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Microscopic Parallelism in JPEG2000
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Abstract—Parallel processing is key to augmenting the
throughput of image codecs. Despite numerous efforts to paral-
lelize wavelet-based image coding systems, most attempts fail at
the parallelization of the bitplane coding engine, which is the most
computationally intensive stage of the coding pipeline. The main
reason for this failure is the causality with which current coding
strategies are devised, which assumes that one coefficient is coded
after another. This work analyzes the mechanisms employed in
bitplane coding and proposes alternatives to enhance opportuni-
ties for parallelism. We describe a stationary probability model
that, without sacrificing the advantages of current approaches,
removes the main obstacle to the parallelization of most coding
strategies. Experimental tests evaluate the coding performance
achieved by the proposed method in the framework of JPEG2000
when coding different types of images. Results indicate that
the stationary probability model achieves similar coding perfor-
mance, with slight increments or decrements depending on the
image type and the desired level of parallelism.

Index Terms—Parallel architectures, JPEG2000, probability
models, bitplane image coding.

I. INTRODUCTION

FOR the last two decades, most image coding systems

have relied on context-adaptive approaches to determine

probabilities of symbols emitted by coding engines. In such

approaches, the context of a coefficient is defined through

some characteristics of its neighbors. At the start of coding,

the (conditional) probabilities of all symbols emitted in each

context are set to some fixed initial values. Typically, this

initialization assumes that the symbols are equiprobable (uni-

form) within each context. However, these initial distributions

need not be uniform, and can differ from context to context.

As the coding process evolves, the symbol probabilities are

adjusted depending on the coded data, i.e., increasing (or

decreasing) as symbols appear more (or less) frequently.

Emitted symbols are fed to an entropy coder, which employs

their probabilities in its compression process.

The effectiveness of context-adaptive approaches stems

from two main mechanisms. The first is the discrimination of

symbol probabilities imposed by the contexts. Contexts permit

the encoding of the same symbol using different probabilities

that depend on the context in which it is emitted [1]–[3].

The second mechanism behind the effectiveness of context-

adaptive approaches is the ability to adapt to varying local
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statistics. In general, probabilities are adjusted considering

the data coded, rapidly increasing the probabilities of those

symbols that have appeared recently [4], [5].

In addition to being computationally non-complex, the main

advantages of context-adaptive approaches are high compres-

sion efficiency and the separation of modeling and coding,

allowing a single entropy coding strategy. Additionally, the use

of adaptive probability models avoids a pre-processing step to

collect statistics, since statistics are collected at the same time

that data are coded. Context-adaptive technology has become

prevalent in image and video coding, and has been intro-

duced in many compression standards such as JPEG2000 [6],

AVC [7], HEVC [8], and JBIG [9].

Despite their popularity, context-adaptive approaches have

two major drawbacks. The first is poor performance when

short data sequences are coded. In JPEG2000, for instance,

spatial scalability is achieved by coding rectangular sets of

wavelet coefficients (called codeblocks) independently. The

smaller the codeblock, the finer the scalability, though then

adaptive strategies may not have sufficient data to adjust

the probabilities reliably, thus sacrificing compression per-

formance. The second drawback is the lack of opportuni-

ties for parallelism. This is mainly caused by the fact that

adaptive procedures are intrinsically causal systems in which

the probability of the current symbol depends on all symbols

previously coded. In practice, this compels coefficients to be

coded sequentially. In addition to adaptivity, certain context

structures may also force sequential coding or decoding, since

the characteristics of coefficients just before the current one

may also be needed to determine its context. These issues

are significant for microscopically parallel architectures, since

they prevent the simultaneous processing of (all) coefficients.

Parallel processing continues to gain importance in many

fields [10], [11] due to the advent of multi-core architec-

tures and (general-purpose) graphics processing units (GPUs).

Highly parallel algorithms can significantly accelerate their

sequential counter-parts, which opens new possibilities for a

wide range of applications [12]–[14] that deal with multimedia

content or require fast, or real-time, processing.

To the best of our knowledge, there are few wavelet-based

image coding systems that do not employ context and/or

adaptive strategies. The early codec proposed in [15], [16]

determines probabilities through a characterization of wavelet

data that does not require adaptiveness. In the same vein, the

strategy introduced in [17] employs a joint probability density

function (pdf) of wavelet coefficients and their local averages

through which probabilities of individual symbols can be

integrated before coding begins. Unfortunately, the principal

objective in [17] was the exploration of context models that
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enhance coding performance, without considering parallelism.

Hence some contexts employ adaptive mechanisms.

The purpose of the work reported here is to explore strate-

gies for the parallelization of the coding stage of wavelet-

based image codecs. The strategy proposed herein is aimed

at the finest level of parallelism possible, i.e., the parallel

processing of individual coefficients. This is referred to as

microscopic parallelism [18]. In modern codecs, the main issue

that prevents the achievement of this level of parallelism is

the adaptive probability model. In what follows, we introduce

a stationary probability model that overcomes the drawbacks

of adaptive mechanisms while preserving most advantages

of modern codecs. The main idea is to establish probability

estimates of symbols beforehand, by employing a training set

of images. These probability estimates are kept in a lookup

table (LUT) that is shared by the encoder and the decoder.

The proposed strategy is viable for any context-based coding

system such as [19]–[23]. For concreteness, the proposed

scheme is described and tested within the framework of

JPEG2000, without sacrificing any of the advanced features

of the standard. In addition to the static probability model, a

slight modification of JPEG2000 context formation is posed

as a means to increase parallelism opportunities. Experimental

results suggest that the proposed strategies achieve similar

coding performance to that of conventional context-adaptive

approaches, with slight increments or decrements depending

on the type of image being coded. As additional assets, the pro-

posed method significantly improves compression efficiency

when fine spatial scalability is needed, removes the machinery

needed to realize context-adaptive mechanisms, and may help

to simplify implementation in hardware architectures.

We remark here that context-adaptive arithmetic coding is

sometimes viewed as a (single) entropy coding algorithm.

In this work however, we take the more common point

of view [16], [17], [24], [25] that modeling (e.g., context

formation and probability estimation) is separate from entropy

coding (e.g., arithmetic coding). The goal of the research pre-

sented here is then the exploration of probability models and

contexts that admit highly parallel implementation. Previous

work [26]–[29] has focused on highly parallel implementation

of the wavelet transform. Our future work will focus on highly

parallelizable entropy coding techniques such as [30], [31].

The remainder of the paper is structured as follows. Sec-

tion II briefly reviews the context-adaptive approach employed

in JPEG2000. Section III introduces the stationary probability

model and the coding strategies proposed in this work. The

coding performance of the proposed method is assessed in

Section IV employing four corpora containing different types

of images. The last section summarizes this research and

provides concluding remarks.

II. OVERVIEW OF JPEG2000 CONTEXT-ADAPTIVE

MECHANISMS

A. Context formation

After a wavelet transform, JPEG2000 partitions wavelet

subbands into rectangular codeblocks. The maximum number

of coefficients within a codeblock is 4096, with the width and

codeblock

st
ri
p
e

coefficient

context
window

Fig. 1: Illustration of the scanning order and the context

window defined in JPEG2000.

the height of the codeblock being any power of two equal to

or greater than 22. Typically, large codeblocks (e.g., 64× 64)
yield the best coding performance in terms of mean squared

error. However, codeblocks of size 32 × 32 or smaller have

important applications [19], [32]. Codeblocks of size 16×16 or

smaller are not commonly used because of lower compression

efficiency. If not for this shortcoming, smaller codeblocks

would be highly desirable in some cases. For example, see

the visual masking discussion in [18, Ch. 16.1].

Each codeblock is coded independently by means of a bit-

plane coding strategy. Let [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1}
be the binary representation of an integer υ which represents

the magnitude of the index obtained by quantizing wavelet

coefficient ω, with M being a sufficient number of bits to

represent all coefficients. The collection of bits bj from all

coefficients is called a bitplane. Bitplane coding strategies code

bits from the most significant bitplane M − 1 to the least

significant bitplane 0. The first non-zero bit of the binary

representation of υ is denoted by bs and is referred to as

the significance bit. The sign of the coefficient, denoted by

d ∈ {+,−}, is coded immediately after bs, so that the decoder

can begin to approximate ω as soon as possible. The bits

br, r < s are referred to as refinement bits.

JPEG2000 employs three coding passes in each bitplane,

called the significance propagation pass (SPP), the magnitude

refinement pass (MRP), and the cleanup pass (CP). Each bit

in a bitplane is coded in one of these coding passes. The SPP

codes bits from non-significant coefficients that are likely to

become significant in the current bitplane, while the MRP

codes refinement bits from coefficients that were significant

in previous bitplanes. The CP codes any remaining bits in the

bitplane, i.e., those from non-significant coefficients that were

not coded in the SPP. Each coding pass visits coefficients in a

scanning order that is organized in stripes. A stripe is defined

as four consecutive rows of coefficients (see Fig. 1). Within

each stripe, coefficients are scanned from top to bottom in

each column, from the leftmost to the rightmost column.

Each symbol emitted by the coding engine is associated to

one of the 19 contexts defined by the standard [18]. Contexts

φ ∈ {0, ..., 8} are devoted to significance coding in SPP and
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CP. Contexts φ ∈ {10, ..., 14} are employed to code sign bits,

also in SPP and CP. Contexts φ ∈ {15, 16, 17} are associated

to refinement bits in MRP. CP also employs context φ = 9
to code bits emitted during a special coding mode called

run mode. In run mode, only one bit is emitted per four

consecutive coefficients. This mode is activated only when it

is likely that the four coefficients will not become significant

in the current bitplane. Context φ = 18 is reserved to code the

position of the first coefficient that was found to be significant

during the run mode, if any.

The contexts devoted to significance coding are defined as a

function of the significance state of the 8 immediate neighbors

of the coefficient. These neighbors are illustrated in Fig. 1 as

those within the context window. The significance state of a

neighbor is 1 if its significance bit has already been coded, and

0 otherwise. This clearly includes all coefficients that became

significant in bitplanes higher than the current. It also includes

the coefficients that become significant in the current bitplane

–and that appear earlier in the scanning order than the current

coefficient. This last observation has important implications

for parallelization.

Similarly, the contexts devoted to sign coding are defined

as a function of the sign of already significant neighbors.

Contexts employed for refinement bits employ the significance

state of the neighbors and the bitplane number of the refine-

ment bit, relative to that of the significance bit.

B. Adaptive mechanisms

The state machine depicted in Fig. 2 is employed to adapt

symbol probabilities in JPEG2000. Each dot in the figure is a

state. In each state, estimated symbol probabilities are given by

the vertical axis of the figure. All emitted symbols are binary,

so their probabilities are expressed in the range [0.5, 1) as the

probability of the most probable symbol (MPS). The entropy

coder dynamically changes which symbol is considered to be

most probable when the context is in a state with probability

0.5 and the least probable symbol (LPS) is coded. This is

represented in the figure by the dotted red arrows of the

bottom-left states. All states in the figure have a blue and a red

outgoing arrow that represent state transitions when the MPS

and LPS are coded, respectively. The transitions only occur

when the internal registers of the arithmetic coder reach a

particular state, which happens once every few symbols. The

current state, as well as the MPS, is maintained separately

for each context. At the start of coding, all contexts except

φ ∈ {0, 9, 18} are set to the bottom-leftmost state of the

figure. Contexts φ ∈ {0, 9} are initialized to states with higher

probabilities and with MPS = 0, since these contexts begin

coding mostly zeroes. Context φ = 18 is set to a special state

with only self-transitions and constant probability 0.5 (bottom-

right corner of the figure).

For a given context, symbol probabilities rise through the

state following one of the three vertical paths formed by

the blue lines in Fig. 2. The two leftmost paths are starting

mechanisms that are employed solely in the beginning of the

coding process to rapidly increase the probability when the

MPS is coded repeatedly. The coding of an LPS lowers the

probability and, if the context is associated with a state along

one of the two leftmost paths, the next state is selected along

the next path to the right. Eventually, the state is associated

with the rightmost path, along which probabilities rise and fall

more smoothly.

The dotted lines in Fig. 3 depict the estimated probabilities

for the symbols emitted with context φ = 1 when coding

each bitplane of one codeblock of one image. Specifically,

data correspond to one codeblock in the high vertical-, low

horizontal-frequency subband of the first decomposition level

of the “Portrait” image (ISO 12640-1 corpus, 8 bit, gray-

scale). The irreversible 9/7 wavelet transform is employed.

Each subfigure reports the probabilities employed to code

symbols emitted in a different bitplane. The vertical axis is

the probability of the MPS, whereas the horizontal axis is the

index of the coefficient corresponding to the symbol coded,

according to the scanning order discussed previously. This

results in all subfigures having the same width corresponding

to the number of coefficients in the codeblock, even though

there are a different number of symbols in each bitplane. At

the start of coding (leftmost part in the highest subfigure)

probabilities rise and drop rapidly due to the aforementioned

starting mechanisms. Probabilities fluctuate more smoothly in

subsequent bitplanes as they are adapted to the coded data.

Similar behavior is observed for other contexts, codeblocks,

and images.

III. STATIONARY PROBABILITY MODEL

A. Main insights

As previously discussed, the main drawbacks of context-

adaptive approaches are poor coding performance when fine

spatial scalability is required, and the provision of few oppor-

tunities for parallelism. These drawbacks are mainly caused

by the adaptation mechanisms, and can be eliminated by

means of a stationary model of probabilities. The proposed

probability model employs two main insights. The first is

derived via observation of Fig. 3. Note from this figure that the

probabilities employed to code the symbols emitted –within

the same bitplane– tend to trend around the average value for

that bitplane. These averages are illustrated by the straight

lines in each subfigure. The more important differences are

found between the average probabilities of different bitplanes.

At the highest bitplane, the average probability is nearly 0.99,

whereas at the lowest bitplanes, it falls to around 0.5.

This empirical evidence suggests that the adaptive mech-

anisms of conventional approaches are effective to adjust

probabilities between bitplanes, though little gain is obtained

from adjusting them within the same bitplane. Our hypothesis

is that adaptation can be omitted for symbols emitted in the

same bitplane without penalizing coding performance. The

proposed method uses constant probability for symbols emit-

ted in the same bitplane, but varies this constant value from

bitplane to bitplane. This amounts to using the probabilities

depicted by the straight lines in Fig. 3. As discussed below,

this method provides more opportunities for parallelism and

enhances coding performance when using codeblocks of small

size.
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Fig. 2: State machine employed to adjust symbol probabilities in JPEG2000. Dots represent states, whereas red and blue arrows

are transitions between states when coding the most and the least probable symbol, respectively. The probability of each state

is represented by the vertical axis of the figure. The gray boxes indicate initial states of JPEG2000 contexts.
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Fig. 3: Estimated symbol probabilities. Dotted lines depict the

probabilities employed to code symbols emitted with context

φ = 1. The vertical axis in each subfigure is the probability

of the MPS, whereas the horizontal axis is the index of the

symbol coded. The solid straight line in each subfigure is the

average probability in each bitplane.

The second insight behind the proposed method is that, in

addition to avoiding symbol by symbol adaptivity, a highly

parallel coding scheme must avoid a pre-processing step to

collect data statistics of the image to be coded. To this end,

we take advantage of the typical statistical behavior of the

data produced by a wavelet transform, which is similar for

images of the same type. For example, the experimental

results provided below utilize four different types of images

classified as natural, aerial, hyperspectral AVIRIS, and XRAY

angiography. These image types belong to different fields

and are captured with different sensors. As observed in other

works [16], [17], [33], the data produced after transforming

images of the same type with the same wavelet filter-bank

are statistically similar. We exploit this fact to generate a

single lookup table (LUT) for each image type. This LUT

contains the probability estimate for each context, subband,

and bitplane. The LUT is assumed to be precomputed off-

line, and known by both the encoder and the decoder, so

there is no need of an image-to-image pre-processing step to

collect statistics nor to transmit the LUT as side information.

Nonetheless, the size of the LUT is in practice so small that

its transmission would represent a negligible increase to the

length of the codestream (see Section IV).

B. LUT formation

The probability estimates needed to populate the LUTs are

determined as follows. First, the images of a suitable training

set are transformed with the appropriate wavelet transform.

The coefficients of each subband are then quantized with a step

size computed as the L2-norm of the synthesis basis vectors

of the subband. This produces a signal with energy gain factor
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of 1 in all subbands. This is a common strategy in JPEG2000,

though other quantization step sizes may also be used with the

proposed approach. The conditional probability mass function

(pmf) of the resulting quantization indices v is then computed

for all symbols that can be emitted by the coding engine, as

described in the following paragraphs.

PSj
(v | φ) denotes the pmf for the significance contexts

employed in SPP and CP at bitplane j. It is computed for

each wavelet subband using the data from all images in the

training set. The subband to which the pmf belongs is not

reflected in the notation for simplicity. The support of this

pmf is {0, ..., 2j+1 − 1} since it contains quantization indices

that were not significant in bitplanes greater than j. Fig. 4(a)

depicts PSj
(v | φ) for one wavelet subband. Only the pmfs

for contexts φ ∈ {0, 1, 4, 6} are depicted to avoid cluttering

the figure. Note that the pmf obtained for context φ = 0 has

a Laplace-like shape since this context is employed for those

coefficients that do not have any significant neighbor. Thus,

most of the coefficients coded with this context have magni-

tudes near 0. Coefficients with contexts φ ∈ {1, 4, 6} have 1,

at least 2, and at least 3 significant neighbors, respectively, so

the pmf for these contexts is more uniform.

PRj
(v | φ) denotes the pmf for the refinement contexts

employed in MRP. Its support is {2j+1, ..., 2j+2 − 1} for φ ∈
{15, 16} since these contexts are solely employed to code the

first refinement bit of the quantized coefficients. The support

of PRj
(v | φ) for φ = 17 is {2j+2, ..., 2M − 1} since this

context is employed to code the remaining refinement bits.

Fig. 4(b) depicts the pmf obtained for these contexts using the

same wavelet subband as that employed for PSj
(v | φ) above.

These pmfs are Laplace-like, though they have different shapes

depending on the context.

PDj
(d | φ) denotes the pmf for the contexts employed

to code the signs of coefficients that become significant in

SPP and CP. Accordingly, the support of this pmf is binary.

PNj
(r | φ) denotes the pmf for context φ = 9, employed in

the run mode of CP. Its support is also binary. Context φ = 18
does not require a pmf since it always employs probability 0.5.

Once the pmfs are computed, the probability estimates

used to populate the LUTs are generated by integrating the

pmfs to obtain the probabilities of emitting 0 or 1 in the

corresponding contexts. Denote the probability that bit bj is 0
during significance coding by Psig(bj = 0 | φ), φ ∈ {0, ..., 8}.

This probability is determined from the corresponding pmf

according to

Psig(bj = 0 | φ) =

2
j
−1∑

υ=0

PSj
(υ | φ)

2
j+1

−1∑

υ=2j

PSj
(υ | φ)

=

2
j
−1∑

υ=0

PSj
(υ | φ)

1
=

2
j
−1∑

υ=0

PSj
(υ | φ).

(1)
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Fig. 4: Pmfs obtained for the high vertical-, low horizontal-

frequency subband of the first decomposition level produced

by the irreversible 9/7 wavelet transform. Results are for the

corpus of natural images described in Section IV. (a) depicts

PSj
(v | φ) for φ ∈ {0, 1, 4, 6} and j = 5, whereas (b) depicts

PRj
(v | φ) for φ ∈ {15, 16, 17} and j = 4.

Similarly, probabilities for refinement bits are denoted by

Pref (bj = 0 | φ) and are determined as

Pref (bj = 0 | φ) =

2
j+1

+2
j
−1∑

υ=2j+1

PRj
(υ | φ) (2)

when φ ∈ {15, 16} and as

Pref (bj = 0 | φ) =

2
j+2

+2
j
−1∑

υ=2j+2

PRj
(υ | φ) +

2
j+2

+2
j+1

+2
j
−1∑

υ=2j+2+2j+1

PRj
(υ | φ) +

2
j+3

+2
j
−1∑

υ=2j+3

PRj
(υ | φ) + ...

(3)

when φ = 17. Note that Equation (3) sums up all subintervals

in which the refinement bit br = 0.
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Probabilities for sign coding and run mode can be taken

directly from their pmfs as PDj
(d = + | φ), φ ∈ {10, ..., 14}

and as PNj
(r = 0 | φ), respectively.

One LUT per subband is created containing the probability

estimates for each context in each bitplane. The LUT is

accessed as L[j][φ] with j denoting the bitplane and φ the

context. Fig. 5 depicts the probability estimates determined

for one wavelet subband. Each subfigure represents one of the

four corpora employed in the experimental results presented

below. The horizontal axis of each subfigure is labeled by

bitplane. For each bitplane, 18 vertical bars depict the proba-

bility for each of the 18 contexts employed to code symbols.

The vertical bars are classified by color depending on the

coding function of its corresponding context (i.e., significance,

refinement, sign, and run mode). The vertical axis is the

probability of the MPS. Note that probability estimates are

significantly different for each image type. For instance, the

probability estimates for the two lowest bitplanes of Fig. 5(c)

are near 0.5 for all but one context, whereas in Fig. 5(b) they

are significantly greater than 0.5 for several contexts. Note

also that the probability of context φ = 0 (leftmost bar in each

bitplane) in Fig. 5(b), is high at the highest bitplanes, medium

at the medium bitplanes, and high again at the lowest bitplanes.

Contrarily, for the other image types, this probability estimate

is highest at the highest bitplanes and lowest at the lowest

bitplane. Similar patterns can be observed for other contexts.

This variability indicates that LUTs must be computed bitplane

by bitplane and image type by image type to achieve high

compression efficiency.

C. Parallelism analysis

Parallelization of the JPEG2000 data coding stage can

be considered at three different levels: codeblock, coding

pass, and coefficient. Codeblock parallelism refers to the use

of different execution threads to code different codeblocks.

Parallelism at the coding pass level would indicate that the

coding passes within a codeblock are executed simultaneously.

Coefficient parallelism would imply that coefficients within a

codeblock are processed in parallel. In [18][Ch. 12.4.2], paral-

lelism external to the codeblock is referred to as macroscopic

parallelism, whereas intra-codeblock parallelism is referred to

as microscopic parallelism. Of the two, highly parallel archi-

tectures like GPUs are more suited to microscopic parallelism,

especially the finest grain parallelism at the coefficient level.

Table I enumerates the levels of parallelism that can be

achieved with the proposed method and with different coding

strategies compliant with JPEG2000. As seen in the table,

JPEG2000 without invoking any of its specialty coding vari-

ations can only achieve codeblock parallelism. This macro-

scopic parallelism is easy to implement because there are no

data dependencies among codeblocks. This level of parallelism

is also achieved by all other coding strategies evaluated.

From the point of view of probability model adaptation and

context formation, coding pass parallelism can be achieved in

JPEG2000 through invoking its RESET coding variation [18].

This coding variation re-initializes all contexts at the beginning

TABLE I: Evaluation of the levels of parallelism achievable

at the encoder and the decoder when using different coding

strategies in the framework of JPEG2000. An asterisk besides

a check mark indicates that tight synchronization is required

to achieve the corresponding level of parallelism.

parallelism level

cod.

cblk. pass coef.

C
O

M
P

L
IA

N
T

JP2
enc. ✓ ✗ ✗

dec. ✓ ✗ ✗

JP2 enc. ✓ ✓ ✗

+RESET dec. ✓ ✗ ✗

JP2 +RESET enc. ✓ ✓ ✗

+CAUSAL dec. ✓ ✓
∗

✗

N
O

N
C

O
M

P
L

IA
N

T stationary
enc. ✓ ✓ ✓

dec. ✓ ✗ ✗

stationary enc. ✓ ✓ ✓

+CAUSAL dec. ✓ ✓
∗

✗

stationary enc. ✓ ✓ ✓

+ctxt. mod. dec. ✓ ✗ ✓

of each coding pass, eliminating any dependence of probabil-

ities in the current coding pass on probabilities in previous

coding passes.1 In the encoder, coding pass parallelism is

then achieved straightforwardly since all probabilities depend

only on symbols previously coded in the current coding pass.

Furthermore, all bits of all quantization indices are readily

available in the encoder, permitting the formation of contexts

in all coding passes.

In the decoder, the probability adaptation is also easily

implemented in parallel, by coding pass. However coding

pass parallelization is complicated by the context formation

process, which requires certain bits from the eight neighboring

coefficients to be decoded before the context can be formed

for the current bit. The bits needed from the neighboring

coefficients include all bits from previous bitplanes, those from

the previous coding passes of the current bitplane, and those

from the previous coefficients scanned in the current coding

pass. Parallel coding pass decoding is thus only possible if a

tightly synchronized delay of (slightly more than) one stripe

is introduced between the decoding of subsequent coding

passes. However, the number of coding passes is commonly

higher than the number of stripes, rendering impractical such

a strategy.

JPEG2000 overcomes this barrier to coding pass parallelism

via the CAUSAL coding variation. When this variation is in

use, the context formation process considers only neighbors

within the same stripe. In other words, when the context

window shown in Fig. 1 trespasses stripe boundaries, all coef-

ficients from trespassed stripes are assumed to be insignificant.

Since there are then no dependencies between stripes, the

decoder can parallelize coding passes by introducing a delay

of two columns (within the same stripe) between the threads

1From the point of view of the (arithmetic) entropy coder, further measures
are required. This is discussed in more detail below.
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Fig. 5: Lookup tables for the four corpora used in Section IV. Data correspond to the low vertical-, high horizontal-frequency

subband of the first decomposition level produced by the irreversible 9/7 wavelet transform. Subfigures correspond to (a)

natural images, (b) aerial images, (c) XRAY angiographies, and (d) hyperspectral AVIRIS images. Probabilities for the least

significant seven bitplanes are depicted.

that process two consecutive coding passes. This ensures that

all required neighboring bits have been decoded in time to

form contexts in the current coding pass.

Even when the coding variations discussed above are em-

ployed, JPEG2000 cannot provide parallelism at the coeffi-

cient level because of the adaptive probability model. On the

other hand, the stationary probability model described before

permits parallelism at both the coding pass and coefficient

levels at the encoder. This is true even when the CAUSAL

coding variation is not employed.2 At the decoder, neither

of these levels of parallelism are possible in the absence of

the CAUSAL coding variation due to the context formation

approach. As before, use of the CAUSAL coding variation

allows coding pass parallelism in the decoder through the

tight synchronization strategy described before. However, co-

efficient level parallelism is still not possible.

Parallelism at the coefficient level in the decoder can only

be achieved if the stationary probability model is accompanied

by a slight modification of the context formation process in

JPEG2000. As noted above, the formation of the contexts

considers coefficients that become significant in previous

coding passes and those that are scanned before the current

coefficient in the current coding pass. Coefficients cannot

be processed in parallel unless this condition is removed.

The last strategy mentioned in Table I modifies the context

2In the case of the stationary probability model, the RESET coding variation
has no meaning, since probabilities are not adapted.

formation of JPEG2000 by computing the significance state

considering only the bits reconstructed in previous coding

passes. This enables coefficient parallelism at the decoder by

synchronizing the threads that process (all) coefficients to code

each coding pass in a synchronized manner, i.e., one thread

coding a coefficient cannot code the next coding pass until all

its neighbors have finished coding the current coding pass.

As noted in footnote 1 and as described in more detail

in [18], the use of coding pass parallelism also requires the

RESTART coding variation, which causes the arithmetic coder

to terminate its compressed bitstream at the end of each

coding pass. This eliminates dependencies between the bit-

streams of different coding passes. As mentioned previously,

this suffices for coding pass level parallelism, but not for

coefficient level parallelism. As discussed in the Introduction,

achieving coefficient level parallelism will require changing

or replacing the entropy coding procedure. In this paper, we

focus on modeling (probability models and context formation)

to support parallelization, and remark that the potential gains

of a fully coefficient parallel implementation of the bitplane

coding stage, including both modeling and coding, are signif-

icant. Implementations of the wavelet transform that employ

coefficient level parallelism, for instance, achieve speedups of

10 or more with respect to a sequential implementation [29].

Similar accelerations may be possible for the bitplane coding

stage.

Though not originally devised for parallelism purposes, the
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Fig. 6: Evaluation of the coding performance achieved by the proposed stationary probability model as compared to JPEG2000

(solid plots) and to JPEG2000 with the RESET coding variation (dotted plots). Each subfigure reports the performance achieved

for one image from a specific corpus: (a) natural, (b) aerial, (c) XRAY, and (d) AVIRIS.

BYPASS coding variation may also be employed to parallelize

certain coding passes. When this coding variation is in use, the

bits emitted by the coding engine in some coding passes are

not fed to the arithmetic coder but are directly transmitted in

raw mode. Parallelization of the coding of these raw coding

passes is straightforward since they neither require context

formation nor probability models. However, we note that using

BYPASS alone does not facilitate parallelism in general, since

in most coding passes adaptive probabilities are still used.

IV. EXPERIMENTAL RESULTS

Four corpora of images are employed to evaluate the

proposed strategies. The first corpus consists of the eight

ISO12640-1 images (2048 × 2560, gray scale, 8 bits per

sample (bps)). The second is composed of four aerial images

provided by the Cartographic Institute of Catalonia, covering

vegetation and urban areas (7200 × 5000, gray scale, 8 bps).

The third corpus has three XRAY angiography images from

the medical community (512 × 512 with 151 components,

12 bps). The last corpus contains three AVIRIS (Airbone

Visible/Infrared Imaging Spectrometer) hyperspectral images

provided by NASA (512×512 with 224 components, 16 bps).

The results reported in this section employ the unmodified

MQ arithmetic coder as used in JPEG2000. This provides

an equal footing for the comparison of different context and

probability modeling strategies. As mentioned previously, a

fully parallelized implementation of JPEG2000 would require

other ingredients such as a parallelized wavelet transform

and parallelized entropy coder. Parallelizable entropy coding

may result in further changes to compression efficiency, likely

similar to the RESET and the CAUSAL coding variations

(around 2% in general). However, due to the separation

between modeling and coding, these effects can be considered

separately. Thus, the focus here is on the gains or losses that

can be obtained via stationary probability modeling, all other

things being equal.

Fig. 6 reports the lossy coding performance achieved for one
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image from each corpus. The LUT employed in each case is

constructed using all images of the same corpus except the

image that is evaluated. Coding images of a different type

from that used to construct a given LUT may decrease the

coding performance significantly. Constructing a single LUT

based on images from all corpora also degrades performance

obtained for each corpus individually. On the other hand, the

size of the LUT is typically quite small. For example, for the

four corpora described above, the LUTs represent 0.05, 0.008,

0.007, and 0.004, respectively. Thus, the overhead that would

be incurred by including a specialized LUT in a codestream

would be negligible.

The JPEG2000 lossy mode, which uses the irreversible

9/7 wavelet transform, is employed for all results reported

in Fig. 6. The proposed context formation modification is

not used. The horizontal axis of each subfigure is the rate at

which the images are coded, whereas the vertical axis is the

peak signal-to-noise ratio (PSNR) difference achieved between

the proposed method and that of JPEG2000. Values above

0 indicate that the proposed method achieves higher PSNR

than that of JPEG2000. Solid plots compare the proposed

method to JPEG2000 without any coding variations, whereas

dotted plots compare the proposed method to JPEG2000 using

the RESET coding variation. Results are reported for three

different codeblock sizes.

For natural and AVIRIS images, results indicate that the

stationary probability model achieves slightly inferior coding

performance to that of JPEG2000 (without coding variations)

when the codeblock size is 32 × 32 or larger. For smaller

codeblock sizes, the stationary probability model achieves sig-

nificantly higher PSNR than that of JPEG2000. This is caused

by the adaptive mechanisms of JPEG2000 not having enough

data to adjust probabilities reliably for small codeblocks, while

the proposed method does not depend on the amount of data

coded per codeblock. For the aerial and XRAY images, the

proposed method achieves higher coding performance than

that of JPEG2000 at most rates, even for codeblocks of

size 64 × 64. The gain obtained by the proposed model is

significant, being of 2 dB or more at some rates.

When the RESET mode is in use, the gains achieved by the

proposed method increase as the codeblock size is decreased.

Indeed, the proposed method becomes superior for all images

when the RESET mode is employed for codeblock sizes

of 32 × 32 or smaller. It is worth noting that the relative

improvement when the RESTART variation is employed is due

to changes in JPEG2000, and not to changes in the proposed

scheme (see footnote 2). Specifically, adaptive probabilities

penalize JPEG2000 coding performance further due to the

lack of data coded in each individual coding pass. Results

are similar for other images of the corpora. Specific results

for the CAUSAL coding variation are not reported. Typical

penalties incurred by this mode are less than 0.01 bps.

The next test assesses coding performance for the lossless

mode of JPEG2000. This mode employs the reversible 5/3

wavelet transform and codes all bitplanes of the resulting

(integer) transform coefficients. Five different codeblock sizes

are employed. Table II reports the results achieved for each

of the four corpora. Results for JPEG2000 are computed by

TABLE II: Evaluation of lossless coding performance. Results

are averaged over all images in each corpus.

JP2

cblk. size JP2 +RESET stationary

IS
O

1
2
6
4
0
-1

64×64 4.71 bps +0.02 +0.04

64×32 4.73 bps +0.03 +0.02

32×32 4.76 bps +0.05 0.00

32×16 4.82 bps +0.07 -0.04

16×16 4.92 bps +0.09 -0.10

max diff. 0.21 0.28 0.07

A
er

ia
l

64×64 5.80 bps +0.02 -0.04

64×32 5.82 bps +0.03 -0.05

32×32 5.85 bps +0.05 -0.07

32×16 5.91 bps +0.08 -0.11

16×16 6.01 bps +0.11 -0.16

max diff. 0.21 0.3 0.09

X
R

A
Y

64×64 6.40 bps +0.01 -0.14

64×32 6.42 bps +0.02 -0.16

32×32 6.45 bps +0.04 -0.17

32×16 6.51 bps +0.06 -0.21

16×16 6.61 bps +0.08 -0.26

max diff. 0.21 0.28 0.11
A

V
IR

IS

64×64 7.19 bps +0.02 -0.05

64×32 7.21 bps +0.04 -0.07

32×32 7.24 bps +0.06 -0.09

32×16 7.30 bps +0.09 -0.12

16×16 7.40 bps +0.12 -0.18

max diff. 0.21 0.31 0.08

averaging the rate required to losslessly compress each image

of a corpus. Results for JPEG2000 with RESET and for the

proposed stationary probability model are reported as the dif-

ference in bps between the evaluated strategy and JPEG2000.

Negative values indicate that the codestream generated for the

indicated strategy is shorter than that of JPEG2000. As ex-

pected, the RESET coding variation always produces positive

values (increases the length of the JPEG2000 codestream).

The best result in each row of the table is emphasized with

bold font. The proposed method achieves the best results in

all cases except when natural images are compressed using

large codeblock sizes. The images with the greatest differences

come from the XRAY corpus, for which the proposed method

decreases the length of the codestream by up to 0.26 bps.

It is worth emphasizing the significance of these results: the

proposed method provides more parallelism than the RESET

variation while enhancing coding performance. In addition,

it penalizes the use of small codeblocks less than the other

methods presented in the table. This can be seen in the last

row corresponding to each corpus, which reports the difference

between the codestream generated when using codeblocks of

size 64 × 64 and that generated with codeblocks of 16 × 16.

The differences for the stationary probability model are half

or less of those for JPEG2000.

The modification of the context formation process as de-
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Fig. 7: Coding performance for the proposed stationary proba-

bility model when the context formation modification is used.

Results are for the same aerial image used for Fig. 6(b).

scribed in Section III permits coefficient level parallelism

at the decoder, but degrades coding performance somewhat.

Fig. 7 reports the difference between the PSNR achieved by

the proposed method with and without the context modifica-

tion. The degradation in performance is similar for all code-

block sizes, being approximately 0.2 and 0.4 dB, respectively

for medium and high rates. Results vary slightly depending

on the image type, though decreases in PSNR are never more

than 0.5 dB.

As a final remark, we point out that, as discussed in previous

sections, the adaptive mechanisms employed by JPEG2000

are most effective to adjust probabilities between bitplanes.

Empirical evidence reveals that this statement holds for all

contexts except φ = 9 (i.e., that employed in the run mode

of CP). For this context, some gain can be had by allowing

probabilities to adapt within a bitplane. This can be seen in

Fig. 8, which depicts the coding performance achieved by the

proposed method when only context φ = 9 employs adaptive

probabilities, for the same image reported in Fig. 6(a). For the

purpose of comparison, the figure also reports the performance

for the unmodified stationary model, i.e., the same results

reported in Fig. 6(a). The unmodified strategy is shown by

the solid lines in the figure, while the dotted lines report the

performance achieved when context φ = 9 employs adaptive

probabilities. Note that for codeblocks of size 64 × 64 and

32 × 32, the gain in PSNR can be significant. Evidently,

adopting this strategy would forfeit the advantages of the

stationary model.

V. CONCLUSIONS

The aim of this work is to explore coding strategies for the

parallelization of the data coding stage of modern wavelet-

based image codecs. The main obstacle to achieve the finest

level of parallelism, in which all coefficients are processed

in parallel, is the context-adaptive mechanism employed to

determine probabilities of emitted symbols. We overcome

this obstacle with a stationary probability model that, instead
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Fig. 8: Coding performance for the proposed stationary prob-

ability model when context φ = 9 (run mode) uses stationary

(solid lines) and adaptive (dotted lines) probabilities, as com-

pared to JPEG2000. Results are for the same natural image

used for Fig. 6(a).

of adjusting probabilities as symbols are emitted, establishes

probability estimates beforehand. With this probability model,

parallelism at the coefficient level is attainable.

Evaluation of the stationary probability model indicates

that it achieves similar coding performance as that obtained

with conventional context-adaptive approaches when medium

and large codeblock sizes are employed. For small codeblock

sizes, the proposed model significantly improves the coding

performance over classical approaches.
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