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Abstract—This work introduces a rate allocation method for
the transmission of pre-encoded JPEG2000 video over time-
varying channels, which vary their capacity during video trans-
mission due to network congestion, hardware failures, or router
saturation. Such variations occur often in networks and are
commonly unpredictable in practice. The optimization problem
is posed for such networks and a rate allocation method is
formulated to handle such variations. The main insight of the
proposed method is to extend the complexity scalability features
of the FAst rate allocation through STeepest descent (FAST) algo-
rithm. Extensive experimental results suggest that the proposed
transmission scheme achieves near-optimal performance while
expending few computational resources.

Index Terms—Video transmission, time-varying channels, rate
allocation, JPEG2000

I. INTRODUCTION

Video transmission has been a prominent research topic

for the last few decades. Its deployment in myriad applica-

tions, such as teleconferencing, video broadcasting, video-on-

demand, and surveillance systems, manifests the consolidation

of such technology in our every-day lives.

Three elements are key in the design of a video transmission

scheme: the coding system, the network characteristics, and

the requirements of the application. Two main families of

coding systems are currently available for the coding and

transmission of images and video: interframe and intraframe.

H.264/AVC [1] is the most advanced interframe standard that

exploits dependencies among frames to efficiently compress

video. JPEG2000 [2] is the most advanced intraframe standard

for the coding of images and video without considering frame

dependencies. Both standards have been adopted in different

scenarios, and both provide powerful tools for transmission of

video over a network.

The characteristics of the network establish channel prop-

erties such as constant or variable channel capacity [3] and
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communication error rate [4], among others. The application

requirements may introduce several demands on the trans-

mission scheme: servers that deliver pre-encoded video [5]

can use substantially different mechanisms than servers that

encode and transmit video on-the-fly [6]; decoders with limited

resources may raise challenging constraints [7]; and the use

of smart proxies [8] or peer-to-peer (P2P) networks [9], [10]

triggers new possibilities to efficiently transmit video.

Despite the large amalgam of scenarios created by the

combination of these elements, all video transmission schemes

pursue the same goal: to provide the best possible video

quality to the end-user. When the distortion measure is mean

squared error (MSE), one of two criteria is typically selected to

optimize the quality of transmitted video [11]: 1) minimization

of the average MSE (MMSE); and 2) provision of (pseudo-

)constant quality, which is more commonly expressed as the

minimization of the maximum MSE (MMAX) [12]. Of the

two, subjective experiments suggest that MMAX may be more

relevant perceptually [13]. Although this has been extensively

discussed in the literature [14], [15], and even hybrid ap-

proaches have been proposed [16], video transmission schemes

are generally focused on the optimization of one of these two

criteria depending on the requirements of the application.

MMSE and MMAX are achieved by means of reduc-

ing/increasing the number of bytes transmitted for each frame,

which is referred to as variable bitrate (VBR) video. Intu-

itively, VBR video delivers more bytes for those frames that

are more difficult to compress (high spatial activity and/or

motion) than for those frames that are easier to compress. The

process that decides the number of bytes that are transmitted

for each frame is called rate allocation, which is a key piece

of video transmission schemes. Rate allocation methods must

take into account the optimization criterion together with the

coding system, the network characteristics, and the constraints

imposed by the application.

This work considers a video-on-demand scenario that trans-

mits pre-encoded JPEG2000 video to clients over a time-

varying channel. To allow VBR video, the client has a lim-

ited buffer capacity to absorb irregularities in the sizes of

compressed frames. We assume that the buffer size may vary

from client to client, and that the channel capacity may vary

over time in an unpredictable manner. We adopt JPEG2000

as the coding system since its fine grain quality scalability

facilitates rate allocation of pre-encoded video. Furthermore,

it is employed in many motion imagery applications, such

as Digital Cinema distribution, television production, and

surveillance.
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The rate allocation algorithm introduced in this paper builds

on our previous approach FAst rate allocation through STeep-

est descent (FAST) [17]. The main shortcoming of FAST is

that, as originally formulated, it can not absorb variations in

channel capacity during transmission. Such variations occur

frequently in real-world scenarios that transmit data over the

Internet or wide area networks due to congestion, irregularities

in network conditions, etc.

An important feature required in time-varying channels is

that the rate allocation method absorbs channel irregularities

while guaranteeing that the transmission does not violate

any existing buffer limits at the client. Important aspects of

the optimization problem are that the variations in channel

capacity are not known a priori, and that the server cannot

interrupt the video transmission to compute new frame rates

when channel conditions vary. The method introduced in this

work extends two particular features of FAST to deal with such

variations: scalability in terms of complexity, and the roughly

linear relation between computational load and the number

of frames. This permits the introduction of efficient strate-

gies that can handle variations in channel capacity without

penalizing performance. Furthermore, the proposed method

preserves interesting features of the original FAST algorithm

such as optimization for MMSE or MMAX, and low memory

requirements.

The paper is organized as follows. Section II describes the

fundamentals of video transmission schemes. Section III es-

tablishes the optimization problem that arises in time-varying

channels and describes the proposed algorithm. Section IV

assesses the performance of the proposed algorithm through

extensive experimental results. Section V provides concluding

remarks.

II. OVERVIEW OF VIDEO TRANSMISSION SCHEMES

The simplest scheme to transmit video is to use a Constant

Bit Rate (CBR) policy that transmits the same rate (bits/frame)

for all frames of the video sequence. Although CBR schemes

maintain constant client buffer occupancy throughout the

whole transmission, the video quality is not optimized.

Using Variable Bit Rate (VBR) policies can provide the

opportunity to optimize video quality. Nonetheless, VBR

schemes introduce constraints to the optimization problem

that have to be addressed carefully. Specifically, let Rtotal be

the total rate (bits/sequence) used to satisfy a client request

for a sequence, and let N be the number of frames of the

sequence. For now, we assume that the channel capacity is

fixed at constant W bits per second and that the rendering

pace is F frames per second (fps). Then, Rtotal is determined

as Rtotal = (W/F) ·N . Suppose that the codestream for the

ith frame is scalable and can be truncated at points j corre-

sponding to increasing bitrates rij (bits/frame) and decreasing

distortions dij , with 1 ≤ i ≤ N and 1 ≤ j ≤ Qi, where

Qi is the number of truncation points available for frame

i. When the optimization criterion is MMSE, the objective

of the optimization problem is to find the truncation points

x = {x(1), x(2), ..., x(N)} corresponding to bitrates rix(i)

and distortions dix(i) that minimize the distortion, do not

exceed the bit budget, and respect the client buffer size, i.e.,

min
x

N
∑

i=1

dix(i) (1)

such that

N
∑

i=1

rix(i) ≤ Rtotal (2)

and

Bmin ≤
Rtotal

N
· f −

f
∑

i=1

rix(i) ≤ Bmax −
Rtotal

N

∀ f, 1 ≤ f ≤ N ,

(3)

where Bmin and Bmax denote the minimum and maximum

capacity of the client buffer, respectively, with Bmin < Bmax.

The middle expression of inequality (3), B(f) =
Rtotal

N
·

f −

f
∑

i=1

rix(i), represents the buffer occupancy at the instant

just after frame f is rendered. As discussed above, the total

available transmission rate for the sequence is Rtotal, and

the channel capacity W is assumed constant. So the rate

transmitted per frame rendering period can be expressed as

W/F = Rtotal/N . It is worth noting that the frame period is

constant (for example, 1/30 second, corresponding to F = 30
frames/second) even though the time to transmit the data for

each frame is variable due to VBR encoding. Thus, data can

be seen as entering the buffer at the constant rate of Rtotal/N
bits per frame period. The total rate received up to frame f is

therefore
Rtotal

N
· f . On the other hand, each time a frame is

rendered, its data are removed from the buffer, emptying rix(i)
bits from the buffer for frame i. Thus, the total rate emptied

from the buffer up to frame f is expressed as

f
∑

i=1

rix(i). The

difference between the filling and emptying corresponds to

the buffer occupancy, B(f) as expressed in the middle term

of inequality (3). Recalling again that B(f) is the buffer

occupancy just after frame f is removed from the buffer, the

right hand expression of (3) can be understood. During the

frame period that occurs after frame f is removed, and before

frame f + 1 is removed, Rtotal/N bits will be added to the

buffer as described above. There must be room in the buffer

to accommodate these data, so the buffer occupancy just after

frame f is rendered must be no greater than Bmax−Rtotal/N .

In practice, a certain amount of buffering delay is required

to partially fill the buffer prior to any frames being rendered.

In order to avoid cluttering the notation by including this delay

and the resulting initial data in the buffer, we take t = 0 be the

instant just before the first frame is rendered. Furthermore, we
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take B(f) to be the buffer occupancy relative to the amount of

data initially buffered, say B0. The amount of data actually in

the buffer just after frame f is rendered is then B0+B(f). In

our experiments, we fill the buffer half way prior to rendering

the first frame. Thus, for a buffer size of S, we set B0 = S/2,

Bmax = S/2 and Bmin = −S/2.

With respect to the MMAX criterion, the formulation of

the optimization problem is the same except that the objective

function (1) is replaced by

min
x

(

N
max
i=1

dix(i)

)

. (4)

It has been shown that both optimization problems (i.e., that

of (1) (2) (3), and that of (4) (2) (3)) can be solved within the

same optimization framework [14], so some methods proposed

in the literature are able to address both MMSE and MMAX.

Many schemes for video transmission have been explored

since the mid-90s [18], [19]. Three main approaches have

proven effective to tackle the optimization problem above:

dynamic programming techniques [7], Lagrange relaxation

methods [20], [21], and steepest descent algorithms [8], [22],

[23]. Commonly, dynamic programming techniques construct

a trellis structure that contains all solutions to the problem.

The application of the Viterbi algorithm over the trellis reaches

the optimal solution. The main disadvantage of this approach

is that it requires high memory resources to build the trellis,

and high computational load to search the trellis. Lagrange

relaxation methods reduce computational requirements by

relaxing the constraints of the optimization problem.

The use of steepest descent techniques leads to more effi-

cient rate allocation methods. The steepest descent algorithm

employed by our previous work FAST [17] selects a trivial

valid solution to the problem (potentially poor), and then

iteratively makes small changes to the solution following some

heuristic. The heuristic for the steepest descent when the

optimization criterion is MMSE is the Lagrange cost [24].

Generally speaking, the Lagrange cost measures the compres-

sion efficiency achieved at different truncation points of the

compressed codestream. In the JPEG2000 framework [2], the

Lagrange cost is embodied in the distortion-rate slope. If rij
and dij respectively denote the rate and distortion at the jth

truncation point for frame i, the distortion-rate slope at this

point is defined as

Sij =
di(j−1) − dij

rij − ri(j−1)
. (5)

Truncation points are represented as quality layers within

the JPEG2000 codestream. The distortion-rate slope of each

layer can be recorded within the codestream. If layer frag-

mentation is desired, distortion-rate slopes at intra-layer frag-

mentation points can be estimated using a linear form as

described in [17]. Accordingly, more truncation points for

frame i can be added. The use of Sij allows FAST to exclude

codestream segments with low distortion-rate slopes (less

valuable segments in terms of rate-distortion performance),

leaving room for those segments with higher distortion-rate

slopes. If heuristic Sij is replaced by dij , the objective of the

algorithm is altered so that it seeks the solution that has the

lowest maximum distortion (MMAX) [17].

III. JPEG2000 VIDEO TRANSMISSION OVER

TIME-VARYING CHANNELS

A. Optimization problem

We now address the optimization problem that arises in

time-varying channels. The capacity of a TCP/IP commu-

nication link is commonly determined using the amount of

data accepted by the receiving node divided by the round

trip time, i.e., W =
RWIN

RTT
, where RWIN is the receive

window and RTT denotes the round-trip time [25, Ch. 3.7].

In general, this provides a reliable enough estimate of the

channel capacity (or TCP/IP throughput), which can be used

by applications such as the proposed rate allocation algorithm.

Evidently, each implementation may use different low-level

routines to determine the channel capacity, although most

are based on the aforementioned principle. FAST-TVC then

considers the capacity as a parameter given by the network

layer. Our experience indicates that most low-level network

routines provide estimates of the channel capacity that are

reliable enough to be used by applications. Although it may

depend on each implementation, in general these routines

detect variations on the channel bandwidth in fractions of a

second, so the impact on the convergence and performance of

the proposed algorithm is negligible.

For simplicity, we assume piecewise constant capacity. To

this end, let C be the number of transmission intervals,

each with constant channel capacity, that occur during the

transmission of a video sequence. Let Wc, 1 ≤ c ≤ C,

be the channel capacity during transmission interval c in

bits/second. The total rate available to satisfy the client request

is then R′total =

C
∑

c=1

Rtotal
c , where Rtotal

c is the total rate

in transmission interval c, i.e., Rtotal
c = Wc · (Tc+1 − Tc),

with Tc representing the instant in time at which the channel

capacity changes to Wc. For simplicity, we assume that the

channel capacity can only change the instant just after a

frame is rendered. We then seek the frame truncation points

x = {x(1), x(2), ..., x(N)} to achieve

min
x

N
∑

i=1

dix(i) (6)

subject to

N
∑

i=1

rix(i) ≤ R′total (7)

and
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Bmin ≤ Bc +
Wc

F
· (f − fc + 1)−

f
∑

i=fc

rix(i)

≤ Bmax −
Wc

F

∀ f, fc ≤ f < fc+1 and ∀ c, 1 ≤ c ≤ C ,

(8)

where fc is the first frame rendered after Tc and Bc is

the initial buffer occupancy for the cth transmission interval

determined as

Bc =

c−1
∑

k=1

Wk · (Tk+1 − Tk)−

fc−1
∑

i=1

rix(i) . (9)

It is worth emphasizing that time Tc falls just after frame fc−1
is rendered. As in (3), the middle expression of the inequality

in (8) represents the buffer occupancy the instant just after

frame f is rendered. As in the previous section, replacing the

objective function (6) that seeks MMSE by that of (4), the

optimization criterion becomes MMAX.

B. Proposed approach

The method proposed below to tackle the optimization prob-

lem of (6) (7) (8) is named FAST for time-varying channels

(FAST-TVC). The main idea behind FAST-TVC is to use a

greedy approach that assumes that the channel capacity will

remain fixed throughout the entire transmission of the video.

This approach is reasonable, since in a real-time scenario

channel capacity changes are not known a priori. When a

change does occur, the rates of all non-transmitted frames

are recomputed, taking into account the buffer occupancy at

the time of the change, but assuming again that there will be

no further capacity changes. Assuming infinite computational

resources, this would mean simply executing, at each band-

width change, an instance of FAST with appropriate parameter

settings. The main difficulty of this approach is that, absent

infinite computational resources, the time required to compute

a new solution may be non-negligible and/or unpredictable.

To this end, let tc denote the time –not known a priori–

required by the rate allocation algorithm to reach a solution.

When a variation on the channel occurs at Tc, the server

continues the transmission of video from Tc to Tc + tc
employing frame rates as computed at the beginning of the

previous transmission interval c − 1. This could violate the

limits of the client buffer. In practice, if tc is sufficiently

small, the limits of the buffer are not trespassed except in rare

occasions. In such cases, if tc were known, the server could

compute a CBR strategy for use during this period that would

avoid buffer violations. This calculation could be performed

in negligible time. Instead of using the previous solution, a

CBR strategy might always be employed from Tc to Tc + tc,

though the result achieved in both cases is similar since few

frames are transmitted during this period. More important is

the fact that tc determines the range of frames that will be

frame rendering time

frame arriving time

fc+1 fc+2fcfc-1 fc+3

f c
-1 f c f c

+1
f c

+2
f c

+3

f =
f c

+4

f =
f c

+5

f c
+6

c
*

c
'

Wc-1 Wcchannel capacity

Tc Tc+tc

Fig. 1: Example time line of frame arrival and frame rendering

times.

re-optimized in response to the bandwidth change, denoted by

[f ′c, N ]. If tc were known, f ′c could be determined as follows:

Let f∗c be the smallest f such that

c−1
∑

k=1

Wk · (Tk+1 − Tk) +Wc · tc <

f
∑

i=1

rix(i) . (10)

Then

f ′c = f∗c + 1 . (11)

The left side of Inequality (10) is the total number of bits

received at the client up to time Tc + tc. The right side is the

total number of bits received at the client up to and including

frame f . Therefore, frame f∗c is the last frame that begins to

be received prior to time Tc + tc, and so is the first frame to

finish being received at the client after Tc+tc. Thus, f∗c can not

be considered by the rate allocation algorithm because at the

moment the algorithm finishes execution f∗c is already partially

delivered. The frame after f∗c (i.e., f ′c) is the first considered

by the algorithm since its transmission begins after Tc + tc.

Figure 1 shows an example that illustrates these quantities. In

this figure, the arrows above the horizontal line indicate the

moment at which the final bit of a frame is deposited into

the buffer. The arrows below the line indicate the moment at

which a frame is removed from the buffer to be rendered.

Considering the quantities discussed above, the optimization

problem of (6)-(8) can be re-formulated to take into account

the time required by the rate allocation algorithm to reach a

solution as

min
x

N
∑

i=f ′

c

dix(i) (12)

subject to

N
∑

i=f ′

c

rix(i) ≤ R′total −

f ′

c
−1

∑

i=1

rix(i) (13)

and
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Fig. 2: Evaluation of the computational load vs. the number

of frames for different video sequences, buffer sizes, and

optimization criteria.

Bmin ≤ Bc +
Wc

F
· (f − fc + 1)−

f
∑

i=fc

rix(i)

≤ Bmax −
Wc

F
∀ f, fc ≤ f ≤ N .

(14)

Inequality (13) represents the rate constraint for the frames

in [f ′c, N ]. The left side of this inequality is the number of

bits to be transmitted for these frames. The right side is the

remaining bit budget. Expression (14) is the buffer constraint,

which is repeated from Expression (8).

Key to tackling the optimization problem is then to deter-

mine tc before the algorithm is actually executed. We propose

three approaches to do so. The first approach uses a novel

feature of the original FAST algorithm: scalability in terms of

complexity. This type of scalability refers to the ability of the

algorithm to provide successively improved solutions (in terms

of the chosen optimization criterion) as more time is spent in

its execution. Complexity scalability allows the server to stop

the rate allocation procedure after a predetermined period of

time. Thus, tc can be set by the server arbitrarily, depending

on the system load, or by using any other indicator of the

operating system. This approach is referred to as “constant tc.”

As shown in the next section, the complexity of determin-

ing frame rates varies significantly depending on the video

sequence, the client buffer size, and the number of frames to

be optimized. Hence, the “constant tc” strategy may lead to

significant suboptimalities. The second approach is to estimate

the time that the rate allocation algorithm will need to finish

the execution as a function of the number of frames to be

optimized. The estimation is based on the roughly linear

relation between the computational load required by FAST

and the number of frames that are optimized. This can be

seen from Figure 2(a), which depicts the time spent by FAST

when optimizing subsequences having different numbers of

frames. Each subsequence is a clip from the “Batman” movie1.

This figure reports computational load for three different

buffer sizes, which are expressed as a percentage of Rtotal.

The optimization criterion is MMSE. The time spent by

the algorithm increases roughly linearly with the number of

frames. This observation also holds for other video sequences

and the MMAX optimization criteria (see Figure 2(b)). Let T
denote the time spent by the algorithm when all N frames

of the sequence are initially optimized at the beginning of

transmission interval c = 1. The algorithm execution time can

then be approximated as t′c = N ′ ·
T

N
, with N ′ denoting the

number of non transmitted frames at time Tc. This approach

is referred to as “estimated tc.” We note that when employing

this strategy, the algorithm is terminated at time t′c even if it

has not yet converged. Suboptimality due to this is typically

negligible.

Although the “estimated tc” strategy allows enough time

for the algorithm to reach the optimal solution, it does not

provide any mechanism to regulate the time spent by the rate

allocation procedure. This may be critical when, for instance,

the system load is high and resources have to be distributed

among different processes. Furthermore, the value of t′c may

be too large, jeopardizing the client buffer as described above.

Our third approach combines both the “constant tc” and

“estimated tc” strategies to allow the server to regulate the

time spent by the algorithm without sacrificing performance

significantly. The main insight behind this approach comes

from the observation that the performance metric improves

more rapidly at the beginning of execution than when the

algorithm is near convergence.

Figure 3(a) depicts the MSE performance metric for solu-

tions provided by the FAST procedure as a function of the time

spent by the algorithm. This figure depicts results for a variety

of subsequence lengths when the buffer size is 1% of Rtotal.

Similar results hold for other buffer sizes and sequences. Both

axes of the figure are normalized to allow comparison among

different plots. Note that the average PSNR increases very

rapidly at the beginning of execution, reaching near-optimal

performance in half the time required by the algorithm to

converge. Results are similar for the MMAX criterion, and

are reported in Figure 3(b) as the MSE standard deviation as

a function of algorithm execution time.

These figures and our experience with other sequences

indicate that 60% and 80% of the total time is enough to

reach a solution very close to the optimal one, respectively for

MMSE and MMAX. This can be exploited by the server to set

tc = min(t′′c , P · t′c), where the first term t′′c is the maximum

time allowed by the server (which may depend on the system

load or other indicators). The second term P ·t′c, with P = 0.6
for MMSE and P = 0.8 for MMAX, is set to allow the

algorithm to reach a near-optimal solution without spending

computational resources unnecessarily. This third strategy is

referred to as “weighted tc.”

1See Section IV for a description of the video sequences and the experi-
mental setup employed herein.
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Fig. 3: Evaluation of the complexity scalability for the MMSE and MMAX criteria.

C. Algorithm

The optimization procedure that seeks the solution

to (12) (13) (14) is embodied in Algorithm 1. The algo-

rithm assumes that there is no significant delay between

the change in the channel capacity and its detection. As

stated previously, when the server first receives a request

from a client, it computes frame rates for all frames of the

sequence. In the algorithm this is carried out by the procedure

“computeFrameRates” (line 7), which receives the first and

last frame numbers for the subsequence to be optimized, the

channel capacity, buffer limits, current buffer occupancy, and

maximum execution time. The procedure “computeFrameR-

ates” is an implementation of the original FAST algorithm

as described in [17], which returns solution x and execution

time T . Frames are then transmitted according to the current

solution until the end of the sequence is reached or a change

in the channel capacity occurs. When the channel capacity

changes, the algorithm sets tc⋆ in line 17 using one of the

three strategies described above. While frame rates for the

new channel capacity are being computed in line 20 using the

maximum execution time tc⋆ , frames until f ′c⋆ are transmitted

in the loop of lines 21-24. This process is carried out until all

frames are transmitted.

IV. EXPERIMENTAL RESULTS

A. Coding performance

FAST-TVC is assessed in terms of coding performance

on five different sequences. Each frame of each sequence

is compressed with 24 quality layers obtained by using the

same 24 distortion-rate slope thresholds for each frame. Cod-

ing parameters are: 5 levels of 9/7 wavelet transform, with

codeblocks of size 64×64. Table I describes the characteristics

of the five video sequences employed in the experiments, as

well as the transmitted range of frames, the rendering pace, and

the transmission intervals. We first focus on the transmission

of 2000 frames2 of the “StEM” sequence over a channel that

2This experiment uses only 2000 frames to allow the use of our Viterbi
implementation. The execution time and memory requirements of longer
sequences exceed the resources of our servers.

Algorithm 1 FAST-TVC

1: receive client request

2: c⋆ ← 1 /* current transmission interval */

3: f ′

c⋆
← 1 /* first frame transmitted in interval c⋆ */

4: Bc⋆ ← 0 /* buffer occupancy at the beginning of interval c⋆ */

5: i⋆ ← 1 /* currently transmitted frame */

6: Wc⋆ ← currentChannelCapacity

7: x, T ← computeFrameRates(f ′

c⋆
, N,Wc⋆ , B

min, Bmax, Bc⋆ ,∞)

8: repeat

9: while the channel capacity remains constant AND i⋆ ≤ N do

10: transmit frame i⋆ using ri⋆x(i⋆)

11: i⋆ ← i⋆ + 1

12: end while

13: if i⋆ ≤ N then

14: c⋆ ← c⋆ + 1

15: Wc⋆ ← currentChannelCapacity

16: N ′ ← N − i⋆

17: tc⋆ ← estimateAlgorithmTime(T,N ′) /* using “constant tc,” “esti-

mated tc,” or “weighted tc” */

18: f
′

c⋆
← according to Equation (11) using tc⋆

19: Bc⋆ ← according to Equation (9)

20: x← computeFrameRates(f ′

c⋆
, N,Wc⋆ , B

min, Bmax, Bc⋆ , tc⋆ )

21: while (in parallel with line 20) i⋆ < f ′

c⋆
do

22: transmit frame i⋆ using ri⋆x(i⋆)

23: i⋆ ← i⋆ + 1

24: end while

25: end if

26: until i⋆ > N

changes its capacity twice. The purpose of this first experiment

is to appraise the coding performance of FAST-TVC compared

to other strategies that obtain optimal performance, namely,

the Viterbi algorithm [7], and the Lagrange method [17].

As described in Section II, the Viterbi algorithm is not

practical since it requires enormous computational resources.

Nonetheless, it provides optimal performance and provides

a good reference to assess the performance of FAST-TVC.

The Lagrange method is also impractical since it does not

consider the restriction on the buffer size (Expressions (3), (8),

and (14)). But, it yields the maximum performance that could

be achieved if there were no buffer limits. The performance

of the CBR strategy is also reported for comparison purposes.

To provide an upper bound on the performance that can be

obtained, in this first experiment, the execution time required

by the algorithms is not considered (i.e., tc is set to 0). The
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TABLE I: Characteristics of the video sequences employed in the experiments, and conditions of the channel in each

transmission interval. For simplicity, only the luminance component is employed (images are 8-bit, gray scale).

frame subsequence transmission intervals

sequence size rendering pace Tc in seconds, Wc in Mbps total

“StEM” 2048×857
[1150, 3149] T1 = 0 T2 = 65 T3 = 130 200 secs.

10 fps W1 = 3.52 W2 = 4.8 W3 = 4 102.6 MB

“Batman” 590×325
[1, 24000] T1 = 0 T2 = 300 T3 = 1150 T4 = 1400 T5 = 1950 T6 = 2150 2400 secs.

10 fps W1 = 3.04 W2 = 2.8 W3 = 2.48 W4 = 2.64 W5 = 2.72 W6 = 3.12 836 MB

“Willow” 720×432
[290, 40290] T1 = 0 T2 = 500 T3 = 1000 T4 = 2000 T5 = 2500 T6 = 3000 4000 secs.

10 fps W1 = 0.8 W2 = 0.72 W3 = 0.68 W4 = 0.64 W5 = 0.76 W6 = 0.84 372.5 MB

“Giants of Africa” 720×432

[1, 53580]

Tc = {0, 100, 200, 400, 550, 650, 750, 1000, 1150, 1300,

5357.9 secs.1500, 1850, 1900, 2000, 2200, 2400, 2750, 2850, 3000, 3200, 3500,

3750, 3900, 4050, 4200, 4500, 4650, 4800, 4950, 5200}

10 fps

Wc = {0.5, 0.51, 0.53, 0.54, 0.53, 0.55, 0.56, 0.58, 0.54, 0.53,

221.02 MB0.49, 0.51, 0.5, 0.49, 0.48, 0.55, 0.58, 0.56, 0.55, 0.54, 0.53,

0.49, 0.46, 0.48, 0.5, 0.51, 0.5, 0.49, 0.48, 0.5}

“Toy Story” 720×432

[1, 113168]

Tc = {0, 400, 500, 1000, 1500, 1700, 2200, 3000, 3300, 3700,

11316.7 secs.3900, 4500, 4800, 5200, 5700, 6000, 6200, 6500, 6800, 7300,

7700, 8200, 8500, 8850, 9200, 9450, 9700, 10100, 10750, 10950}

10 fps

Wc = {0.63, 0.65, 0.69, 0.68, 0.7, 0.69, 0.66, 0.64, 0.63, 0.6,

564 MB0.61, 0.6, 0.59, 0.58, 0.6, 0.56, 0.59, 0.55, 0.54, 0.58,

0.6, 0.61, 0.64, 0.66, 0.69, 0.68, 0.64, 0.63, 0.6, 0.59}
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Fig. 4: Average PSNR achieved by FAST-TVC, CBR, Viterbi

and the Lagrange method when transmitting 2000 frames

of the “StEM” sequence over a time-varying channel. The

optimization criterion is MMSE.

resulting performance cannot be obtained in practice without

essentially infinite computational resources. Figure 4 reports

the average MSE of all frames of the sequence for the afore-

mentioned methods when the optimization criterion is MMSE.

Viterbi and FAST-TVC obtain virtually the same coding

performance regardless of the client buffer size. As expected,

the larger the buffer, the closer the performance of Viterbi and

FAST-TVC is to that of the Lagrange method. Similar results

hold for other video sequences and for the MMAX criterion.

These experiments suggest that, under these circumstances,

FAST-TVC achieves near-optimal performance.

Figure 5 reports, for the same conditions as above and a

buffer size of 15%, the PSNR achieved for each frame. The

first frame transmitted in the second and third transmission

intervals (i.e., f ′2 and f ′3) is marked with a dot in this figure.

 22
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Fig. 5: Frame-by-frame PSNR achieved by FAST-TVC, CBR,

and the Lagrange method for the “StEM” sequence. The

optimization criterion is MMSE. There are three transmission

intervals. For each method, the first frame transmitted after

reoptimization (i.e., f ′2 and f ′3) is marked by a dot.

The quality of frames within each transmission interval can

be seen to depend on its corresponding channel capacity.

It is worth noting that, for the buffer size shown, frames

transmitted with FAST-TVC have quality very similar to those

transmitted with the Lagrange method. Contrarily, the quality

of the simple CBR strategy often varies significantly from that

of the Lagrange strategy.

As mentioned above, the first experiment reports results

when algorithm execution time is ignored (i.e., tc = 0). The

aim of the next experiment is to assess the coding performance

of FAST-TVC in a more realistic scenario. This test trans-

mits 24000, 40290, and 53580 frames, respectively, from the

“Batman”, “Willow”, and “Giants of Africa” video sequences.

The channel changes capacity 5, 5, and 29 times after the

start of transmission, respectively for “Batman”, “Willow”,

and “Giants of Africa” (see Table I for more details). The

three strategies described in Section III to determine tc, namely

“estimated tc,” “constant tc” and “weighted tc,” are put into

practice in this experiment. Additionally, performance for the

CBR and Lagrange methods are also reported for comparison
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purposes.

The results of this experiment are reported in Table II

for both the MMSE and MMAX criteria. The buffer sizes

chosen for MMAX are generally larger than those for MMSE

since MMAX commonly requires more buffer space to provide

better pseudo-constant quality [17]. The corresponding values

of T and tc are reported in Table IV. For the “constant tc”

strategy, tc is chosen so that the total time spent by the algo-

rithm is lower than that spent by the other two strategies. This

choice of tc illustrates the degradation on performance that the

“constant tc” strategy might produce when small values for tc
are used. The fixed part of the “weighted tc” strategy is chosen

to be larger than the variable part (i.e., t′′c > P · t′c) to let this

strategy achieve near-optimal performance. Evidently, when

t′′c < P · t′c, the “weighted tc” strategy becomes equivalent

to the “constant tc” strategy. Results for MMSE are reported

as the average MSE achieved for all frames of the sequence,

while results for MMAX are reported via the MSE standard

deviation of frames. Table II presents the results for both

criteria. For completeness, results achieved for transmission

of the “StEM” sequence are also given in this table.

The results reported in Table II suggest that the three

strategies proposed to control the time spent by FAST-TVC

achieve significantly better results than the CBR strategy.

The “estimated tc” strategy achieves the best results, and

“weighted tc” is only 2% worse than “estimated tc,” on aver-

age. Results indicate that the larger the buffer size, the lower

the average MSE, or MSE standard deviation achieved for the

MMSE and MMAX criteria, respectively. This suggests that

the use of FAST-TVC (either “weighted tc” or “estimated tc”)

with large enough buffers would achieve virtually the same

performance as that achieved by the Lagrange method. On

the other hand, the “constant tc” strategy leads to lower

performance improvements. This is because tc is not selected

considering the characteristics of the video sequence, the

number of frames to be optimized or the channel conditions,

which may give too little time to the allocation algorithm to

optimize the sequence.

The third test transmits the “Toy Story” video sequence over

a channel that changes capacity 29 times. This test employs

three buffer sizes and the MMSE criterion. The last column

of Table III reports the achieved results, in terms of average

MSE. These results correspond with previous experiments,

suggesting that the “weighted tc” strategy achieves virtually

same performance as that of the “estimated tc” strategy, while

the larger the buffer size the closer the solution to the Lagrange

method. Figures 6(a) and 6(b) report, respectively, the PSNR

and the transmitted rate achieved by FAST-TVC “weighted tc”

and the CBR policy for the same conditions as before with

buffer sizes 0.5% and 1%. The PSNR achieved by CBR is

irregular, producing quick quality changes among consecutive

frames. The use of a buffer and FAST-TVC obtains more

regular PSNR. The larger the buffer size, the fewer abrupt

quality changes. The Lagrange method (not depicted in the

figure to avoid cluttering) achieves only a slightly more regular

PSNR than FAST-TVC with buffer size 1%. The achievement

of regular quality comes at the expense of more variable

transmitted rate. Note in Figure 6(b) that the strategy with the

largest variations on the transmitted frame rate is FAST-TVC

with buffer size 1%.

B. Computational load

The proposed FAST-TVC algorithm is implemented in

Java and executed on a Java Virtual Machine v1.6 using

GNU/Linux v2.6. The server is an Intel Xeon E5520 CPU

at 2.3 GHz. Time results are reported as CPU processing

time, in seconds. Table IV reports the execution time spent

by the three strategies of FAST-TVC, for transmission of the

video sequences “StEM”, “Batman”, “Willow”, and “Giants

of Africa” under the same conditions as described above.

Table III reports results for “Toy Story”. The first column for

each strategy reports the time spent when the client request

is received and all frames of the sequence are optimized, i.e.,

T . The following columns report the execution time spent by

the algorithm when a variation on the channel occurs (i.e.,

tc). The last column reports the sum of all execution times

excepting T . Recall that the percentage of time given to the

“weighted tc” strategy is 60% and 80% for the MMSE and

MMAX strategies, respectively.

Experimental results suggest that, even though the

“weighted tc” strategy spends 40% and 20% less time than the

“estimated tc” strategy, respectively for MMSE and MMAX,

its coding performance is almost unaffected compared to

“estimated tc.” As stated previously, these savings on com-

putational load are achieved due to the fast convergence of

the rate allocation algorithm.

Figure 7 depicts the computational time spent by the three

strategies of FAST-TVC when transmitting “Toy Story” with

the same buffer sizes and channel conditions as used before.

Note that the larger the buffer, the more time required by the

strategies “weighted tc” and “estimated tc”. The “constant tc”

strategy spends the same computational time regardless of the

buffer size. It is worth noting that, under these conditions,

“constant tc” spends more time on average than “weighted tc”

when the buffer size is 0.5% although the solution achieved

by “weighted tc” is better than that of “constant tc” (see

Table III). This is because “weighted tc” spends a variable

amount of time depending on the number of frames to be

optimized. In particular, less computational time is used by

“weighted tc” for capacity variations that occur near the end

of the sequence due to the smaller number of frames to be

considered. This indicates that distribution of the computa-

tional time carried out by “weighted tc” is adequately balanced

considering the conditions of the channel and video sequence

at the instant the channel variation occurs.

V. CONCLUSIONS

Rate allocation is of paramount importance in video trans-

mission schemes to optimize video quality. Applications that

transmit video over local area networks, Internet, or dedicated

networks, may experience variations on channel conditions due

to network saturation, TCP congestion, or router failures. This

work proposes a rate allocation algorithm for the transmission

of JPEG2000 video named FAST for time-varying channels

(FAST-TVC). The proposed method is built on our previous
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TABLE II: Coding performance evaluation for FAST-TVC, CBR, and the Lagrange method. Three different strategies to

compute tc are employed by FAST-TVC.

“StEM” “Batman” “Willow” “Giants of Africa” average

buffer size: 5% 7% 1% 2% 4% 5% 5% 6% 4.38%

CBR 19.42 3.32 8.20 35.75 16.67

MMSE
FAST-TVC

“constant tc” 16.60 15.40 3.19 3.17 6.98 6.88 31.91 31.74 14.48

av. MSE
“weighted tc” 15.55 14.94 3.10 3.07 6.80 6.60 27.42 27.35 13.10

“estimated tc” 15.26 14.89 3.09 3.07 6.78 6.60 27.42 27.33 13.06

Lagrange 13.88 3.01 6.29 26.97 12.54

buffer size: 15% 20% 5% 7% 12% 15% 16% 17% 13.38%

CBR 21.92 1.50 7.61 33.27 16.08

MMAX
FAST-TVC

“constant tc” 6.43 1.02 0.84 0.77 8.66 5.68 27.95 26.25 9.7

MSE st. dev.
“weighted tc” 3.09 0.99 0.57 0.47 3.83 3.16 5.99 5.04 2.89

“estimated tc” 3.08 0.99 0.57 0.47 3.83 3.11 5.97 5.03 2.88

Lagrange 0 0 0 0 0

TABLE III: Coding performance and computational time evaluation for optimizing MMSE with three different buffer sizes.

Results are reported as average MSE and seconds for “Toy Story” transmitted over a channel that changes capacity 30 times.

buffer size policy T tc

∑
tc av. MSE

0.5%

CBR 0 0 0 40.8

FAST-TVC

“constant tc” 5.6 2.5 72.5 36.9

“weighted tc” 5.6

3.2, 3.2, 3.1, 3.0, 2.9, 2.8, 2.6, 2.5, 2.4, 2.3

48.6 35.92.1, 2.0, 1.9, 1.7, 1.6, 1.6, 1.5, 1.4, 1.2, 1.1

0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.3, 0.1, 0.1

“estimated tc” 5.9

5.7, 5.7, 5.4, 5.4, 5.2, 4.9, 4.6, 4.3, 4.2, 4.1

86.1 35.23.7, 3.6, 3.3, 3.1, 2.9, 2.8, 2.6, 2.4, 2.1, 1.9

1.6, 1.5, 1.2, 1.1, 0.9, 0.8, 0.6, 0.3, 0.2

Lagrange 0 0 0 31.0

0.8%

CBR 0 0 0 40.7

FAST-TVC

“constant tc” 10.1 2.5 72.5 35.0

“weighted tc” 10.2

5.9, 5.9, 5.6, 5.5, 5.4, 5.1, 4.7, 4.5, 4.3, 4.2

88.1 34.23.8, 3.7, 3.4, 3.2, 2.9, 2.8, 2.7, 2.5, 2.1, 1.9

1.7, 1.5, 1.2, 1.0, 0.9, 0.8, 0.6, 0.2, 0.1

“estimated tc” 10.2

9.9, 9.7, 9.3, 9.2, 9.1, 8.7, 7.9, 7.6, 7.2, 7.0

147.4 33.86.4, 6.1, 5.8, 5.3, 4.9, 4.7, 4.4, 4.1, 3.7, 3.3

2.8, 2.5, 2.0, 1.7, 1.5, 1.2, 0.9, 0.3, 0.2

Lagrange 0 0 0 31.0

1%

CBR 0 0 0 40.8

FAST-TVC

“constant tc” 17.8 2.5 72.5 34.6

“weighted tc” 18.1

10.5, 10.4, 9.9, 9.8, 9.6, 9.1, 8.3, 7.9, 7.6, 7.4

154.8 34.26.8, 6.5, 6.0, 5.5, 5.1, 4.9, 4.6, 4.2, 3.8, 3.4

2.9, 2.5, 2.1, 1.8, 1.5, 1.3, 0.9, 0.3, 0.2

“estimated tc” 17.8

17.1, 16.9, 16.2, 16.0, 15.8, 14.9, 13.7, 13.1, 12.5,

255.5 33.112.1, 11.1, 10.6, 9.9, 9.1, 8.5, 8.2, 7.7, 7.2, 6.3

5.7, 4.8, 4.2, 3.5, 2.9, 2.6, 2.2, 1.6, 0.7, 0.4

Lagrange 0 0 0 31.0

FAst rate allocation through STeepest descent (FAST) algo-

rithm, extending and exploiting some of its features. The main

insight behind FAST-TVC is to employ complexity scalability

and the roughly linear relation between computational load and

number of frames to re-compute frame rates once a variation

on the channel capacity takes place.

Experimental results indicate that FAST-TVC achieves vir-

tually the same coding performance as that of the optimal

Viterbi algorithm (when the Viterbi algorithm is computation-

ally feasible). When the server needs to control the resources

dedicated to the rate allocation algorithm depending on system

load or other indicators, FAST-TVC can use one of three
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Fig. 6: (a) Frame-by-frame PSNR and, (b) transmitted rate achieved by FAST-TVC and CBR method for the “Toy Story”

sequence. The optimization criterion is MMSE.
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Fig. 7: Computational time spent by the three strategies of

FAST-TVC in response to channel capacity variations (i.e.,
∑

c tc) when optimizing the “Toy Story” sequence for MMSE

with three different buffer sizes.

proposed strategies. The first strategy is named “constant tc”

and provides a constant execution time to the algorithm.

Although this strategy achieves a non-negligible gain in coding

performance with respect to a constant-rate strategy, results

vary significantly depending on the video sequence, buffer

size, and channel conditions. The second strategy is named

“estimated tc” referring to its ability to estimate the total time

that FAST-TVC requires to finish its execution. This allows

FAST-TVC to achieve more consistent results, but does not

supply any mechanism to reduce computational time when

the server is busy. The “weighted tc” strategy is a compromise

between the previous two: it achieves virtually same results as

“estimated tc,” and reduces computational load significantly.

Experimental results evaluating the computational costs of

FAST-TVC indicate that very few computational resources are

expended. These characteristics makes FAST-TVC a suitable

method for the transmission of pre-encoded JPEG2000 video

in real-world applications.
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TABLE IV: Computational time evaluation for FAST-TVC. The first column of each criteria reports the computational time

(in seconds) spent to optimize all frames of the sequence (i.e., T ). The following columns report tc. The last column reports

the total time spent by the algorithm to re-compute frame rates in response to channel capacity variations (i.e.,
∑

c tc).

MMSE total

“StEM” (buffer 5%)

“constant tc” 2.089 0.075 0.150

“weighted tc” 2.088 0.881 0.406 1.287

“estimated tc” 2.220 1.562 0.722 2.284

“StEM” (buffer 7%)

“constant tc” 3.502 0.075 0.150

“weighted tc” 3.478 1.599 0.719 2.318

“estimated tc” 3.664 2.665 1.185 3.850

“Batman” (buffer 1%)

“constant tc” 2.542 0.250 1.250

“weighted tc” 2.527 1.330 0.794 0.639 0.283 0.160 3.206

“estimated tc” 2.545 2.232 1.334 1.072 0.474 0.270 5.382

“Batman” (buffer 2%)

“constant tc” 4.759 0.250 1.250

“weighted tc” 4.773 2.516 1.506 1.213 0.529 0.308 6.072

“estimated tc” 4.753 4.175 2.499 2.013 0.878 0.511 10.076

“Willow” (buffer 4%)

“constant tc” 4.691 0.500 2.500

“weighted tc” 4.711 2.053 1.528 1.022 0.729 0.324 5.656

“estimated tc” 4.721 3.430 2.552 1.704 1.217 0.539 9.442

“Willow” (buffer 5%)

“constant tc” 8.062 0.500 2.500

“weighted tc” 8.096 3.522 2.618 1.729 1.288 0.597 9.754

“estimated tc” 8.088 5.872 4.355 2.882 2.110 0.996 16.215

“Giants of Africa” (buffer 5%)

“constant tc” 127.835 1.750 50.75

“weighted tc” 127.862

74.949, 73.616, 70.884, 71.393, 70.011, 68.576, 64.879, 63.312, 61.365, 59.019,

1218.31954.122, 53.389, 51.763, 47.910, 44.402, 39.505, 37.993, 36.107, 33.166, 27.793,

24.870, 22.772, 20.524, 18.365, 11.299, 9.201, 5.088, 2.046

“estimated tc” 127.863

124.916, 122.694, 118.141, 118.990, 116.687, 114.294, 108.132, 105.520, 102.275, 98.366,

2030.54190.203, 88.982, 86.272, 79.853, 74.006, 65.841, 63.322, 60.174, 55.277, 46.322,

41.450, 37.953, 34.208, 30.609, 18.831, 15.334, 8.480, 3.409

“Giants of Africa” (buffer 6%)

“constant tc” 130.647 1.750 50.75

“weighted tc” 130.664

76.414, 75.065, 72.274, 72.799, 71.385, 69.939, 66.153, 64.582, 62.582, 60.202,

1249.8755.292, 54.636, 53.036, 49.001, 45.319, 40.401, 38.794, 36.863, 33.906, 28.349,

25.363, 23.238, 20.931, 18.718, 11.501, 9.374, 6.487, 5.182, 2.084

“estimated tc” 130.681

127.428, 125.179, 120.524, 121.400, 119.042, 116.629, 110.317, 107.697, 104.346, 100.372,

2080.55992.141, 91.058, 88.357, 81.654, 75.544, 67.156, 64.554, 61.292, 56.136, 47.109,

42.052, 38.478, 34.506, 30.887, 18.720, 15.380, 10.663, 8.517, 3.421

MMAX total

“StEM” (buffer 15%)

“constant tc” 3.507 0.050 0.100

“weighted tc” 3.533 2.094 0.681 2.775

“estimated tc” 3.512 2.602 0.846 3.448

“StEM” (buffer 20%)

“constant tc” 8.854 0.050 0.100

“weighted tc” 8.858 4.022 1.218 5.240

“estimated tc” 8.820 6.704 2.014 8.718

“Batman” (buffer 5%)

“constant tc” 22.087 0.500 2.500
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