
Citation: Aulí-Llinàs, F. Fast and

efficient entropy coding architectures

for massive data compression.

Technologies 2023, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Copyright: © 2023 by the author.

Submitted to Technologies for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Fast and efficient entropy coding architectures for massive data
compression

Francesc Aulí-Llinàs1

1 Department of Information and Communications Engineering, Universitat Autònoma de Barcelona;

francesc.auli@uab.cat

Abstract: The compression of data is fundamental to alleviate costs of transmitting and storing 1

massive data sets employed in myriad fields of our society. Most compression systems employ an 2

entropy coder in their coding pipeline to remove the redundancy of coded symbols. The entropy 3

coding stage needs to be efficient to yield high compression ratios, and fast to process large amounts 4

of data rapidly. Despite their widespread use, entropy coders are commonly assessed for some par- 5

ticular scenario or coding system. This work provides a general framework to assess and optimize 6

different entropy coders. First, the paper describes three main families of entropy coders, namely, 7

those based on variable to variable length codes (V2VLC), arithmetic coding (AC) and tabled asym- 8

metric numeral systems (tANS). Then, a low-complexity architecture for the most representative 9

coder(s) of each family is presented, more precisely, a general version of V2VLC, the MQ, M and a 10

fixed-length version of AC and two different implementation of tANS. These coders are evaluated 11

under different coding conditions in terms of compression efficiency and computational throughput. 12

The results obtained suggest that V2VLC and tANS achieve the highest compression ratios for most 13

coding rates and that the AC coder that uses fixed-length codewords attains the highest throughput. 14

The experimental evaluation discloses the advantages and shortcomings of each entropy coding 15

scheme, providing insights that may help to select this stage in forthcoming compression systems. 16

Keywords: entropy coding; variable to variable length codes; arithmetic coding; asymmetric nu- 17

meral systems 18

1. Introduction 19

Our society is immersed in a flow of data that supports all kinds of services and 20

facilities such as online TV and radio, social networks, medical and remote sensing appli- 21

cations, or information systems, among others. The data employed in these applications 22

are of different nature: from text and audio, to images and videos, strands of DNA, or 23

environmental indicators, with a long etcetera. In many scenarios, these data are trans- 24

mitted and/or stored for a fixed period of time or indefinitely. Despite enhancements on 25

networks and storage devices, the amount of information globally generated increases so 26

rapidly that only a small part can be saved [1,2]. Data compression is the solution to relieve 27

the Internet traffic congestion and the storage necessities of data centers. 28

The compression of information has been a field of study for more than a half century. 29

Since C. Shannon established the bases of information theory [3], the problem of how to 30

reduce the amount of bits to store an original message has been a relevant topic of study [4– 31

6]. Depending on the data type and their purposes, the compression regime may be lossy 32

or lossless. Image, video and audio, for example, often use lossy regimes because the 33

introduction of some distortion in the coding process does not disturb a human observer 34

and achieves higher compression ratios [6]. Lossless regimes, on the other hand, recover 35

the original message losslessly but achieve lower compression ratios. Also depending on 36

the type and purposes of the data, the compression system may use different techniques. 37

There are many systems specifically devised for particular types of data. Image and video 38
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Figure 1. Stages of a conventional compression system.

compression capture samples that are transformed several times to reduce their visual 39

redundancy [7–10]. Contrarily, compression of DNA often relies on a reference sequence 40

to predict only the dissimilarities between the reference and the source [11]. There are 41

universal methods like Lempel–Ziv–Welch [12,13] that code any kind of data, although 42

they do not achieve the high compression ratios that specifically-devised systems yield. In 43

recent years, deep-learning techniques have been spread in many compression schemes to 44

enhance transformation and prediction techniques, obtaining competitive results in many 45

fields [14–17]. 46

Regardless of the coding system and the regime employed, most compression schemes 47

rely on a coding stage called entropy coding to reduce the amount of information needed to 48

represent the original data. See in Figure 1 that this stage is commonly situated just after 49

the transformation and/or prediction stages. These stages prepare the data for the entropy 50

coder producing binary symbols x with a corresponding probability p(x). In general, these 51

symbols are (transformed to) binary, so x = {0, 1} is assumed in the following. The esti- 52

mated or real [18,19] probability p(x) depends on the amount of redundancy found in the 53

original data. Adjacent pixels in an image often have similar colors, for instance, so their 54

binary representation can be predicted with a high probability. Both x and p(x) are fed 55

to the entropy coder, which produces a compact representation of these symbols attaining 56

compression. As the Shannon’s theory of entropy dictates, the higher the probability of 57

a symbol the lower its entropy, so higher compression ratios can be obtained. The main 58

purpose of entropy coders is to attain coding efficiency close to the entropy of the orig- 59

inal message while spending low computational resources, so large sets of data can be 60

processed rapidly and efficiently. 61

Arguably, there are three main families of entropy coders. The first employs tech- 62

niques that map one (or some) source symbols to codewords of different length. Such 63

techniques exploit the repetitiveness of some symbols to represent them with a short 64

codeword. The most complete theoretical model of such techniques is variable to variable 65

length codes (V2VLC) [20,21]. The first entropy coding technique proposed in the litera- 66

ture, namely Huffman coding [22], uses a similar technique that maps each symbol to a 67

codeword of variable length. Other techniques similar to V2VLC are Golomb-Rice cod- 68

ing [23,24], Tunstall codes [25,26], or Khodak codes [27], among others [20,28], which have 69

been adopted in many scenarios [29–32]. The second main family of entropy coders uti- 70

lize a technique called arithmetic coding (AC) [33]. The main idea is to divide a numeric 71

interval in subintervals of varying size depending on the probability of the source sym- 72

bols. The coding of any number within the latest interval commonly requires fewer bits 73

than the original message and allows the decoder to reverse the procedure. Arithmetic 74

coding has been widely spread and employed in many fields and standards [34–37] and 75

there exist many variations and architectures [38–43]. The latest family of entropy coders 76

are based on asymmetric numeral systems (ANS), which is a technique introduced in the last 77

decade [44]. ANS divides the set of natural numbers in groups that have a size depend- 78

ing on the probability of the symbols. The coding of the original message then traverses 79

these groups so that symbols with higher probabilities employ the groups of largest size. 80

The decoder reverses the path from the last to the first group, recovering the original sym- 81

bols. There are different variants of ANS such as the range ANS or the uniform binary 82

ANS, though the tabled ANS (tANS) is the most popular [45–47] since it can operate like a 83

finite-state machine achieving high throughput. tANS has been recently adopted in many 84
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compression schemes [11,48,49], so it is employed in this work to represent this family of 85

entropy coders. 86

The popularity of the aforementioned entropy coding techniques has changed de- 87

pending on the trends and necessities of applications. Since entropy coding is in the core 88

of the compression scheme, efficiency and speed are two important features. Before the 89

introduction of ANS, Huffman coding and variants of V2VLC were generally considered 90

the fastest techniques because they use a direct mapping between source symbols and 91

codewords. Nonetheless, they are not the most efficient in terms of compression [50]. 92

Arithmetic coding was preferable in many fields due to its highest compression efficiency 93

although it was criticized since it commonly requires some arithmetic operations to code 94

each symbol, achieving lower computational throughput [51]. Recent works claim that 95

tANS achieves the efficiency of arithmetic coding while spending the computational costs 96

of Huffman coding [44,52]. Although these discussions and claims are well grounded, they 97

are commonly framed for a specific scheme or scenario without considering and evaluat- 98

ing other techniques. Differently from the previously cited references, this work provides a 99

common framework to appraise different entropy coders. It also provides simple software 100

architectures to test and optimize them using different coding conditions. The experimen- 101

tal evaluation discerns the advantages and shortcomings of each family of coders. The 102

result of this evaluation is the main contribution of this work, which may help to select 103

this coding stage in forthcoming compression schemes. 104

The rest of the paper is organized as follows. Section 2 describes the entropy coders 105

evaluated in this work and proposes a software architecture for each. This section is di- 106

vided in three subsections, one for each family of entropy coders. Section 2.1 presents a 107

general method for V2VLC that uses pre-computed codes. Arithmetic coding is tackled in 108

Section 2.2 describing two coders widely employed in image and video compression and 109

an arithmetic coder that uses codewords of fixed length. Section 2.3 describes the tANS 110

coding scheme and proposes two architectures for its implementation. All these coders 111

are evaluated in terms of compression efficiency and computational throughput in Sec- 112

tion 3, presenting experimental results obtained with different coding conditions. The last 113

section discusses results and provides conclusions. 114

2. Materials and Methods 115

2.1. Variable to variable length codes (V2VLC) 116

Let m = x1x2x3 . . . x|m| be a message composed of a string of symbols, with |m| denot- 117

ing its length. V2VLC maps sequences of symbols in m to codewords wj = y1y2 . . . y|wj |
, 118

with y = {0, 1}. When p(x = 0) is close to 1, the original message contains sequences 119

with many zeroes, so they can be mapped to a codeword of shorter length. The selection 120

of these pairs of sequences-codewords needs and approach that uniquely maps each se- 121

quence to a codeword and inversely since otherwise the coding process could not guaran- 122

tee the recovering of the original message. V2VLC are commonly represented with binary 123

trees like those depicted in Figure 2. Each level in the top tree represents the encoding of 124

a symbol, with left (right) branches being the coding of x = 0 (x = 1). Leaves represent 125

the end of each sequence and are mapped to a codeword. Codewords are represented 126

through the bottom tree in Figure 2 using the same structure as that in the top tree. Such 127

a representation produces prefix codes [21], so the encoding process generates a unique 128

compressed bitstream. 129

The determination of the optimal codewords for a fixed tree employs the well-known 130

procedure described by Huffman [22], progressively joining the leaves with lowest prob- 131

abilities. Each leaf in the top tree of Figure 2 has a probability to occur that can be deter- 132

mined by the probability of the sequence of symbols that it represents as 133

p(lk) = p(xi) · p(xi+1) · p(xi+2) · . . . · p(x|lk |) , (1)

with lk denoting a leaf and |lk| the length of the sequence (or the depth level of the leaf). 134

The construction of the codewords begins by joining those two lk with lowest p(lk). This 135
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Figure 2. Illustration of V2VLC through binary trees.

procedure is repeated until a single leaf is left, which is the root of the tree containing the 136

codewords. The toy example depicted in Figure 2 uses p(x = 0) = 0.8. The first leaves 137

joined by this procedure are l2 and l3 (deepest level of the bottom tree in Figure 2), then l4 138

and finally l1. See in this figure that the sequence of original symbols m′ = 000 is mapped 139

to w1 = 0, coding three symbols with one bit. The compression efficiency achieved by such 140

a scheme is determined through the weighted length of the sequences of symbols and the 141

weighted length of the codewords according to 142

E =
∑j |wj| · p(wj)

∑k |lk| · p(lk)
. (2)

where p(wj) is the probability of codeword wj, which is the same to that lk mapped to 143

this codeword (e.g., p(w2) = p(l4) in Figure 2). The above expression divides the aver- 144

age length of the codewords (considering their probability of appearance) by the average 145

length of the sequences (also considering their appearance probability). Otherwise stated, 146

it divides the length of the compressed data by the length of the original data, resulting 147

in the efficiency of the V2VLC scheme. The difference between E and the entropy of the 148

source is called redundancy and is determined as 149

R = E−∑
x

p(x) · log2
1

p(x)
. (3)

R is employed to assess the optimality of the coding scheme. 150

The main difficulty of V2VLC is to find a low complexity algorithm that minimizes 151

the redundancy for a given p(x). This is an open problem in the field tackled in different 152

ways [21,28,53,54]. However, to find optimal V2VLC is not part of the compression pro- 153

cedure, which can use codes determined a priori. This work utilizes pre-computed codes 154

created with trees of 16 leaves or less employing a brute-force approach to find the optimal 155

V2VLC scheme. The encoding procedure is described in Algorithm 1. This procedure is 156
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Algorithm 1 V2VLC
Parameters: x bit to code
Initialization: n← 0

1: if t[n] 6= w then
2: n← t[n][x]
3: else
4: emitCodeword(t[n][x])
5: n← 0
6: end if

Algorithm 2 emitCodeword
Parameters: w codeword to emit
Initialization: T ← 0, b← 8

1: for i ∈ [|w| − 1, 0] do
2: T ← (T ≪ 1) OR ((w≫ i) AND 1)
3: if b > 0 then
4: b← b− 1
5: else
6: writeByte(T)
7: T ← 0
8: b← 8
9: end if

10: end for

called for each symbol of the message from a loop that is not included in this (and follow- 157

ing) algorithms. It uses the table depicted in the top-right corner of Figure 2 denoted by 158

t[n][x]. Each row in this table is a node of the tree. The first and second columns contain 159

the next node when x = 0 or x = 1, respectively, except when reaching a leaf, in which 160

case a codeword is emitted. As seen in Algorithm 1, n = 0 at the beginning of the process 161

and then the encoding of each symbol simply updates n (in line 2) except when emitting 162

a codeword. In this case, the codeword is emitted through the procedure described in Al- 163

gorithm 2 and n is reset. The procedure that emits the codeword uses variable T to store 164

a byte that is filled with the bits of the codeword and written to the disk (or transmitted) 165

when necessary. Decoding inverses the procedure using a table constructed with the tree 166

of codewords (not shown). Note that these procedures almost do not require arithmetic 167

operations but only access to memory positions. 168

2.2. Arithmetic coding (AC) 169

Differently from V2VLC, the output of conventional arithmetic coders is a very long 170

codeword. Figure 3 depicts an example of the interval division procedure carried out 171

by arithmetic coding. It typically begins with interval I = (0, 1), which is split in I′ = 172

(0, p(x = 0)] and I′′ = (p(x = 0), 1) to code the first symbol. If x1 = 0, I′ is further 173

employed to code following symbols, whereas x1 = 1 keeps I′′. In practice, the division of 174

the interval uses hardware registers of at most 64 bits, so the interval is computed progres- 175

sively. I is commonly represented as I = [L, U) with L and U being the lower and upper 176

bound of the interval, respectively. L and U are initialized to 0 and to the largest integer 177

available, respectively. The binary representation of L and U are completely different at 178

the beginning of coding but, as the interval is subsequently partitioned in I′′′ = [L′, U′), 179

some bits in the leftmost part of the binary representation of L′ and U′ become equal. This 180

happens because the interval becomes smaller in each new partition, with L′ and U′ being 181

closer. These bits do not change in further partitions so they can be emitted as a segment 182

of the codeword before the end of coding. Once they are emitted, the remaining bits in L′ 183

and U′ are shifted to the left as many positions as bits have been emitted. The emission of 184

these bits that partially belongs to the codeword is a procedure called renormalization. 185
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Figure 3. Illustration of the interval division carried out by arithmetic coding.

Algorithm 3 ACFLW
Parameters: x bit to code, P probability
Initialization: L← 0, S← 2W − 1

1: if x = 0 then
2: S← (S · P)≫ B
3: else
4: q← ((S · P)≫ B) + 1
5: L← L + q
6: S← S− q
7: end if
8: if S = 0 then
9: emitCodeword(L)

10: L← 0
11: S← 2W − 1
12: end if

Three arithmetic coders are evaluated in the following due to its widespread use and 186

popularity. The MQ coder [55] is a descendant of the Q coder [56]. It is used in JPEG [29], 187

JBIG2 [57] and JPEG2000 [34] standards due to its high efficiency and low computational 188

complexity. It incorporates many computational optimizations. It is not detailed herein 189

since it has been thoroughly described in the literature (see [58] for a comprehensive de- 190

scription). The M coder [59] employs lookup tables and a reduced range of interval sizes. 191

Variants of such coder are employed in popular video standards such as H.264/AVC [35] 192

and H.265/HEVC [36] (see [59] for a review). 193

The main particularity of the third arithmetic coder evaluated is that it obviates renor- 194

malization. Renormalization is useful to employ all bits of the integer registers during the 195

coding process but it spends significant computational resources since it is intensively 196

executed. The method proposed in [51,60–64] eliminates the use of renormalization by 197

employing arithmetic coding with fixed-length codewords (ACFLW). It splits intervals as 198

previously described but it does emit partial segments of the final codeword. Instead, 199

when the interval size is 0, it dispatches a codeword and begins with a new one. This 200

may cause an efficiency loss when the interval size is small and p(x) is high because the 201

interval is split with poor precision. Nonetheless, it is shown in [51] that intervals of mod- 202

erate size penalize efficiency only slightly. Our implementation uses intervals of a size of 203

W = 32 bits as it is recommended in [51]. ACFLW uses variables L and S to represent 204

the lower bound of the interval and its size, respectively. At the beginning of the coding 205

process L = 0 and S = 2W − 1. The coding of x = 0 requires the following operation 206

S← (S · P)≫ B , (4)

with ≫ being a bit shift operation to the right and P denoting the probability p(x = 0) 207

expressed in the range [0, 2B − 1] (i.e., P = ⌊p(x = 0) · 2B⌋ with ⌊·⌋ being the floor oper- 208

ation). B is the number of bits to express the symbol’s probability. Our implementation 209
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Figure 4. Illustration of tANS via asymmetric groups of numbers (top), a tabled automaton (bottom-

left) and a state machine (bottom-right).

uses B = 15 since it provides high precision requiring few computational resources [51]. 210

The coding of x = 1 requires the following operations 211

S← S− ((S · P)≫ B)− 1 ,
L← L + ((S · P)≫ B) + 1 .

(5)

These operations employ an integer multiplication to split the interval. Such an operation 212

requires a single clock cycle in modern CPUs, so it does not penalize throughput signifi- 213

cantly. Algorithm 3 details the procedure to encode symbols. The procedure to emit the 214

codeword is the same as that in Algorithm 2 (with L being the codeword). Decoding uses 215

a similar procedure (not shown). The compression efficiency of arithmetic coders can not 216

be determined a priori like with V2VLC schemes but it has to be appraised experimentally. 217

The next section proposes a series of tests that assess their performance compared to the 218

other coders. 219

2.3. Tabled Asymmetric Numeral Systems (tANS) 220

tANS represents the message with a state denoted by Z that is progressively increased 221

during the encoding of symbols. Coding requires a pre-computed table. For a probability 222

distribution of p(x = 0) = 2/3, for instance, this table is like that shown in the top of 223

Figure 4. The first row of the table represents the current state Z, whereas the second and 224

third rows are the next Z when coding x = 0 and x = 1, respectively. The cells filled 225

in the second and third rows have the distribution of p(x), creating asymmetric groups 226

of numbers. Z can be set to any position of the table at the beginning of the encoding 227

procedure. If the next symbol to encode is x = 0, the procedure then advances to that 228

column of the table indicated in the second row. If the symbol is x = 1, the procedure is 229

the same but using the third row of the table. The top table in Figure 4 depicts an example 230

(in orange) in which the message m′′ = 001 is encoded. State Z is initialized at Z = 5 231

and then transitions to Z = 7 because the first symbol is x = 0 and this is the column 232

in which the second row of the table has a 5 too. The next symbol is also x = 0, so the 233

state is transitioned to Z = 10. Since the last symbol is x = 1, the state 10 is found in the 234

third row of the table at the column in which Z = 23. 23 is the codeword emitted to the 235

decoder. The decoding process starts with the last state (i.e., the emitted codeword) and 236

reverses the procedure. Differently to the entropy coders previously described, decoding 237

the message begins with the latest symbol coded and goes backwards as if they were put 238
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Algorithm 4 tANS
Parameters: x bit to code
Initialization: Z← |k|, Tr← 0, b← 7

1: while Z > |kx | · 2− 1 do
2: Tr ← Tr OR ((Z AND 1)≪ b)
3: Z ← Z ≫ 1
4: if b = 0 then
5: writeByte(Tr)
6: Tr ← 0
7: b← 7
8: else
9: b← b− 1

10: end if
11: end while
12: Z ← Xx[Z]

in a stack. The key to achieve compression is that coding symbols with higher probabilities 239

advances Z more slowly than coding symbols with lower probabilities, so the final state 240

can be represented with fewer bits than the original message. In the extreme case of p(x = 241

0) ≈ 1, for instance, a final state Z = 10 may represent the coding of a message with 10 242

consecutive 0s but requiring only 4 bits (since 10 = 1010(2). 243

tANS can not use an infinite number of states in practice, so Z is represented with 244

a fixed number of bits. To this end, the top table depicted in Figure 4 is transformed 245

to a finite-state machine, with the coding of each symbol being state transitions. There 246

exist many different automatons for each distribution [46], so a key K that represents a 247

unique scheme needs to be chosen first. A suitable key for the distribution of the above 248

example might be K = 001001 since it strictly respects p(x = 0) = 2/3. The table shown 249

in Figure 4(bottom-left) is generated with this key. The first column of this table is Z. 250

Although the range of Z is Z ∈ [1, 11], only those rows from |K| to |K| · 2− 1 belong to the 251

automaton (depicted in gray in the figure). The construction of this table begins filling the 252

rows of the fourth column from state Z = 6 (i..e, |K|) to Z = 11 (i.e., |K| · 2− 1), which 253

contains the decoding tuple D. The first element of the tuple is filled with the symbols 254

of the key in the same order. The second element of the tuple is the first empty cell for 255

that symbol in the second or third columns of the table. These columns contain the state 256

transitions for symbols x = 0 and x = 1, respectively. They are denoted by X0 and X1. 257

Xx is only filled from |Kx| to |Kx| · 2− 1, with |Kx| denoting the number of 0s or 1s in K. 258

Following our example, the second element in tuple D for Z = 6 is 4 since |K0| = 4. The 259

cell X0 for the row Z = 4 is then filled with 6 since this is the state from which it comes. 260

This process is repeated for each state resulting in the table depicted in Figure 4. 261

The table generated with key K aids the coding of symbols. Coding x removes 262

as many least significant bits of the binary representation of the current Z until Z ∈ 263

[|Kx|, |Kx| · 2− 1]. These removed bits are emitted by the coder forming the compressed 264

bitstream. The next state of the automaton is that given in column Xx. This process is 265

automated via the state-machine depicted in the bottom-right part of Figure 4, which is 266

generated with the bottom-left table of Figure 4. Transitions in the upper part of this au- 267

tomaton represent the coding of x = 0 whereas those in the lower part represent x = 1. 268

The emission of bits in each transition, if necessary, is depicted in the middle of each ar- 269

row. Similarly to V2VLC, the selection of the key that achieves lowest redundancy uses 270

a full search approach since this process is carried out before coding. Some strategies to 271

accelerate the selection of K can be found in [46]. 272

The implementation of such a coding scheme may consider two different architec- 273

tures. The first is embodied in Algorithm 4. This procedure removes bits from Z and 274

emits them until Z is in the range [|Kx|, |Kx| · 2− 1] (lines 2 and 3). The next state is set 275

employing Xx in the last line of the algorithm. The operations from line 4 to 10 write a 276

byte to the disk when it is filled, similarly to the procedure described in Algorithm 2. The 277
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Algorithm 5 tANSAuto
Parameters: x bit to code
Initialization: Z← |k|, Tr← 0, b← 7

1: for i ∈ [|W[Z][x]| − 1, 0] do
2: Tr ← Tr ≪ 1
3: Tr ← Tr OR ((W[Z][x]≫ i) AND 1)
4: if b = 0 then
5: writeByte(Tr)
6: Tr ← 0
7: b← 7
8: else
9: b← b− 1

10: end if
11: end for
12: Z ← S[Z][x]

second architecture proposed for tANS is detailed in Algorithm 5. Instead of computing 278

the next state by progressively removing bits from Z, this architecture stores the transi- 279

tions and emitted bits of the automaton in tables constructed a priori. Table S[Z][x] stores 280

the transition to the next state for the current Z and symbol coded. Table W[Z][x] contains 281

the bits emitted when coding x in the state Z. These tables can be constructed using the 282

automaton of Figure 4. The first three lines in Algorithm 5 emit the bits for the state tran- 283

sition and write a full byte in disk when necessary. The last line of the algorithm updates 284

Z. Decoding uses similar algorithms for both architectures. 285

Note that all entropy coders described above recover the original message losslessly. 286

This is a characteristic of entropy coding, but it does not entail the compression system to 287

use a lossless regime too. Lossy regimes commonly introduce distortion in the transfor- 288

mation or prediction stages. 289

3. Results 290

3.1. Data and metrics 291

The data employed in the following tests are produced artificially given a probability 292

distribution. The symbols are generated assuming independence and identical distribu- 293

tion. The range of the probability distribution evaluated is p(x = 0) = [0.5, 1) because 294

same results are obtained for probabilities biased toward x = 1. The probability is fed 295

directly to the coder, disregarding the estimation mechanisms that some coders use. This 296

provides a common framework for all coders. Also, the same artificially generated data 297

are employed for all coders, with sequences of 228 symbols. All coders are programmed 298

in Java and tests are executed with an Intel Core i7-3770 @ 3.40 GHz. Except when other- 299

wise stated, the V2VLC scheme employed in the tests uses trees of 16 leaves and the tANS 300

scheme uses an automaton with 16 states. Both are set to the same number of leaves/states 301

so that the tables employed by such coders have similar size. As seen in the experiments 302

below, using 16 leaves or states achieves near optimal compression efficiency. Compres- 303

sion results are reported via the redundancy achieved by the coder (as defined in Equa- 304

tion 3), whereas computational throughput is evaluated in terms of mega symbols coded 305

per second (MS/s). 306

3.2. Tests 307

The first test evaluates compression efficiency. Figure 5 depicts the results for all 308

coders and the full range of probabilities. The vertical axis of the figure is the redundancy 309

produced by the coder, reported in bits per symbol (bps). The horizontal axis reports the 310

probability distribution. The efficiency achieved by tANS (Algorithm 4) and tANSAuto 311

(Algorithm 5) is the same, so only the first is depicted. The results reported in this figure 312

indicate that the MQ coder penalizes the coding efficiency when the probability is low, 313

especially at p(x = 0) ≈ 0.62. V2VLC and tANS achieve an efficiency that is very close 314
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Figure 5. Compression efficiency evaluation of all coders.
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Figure 6. Compression efficiency evaluation depending on the number of: (a) leaves of the V2VLC

scheme and (b) states of the tANS automaton.

to the entropy for most probabilities, followed by the M coder and ACFLW. These coders 315

yield a redundancy of less than 0.01 bps for most probabilities, suggesting that they are 316

highly efficient. 317

The second test appraises the coding efficiency of V2VLC and tANS depending on the 318

number of leaves and states, respectively. Figure 6 depicts the redundancy on the vertical 319

axis and the number of leaves/states employed by the coder in the horizontal axis. Only 320

a representative set of probabilities are depicted in the figure, though results hold for the 321

rest. The redundancy achieved by the V2VLC scheme (Figure 6(a)) decreases smoothly as 322

more leaves are employed, regardless of p(x). As seen in the Figure, the use of 16 leaves 323

is enough to achieve competitive performance. The tANS automaton (Figure 6(b)) obtains 324

redundancy results that increase and decrease depending on the number of states, except 325

when using a high p(x). These irregularities are caused because p(x) does not fit well for 326

some number of states, reducing the efficiency of the coder. 16 states seems to be enough 327

to obtain near-optimal efficiency. 328

The third test analyzes computational throughput. Figure 7 reports the obtained re- 329

sults for all coders when encoding and decoding. Again, only a significant set of prob- 330

abilities is depicted in the figure, though results hold for the rest. The figure indicates 331

that higher probabilities lead to higher throughput. This is because a higher p(x) obtains 332

higher compression efficiency, requiring the emission of fewer bits and so accelerating 333
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Figure 7. Computational throughput evaluation of all coders when (a) encoding and (b) decoding.

the coding process. Regardless of the probability, ACFLW obtains the highest throughput 334

followed by the MQ coder for most probabilities. The V2VLC and both architectures of 335

tANS attain lower throughput, with tANSAuto being the slowest. The results also suggest 336

that decoding is generally faster than encoding, which is a common feature of all entropy 337

coders because decoding requires slightly simpler operations. 338

The last test evaluates the computational throughput achieved by the V2VLC scheme 339

and tANS depending on the number of leaves/states. Figure 8 reports the results obtained, 340

which suggest that the number of leaves/states does not significantly affect the through- 341

put achieved. This holds for both the encoding and decoding process. 342

4. Discussion 343

Entropy coding is in the core of most compression systems and it has to be chosen 344

and implemented carefully to obtain high compression efficiency while using few com- 345

putational resources. The techniques employed by each family of entropy coders use dif- 346

ferent mechanisms to attain compression, so comparison requires a common framework. 347

This paper presents software architectures for the most representative coder(s) of each 348
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Figure 8. Computational throughput evaluation depending on the number of: (a) leaves of the

V2VLC scheme and (b) states in the tANS automaton. Columns in the front (back) are for the encod-

ing (decoding) process.

Table 1. Summary of the obtained experimental results. ⇓, ≈ and ⇑ indicate low, medium and high

performance, respectively.

low rates medium rates high rates
coding comput. coding comput. coding comput.

efficiency through. efficiency through. efficiency through.

V2VLC ≈ ≈ ⇑ ≈ ⇑ ≈

MQ ⇓ ≈ ≈ ⇑ ⇑ ⇑
M ⇑ ≈ ≈ ≈ ⇓ ≈

ACFLW ⇑ ⇑ ≈ ⇑ ⇓ ⇑

tANS ≈ ≈ ⇑ ⇓ ⇑ ≈
tANSAuto ≈ ⇓ ⇑ ⇓ ⇑ ⇓

family and evaluates them in terms of efficiency and throughput. Table 1 summarizes 349

the results obtained in the experimental tests depicting the coding efficiency and compu- 350

tational throughput of each coder at low, medium and high rates. These results suggest 351

that when coding efficiency is the most important aspect of the system, V2VLC, tANS, or 352

the M coder are the best options. ACFLW or the MQ coder seem to be the fastest despite 353

the use of some arithmetic operations to code symbols. For the two architectures of tANS, 354

the one that re-computes the state for each coded symbol (instead of using pre-computed 355

tables) achieves higher throughput. Both for V2VLC and tANS, using more leaves/states 356

significantly reduce the redundancy of the system and slightly improves throughput. Fu- 357

ture research may adapt and appraise the presented coders in dedicated hardware archi- 358

tectures such as commodity GPUs or ASICs, which may help to further accelerate the 359

compression process. 360
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The following abbreviations are used in this manuscript: 370

371

V2VLC Variable to variable length codes

AC Arithmetic coding

ACFLW Arithmetic coding with fixed-length codewords

ANS Asymmetric numeral systems

tANS Tabled asymmetric numeral systems

372
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