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Abstract—This work addresses the transmission of pre-encoded
JPEG2000 video within a video-on-demand scenario. The primary
requirement for the rate allocation algorithm deployed in the server is
to match the real-time processing demands of the application. Scalability

in terms of complexity must be provided to supply a valid solution by a
given instant of time. The FAst rate allocation through STeepest descent
(FAST) method introduced in this work selects an initial (and possibly
poor) solution, and iteratively improves it until time is exhausted or

the algorithm finishes execution. Experimental results suggest that FAST
commonly achieves solutions close to the global optimum while employing
very few computational resources.

Index Terms—Video transmission, rate allocation, rate-distortion op-
timization, motion JPEG2000.

I. INTRODUCTION

R
ATE allocation methods for video transmission are commonly

devised to provide the best possible video quality to the end-

user. This is achieved by either minimizing the average distortion

for all frames, or providing constant (or pseudo-constant) quality for

the video sequence [1]. Mean squared error (MSE) is the distortion

measure used in most video transmission schemes, so the former

criterion is formally stated as the minimization of the MSE (MMSE).

It has been shown [2] that the problem of achieving constant quality

is equivalent to the one of minimizing the maximum distortion over

the sequence, so the latter criterion is more commonly stated as the

minimization of the maximum MSE (MMAX).

A fundamental aspect for transmission schemes is the rate al-

location problem that emerges when variable bitrate (VBR) video

is transmitted under the constraints imposed by the scenario. VBR

video refers to the ability of the coding system to transmit a different

number of bytes for each frame. Regardless of the coding system,

VBR video is the key mechanism through which the optimization of

the MMSE or MMAX are accomplished. Hence the rate allocation

problem is the root of most video transmission schemes.

This work considers a video-on-demand scenario in which the

server transmits pre-encoded JPEG2000 video to clients over a

constant bitrate channel. The sequence is rendered by the client at

some specified cadence and, to allow VBR video, the client has a

limited buffer in which frame data are initially stored before being

decoded and displayed. We assume that the transmission rate and
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buffer size may vary from client to client, and therefore is unknown

at the time the video is compressed.

Once the server receives a client request, it allocates a rate to each

frame while guaranteeing that the transmission will not cause buffer

overflow or underflow at the client. The optimization criterion for

choosing among valid solutions can be either MMSE or MMAX.

We refer to a rate allocation that satisfies these buffer requirements

as “a valid solution.” Frame codestreams at the selected rates are

then created from the pre-compressed ones using quality scalability

properties of JPEG2000.

A primary requirement of the application is that the rate allocation

algorithm utilizes very few computational resources (both in terms

of CPU time and memory), and that it provides scalability in terms

of complexity to allow real-time processing tasks. Timing is essential

since the server must respond to clients within a short and predictable

interval of time. Thus, the algorithm must reach a valid solution by

a given instant of time.

JPEG2000, and certain other image and video coding systems,

produce codestreams containing several quality layers. Layers repre-

sent convenient truncation points for the compressed representation

of the image. When the desired rate falls between those provided

by layers, quality layers may, or may not, be truncated depending on

the implementation and the requirements of the application [3]. Thus,

two versions of the proposed algorithm are presented, corresponding

to whether or not layer fragmentation is allowed.

To the best of our knowledge, this problem has not been addressed

in the context of JPEG2000. Our previous work [4] is focused on

the coding of JPEG2000 video under constrained encoder resources,

while [5] addresses the same optimization problem introduced herein,

though assuming that the server can only access the rate-distortion

characteristics of the current and previous frames. Although there

exist rate allocation methods for VBR video that handle some of the

raised demands (e.g., [6]–[9]), none of them fulfill the requirements

imposed by this application. The application has been implemented

employing standard tools and protocols provided in JPEG2000 Part 1

(ISO/IEC 15444-1 - Core coding system), Part 3 (ISO/IEC 15444-3

- Motion JPEG2000), and Part 9 (ISO/IEC 15444-9 - Interactivity

tools, APIs and protocols).

This paper is organized as follows: Section II describes rate

allocation methods for VBR video with similar requirements to those

proposed in this scenario; Section III introduces the proposed method;

and Section IV assesses the performance of our approach in terms

of coding performance and computational complexity. Section V

presents concluding remarks.

II. RATE ALLOCATION FOR VBR VIDEO TRANSMISSION

We start with the optimization for MMSE. Let Rtotal be the

total rate (bits/sequence) available to satisfy the client’s request for

a sequence, and let N be the number of frames of the sequence.

The ith frame can be truncated at points x(i) corresponding to

increasing bitrates rix(i) (bits/frame) and decreasing distortion dix(i),
with 1 ≤ i ≤ N and 1 ≤ x(i) ≤ Qi, where Qi is the number

of truncation points available for frame i. The objective is to find
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the truncation points x = {x(1), x(2), ..., x(N)} that minimize the

distortion without exceeding the bit budget, i.e.,

min
x

N
∑

i=1

dix(i) s.t.

N
∑

i=1

rix(i) ≤ Rtotal
. (1)

Since well designed coding systems generate truncation points that

lie on the convex hull of the operational rate-distortion function,

several studies have proven that near-optimal solutions can be found

through the use of a generalized Lagrange multiplier for a discrete set

of points. This leads to low complexity implementations due to the

transformation of the constrained problem of (1) to an unconstrained

one. The idea is to use the Lagrange cost dix′(i) + λrix′(i) so that

the truncation points x
′ that minimize

N
∑

i=1

(

dix′(i) + λrix′(i)

)

(2)

for the particular λ for which the total rate R(λ) = Rtotal represents

the optimal solution to (1). Although λ may not be exactly adjusted

to attain the total bit budget, close approximations are enough to find

near-optimal solutions.

Unfortunately, this approach can not be directly applied when addi-

tional constraints are imposed. Let B(t) denote the buffer occupancy

in the instant after frame t is rendered according to

B(t) =
Rtotal

N
· t−

t
∑

i=1

rix(i) +
Rtotal

N
· tdelay . (3)

The first term of this equation represents the buffer filling at an

assumed constant transmission rate corresponding to Rtotal/N bits

per frame time. The second term represents the buffer emptying

as frames are rendered. The third term represents buffering delay,

expressed as the constant transmission rate multiplied by tdelay

frame times. Buffering delay is introduced in the above expression to

partially fill the buffer prior to rendering the first frame. Taking into

account that the maximum buffer size is Bmax, and that the buffer

should not be underflowed or overflowed, the optimization problem

is then expressed as

min
x

N
∑

i=1

dix(i) (4)

such that

N
∑

i=1

rix(i) ≤ Rtotal
(5)

and

0 ≤ B(t) ≤ Bmax ∀ t, 1 ≤ t ≤ N . (6)

The second constraint (6) restrains the use of the classical Lagrange

approach. It considers the size of the client’s buffer, maintaining its

occupancy within the imposed limits.

The optimization problem of (4) (5) (6) has been a topic of interest

since the mid-90s [10]. Two main approaches have proven effective

to tackle the problem [1]: dynamic programming techniques [6], and

Lagrange relaxation methods [11]. The first approach employs the

Viterbi algorithm to build a trellis structure containing all feasible so-

lutions. It guarantees optimality at the expense of high computational

cost. Clustering of frame rates is a complexity reduction technique

employed in [6] that does not guarantee optimality, but reduces time

and memory requirements while achieving near-optimal performance.

Hence, several studies have employed the Viterbi algorithm, or

variations of this algorithm, to develop and/or assess the performance

of rate allocation methods (e.g., [6], [12], [13]). Accordingly, the

method proposed in this work is compared to the Viterbi algorithm

with clustering techniques in Section IV.

The second traditional approach to tackle the problem of (4) (5) (6)

employs Lagrange optimization by relaxing the constraints, i.e., one

Lagrange multiplier is applied to each constraint. For large problems,

this is highly computationally demanding, so fast approximations [6]–

[8] have been proposed.

Recent work on video streaming applies steepest descent tech-

niques to the rate allocation problem. This technique is used in this

work to achieve complexity scalability, and is reviewed in Section III.

With respect to the MMAX criterion, the formulation of the

optimization problem is the same as in (4) (5) (6) but the objective

function (4) is replaced by

min
x

(

N
max
i=1

dix(i)

)

. (7)

Other criteria similar to MMAX are the minimization of the distor-

tion variation [14], or the consideration of an acceptable distortion

range [13]. All these criteria pursue the stabilization of video quality,

and achieve similar results [15]. Common approaches to the problem

of (7) (5) (6) are [13]: dynamic programming techniques [16],

lexicographic bit allocation [2], minimum distortion variation [14],

or iterative algorithms [15].

Despite the diversity of these approaches, it is stated in [16] that

“any problem which can be solved with the MMSE criterion can

also be solved with the MMAX criterion [...] and both criteria can

be applied simultaneously within the same optimization framework.”

This observation is key in the work reported here. When optimizing

MMSE, the objective of our algorithm is to select frame rates that

have the lowest Lagrange costs while respecting the rate constraints.

By only replacing the Lagrange costs by distortion values the algo-

rithm’s objective is altered so that it seeks the solution that has the

lowest maximum distortion (MMAX).

When codestreams are truncated at points other than at layer

boundaries, the aforementioned approaches still hold if the discrete

nature of the problem is maintained. For example, codestreams can

be truncated at intervals equally spaced in terms of bitrate. More

precisely, consider that frame i can be truncated at rates rik = k ·Φ,

where 1 ≤ k ≤ ⌊rmax
i /Φ⌋, where rmax

i corresponds to the length

of the codestream i, and Φ denotes the truncation granularity. By

reducing Φ, the algorithm achieves more precise solutions. The main

difficulty is to determine the distortion and/or Lagrange cost at the

truncation points, which is addressed in the next section.

III. FAST RATE ALLOCATION METHOD

A. JPEG2000 standard

The core coding system of JPEG2000 is wavelet-based with a two

tiered coding scheme. A key feature of the system is the coding of

small blocks of wavelet coefficients independently. To allow quality

scalability, the embedded bitstream generated for each codeblock is

partitioned into segments that are placed within successive layers of

quality, which eventually form the final codestream.
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The bit allocation problem that emerges when forming quality

layers is essentially the same as in (1), with coding units repre-

sented as codeblocks instead of frames. As mentioned earlier, an

efficient solution to this problem is to use a generalized Lagrange

multiplier. Commonly, Lagrange optimization is applied in JPEG2000

by computing the operational rate-distortion function of the bitstream

generated for each codeblock in order to determine the points that

lie on the convex hull. Let Rl and Dl respectively denote the bitrate

and distortion of the lth such point of a codeblock bitstream, with

Rl < Rl+1. The distortion-rate slope at this point is then

Sl =
Dl−1 −Dl

Rl −Rl−1
. (8)

The optimization process may select then from the union of all

codeblocks those bitstream segments with highest distortion-rate

slope to form layers with specified bitrates or slope thresholds [17].

B. Insights and techniques

The main insight behind the proposed method is to employ

a hill climbing technique with steepest ascent/descent. Generally

speaking, this technique selects a trivial valid solution to the problem

(potentially poor), then iteratively makes small changes to the solution

following some heuristic. In each iteration it selects the next valid

solution, climbing the path of steepest ascent until it reaches a

point in which the solution cannot be improved. This does not

guarantee optimality since local optima may stop the progression.

However, when applied in a convex space, the heuristic has no local

maximums/minimums, so the algorithm’s progression is not stopped.

In the context of video transmission, algorithms using the concept

of steepest descent were first introduced in [18], and have been used

ever since [19]–[25]. The main difference between these methods and

the one proposed in this work is that our approach uses alternatively

the steepest descent and rate constraints to go backward and forward

over the space of solutions in an attempt to reach the optimum.

Another point of distinction is the handling of real-time processing

tasks through complexity scalability.

When the optimization criterion is MMSE, the heuristic for the

steepest descent is the Lagrange cost, which is embodied in the

JPEG2000 framework as the distortion-rate slope thresholds of qual-

ity layers. To apply the steepest descent in this context, it is mandatory

that the operational rate-distortion function of frames lie on the

convex hull. This prerequisite is guaranteed when using the gen-

eralized Lagrange multiplier based post-compression rate distortion

(PCRD) optimization employed in most JPEG2000 implementations.

We remark that the extension of the proposed approach to other video

transmission schemes must also fulfill this prerequisite. When the

optimization criterion is the MMAX, the heuristic is the distortion

produced when the layer is decoded.

To make available the distortion-rate slope thresholds and dis-

tortions achieved at each quality layer, both slope thresholds and

MSE values can be recorded in a comment (COM) marker of the

codestream. The popular JPEG2000 implementation Kakadu records

distortion-rate slopes and layer lengths by default; our modified ver-

sion adds distortion values. The overhead associated with this strategy

is negligible and allows a rapid recovery of slope thresholds, distor-

tions, and layer lengths from codestream headers. Similar techniques

are used in other contexts to accelerate streaming algorithms [26].

This mechanism is of limited use in the scenario when layers

are allowed to be truncated. Recording information for enough

intra-layer points would significantly increase the size of the file.

Techniques to estimate the distortion and slope thresholds of intra-

layer fragmentation points become compelling in this case. We adopt

the models discussed in [17, Ch. 5.4.4], which suggest that the bitrate

varies roughly linearly between layers both with the distortion and

the logarithm of the distortion-rate slope.

Figure 1(a) depicts the distortion-rate slope threshold recorded by

Kakadu when encoding two frames of the “StEM” sequence (see

Section IV for a description of this sequence) at several target bitrates.

These frames are chosen with substantially different rate-distortion

characteristics. Kakadu records the slope threshold of frame i, layer

j as

S′

ij = log2
∆d

∆r
= log2

di(j−1) − dij

rij − ri(j−1)
, (9)

with an offset and normalization factor (not included above) to

conveniently store values in a 16-bit unsigned integer. Vertical dashed

lines in Figure 1(a) depict the allocation rates for representative

layers. When frame i is truncated at a rate r that falls between layers

j, j+1, i.e., rij ≤ r ≤ ri(j+1), the slope threshold at r’s truncation

point is estimated according to the linear form

S′

i(r) = S′

ij +
(S′

i(j+1) − S′

ij) · (r − rij)

(ri(j+1) − rij)
. (10)

This estimation is depicted in the graph as the straight lines con-

necting the values at layer boundaries. The figure indicates that

linear interpolation between the logarithmic function of layer slope

thresholds achieves high accuracy in this context. For frame #2750,

for instance, the difference between the actual distortion-rate slopes

and the estimated ones is less than 1%, on average.

We estimate intra-layer distortion similarly. Figure 1(b) depicts the

actual MSE when codestreams containing layers allocated at the rates

depicted by the vertical dashed lines are truncated. The straight lines

between layers depict the MSE estimated as

di(r) = dij +
(di(j+1) − dij) · (r − rij)

(ri(j+1) − rij)
, (11)

where dij , di(j+1) are layer distortion values recorded in the COM

marker of the codestream. The accuracy of this technique is notable

for most frames. For frame #2750, for instance, the difference

between the actual MSE and the estimated one is less than 6% in

the bitrate range (0, 1.0] (left part of Figure 1(b)), and less than 1%

in the bitrate range (1, 3.0] (right part of the Figure 1(b)). The more

layers the codestream has, the higher the accuracy of these estimates.

C. Layer bounded transmission

We first assume that the optimization criterion is MMSE and that

layers can not be truncated. The proposed algorithm simultaneously

employs the two representations of the problem given by the rate

constraints and the Lagrange costs (incarnated as the distortion-

rate slope thresholds). The former representation helps maintain the

solution within the limits of the feasible area, whereas the latter

guides the algorithm to the next solution. To avoid trespassing the rate

constraints, every step carried out in the Lagrange space is projected

onto the space of rate, so only movements within the feasible region

are allowed. With some abuse of notation, the algorithm proceeds as

follows:
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Fig. 1: Evaluation of estimation techniques. Coding parameters are: lossy mode, 5 DWT levels, codeblock size of 64×64.

Algorithm 1 Layer bounded allocation

1: initialize r∗ ← {r1x(1), r2x(2), ..., rNx(N)} with a solution that

keeps the buffer at near zero occupancy

2: repeat

3: r⋆ ← r∗

4: repeat

5: seek frame i′ ∈ r∗ with lowest S′

i′x(i′)

6: r∗∗ ← {r1x(1), ..., ri′(x(i′)−1), ..., rNx(N)}
7: if r∗∗ respects constraints (5) (6) then

8: r∗ ← r∗∗

9: else

10: discard frame i′ in successive seeks of line 5

11: end if

12: until ∄ r∗∗ that respects constraints (5) (6)

13: repeat

14: seek frame i′′ ∈ r∗ with highest S′

i′′(x(i′′)+1)

15: r∗∗ ← {r1x(1), ..., ri′′(x(i′′)+1), ..., rNx(N)}
16: if r∗∗ respects constraints (5) (6) then

17: r∗ ← r∗∗

18: else

19: discard frame i′′ in successive seeks of line 14

20: end if

21: until ∄ r∗∗ that respects constraints (5) (6)

22: include all frames in next seeks of lines 5 and 14

23: until r⋆ = r∗

The intention of the first step of the algorithm (line 1) is to find

a valid solution. We use the solution given by a pseudo-constant

bitrate (CBR) strategy since to deliver the same number of bytes

for all frames produces no variations on the buffer occupancy. The

purpose of the first inner loop (lines 4 to 12) is to drive the algorithm

as far as possible from the constraint given by the maximum channel

capacity. During the second inner loop (lines 13 to 21), the path of

steepest descent is followed until the maximum channel capacity is

reached. This path moves toward the solution given by the generalized

Lagrange multiplier until the buffer constraints are reached. These

two inner loops are repeated until the algorithm reaches a solution

from which it can not improve more.

When optimizing for MMAX, lines 5 (14, respectively) are

replaced to seek the frames with the lowest (highest) distortion

di′(x(i′)−1) (di′′x(i′′)). Note that the path of steepest descent for

MMAX seeks the frame with the current highest distortion since

it must minimize the maximum distortion of the current solution,

whereas for MMSE it seeks the frame with the subsequent layer that

has the highest slope threshold.

D. Layer unbounded transmission

In this section we allow layers to be fragmented into equivalently

spaced rates given by the truncation granularity Φ. Initially, Φ is set

to some maximum, say Φmax, and is then progressively reduced until

it reaches Φmin. Following the same notation as in Algorithm 1, the

algorithm proceeds as follows:

Algorithm 2 Layer unbounded allocation

1: initialize r∗ ← {r1, r2, ..., rN} with ri = Rtotal/N ∀ i
2: Φ← Φmax

3: repeat

4: repeat

5: r⋆ ← r∗

6: repeat

7: seek frame i′ ∈ r∗ with lowest S′

i′(ri′)
(according expression (10))

8: r∗∗ ← {r1, ..., ri′ − Φ, ..., rN}
9: if r∗∗ respects constraints (5) (6) then

10: r∗ ← r∗∗

11: else

12: discard frame i′ in successive seeks of line 7

13: end if

14: until ∄ r∗∗ that respects constraints (5) (6)

15: repeat

16: seek frame i′′ ∈ r∗ with highest S′

i′′(ri′′ +Φ)
(according expression (10))

17: r∗∗ ← {r1, ..., ri′′ +Φ, ..., rN}
18: if r∗∗ respects constraints (5) (6) then

19: r∗ ← r∗∗

20: else

21: discard frame i′′ in successive seeks of line 16

22: end if

23: until ∄ r∗∗ that respects constraints (5) (6)

24: until r⋆ = r∗

25: Φ← Φ/2
26: include all frames in next seeks of lines 7 and 16

27: until Φ < Φmin

Although this algorithm adds an outer loop with respect to Al-

gorithm 1, our experience indicates that selecting a large trunca-

tion granularity Φmax that is progressively reduced is faster than

using Φmin invariably, without penalizing performance. When the

optimization criterion is MMAX, lines 7 (16, respectively) seek the

lowest (highest) distortion di′(x(i
′)− Φ) (di′′(x(i

′′))) according to

expression (11).

After the initialization of r⋆ with the CBR strategy, both algorithms

can be stopped at any instant taking the most recent r⋆ as the
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final solution. This fulfills the requirements of real-time processing

imposed by our application. Experience indicates that the proposed

steepest descent algorithm improves every new r⋆ (in terms of the

chosen heuristic), so the more time the algorithms runs, the better

the solution. This is the key-feature that allows scalability in terms of

complexity. Experiments in Section IV suggest that both Algorithms 1

and 2 rapidly converge to a solution near the global optimum.

E. Implementation considerations

We call the described method FAst rate allocation through STeepest

descent (FAST). The most critical operations of FAST are the

seeking of the frame with the lowest/highest distortion-rate slope

(or distortion), and the verification of the buffer constraint (6). The

computational complexity of the former operation can be reduced

using two lists of frames: one ordered by the slope thresholds

corresponding to the highest layer currently included in each frame;

the other ordered by the thresholds of the next available layer from

each frame. The list ordered by currently included layers is sorted

in ascending order, so the frame with the lowest slope threshold is

always on top. When a layer is removed from this frame, the frame

is relocated in the list, which can be accomplished via a bisection

search. Similarly, the list ordered by available layers is sorted in

descending order, so that the frame to receive the next layer is at

the top of the list. Note that the relocation of one frame in one list

requires the relocation of the same frame in the other list. Lookup

tables holding the position of every frame can be used to avoid the

need to search out a frame from the other list. For MMAX, the

same optimization process holds. When intra-layer fragmentation is

considered, lists are sorted considering truncation points rather than

layers.

Verification of the buffer constraints can be efficiently implemented

by means of monitoring only the instants in which the trend of

the buffer changes. The key-idea is that the instant in which the

buffer achieves its maximum fullness happens during an instant in

which filling of the buffer changes to emptying, or the other way

around for the minimum fullness. Buffer overflow or underflow can

be ascertained by examining only the fullness of the buffer in these

instants. Naturally, these instants have to be updated when layers are

added or removed.

Another implementation consideration is that comparing solutions

r∗ and r⋆ may not require computations based on the full solution.

A faster technique is to compute the average MSE of the current

solution, which can be easily updated every time a layer is added or

removed, and to compare average MSE of r∗ and r⋆ to determine

if solutions differ. In the same vein, the termination process can be

speeded up by stopping when the difference in average MSE between

the current and the previous solution is low1.

F. Computational complexity

The computational complexity of FAST is the sum of: 1) the initial

sorting, 2) the seeking of the highest/lowest slope threshold, 3) the

relocation of frames within the sorted lists, 4) the updating of the

instants in which the buffer changes trend, and 5) the verification of

expression (6). Let M be the sum of the number of layers that are

subtracted and added to the solution. In the worst case, the complexity

of the algorithm is O(N logN +M +M logN +M +M ·N) ∼=
O(M · N). This considers that the buffer reverses trend at every

opportunity (i.e., at every frame), so that verifying expression (6)

requires N comparisons every time it is carried out. This constant

1The implementation employed in this work can be found at
http://www.deic.uab.es/∼francesc

change in tendency is very unlikely to occur in practice. In the

experiments of the following section, the buffer changes trend less

than 10 times for a sequence of 3,000 frames, and similar results

hold for other sequences. Therefore, a more realistic complexity is

O(M logN), which corresponds to the bisection search carried out

every time a frame is relocated in the sorted lists. In terms of memory

requirements, FAST only needs to maintain in memory the sorted lists

of frames, thus memory requirements are linear with the number of

frames O(N).

For comparison purposes, the computational complexity of the

Viterbi algorithm applied with clustering techniques is O(N ·
Bmax

−Bmin

ζ
·Q), where Q denotes the maximum number of layers

that the frames contain, and ζ denotes the cluster size. When

layers can be truncated, the last term Q is replaced by rmax

ζ
, with

rmax denoting the maximum length of the frames’ codestreams.

In terms of memory requirements, Viterbi has a complexity of

O(N · Bmax
−Bmin

ζ
) that, in practice, is much higher than that of

FAST as illustrated in the next section.

The Lagrange method is implemented using similar optimization

procedures as those of FAST, employing a sorted list of frames. The

computational complexity of Lagrange accounts for the initial sorting,

and the number of layers included in the final solution, say M ′,

multiplied by the bisection search used to relocate frames in the

ordered list, i.e., O(N logN +M ′ logN) ∼= O(M ′ logN). We note

that M ′ < M since M accounts for all layers that are removed/added

by FAST within loops of Algorithms 1 and 2. Lagrange’s memory

requirements are linear with the number of frames, i.e. O(N).

IV. EXPERIMENTAL RESULTS

A. Coding performance evaluation

The performance of FAST is evaluated on the “Standard Evaluation

Material” (StEM) mini movie, provided by the Digital Cinema

Initiatives Consortium. A subsequence of 3,000 frames is selected

and, for each frame, codestreams containing 24 quality layers are

constructed2. The layer allocation strategy distributes quality layers

targeting, for each layer, a threshold of distortion-rate slope. The

transmission of motion JPEG2000 over JPIP has been implemented

in Kakadu v5.2.6. We assume the initial buffer occupancy at half

capacity with appropriate buffering delay at the beginning of the

transmission.

First, we evaluate the performance of FAST in terms of average

MSE for the MMSE optimization criterion. The capacity of the

channel is chosen as 3.52 Megabits per second (Mbps), and video

is rendered at 10 frames per second (fps), which gives a total bit

budget of 132 MB. If the sequence were transmitted using the

traditional generalized Lagrange multiplier method –without explicit

buffer constraints–, the client would need a buffer of at least 17 MB

to absorb the irregularities in rate of the transmitted frames. FAST is

applied considering buffer sizes ranging from 6 MB to 16 MB and,

for comparison purposes, all graphs depict the performance achieved

with the CBR strategy and with the Lagrange method. Graphs also

report the performance achieved by Viterbi with clustering techniques

under the same constraints. The cluster size in Viterbi is chosen to

achieve essentially optimal performance. The Viterbi’s cluster size is

1000 bytes. Parameters Φmax, Φmin are respectively set to 1000, 10

for the MMSE criterion, and 4000, 10 for the MMAX criterion. These

parameters are selected to minimize running time in the experiments;

variations do not change objective performance significantly.

2Frames #1150 through #4149 are selected. The frame size is 2048×857.
For simplicity, 8-bit gray-scale versions are used. Coding parameters are:
JPEG2000 lossy mode, 5 DWT levels, codeblock size of 64×64.
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Fig. 2: MSE performance evaluation of FAST, Viterbi, CBR, and

Lagrange when the optimization criterion is MMSE.

Figures 2(a) and 2(b) depict the average MSE, in terms of Peak

Signal to Noise Ratio (PSNR), respectively for the layer bounded and

unbounded transmission. In all cases both FAST and Viterbi achieve

similar performance, approaching the Lagrange solution as the buffer

size grows. Similar results hold for the MMAX criterion. Only when

the buffer size is very small, is the performance of the Viterbi

algorithm slightly better than that of FAST. To explain this behavior

we first discuss Figure 2(c), which depicts the buffer occupancy for

selected buffer sizes in the experiments above (similar results hold for

layer unbounded transmission). The CBR strategy should not require

any delay and should maintain the buffer occupancy at 0 for the whole

transmission. However, for frames #3200 to #3350 it is not able to do

so. This is due to the length of codestreams generated for these frames

being significantly less than Rtotal/N . These frames belong to a

scene transition and are almost black, yielding lossless compression at

unusually small codestreams. Even when the full codestream of these

frames is delivered, their transmission fills the client buffer. For small

enough buffer size, this would cause buffer overflow at the client.

Codestream padding could be used to avoid such overflow. Similarly,

the performance of FAST is slightly degraded by the presence of these

nearly black frames at very low buffer sizes. Codestream padding

actually degrades performance more due to the wasted “overhead”,

and it is not used here.

Figures 3(a) and 3(b) compare the solutions achieved for both

criteria when large buffer sizes are used. Note that the PSNR achieved

for the layer unbounded transmission is almost constant even though

the intra-layer fragmentation is based on estimates of distortion. Only

when frames have very special characteristics, for example, when

they are almost constant intensity, the accuracy of this technique is
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Fig. 3: Evaluation of the PSNR of decoded frames.
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Fig. 4: Computational performance evaluation of FAST and Viterbi

when the optimization criterion is MMSE and transmission is layer

bounded.

degraded. The PSNR peak from frame #3200 through #3350 is caused

by frames that are almost black, so the transmission of very few bytes

already achieves very low MSE values. This issue is not perceptually

noticeable since the frames are mostly black anyway.

B. Computational costs

Computational performance tests are performed on an Intel Core

2 CPU at 2.4 GHz. All methods are implemented in Java and

executed on a Java Virtual Machine v1.6 using GNU/Linux v2.6.

Time results report algorithm CPU time, whereas memory results

report the size of the data structures employed by the method.

Computational performance for both the MMSE and MMAX criteria

are similar, thus only graphs for MMSE are provided.

Figures 4(a) and 4(b) assess the computational complexity of

the layer bounded transmission compared to Viterbi for different

configurations of buffer size, and number of layers. Filled boxes



7

 0

 60

 120

 180

 240

 300

 360

 420

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
 0

 20

 40

 60

 80

 100

 120

 140
ti
m

e
 (

in
 s

e
c
s
)

m
e
m

o
ry

 (
in

 M
B

)

cluster size (in KB)

Viterbi - memory
FAST (MMSE) - memory
Viterbi - time
FAST (MMSE) - time

16.6
17.2

17.9
18.9

20.4
22.7

27.9
29.6

29.8
29.9

30.0
30.1

30.1
30.2

30.2

30.2
30.2

30.2
30.2

30.2
30.2

30.2
30.2

30.2
30.2

30.2
30.2

30.2
30.2

30.2

(a) Performance for different cluster sizes

 0

 50

 100

 150

 200

 250

 300

 350

200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000

 0

 20

 40

 60

 80

 100

 120

 140

ti
m

e
 (

in
 s

e
c
s
)

m
e
m

o
ry

 (
in

 M
B

)

number of frames

Viterbi - memory
FAST (MMSE) - memory
Viterbi - time
FAST (MMSE) - time

28.5
29.0

30.3
30.8

31.0
31.2

31.7
31.2

30.4
30.3

30.9
30.7

30.7
30.6

30.2

28.5
29.1

30.3
30.8

31.0
31.2

31.7
31.2

30.4
30.3

30.9
30.7

30.7
30.6

30.2

(b) Performance for different number of frames

Fig. 5: Computational performance evaluation of FAST and Viterbi

when the optimization criterion is MMSE and transmission is layer

unbounded.

report memory usage, with the reference axis on the right side of the

graph, whereas lines and crosses report CPU time, with the reference

axis on the left side of the graph. In addition, graphs report the

average MSE (expressed in PSNR) on the top of each column, in

blue for Viterbi, and in red for FAST. To fairly compare Viterbi with

FAST, the cluster size in Viterbi is chosen as large as possible whilst

achieving the same average MSE as FAST. These experiments suggest

that the computational load and memory requirements of FAST are

extremely low compared to Viterbi. Figures 5(a) and 5(b) assess the

computational complexity of the layer unbounded transmission com-

pared to Viterbi for different cluster sizes (of the Viterbi algorithm),

and number of frames. Computational complexity of FAST is still

very low compared to that of Viterbi. We note that the memory usage

of FAST is not discernable in these figures since FAST uses less than

0.5 MB of memory in the reported tests.

To illustrate the computational performance of FAST for long

sequences, 30,000 frames of the movie “Batman Begins” are selected,

and codestreams containing 16 quality layers targeted upon slope

thresholds are constructed3. FAST is applied to select frame rates

when the movie is transmitted through a channel with a capacity of

1.2 Mbps, and video is rendered at 15 fps. This gives a total bit

budget of 300 MB, and the client buffer size is selected as 8 MB.

Figure 6(a) reports computational performance for the layer bounded

transmission (similar results hold for layer unbounded transmission).

Note that our Java implementation spends less than 7 seconds to

optimize 30,000 frames, and that the computational load grows

roughly linearly with the number of frames. Parameters Φmax, Φmin

are respectively set to 2000 and 250 in these experiments.

To assess the complexity scalability of the algorithm in a real-time

environment, Figure 6(b) depicts the average MSE achieved when

terminating the algorithm at intervals of time equally spaced every

250 ms, for both the layer bounded and unbounded transmission. Both

versions of the algorithm rapidly converge to near optimal solutions.

In these graphs, the initial solution corresponds to the CBR strategy,

and the periods of time in which the average MSE does not improve

3The frame size is 590×325, 8-bit gray-scale versions are used. Coding
parameters are: JPEG2000 lossy mode, 5 DWT levels, codeblock size of
64×64.
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Fig. 6: Evaluation of the computational performance of FAST for the

“Batman Begins” sequence.

correspond to the loops of the algorithm when it goes backwards and

forwards over the feasible space of solutions.

V. CONCLUSIONS

A fast, complexity scalable rate allocation method is a primary

requirement for our video-on-demand application. It is essential

that the computational resources of the server are not dedicated

to the rate allocation method, and that clients receive a response

within a minimal –and predictable– interval of time. The lack of

computational resources, and real-time processing demands raise a

challenging problem. The main contribution of this work is a rate

allocation algorithm that provides complexity scalability by means

of a steepest descent technique that iteratively enhances an initially

poor solution until it reaches near optimal performance. Furthermore,

techniques to estimate distortion and distortion-rate slope at intra-

layer fragmentation points are developed to allow the use of the

proposed method in implementations that truncate quality layers.

The proposed method is evaluated for both the MMSE and MMAX

criteria. Experimental results suggest that our method achieves

competitive performance with very low computational complexity,

allowing the handling of real-time processing tasks efficiently. The

scenario has been implemented using standard tools provided by the

JPEG2000 standard, demonstrating the suitability of this method to

real-world applications.
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