-

sults achieved when coding the full volume. The correlation

coefficient between components of each image is reported in

parentheses beside the image name. As expected, the “2D”

strategy achieves similar coding performance regardless of

the correlation between components. The small variations

are caused due to the different subsets of components being

selected for each subsampling ratio. Also as expected, the per-

formance achieved for each image by “Haar+2D,” “1D+2D,”

and PCLUT all decrease with decreasing correlation. The

decrease in performance is similar for all three strategies.

In general, PCLUT achieves better and worse performance

than that achieved by the “Haar+2D” and “1D+2D” strategies,

respectively, the same behavior as for the original image.

Only for the “low Altitude sc01” and “low Altitude sc02”

images having 45 components, “Haar+2D” achieves better

performance than PCLUT. Notably, “Haar+2D” also equals

or betters the performance of “1D+2D” for these two cases.

On the other hand, for the “jasper sc02” image having 45
components, PCLUT achieves the same coding performance as

that achieved by the “1D+2D” strategy. These results indicate

that the performance decreases of the proposed scheme are

similar to those of other schemes when the correlation between

components decreases. Similar results hold for the other types

of images.

B. Computational costs

Computational performance tests are performed on an Intel

Core i7 CPU at 2.93 GHz. All methods are implemented in

our Java implementation BOI4, and executed on a Java Virtual

Machine v1.6 using GNU/Linux v2.6. Results are reported as

CPU processing time. The implementation of the JPEG2000

context-adaptive approach uses several software optimizations

as suggested in [37, Ch. 17.1.2]. PCLUT uses a similar degree

of optimization. Since all methods are tested in the same code

base, differences in throughput are relevant, even though all

run-times might be reduced by the use of a compiled language.

Similar run-times are produced for the four modes of PCLUT

utilization described in Section III-C, thus only results for the

first one (lossless compression without component scalability)

are reported.

4See: http://www.deic.uab.es/∼francesc

Table VII presents the throughput achieved for the three

aforementioned JPEG2000 strategies, and PCLUT. The ta-

ble distinguishes the main stages carried out by the coder:

tier-1 coding; application of the wavelet transform on the

components and (possibly) on the depth axis; and other

operations. Other operations include tier-2 coding, level shift,

quantization, and codestream re-organization. Experimental

results suggest that, on average for all the five types of

images, PCLUT is approximately 30%, 31%, and 33% more

computationally efficient than the strategies “2D,” “Haar+2D,”

and “1D+2D,” respectively. The main gain is achieved at the

tier-1 coding stage due to the simplification of the probability

model. These results coincide with the computational com-

plexity analysis described in Section III-D.

The peak memory requirements of these strategies may vary

significantly depending on the implementation. The use of

the local wavelet transform [51], software optimization proce-

dures, or hardware-based optimization may have an important

impact on the memory requirements. Therefore, our evaluation

is only indicative. We report peak memory requirements using

the local wavelet transform along the depth axis, which is a

common approach since otherwise the full volume would be

maintained in memory. Table VIII presents results for the Haar,

CDF 9/7, and CDF 5/3 wavelet filter-banks. The same results

hold for all images of each type. Results indicate that peak

memory requirements for strategies that employ more than one

level of wavelet decomposition along the depth axis, namely

the “1D+2D” strategies, are an order of magnitude higher than

strategies that only apply one or zero levels of decomposition.

For constrained resource devices, this can make a significant

difference. For the “cuprite” image, for instance, the peak

memory requirement of PCLUT is 0.9% of the total raw

size of the image (which is 112 MB). On the other hand,

although the memory requirements of PCLUT and “Haar+2D”

are equivalent, we remark that the implementation of PCLUT

in hardware-based implementations would require much less

circuitry due to the simplicity of our approach.

In summary, PCLUT is roughly 1/3 more computation-

ally efficient than the “Haar+2D” transform strategy while

achieving the same coding performance, the same memory

requirements, and the same component scalability. Compared

to the “2D” strategy, PCLUT is 1/3 more computationally

efficient, with a significant increase in coding performance

and negligible increase in memory and scalability capabilities.

“1D+2D” transform strategies achieve better coding efficiency

than PCLUT only at low lossy compression rates and at

the expense of very high memory requirements and low

component scalability.

V. CONCLUSIONS

The coding of 3D images is an important topic of interest

in several fields. The most common approach begins with

the application of a decorrelating transform. For lossy/lossy-

to-lossless regimes this transform is typically followed by a

bitplane coding engine and context-adaptive arithmetic coding.

Numerous works have studied transform strategies, bitplane

coding engines, and context formation approaches to enhance
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(a) JPEG2000 1D+2D - 33.28 dB (b) PCLUT 2D - 23.59 dB (c) JPEG2000 2D - 21.98 dB

(d) JPEG2000 1D+2D - 39.64 dB (e) PCLUT 2D - 30.84 dB (f) JPEG2000 2D - 25.63 dB

(g) JPEG2000 1D+2D - 42.12 dB (h) PCLUT 2D - 32.96 dB (i) JPEG2000 2D - 27.11 dB

Fig. 5: Visual evaluation. (a), (b), (c) is an area from component 48 of AVIRIS “lowAltitude sc01” coded at 0.19 bps. (d), (e),

(f) is component 9 of CT “F” coded at 0.14 bps. (g), (h), (i) is an area from frame 50 of video sequence “paris” coded at 1

bps.

the coding efficiency of 3D image coding schemes. Most

studies have been centered on one particular type of 3D image.

This paper introduces a scheme for the coding of many

different types of 3D images. This scheme employs a novel

probability model for symbols emitted by the bitplane coding

engine. Only employing the partially reconstructed magnitude

and sign of coefficients encoded in previous components,

the proposed method is able to achieve competitive coding

performance in lossy-to-lossless regimes. This boost in coding

efficiency is achieved through the use of an accurate proba-

bility model that is able to adjust the probabilities fed to the

arithmetic coder with high precision. This increase in coding

efficiency is commonly not achieved by other state-of-the-art

probability models that employ traditional 2D or 3D context-

adaptive approaches. The main advantages of the proposed

approach are low computational complexity, very low memory
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TABLE VI: Evaluation of lossless coding performance when the correlation along the depth axis decreases. Results are reported

for the AVIRIS images in bits per sample (bps).

JPEG2000 PCLUT

2D Haar+2D 1D+2D 2D

fu
ll

v
o
lu

m
e

(2
2
4

co
m

p
o
n
en

ts
) jasper sc01 (0.96) 7.66 6.56 5.54 5.88

jasper sc02 (0.96) 7.01 6.15 5.28 5.57

lowAltitude sc01 (0.93) 7.83 6.86 5.95 6.39

lowAltitude sc02 (0.93) 7.66 6.56 5.54 5.88

lunarLake (0.96) 7.83 6.86 5.95 6.39

AVERAGE (0.95) 7.60 6.60 5.65 6.02

1
o
u
t

o
f

2
co

m
p
o
n
en

ts

(1
1
2

co
m

p
o
n
en

ts
) jasper sc01 (0.95) 7.66 6.75 6.07 6.28

jasper sc02 (0.95) 7.55 6.66 6.00 6.20

lowAltitude sc01 (0.92) 7.82 7.04 6.46 6.84

lowAltitude sc02 (0.93) 7.96 7.15 6.54 6.97

lunarLake (0.95) 6.92 6.23 5.60 5.79

AVERAGE (0.94) 7.58 6.77 6.13 6.42

1
o
u
t

o
f

3
co

m
p
o
n
en

ts

(7
5

co
m

p
o
n
en

ts
)

jasper sc01 (0.94) 7.67 6.92 6.43 6.54

jasper sc02 (0.94) 7.56 6.83 6.36 6.45

lowAltitude sc01 (0.90) 7.84 7.21 6.82 7.12

lowAltitude sc02 (0.91) 7.97 7.33 6.92 7.29

lunarLake (0.94) 6.92 6.34 5.81 5.92

AVERAGE (0.92) 7.59 6.93 6.47 6.66

1
o
u
t

o
f

5
co

m
p
o
n
en

ts

(4
5

co
m

p
o
n
en

ts
)

jasper sc01 (0.91) 7.73 7.11 7.01 7.03

jasper sc02 (0.91) 7.61 7.01 6.91 6.91

lowAltitude sc01 (0.89) 7.88 7.37 7.39 7.63

lowAltitude sc02 (0.90) 8.01 7.50 7.50 7.84

lunarLake (0.93) 6.97 6.47 6.09 6.16

AVERAGE (0.90) 7.64 7.09 6.98 7.11

TABLE VII: Computational throughput evaluation when decoding the full image (coded in lossless mode without quality

scalability). Results reported as CPU processing time (in seconds).

PCLUT - 2D JPEG2000 - 2D JPEG2000 - Haar+2D JPEG2000 - 1D+2D

tier-1 wav. other TOT. tier-1 wav. other TOT. tier-1 wav. other TOT. tier-1 wav. other TOT.

AVIRIS - cuprite 15.0 2.7 1.8 19.4 27.3 2.5 1.3 31.2 24.4 4.1 1.3 29.9 22.6 5.8 1.8 30.1

AVIRIS - jasper sc01 18.1 2.6 1.9 22.7 28.7 2.5 1.3 32.5 25.7 4.3 1.4 31.4 23.1 5.8 1.7 30.6

Hyperion - agricultural 12.0 2.0 1.6 15.6 20.2 1.9 1.4 23.5 18.7 4.1 1.5 24.2 19.0 5.3 1.2 25.5

Hyperion - urban 14.8 1.9 1.6 18.3 20.6 1.8 1.4 23.8 19.0 3.2 1.6 23.9 19.1 5.3 1.2 25.7

Computed Tomography - A 10.8 1.3 1.0 13.1 15.1 1.2 0.7 17.0 15.0 1.9 0.7 17.7 15.7 2.7 0.8 19.2

Computed Tomography - B 11.2 1.3 1.0 13.5 15.2 1.2 0.7 17.2 15.1 1.9 0.7 17.7 14.9 2.7 0.8 18.5

Angiography - A 10.9 1.8 1.2 13.9 17.0 1.7 1.0 19.7 17.0 2.7 1.0 20.7 17.1 3.8 0.9 21.8

Angiography - B 11.5 1.7 1.1 14.3 17.4 1.7 1.0 20.2 17.1 2.7 1.0 20.8 17.5 3.8 0.9 22.2

Videoconf. - bridge 10.0 2.0 1.5 13.5 14.7 1.9 1.3 18.0 14.1 4.5 1.2 19.8 13.7 5.5 1.2 20.5

Videoconf. - paris 9.7 1.9 1.5 13.1 17.8 2.0 1.3 21.1 15.2 4.4 1.2 20.8 12.8 5.2 1.2 19.2

AVERAGE 12.4 1.9 1.4 15.7 19.4 1.9 1.2 22.4 18.1 3.4 1.2 22.7 17.5 4.6 1.2 23.3

TABLE VIII: Peak memory requirements evaluation. Results reported in Megabytes (MB).

PCLUT JPEG2000

CDF 5/3 rev. CDF 9/7 irrev.

2D 2D Haar+2D 1D+2D 1D+2D

AVIRIS - cuprite 1.0 0.5 1.0 8.0 18.0

Hyperion - agricultural 0.8 0.4 0.8 6.4 14.4

Computed Tomography - A 1.0 0.5 1.0 8.0 18.0

Angiography - A 1.0 0.5 1.0 8.0 18.0

CIF - bridge 0.2 0.1 0.2 1.6 3.6

AVERAGE 0.8 0.4 0.8 6.4 14.4

requirements, straightforward implementation, short training

stage, and adaptability to most types of 3D images. The

proposed probability model can be integrated in most bitplane

coding systems. Hardware implementations, surveillance and

teleconferencing, and constrained resource devices are some

applications that may benefit from the proposed scheme.
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