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Abstract—Spectral transforms are tools commonly employed
in multi- and hyperspectral data compression to decorrelate
images in the spectral domain. The Pairwise Orthogonal Trans-
form (POT) is one such transform that has been specifically
devised for resource-constrained contexts like those found on
board satellites or airborne sensors. Combining the POT with
a 2D coder yields an efficient compressor for multi- and
hyperspectral data. However, a drawback of the original POT
is that its dynamic range expansion —i.e., the increase in bit
depth of transformed images— is not constant, which may
cause problems with hardware implementations. Additionally,
the dynamic range expansion is often too large to be compatible
with the current 2D standard CCSDS 122.0-B-1. This paper
introduces the Isorange Pairwise Orthogonal Transform, a
derived transform that has a small and limited dynamic
range expansion, compatible with CCSDS 122.0-B-1 in almost
all scenarios. Experimental results suggest that the proposed
transform achieves lossy coding performance close to that of
the original transform. For lossless coding, the original POT
and the proposed isorange POT achieve virtually the same
performance.

Index Terms—On-board multi- and hyperspectral image cod-
ing, progressive lossy-to-lossless, limited dynamic range expan-
sion, Pairwise Orthogonal Transform (POT).

I. INTRODUCTION

IMAGERS are remote-sensing devices that often produce
abundant amounts of data, and more so with the constant

advent of new generations of sensors, each with a higher
resolution than the previous one. For imagers carried on
satellites (i.e., space-borne), the acquisition of large amounts
of data is often juxtaposed with the necessity to transmit
these data to ground stations. Transmission is made difficult
by the bandwidth constraints of the downlink channel, and
this makes on-board data compression a fundamental part of
satellite signal processing hardware [1].

Image compression is particularly important for sensors that
acquire multi- and hyperspectral images, i.e., those that
capture light intensities at multiple wavelength ranges for a
given spatial location. The memory and bandwidth resources
required to store and transmit such acquired data can be sig-
nificantly reduced by means of compression techniques [2].
Depending on the needs of a given mission, the acquired
data can be either compressed without any fidelity loss, or
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by trading fidelity losses for smaller file sizes. The former
and latter modes are respectively called lossless and lossy
coding.

On-board lossless compression of multi- and hyperspec-
tral images has been thoroughly studied in the literature.
For instance, [3] and [4] extend the Context-based Adap-
tive Lossless Image Coding (CALIC) scheme [5] to 3D-
CALIC and M-CALIC, respectively. A predictive coder
based on look-up tables is introduced in [6], and variations
of this technique are presented in [7] and [8]. Another
relevant method is the crisp and fuzzy adaptive predictor
called S-FMP [9]. In 2012, the Consultative Committee for
Space Data Systems (CCSDS) [10] —a consortium of ma-
jor space agencies— published the recommended standard
CCSDS 123.0-B-1 [11] for lossless multi- and hyperspectral
image compression, which is based on the Fast Lossless
method introduced in [12], and further investigated in [13].

CCSDS 123.0-B-1 provides excellent lossless coding per-
formance, but does not support lossy coding. Transform
coding is a frequently used approach to provide for both
lossy and lossless coding within the same coding algorithm.
Such algorithms typically suffer a small performance penalty
in lossless coding performance compared to algorithms that
focus exclusively on lossless coding. A common approach
that achieves good performance in lossy-to-lossless coding
is to utilize a one-dimensional transform to exploit the cor-
relation between spectral bands, followed by encoding each
resulting band with a lossy-to-lossless 2D image coder [2],
[14], [15], [16], [17], [18].

The one-dimensional transforms that typically achieve the
best performance in such a coding scheme for multi-
and hyperspectral imagery are the Karhunen Loeve Trans-
form (KLT) and other similarly data-dependent trans-
forms [19]. As originally formulated, KLT-based transforms
are usually not suitable for on-board devices due to their
high computational complexity, both because they involve a
high number of arithmetic operations, and because they are
data dependent, which in turn, necessitates large memory
buffers for training.

The reduction of computational complexity for the KLT has
been addressed in the literature in different forms [20]. The
Pairwise Orthogonal Transform (POT) [21] is a spectral
transform devised for on-board image compression whose
main insight is a divide-and-conquer strategy that approx-
imates the KLT, while requiring only a fraction of the
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computational resources. Other divide-and-conquer strate-
gies, which do not address on-board image coding, are the
recursive approach [22], the two level approaches [23], and
the multi-level structures [24].

While the CCSDS has yet to create a standard for lossy
multi- and hyperspectral image compression, the natural
approach to an on-board lossy-to-lossless coder would use
a one-dimensional transform, such as the POT, together
with CCSDS 122.0-B-1 [25]. CCSDS 122.0-B-1 is a lossy-
to-lossless 2D image coder (not to be confused with the
similarly named lossless coder CCSDS 123.0-B-1, discussed
previously).

The use of CCSDS 122.0-B-1 for the 2D image coder is
both natural and convenient as it is a proven space-qualified
technology and several hardware implementations exist [26],
[27], [28]. The POT, on the other hand, is suitable for on-
board devices due to its reduced computational complexity.
The major issue that may arise in such an approach is related
to the bit depth expansion that occurs naturally in the POT
(and most others transforms). Let us explain further. The
CCSDS 122.0-B-1 standard supports an image bit depth of
up to 16 bits. This maximum was chosen since, in general,
imaging sensors do not produce data with bit depths in
excess of this value. However, when a 1D spectral transform
is employed as a preprocessing stage to high bit-depth multi-
or hyper-spectral images, the resulting data may exceed this
maximum. Thus, even though bit depth expansion may not
be problematic in most scenarios, in the context of lever-
aging existing investments in CCSDS 122.0-B-1 hardware
implementations, bit depth expansion becomes a critical
issue.

When applied to multi- or hyper-spectral imagery, the 1D
KLT (and transforms derived from the 1D KLT) tend to
accumulate most of the image energy in just a few trans-
formed bands that then require a large dynamic range. If not
addressed, this may restrain the use of KLT-based transforms
in combination with CCSDS 122.0-B-1.

This paper introduces a version of the POT that reduces and
strictly bounds dynamic range expansion while preserving
coding performance for both lossy and lossless regimes.
Since our goal is to preserve dynamic range as much
as possible, we refer to such transform as the isorange
POT, using a composition of the prefix iso- and the word
range. The proposed isorange POT maintains the advanced
features of the original POT such as its ability to operate in
progressive lossy-to-lossless mode, i.e., to smoothly progress
from lossy to lossless bitstreams as the bit budget for the
compressed image increases. To the best of our knowledge,
this is the first KLT-based isorange transform.

The paper is organized as follows. Section II overviews the
POT and introduces necessary notation. Section III presents

the proposed isorange transform based on the POT. Sec-
tion IV provides a mathematical derivation that bounds its
dynamic range expansion. Section V provides experimental
results, and the last section draws some conclusions.

II. THE ORIGINAL TRANSFORM

The POT is a divide-and-conquer approximation to the KLT
in which the spectral bands (or components) of an image
are transformed using multiple low-cost pairwise operations
instead of a single and computationally-expensive transform.

Each pairwise operation applied in the POT is a KLT
applied on only two components of the image, and these
operations are organized in a multi-level structure. In each
level, components are decorrelated in pairs and only the
resulting component (of the pair) with the most energy
is further decorrelated in a next level. This procedure is
repeated until only one pairwise operation is applied on
a final level. The multi-level decomposition of the POT is
illustrated in Fig. 1a.

When the number of components to decorrelate in a level
is odd, there is an unpaired component. That component is
selected to be the last or the first in successive levels, so that
any unpaired component traverses at most one level without
being decorrelated (see Fig. 1b).

(a) Eight components

unpaired component

unpaired component

(b) Five components

Figure 1. Multi-level structure of the POT.

The computational cost of the KLT is in practice O(n2),
with n being the number of components. The complexity
of the KLT is dominated by an –usually– O(n3) eigende-
composition [29]; however, in practice many more than n
vectors are transformed for each eigendecomposition. Thus,
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the n3 contribution of each eigendecomposition to the total
cost of the transform is negligible (see [16], [24]). On the
other hand, by working on only two components at once for
a limited number of times, the POT results in a complexity
of only O(n), as each pairwise operation has a constant cost
and a POT has n− 1 pairwise operations.1

Other advantages of the POT are that it improves com-
ponent scalability (yielding better error resiliency), that it
has reduced memory requirements, and that it is easier
to implement than the KLT. A single POT applied over
the spatial extent of the entire image is described in the
following discussion, although applying different POTs to
different regions of a segmented image is straightforward.

Like the KLT, the POT assumes that the intensity distribution
of each component is centered around zero. Since the data
of a component do not commonly exhibit this distribution,
input components should be mean-corrected by subtracting
from their values an integer approximation of their original
mean. This operation increases the bit depth of the input
image by one bit at most, always producing a signed image
with approximately zero arithmetic mean.

i

i i

i (detail output)

(principal output)

Figure 2. A single pairwise operation.

Within each level of the structure, each pairwise opera-
tion takes two input components, denoted by xi and yi,
and produces two output components: the principal output
component χi —containing most of the input energy— and
the detail output component φi —containing the remaining
energy— (see Fig. 2). Ideally, a pairwise operation would
use a KLT matrix to exactly produce χ+

i and φ+
i from xi

and yi by (
χ+
i

φ+
i

)
= Q

(
xi
yi

)
, (1)

where Q is the transposed KLT matrix, which can be
represented as a generic rotation matrix

Q =

(√
1− t2 t

−t
√

1− t2

)
, (2)

where t ∈ [−1, 1] is a scalar parameter derived from the
covariance matrix of the inputs xi and yi. That is,

t = f
(
σ2
xi
, σ2

yi
, σxi,yi

)
. (3)

The definition of the function f used to compute t is given
in [21]. The value of t needs to be stored as side information

1The latter can be proven by induction over the total number of pairwise
operations, say g(n), as a combination of the number of pairwise operations
in the first level and the number of pairwise operations in the remaining
ones, i.e., g(n) = bn/2c+ g(dn/2e) = n− 1, with g(1) = 0.

first
lifting step

second
lifting step

third
lifting step conditional permutation

and sign change

Figure 3. Lifting structure for a pairwise operation.

to allow the inverse transform procedure to be performed in
the decoder.

As described in [30], Q can be decomposed into three lifting
steps (see [31], [32]) with an optional permutation and sign
change according to

Q =

(
1 0
0 s

)
P

(
1 0
w3 1

)(
1 w2

0 1

)(
1 0
w1 1

)
, (4)

which admits two solutions:{
P =

(
1 0
0 1

)
, w1 = w3 = p−1

t , w2 = t, s = 1

P =
(

0 1
1 0

)
, w1 = w3 = 1−t

p , w2 = −p, s = −1
(5)

where p =
√

1− t2.

The lifting network associated with these solutions is de-
picted in Fig. 3, including the permutation P and sign
change s of the second solution. In this work, finite precision
arithmetic and rounding are used within the lifting network
to obtain the integer outputs χi and φi which approximate
χ+
i and φ+

i . Rounding is indicated by [ ] in the figure.
It is worth noting that if real number arithmetic and no
rounding were used, the outputs of the lifting network would
be exactly χ+

i and φ+
i . In subsequent discussions, when we

refer loosely to “errors introduced by the lifting network,”
we mean “errors introduced by the finite precision arithmetic
and rounding used in the lifting network.”

The lifting implementation of the transform provides several
advantages over a straightforward matrix multiply imple-
mentation. One such advantage is a reduced implementation
complexity. Specifically, the lifting implementation of the
POT uses one fewer multiplication per sample. A more
significant advantage is that the finite precision arithmetic
and rounding described above do not destroy the invertibility
of the transform. Invertible transforms that map integers to
integers are often called “reversible transforms” [33]. Such
transforms are useful for lossless (as well as lossy) coding.

Ignoring errors caused by the lifting network (finite precision
arithmetic and rounding), the dynamic range expansion in
each output of each pairwise operation is 0.5 bits, since the
largest output value can be as large as

max
−1≤t≤1

‖Q‖∞ =
√

2 (6)
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times larger than the largest input value [21]. Thus, the
dynamic range expansion for the entire POT is 0.5 bits
times the number of levels, plus one extra bit from the
mean-correction stage. This results in an expansion of
0.5 · dlog2(n)e + 1 bits, where n is the number of input
components. For example, the dynamic range expansion
is 5 bits for an image acquired with the EO-1 Hyperion
sensor (n = 242), and 8 bits for data acquired with one
of the MetOp IASI sounders (n = 8461). As seen below,
this expansion is further increased to accommodate errors
introduced by the lifting network.

III. THE ISORANGE POT

In the following, some modifications to the POT formulation
are described. The aim of these modifications is to bound
the dynamic range expansion of the transform to two bits
(three bits if mean correction is required).

The idea behind the isorange POT stems from the fact that
the dynamic range expansion of the original POT is mostly
caused by the accumulation of the expansion of the principal
output (χi) over multiple levels. If such accumulation can
be redressed, the expansion of the entire transform becomes
just the expansion of φi over a single pairwise operation.

A straightforward solution might appear to be achievable
by dividing χi by

√
2 after each pairwise operation. Un-

fortunately, this would preclude an integer transform. If the
division were applied directly to χi at the output of the lifting
network, followed by rounding, it would not be possible to
recover χi from the rounded value

[
χi/
√

2
]

for use at the
input of the inverse transform. Attempting to incorporate the
division into the original transform as

Q′ =

(
1/
√

2 0
0 1

)
Q (7)

is also fruitless, due to the fact that the determinant of Q′ is
1/
√

2, while lifting decompositions exist only for transforms
having determinant of ±1 [30, p. 2317].

This problem can be ameliorated by employing a transform
of the form

Q′′ = SbQ, (8)

where Sb is a shift matrix of the form

Sb =

(
2−b 0
0 2+b

)
. (9)

The shift matrix results in the multiplication of χ+
i by 2−b

and φ+
i by 2b, which decreases the dynamic range of χ+

i by
b bits, but increases that of φ+

i by b bits. Since Det(Sb) = 1,
a lifting decomposition can still be obtained for Q′′.

Employing the shift matrix with b = 0.5 exactly cancels
the 0.5 bit expansion incurred by χ+

i of the original POT,

entirely eliminating the accumulated expansion associated
with multiple levels. On the other hand, the expansion
incurred by φ+

i is increased to a total of 1.0 bits. The matrix
of the resulting pairwise operation is defined as

QR = S0.5 ·Q, (10)

which has the following two solutions for the lifting network:

P =
(

1 0
0 1

)
, w1 = p−

√
2

t , w2 = t√
2
,

w3 = 2p−
√

2
t , s = 1

P =
(

0 1
1 0

)
, w1 =

√
2−2t
2p , w2 = −

√
2 p,

w3 =
√

2−t
2p , s = −1

(11)

where, as before, p =
√

1− t2.

Employing the lifting steps of (11) results in a multilevel
transform with dynamic range expansion determined only by
the expansion of the detail output of each pairwise operation,
which is 1 bit. As discussed subsequently in section IV,
additional expansion is caused by the errors introduced in
the lifting networks.

The transformed image components resulting from the ap-
plication of this modified POT are quasi-linearly scaled
versions of those from the original POT. The scaling factor,
or gain, introduced by the shift matrices must be compen-
sated in any distortion estimates that might be employed
in rate allocation for lossy coding. Small non-linearities are
introduced due to rounding errors in the lifting steps, but
otherwise the scaling is strictly linear.

The gain of a given transformed component can be obtained
by multiplying the individual gains incurred in each pairwise
operation involved to produce it. See Fig. 4 for an example
for the case of 8 input components.

Figure 4. Accumulated transform gain for a three level transform of 8
input components. For the sake of space, two pairwise operations are not
shown at the first level. The two omitted pairwise operations are identical
to the two shown. Similarly, three of the detail outputs from the first level
are not shown. Each of these has a gain of 2+0.5, identical to the one
shown.

The unbalanced case

When the number of input components is not a power of 2, a
pairwise operation may involve an unpaired component (see
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Fig. 1b). This, in turn, may result in two inputs of different
energy gains: a regular component and the unpaired one,
which has not been processed in the immediate previous
level. These components have a gain difference of 20.5 that,
if not handled properly, may significantly bias any distortion
estimates used for rate allocation.

An unbalanced pairwise operation is now introduced to
address this issue. Assume that yi is the component not
processed in the previous level. Otherwise, xi and yi can be
swapped. The transform matrix for the unbalanced operation
is then

QU = S0.25 · S0.5 ·Q · S−0.25 = S0.25 ·QR · S−0.25. (12)

The S−0.25 shift matrix compensates the 20.5 gain difference
between the inputs by increasing the gain of xi by 20.25

and decreasing the gain of yi by 20.25 (see Fig. 5). This
operation equalizes the gain of both inputs at a gain 20.25

times higher than that of a paired input, which if left
uncorrected, would be transfered to the principal output and
cause similar unbalancing problems in subsequent levels.
This aspect is addressed by means of an additional shift
matrix that displaces a gain of 20.25 from χi to φi, so that
the gain of χi is the same as that of a normal pairwise
operation. The gain for φi is then 21, which results from the
20.25 gain increase used to equalize inputs, multiplied by the
original gain of 20.5 from QR, multiplied by the 20.25 gain
to decrease the gain of χi.

i

i i

i

Figure 5. Accumulated transform gain for QU, broken down by shift
matrix. The initial gain of yi is 20.5 because it is not processed in the
previous level. Notice that S0.25 corrects the gain of χi from 2−0.25 to
2−0.5.

The transform matrix of (12) can be decomposed into a
lifting network with the following two solutions:

P =
(

1 0
0 1

)
, w1 =

√
2 p−2
t , w2 = t

2 ,

w3 = 2
√

2 p−2
t , s = 1

P =
(

0 1
1 0

)
, w1 =

√
2(1−2t)

2p , w2 = −
√

2 p,

w3 =
√

2(2−t)
4p , s = −1

(13)

In this case, the parameter t is computed as

t = f
(
σ2
xi
,
(
2−0.5

)2 · σ2
yi
, 2−0.5 · σxi,yi

)
. (14)

which takes into account the fact that the gain of the original
yi is greater than that of xi by a factor of 20.5 (cf. Eq. 3).

Without taking into account the expansion caused by the
errors introduced in the lifting networks, the aforementioned
modifications to the POT result in a total dynamic expansion
of the transform of 1.5 bits. This expansion is determined
by the detail output of the unbalanced operations, in which
0.5 bits correspond to the original expansion and 1 bit to
gain modifications. Errors introduced in the lifting steps
may result in additional dynamic range expansion. In the
next section, it is demonstrated that the total expansion of a
multilevel POT (including errors from the lifting steps) can
be limited to no more than two bits.

IV. ANALYSIS OF ROUNDING ERRORS

As mentioned earlier, the finite arithmetic and rounding steps
introduced in the lifting network yield an integer-valued
transform that approximates the real-valued version of the
POT. The associated errors alter the dynamic range of the
transform in a non-trivial manner. In this section, we prove
the existence of a 2-bit bound on the total dynamic range
expansion and provide necessary conditions to guarantee this
bound.

The analysis first finds a bound for errors introduced in
the lifting network associated with each pairwise operation.
Using this bound, an overall 2-bit bound for the whole
transform is then found.

There are two factors that introduce errors in the result of a
pairwise operation: rounding and finite precision arithmetic.

Assuming rounding to the nearest integer, such operations
introduce an absolute error of at most 0.5. This error is
further modulated by subsequent lifting steps within the
same pairwise operation.

Regarding finite precision arithmetic, in practice it is
achieved via the use of finite precision weights within the
lifting network. Suppose that a weight w̃j has Θ bits of frac-
tional precision. Again, assuming nearest-integer rounding,
the error in the weight w̃j is |w̃j − wj | ≤ 2−Θ−1. Suppose
further that the inputs are signed integers with bit depth B.
Then, |xi| and |yi| are bounded by 2B−1.

Formally, the expression within the norm of (15) represents
the error in each of the two outputs χi and φi for a given
pair of inputs xi and yi. The infinity-norm selects the largest
of these two errors, which represent the difference between
the computed outputs —with finite precision arithmetic and
rounding— as compared to the ideal outputs —without finite
precision arithmetic or rounding. The permutation and sign
change in (11) are not considered here because they do not
affect the dynamic range expansion. From this expression,
a bound E (·) on the absolute error introduced by the lifting
network can be derived as given in (16). See the Appendix
for a derivation of this bound.
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∣∣∣∣∣
∣∣∣∣∣
(

1 0
w3 1

)(
1 w2

0 1

)(
1 0
w1 1

)(
xi
yi

)
−
(

xi + [w̃2 (yi + [w̃1xi])]
yi + [w̃1xi] + [w̃3 (xi + [w̃2 (yi + [w̃1xi])])]

) ∣∣∣∣∣
∣∣∣∣∣
∞

(15)

E (B,Θ, w1, w2, w3) =

= max
{

2B−Θ−2 (|w1|+ |w2|+ 1) + 2−1|w2|+ 2B−2Θ−3 + 2−Θ−2 + 2−1,(
2−3Θ−2

) (
2B+Θ (|w1|+ |w2|+ 1) + 22Θ+1(|w2|+ 1) + 2Θ + 2B−1

) (
2Θ|w3|+ 2−1

)
+ 2B−Θ−2 (|w2w1|+ |w2|) + 2B−Θ−1 + 1

} (16)

While this bound is applicable to any choices of the weights
w1, w2, and w3, the weights corresponding to the balanced
and unbalanced pairwise operations presented above are of
particular interest. Recall that for a particular value of t, all
pairwise operations presented above have two solutions to
the decomposition of their transform matrices into a lifting
network. Let solution α be the solution in which P =

(
1 0
0 1

)
in (11), and let solution β be the solution in which P =(

0 1
1 0

)
.

Figures 6a and 6b show the weights for the balanced
pairwise operation QR, as a function of t, for solutions α
and β, respectively. As seen there, solution α presents non-
removable discontinuities in w1 and w3 at t = 0. On the
other hand, solution β presents singularities in w1 and w3

at t = ±1. Figures corresponding to the unbalanced pairwise
operation QU are similar and are not presented here.

(a) solution α (b) solution β

Figure 6. Lifting solutions for QR. Values of w1, w2, and
w3 are plotted as functions of t.

Figure 7. Bounds ERα ( ) and ERβ ( ) with B = 17 and
Θ = {10, 14,∞}.

For a given value of t, the two resulting sets of weights for
the balanced case can be substituted into the bound of (16),
to obtain two bounds, each a function of B, Θ, and t, say
ERα (B,Θ, t) and ERβ (B,Θ, t) (see Fig. 7).

Given the discontinuities discussed with respect to Fig. 7, it
seems reasonable to consider solution α only when |t| ≥ 0.3
and solution β only when |t| ≤ 0.8.2

With this restriction, a bound over all t for the balanced case
can be found as

ER (B,Θ) = max
{

max
|t|≥0.3

ERα (B,Θ, t) ,

max
|t|≤0.8

ERβ (B,Θ, t)
}
.

(17)

The bound for the unbalanced case EU (B,Θ) is found in
the same way.

For any given Θ and B, exact values for ER (B,Θ) and
EU (B,Θ) can be calculated using a computer algebra sys-
tem. These bounds are dominated by a factor of 2−(Θ−B).
Indeed, Fig. 8 shows ER (B,Θ) as a function of Θ − B,
for many values of Θ and B. As can be seen from this
figure, different values of the bound are very similar for
equal differences Θ−B, indicating that the bound is strongly
dependent on Θ−B, and only loosely dependent on Θ and
B, individually.

For a finite bit depth B, perfect representation of the weights
(i.e., Θ = ∞) yields the lowest value of the bounds and
allows us to distinguish the error introduced by the finite
weight representation from that introduced by the rounding
operations within the lifting network. Thus, bounds on the
error resulting from rounding operations in the balanced
and unbalanced cases are ER (B <∞,Θ =∞) = (110 +
37
√

2)/60 ' 2.71 and EU (B <∞,Θ =∞) = 3.4. It can
also be observed, that for Θ−B ≥ 4, the error introduced by
the use of finite precision weights is essentially negligible.

With the error for a single pairwise operation now bounded,
the error for the whole transform can be addressed. This er-

2In practice, when data are being filtered, a single threshold T , 0.3 ≤
T ≤ 0.8, may be used to select solution α when |t| > T or solution β
when |t| ≤ T .
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Figure 8. Bound ER (B,Θ) as a function of Θ − B for values of B
from 1 to 18 and for values of Θ from 1 to 21. Similar results for the
unbalanced case are omitted for brevity.

ror depends on the number of transform levels employed. In
this work, 16 levels are considered sufficient, as this allows
the POT to be performed on up to 216 input components.
For a 16-level structure, the worst case in dynamic range
expansion happens in the detail output of an unbalanced
operation at the 16th level. For this case, the maximum
absolute value of an output sample, say peakout, is the
maximum absolute input value, say peakin, plus the lifting
error accumulated at each of the previous 15 levels, increased
by the implicit dynamic range expansion of the detail output
of the last unbalanced pairwise operation and by its lifting
error. Considering an equal maximum error Ep for each
pairwise operation, this results in

peakout ≤ (peakin + 15Ep) 21.5 +Ep. (18)

Assuming two’s complement signed inputs and outputs,
peakin = 2B−1. Assuming further a maximum desired
dynamic range expansion of 2 bits, we must then have
peakout = 2B+1− 1. Note that we cannot allow peakout =
2B+1 as this would permit an output of +2B+1 which
would not fit in B + 2 bits. Thus, the assumption of
two’s complement representation is more restrictive than the
assumption of sign magnitude representation. Substituting
these values into (18) and solving for Ep yields

Ep ≤
2B+1 − 2B+1/2 − 1

30
√

2 + 1
. (19)

The right side of this inequality, referred to hereafter as
E, can be interpreted as the maximum allowable error (per
level) that can be tolerated without exceeding a total of 2
bits of dynamic range expansion. For a given bit depth B,
it then suffices to choose Θ so that

ER (B + 1,Θ) ≤ E and EU (B + 1,Θ) ≤ E. (20)

Notice that the input bit depth in the pairwise operations at
the second and higher levels is larger than B because of the

expansion in previous levels. Of the 2 bits of total expansion,
1.5 bits are intrinsic in the transform (in the unbalanced
pairwise operation of the last level), and less than 0.5 bits
of expansion can be produced before the inputs of the last
level. Hence, it is sufficient to consider B + 1 instead of B
in (20).

Using (19), (20) and the bounds provided by (17), the
minimum values of Θ that allow an isorange transform with
2 bits dynamic range expansion are shown in Table I. It can
be observed that for images with bit depths of at least 8 bits,
it is always possible to find a value of Θ that satisfies (20).
Bit depths below 8 are not of particular interest for this study.
However, we discuss them here for the sake of completeness.
For bit depths of 7 and below, the necessary value of E to
contain the dynamic range expansion is below the threshold
set by ER (B <∞,Θ =∞) and EU (B <∞,Θ =∞), and
is thus unachievable. In practice, input data of low bit depth
can be presented to the transform network using the least-
significant part of an 8-bit word. Outputs of the transform
can then be guaranteed to fit in no more than 8 + 2 = 10
bits.

Table I
MAXIMUM ERROR PER LEVEL AND MINIMUM Θ REQUIRED AS A

FUNCTION OF B.

B E Min. Θ

7 1.70 -
8 3.43 12
9 6.88 10

10 13.78 10
11 27.60 10
12 55.22 10
13 110.48 10
14 220.98 9
15 441.99 9
16 884.00 9
17 1768.03 9

To recapitulate, the dynamic range expansion of the isorange
POT has been proven to be 2 bits for all images of up to 216

components, with bit depths of at least 8 bits, and where the
intensity distributions of each component is centered around
zero. Or in general, the dynamic range expansion has been
proven to be 3 bits for all images of up to 216 components,
with bit depths of at least 8 bits, regardless of the intensity
distribution of each component.

In case of being necessary, (18) and (19) can be trivially
adapted for ultraspectral images of more than 216 compo-
nents, at the expense of larger values of minimum Θ. For a
number of levels L,

Ep ≤
2B+1 − 2B+1/2 − 1

(L− 1)2
√

2 + 1
. (21)
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Thus, for example, a 10-bit image of 220 components
requires 10.93 < E. Evaluating ER and EU for Θ = 10
yields ER (11, 10) < 9.23 and EU (11, 10) < 9.31, which
guarantees the bound for the given example.

Two practical considerations conclude this analysis. The
first is that the bounds provided in this section are rather
conservative. In Fig. 9, for a given value of t, a sample of
4096 input pairs, each a 17 bit signed integer, are processed
by an isorange pairwise operation corresponding to that
value of t. The weights employed in each pairwise operation
have a fractional bit depth of 16. The resulting absolute peak
error is then plotted as a function of t. For comparison, the
corresponding bounds are also included in the figure. As
can be seen in the figure, the actual peak error is typically
significantly less than that implied by the bounds.

(a) balanced

(b) unbalanced

Figure 9. Peak absolute error of a sample of 4096 points with Θ = 16 for
solutions α ( ) and β ( ), and their respective bounds ( and ).
Input pairs are uniformly distributed with B = 17, and t is sampled at
steps of 2−8 (except for 0 and ±1 that are not sampled).

The second practical consideration is in relation to the
computational cost of the transform. In this regard, since
the transform application still uses the same lifting network,
its application costs remain the same as those of the original
POT. However, the computational cost required to obtain the
values of w̃j from t is changed. To assess the feasibility of
this operation in an on-board environment, a simple look-
up table using combinatorial logic was synthesized for a
rad-hard FPGA from a leading provider of semiconductor
solutions. For 1024 values of t ∈ [−1, 1) spaced in steps of
2−9 , and for weights w̃j with 9 fractional bits (Θ = 9),
the look-up table required 10% of the available space for
combinatorial logic and had a delay of 20 ns, which implies
that the solution is feasible in most practical cases.

V. EXPERIMENTAL RESULTS

This section assesses the experimental performance of the
proposed transform for multi- and hyperspectral on-board
image coding. First, the test data set is described, then the
experimental setup is detailed, and afterwards results are
provided and analyzed.

Experiments have been performed on the comprehensive
Lossy Image Corpus, as defined by the CCSDS Space
Link Services-Multispectral & Hyperspectral Data Com-
pression (SLS-MHDC) working group for the purposes
of evaluation and testing of lossy coding algorithms. The
corpus contains 47 images representative of 14 different
sensors comprising multi-, hyper- and ultraspectral sensors.
Due to page constraints, results are reported only for a
representative selection of 24 images. Technical details of
these images are provided in Table II.

The bit depth of images transformed with the original or
the isorange POT varies from sensor to sensor, as the
hardware capabilities of each sensor determine image bit
depth and number of components. In addition, raw images
(as acquired by the sensor) may be further processed with
non-uniformity-correction (NUC) or calibration stages that
may increase their bit depth. No distinction is made between
signed and unsigned images, as all images of both types
required mean-correction stages.

Table II includes the bit depth of the images when trans-
formed with the original POT as well as with the proposed
isorange POT. As expected, the bit depth increase of the
isorange transform is limited to three bits (one from mean
correction, and two from the lifting network). On the other
hand, the original POT results in widely varying bit depth
increases, ranging from 2 to 9. Additionally, images trans-
formed with the original POT exceed the bit depth of 16
as supported by CCSDS 122.0-B-1 for most hyperspectral
sensors and all the ultraspectral sensors. In comparison, all
images having original bit depths no greater than 13 can be
easily supported by the standard in concert with the proposed
isorange POT.

There are a few images in the database with bit depths
greater than 13. These include the noise-filtered radiance
SFSI image and those produced by the non-spaceborne
AVIRIS sensor. Such images are not seamlessly supported
by the proposed scheme. However, several alternatives exist,
such as dealing with some of the least-significant bit planes
by storing them uncoded or by discarding them — both
options would pose non-trivial side effects that would need
to be considered in the rate allocation procedure.

Regarding the experimental setup, the POT and the isor-
ange POT are implemented using fixed-point weights of 12
fractional bits, which due to inaccuracies in their compu-
tation from t, have a guaranteed accuracy of Θ = 9 (i.e.,
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|w̃j − wj | ≤ 2−10). Side information containing the values
of t (13-bit fixed-point values) and mean-correction factors
is stored uncompressed. For comparison, experimental re-
sults are also provided for the reversible CDF 5/3 wavelet
transform [34], implemented in a lifting scheme of similar
limited dynamic range expansion [33, p. 435].

The proposed isorange POT has been coupled with a soft-
ware CCSDS 122.0-B-1 2D encoder [25] configured to use
the Integer 2D wavelet transform (with 3 levels). We stress
again here that the CCSDS 122.0-B-1 2D encoder supports
a maximum bit depth of 16, rendering the original POT
essentially unusable in this scenario. For the purpose of
comparison, we have modified the encoder to extend its bit
depth support beyond 16 bits per sample so that experimental
results can be presented for the original POT. However, these
results would not be obtainable in practice.

The CCSDS 122.0-B-1 encoder is set to produce segments
every 8 lines for each transformed component. Rate al-
location is performed jointly across segments and bands
with a post-compression rate-distortion optimizer [35] using
truncation points at the end of each of the five stages of the
CCSDS 122.0-B-1 bitplane encoding process [25, p. 4-4].

Experimental results are provided in Table III for the
proposed isorange POT, the original POT and the CDF
5/3 wavelet, each applied to exploit inter-component cor-
relation. Lossy results are reported in terms of Signal-
to-Noise (SNR; in dB), and as the SNR difference (dB)
with respect to the isorange POT. SNR is here computed
based on the energy of the input signal, SNREnergy = 10 ·
log10

(∑
(Ii,j,k)2/

∑
(Ii,j,k − Îi,j,k)2

)
, being I the original

image and Î the recovered image.

The percentage of additional rate needed to match the SNR
of the isorange POT is provided as well. For example, for
the AVIRIS-Hawaii-raw image, the proposed isorange POT
provides an SNR of 46.21 dB at a bit rate of 1.0 bits per
pixel per band (bpppb). At the same rate, the original POT
yields an SNR of 46.21 + 0.48 = 46.69 dB. Alternatively,
the original POT provides an SNR of 46.21 dB at a bit rate
of 1.0− 0.16 = 0.84 bpppb.

The results suggest that the isorange POT suffers a small
performance penalty in relation to the original POT. This
penalty is on average 0.34 dB in SNR, or 6.5% in rate at
1.0 bpppb, and 0.20 dB in SNR, or 2.3% in rate at 2.0 bpppb.
Nonetheless, the proposed transform achieves significantly
higher coding performance than that of the CDF 5/3 wavelet
transform, averaging 1.28 dB in SNR, or 21.5% in rate at
1.0 bpppb, and 1.17 dB in SNR, or 13.3% in rate at 2.0
bpppb.

It is worth noting that differences in performance between
images can be non-negligible. This suggests that particular
image or sensor characteristics influence the performance

results. For example, the performance improvements pro-
vided by the POTs (with respect to the wavelet transform)
are much larger for the three AVIRIS images than for the
M3 images. Such differences can be clearly seen in Fig. 10,
which plots the rate distortion performance for selected
images using each scheme discussed above.

As mentioned previously, CCSDS 122.0-B-1 is a lossy-
to-lossless 2D codec. When used in concert with one of
the three 1D transforms considered here, the resulting 3D
codec is also lossy-to-lossless. Lossless coding results for
this scheme are presented in the right portion of Table III.
For the purpose of comparison, lossless results also included
the lossless-only method CCSDS 123.0-B-1 configured as
described in [36]. CCSDS-123 is selected as a reference
of lossless-only methods, because it is the outcome of a
careful algorithm selection among state-of-the-art methods,
and because its multiple available implementations (such
as [37]) make possible the production of experimental results
for the corpus employed. Lossless results are reported in
rate required for lossless coding (bpppb). When comparing
results for lossless coding, both POTs provide extremely
similar performance, often somewhat better than the 5/3
wavelet. As expected, the purely lossless method CCSDS-
123 is notably better, at the expense of not providing the
capability for lossy coding. Other pure lossless methods may
yield similar qualitative results; see [13] for a comparison
among pure lossless methods, and see [21] for a comparison
between the original POT and 7 other approaches providing
lossless compression (recall that the performance of isorange
POT as compared to original POT for lossless compression
is almost identical).

VI. CONCLUSIONS

This article examines the dynamic range expansion issue
of a spectral transform for on-board image coding, and
proposes a derived spectral transform —the isorange POT—
that inherits all positive features of the original POT while
having a limited dynamic range expansion.

The new transform is defined —including lifting network
weights and the method to calculate transform gains— and
the problem of unpaired components is addressed with a
custom operation that takes into account the higher gain of
these elements.

In addition, a comprehensive analysis is carried out to
mathematically prove a worst-case bound of 3 bits on the
dynamic range expansion for any reasonable input image,
and the necessary weight precision to achieve said bound is
obtained.

Finally, experimental results over a corpus of 47 images
indicate that the isorange POT has a small performance
penalization in relation to the original POT for lossy image
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Table II
TECHNICAL DETAILS OF THE IMAGES EMPLOYED IN THE EXPERIMENTAL RESULTS. IMAGES ARE UNSIGNED UNLESS THEIR BIT DEPTH IS MARKED

WITH A †. NUC STANDS FOR (SIMULATED ON-BOARD) NON-UNIFORMITY CORRECTION.

Bit Depth After Transform
Name Type Bands Height Width Bit Depth Proposal Original POT

AIRS-Granule-9 raw 1501 135 90 13 16 (+3) 20 (+7)
AVIRIS-Hawaii-raw raw 224 512 614 10 13 (+3) 16 (+6)
AVIRIS-Yellowstone-rad radiance 224 512 677 14 † 17 (+3) 20 (+6)
AVIRIS-Yellowstone-raw raw 224 512 680 15 18 (+3) 21 (+6)
CASI-t0477f06-nuc nuc 72 1225 406 13 16 (+3) 18 (+5)
CASI-t0477f06-raw raw 72 1225 406 12 15 (+3) 17 (+5)
CRISM-sc214-nuc nuc 74 2700 64 11 14 (+3) 16 (+5)
CRISM-sc214-raw raw 74 2700 64 11 14 (+3) 16 (+5)
Hyperion-GeoSample-ff flatfielded raw 242 1024 256 13 † 16 (+3) 19 (+6)
Hyperion-GeoSample-nuc nuc 242 1024 256 12 15 (+3) 18 (+6)
Hyperion-GeoSample-raw raw 242 1024 256 12 15 (+3) 18 (+6)
IASI-Desert calibrated 8461 60 66 12 15 (+3) 21 (+9)
Landsat-Coast raw 6 1024 1024 8 11 (+3) 11 (+3)
Landsat-Mountain raw 6 1024 1024 8 11 (+3) 11 (+3)
M3-globalA-nuc nuc 86 512 320 11 14 (+3) 16 (+5)
M3-globalA-raw raw 86 512 320 12 15 (+3) 17 (+5)
MODIS-250m-raw raw 2 8120 5416 12 15 (+3) 14 (+2)
MODIS-500m-raw raw 5 4060 2708 12 15 (+3) 15 (+3)
MSG-RC15 calibrated 11 3712 3712 10 13 (+3) 14 (+4)
Pleiades-Montpellier HR, simulated 4 2456 224 12 15 (+3) 15 (+3)
SFSI-Mantar-rad-rmnoise noise-filtered radiance 240 140 452 16 † 19 (+3) 22 (+6)
SFSI-Mantar-raw raw 240 140 496 11 14 (+3) 17 (+6)
SPOT5-Toulouse-1 HRG, processed 3 1024 1024 8 11 (+3) 11 (+3)
VEGETATION-1-1c raw 4 10080 1728 10 13 (+3) 13 (+3)

coding, whereas there is no significant performance differ-
ence for lossless compression.
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APPENDIX
DERIVATION OF THE ERROR BOUND

The absolute error introduced in the lifting network is
bounded by the infinity norm of a 2-dimensional vector(
v1
v2

)
, as given in (15). The bound is derived by bounding

each vector element individually.

Throughout the derivation, the following properties of the
absolute value operator are employed:

1) sub-additivity, i.e., |a+ b| ≤ |a|+ |b|, (22)
2) multiplicativeness, i.e., |a · b| = |a| · |b|, (23)
3) triangle inequality, i.e., |a− b| ≤ |a− c|+ |c− b|, (24)

4) a bound on the distance between two elements when
one is rounded, i.e.,

|a− [b]| ≤ |a− b|+ 2−1, (25)

5) and a direct result from (24) and (23),

|a · b− c · d| ≤ |a · b− c · b|+ |c · b− c · d|
= |b| · |a− c|+ |c| · |b− d|.

(26)

The magnitude of the first vector element in (15) is

|v1| =
∣∣(xi+ (w2 (yi + (w1xi))))

− (xi + [w̃2 (yi + [w̃1xi])])
∣∣.

Canceling both xi, employing (25), and distributing w2 and
w̃2 in the outermost products yields

|v1| ≤ |w2yi − w̃2yi + w2 (w1xi)− w̃2 [w̃1xi]|+ 2−1.

By (22), taking common factor of yi, and (23),

|v1| ≤ |w2 − w̃2| |yi|+ |w2 (w1xi)− w̃2 [w̃1xi]|+ 2−1.

Then, (26) can be applied on the second term of the
summation above to yield

|v1| ≤ |w2 − w̃2| |yi|+ |w1xi| |w2 − w̃2|
+ |w̃2| |w1xi − [w̃1xi]|+ 2−1.

By (25), taking common factor of xi, and (23),

|v1| ≤ |w2 − w̃2| |yi|+ |w1xi| |w2 − w̃2|
+ |w̃2|

(
|w1 − w̃1| |xi|+ 2−1

)
+ 2−1.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH Z 2014 11

Table III
PERFORMANCE COMPARISON OF THE ISORANGE POT (PROPOSED), THE ORIGINAL POT, AND THE WAVELET CDF 5/3. RESULTS FOR CCSDS

123.0-B-1 ARE INCLUDED AS REFERENCE FOR PURE LOSSLESS.

1 bpppb 2 bpppb Lossless

Image Name Prop. Orig. POT CDF 5/3 Prop. Orig. POT CDF 5/3 Prop. Orig. POT CDF 5/3 123.0
(dB) (∆ dB, %) (∆ dB, %) (dB) (∆ dB, %) (∆ dB, %) (bpppb) (bpppb) (bpppb) (bpppb)

AIRS-Granule-9 57.56 0.43 −11% −2.23 +56% 60.92 0.44 −8% −1.58 +23% 4.64 4.62 5.01 4.30
AVIRIS-Hawaii-raw 46.21 0.48 −16% −1.45 +48% 49.85 −0.60 +10% −2.01 +24% 3.22 3.21 3.51 2.71
AVIRIS-Yellowstone-rad 46.78 0.56 −8% −2.52 +39% 51.16 0.60 −8% −1.45 +19% 4.58 4.58 4.86 3.96
AVIRIS-Yellowstone-raw 51.32 0.09 −1% −4.77 +63% 55.87 0.25 −3% −2.72 +30% 6.65 6.65 7.13 6.19
CASI-t0477f06-raw 42.76 0.27 −3% −0.25 +3% 47.92 0.44 −5% 0.08 −1% 5.64 5.64 5.61 5.02
CASI-t0477f06-raw-nuc 43.34 0.34 −4% −0.70 +9% 48.35 0.48 −6% −0.21 +3% 5.56 5.56 5.59 4.93
CRISM-sc214-nuc 51.41 0.73 −12% −1.91 +28% 56.72 −0.25 +3% −1.67 +27% 3.73 3.74 3.99 2.75
CRISM-sc214-raw 42.51 0.20 −1% −1.80 +16% 51.27 0.77 −6% −1.20 +10% 4.69 4.69 4.84 2.74
Hyperion-GeoSample-ff 25.29 0.64 −14% −1.30 +35% 28.52 0.52 −8% −0.98 +15% 4.21 4.20 4.39 4.32
Hyperion-GeoSample-raw 44.27 0.30 −4% −0.85 +15% 49.15 0.32 −4% −0.99 +13% 4.81 4.81 4.94 4.32
Hyperion-GeoSample-nuc 46.73 0.48 −11% −0.92 +24% 50.44 0.63 −10% −0.87 +11% 4.44 4.43 4.60 4.32
IASI-Desert 47.34 0.20 −4% −0.23 +4% 51.56 0.33 −4% 0.21 −3% 5.65 5.65 5.53 4.76
Landsat-Coast 36.50 0.40 −16% −0.49 +10% 39.63 −0.05 +1% −0.58 +6% 3.15 3.14 3.16 2.79
Landsat-Mountain 27.14 0.42 −7% −1.33 +28% 31.36 0.21 −4% −1.51 +24% 4.20 4.21 4.37 3.80
M3-M3globalA-nuc 54.59 1.11 −14% −0.34 +6% 59.40 −0.13 +3% −0.76 +7% 3.29 3.31 3.34 2.26
M3-M3globalA-raw 45.24 0.47 −4% −0.76 +6% 54.50 0.33 −2% −0.33 +2% 4.30 4.38 4.31 2.25
MODIS-250m-raw 36.61 −0.37 +3% −3.21 +36% 44.26 0.33 −2% −2.87 +25% 6.16 6.17 6.71 6.43
MODIS-500m-raw 29.81 −0.51 +3% 0.30 −3% 38.20 −0.26 +2% −1.59 +13% 7.66 7.68 8.02 6.91
MSG-RC15 40.32 0.49 −6% −1.18 +15% 46.15 0.03 −0% −1.50 +15% 4.00 4.00 4.17 3.60
Pleiades-Montpellier 29.48 0.00 0% 0.31 −6% 36.65 −0.14 +1% 0.26 −2% 7.91 7.91 7.76 7.43
SFSI-Mantar-rad-rmnoise 50.72 0.93 −13% −1.76 +23% 56.66 0.05 −0% −1.56 +20% 3.69 3.64 3.92 3.71
SFSI-Mantar-raw 37.44 0.34 −11% −0.43 +15% 41.06 0.11 −1% −0.79 +11% 4.88 4.86 4.97 4.77
SPOT5-Toulouse-1 25.72 0.16 −3% −2.34 +36% 31.11 0.31 −3% −2.69 +23% 5.30 5.31 5.70 5.14
VEGETATION-1-1c 35.86 0.02 −0% −0.67 +10% 42.01 0.14 −2% −0.75 +5% 5.24 5.25 5.32 5.05

Using the substitutions

|w̃i − wi| ≤ K, |w̃i| ≤ |wi|+K, |xi| ≤M, |yi| ≤M,
(27)

where K = 2−Θ−1 and M = 2B−1, yields

|v1| ≤ KM + |w1|MK + (|w2|+K) · (KM + 2−1) + 2−1.
(28)

The magnitude of the second vector element in (15), after
canceling yi, is

|v2| = | (w1xi) + (w3 (xi + (w2 (yi + (w1xi)))))

− [w̃1xi]− [w̃3 (xi + [w̃2 (yi + [w̃1xi])])] |

Using (22) and applying (25) to both summands yields

|v2| ≤ |(w1xi)− w̃1xi|
+| (w3 (xi + (w2 (yi + (w1xi)))))

− w̃3 (xi + [w̃2 (yi + [w̃1xi])]) |+ 1.

Distributing w3 and w̃3 and applying (22) and (23) yields

|v2| ≤ |w1 − w̃1| |xi|+ |w3 − w̃3| |xi|
+|w3(w2 (yi + (w1xi)))

− w̃3 [w̃2 (yi + [w̃1xi])] |+ 1.

(29)

Focusing on the third term of (29)

T1 = |w3(w2 (yi + (w1xi)))− w̃3 [w̃2 (yi + [w̃1xi])]| ,

and applying (26) and (25) yields

T1 ≤ |w2(yi + (w1xi))| · |w3 − w̃3|
+|w̃3| · (|w2 (yi + (w1xi))

− w̃2 (yi + [w̃1xi]) |+ 2−1).

(30)

Similarly, focusing on

T2 = |w2 (yi + (w1xi))− w̃2 (yi + [w̃1xi])|

from (30), distributing w2 and w̃2, and applying (22) and
(23) yields

T2 ≤ |w2 − w̃2| · |yi|+ |w2 (w1xi)− w̃2 [w̃1xi]| ,

on which applying (26) on the second summand and (25)
afterwards yields

T2 ≤ |w2 − w̃2| · |yi|+ |w1xi| · |w2 − w̃2|
+|w̃2| · (|w1 − w̃1||xi|+ 2−1).

(31)

Substituting (30) and (31) back into (29) and using the
substitutions in (27) gives

|v2| ≤ KM +KM + (|w2|+ |w2w1|)MK

+(|w3|+K) · (KM + |w1|MK

+(|w2|+K) · (KM + 2−1)

+ 2−1) + 1.

(32)

With K = 2−Θ−1 and M = 2B−1, (28) and (32) can be
rearranged to yield the two arguments of the max function
in (16). �
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(a) AVIRIS-Yellowstone-raw
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(b) CASI-t0477f06-raw
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(c) MODIS-500m
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(d) SFSI-Mantar-rad-rmnoise

Figure 10. Rate-distortion performance for selected images. Rate is
sampled every 0.01 bpppb. Plots have the same scale.
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