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Entropy-based Evaluation of Context Models

for Wavelet-transformed Images
Francesc Aulı́-Llinàs, Senior Member, IEEE

Abstract—Entropy is a measure of a message uncertainty.
Among others aspects, it serves to determine the minimum coding
rate that practical systems may attain. This work defines an
entropy-based measure to evaluate context models employed in
wavelet-based image coding. The proposed measure is defined
considering the mechanisms utilized by modern coding systems.
It establishes the maximum performance achievable with each
context model. This helps to determine the adequateness of the
model under different coding conditions, and serves to predict
with high precision the coding rate achieved by practical systems.
Experimental results evaluate four well-known context models
using different types of images, coding rates, and transform
strategies. They reveal that, under specific coding conditions,
some widely-spread context models may not be as adequate as
it is generally thought. The hints provided by this analysis may
help to design simpler and more efficient wavelet-based image
codecs.

Index Terms—Context models, image entropy, wavelet trans-
form, bitplane image coding, JPEG2000.

I. INTRODUCTION

ENTROPY is an information-theory measure that defines

the uncertainty, or randomness, of a message. Since its

inception in 1948 by Claude E. Shannon [1], the entropy has

been employed in myriad fields such as data compression and

communication, cryptography, or statistical inference, among

others. In data compression, the entropy of a message estab-

lishes a limit for its lossless compression. Practical coding

systems may generate a compacted representation of the mes-

sage with a length that may approach –but never be shorter–

than its entropy. The entropy may serve to multiple purposes

such as the evaluation of a coding system efficiency, the

characterization of different types of signals, or the prediction

of the rate required to transmit a message.

In the field of image and video coding, the entropy and

entropy-related measures have been used extensively. With-

out aiming to be exhaustive, the coefficients of a wavelet-

transformed image are modeled through relative entropy (i.e.,

Kullback−Leibler divergence) in [2], and through conditional

and relative entropy in [3]–[5]. Video sequences decorrelated

with the wavelet transform are modeled using the entropy

and the conditional entropy in [6], [7]. [8] and [9] describe

rate-distortion optimization methods for image and video
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codecs employing entropy-based models, and [10] utilizes the

entropy to estimate the performance of Wyner-Ziv coding.

More recently, the entropy of wavelet coefficients has been

employed to evaluate scanning order strategies [11] and em-

bedded quantization schemes [12].

This work defines an entropy-based measure to evaluate

context models employed to code wavelet-transformed images.

The context model is a fundamental aspect of an image

coding scheme that greatly influences its performance [2],

[11], [13]–[17]. In general, the context models are devised for

a specific coding engine, transform strategy, or image type.

To the best of our knowledge, there is no work evaluating

context models in a general manner. Our aim is to define a

framework in which context models can be compared under

different coding conditions, including various types of wavelet

filters, transform strategies, coding rates, and images belonging

to different fields. An entropy-based measure is ideal to do so

since it establishes the minimum coding rate achievable with

each model, ascertaining its adequateness for particular coding

conditions.

The proposed measure is defined mimicking the mech-

anisms employed by wavelet-based coding schemes. Four

context models conceived from well-known approaches in

the literature are evaluated. The experimental results reveal

interesting aspects that may serve to improve the performance

and to simplify the complexity of future image codecs. They

also show that the proposed measure predicts with precision

the coding rate produced by practical systems.

Objectives similar to ours have been previously pursued

in the literature in different forms. The purpose of [18], for

example, is to ascertain whether the efficiency of wavelet-

based codecs can be enhanced by means of context models that

exploit intra- or inter-scale dependencies. [19] uses mutual in-

formation to determine contexts that achieve minimum coding

rate. [20] describes a rate model for wavelet-based codecs that

achieves high accuracy without needing to encode the image.

The main difference between this research and previous work

is that the proposed measure is applied with different context

models that exploit various types of dependencies of wavelet

data, is computed for different levels of quality to obtain an

accurate rate-distortion analysis of the image, and it allows

direct comparison with the coding performance achieved by

current codecs.

The paper is structured as follows. Section II briefly

overviews wavelet-based coding schemes. Section III defines

the entropy-based measure and describes four context models

that can be used with the proposed measure. Section IV eval-

uates these context models when coding three different types

of images under different conditions. Section V concludes this
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paper providing some remarks.

II. OVERVIEW OF WAVELET-BASED CODING SCHEMES

Typically, wavelet-based coding schemes are structured in

three main stages. The first stage decorrelates spatial redun-

dancies by means of a wavelet transform that decomposes the

image in different subbands, forming a dyadic structure [21].

Such a decomposition produces three subbands per decompo-

sition level except at the highest level, which contains four

subbands. Subbands capture the low or high vertical and

horizontal frequencies of the image. They are denoted by

LL,HL,LH, or HH with the first and second L/H referring

to low, or high, vertical and horizontal frequencies captured

in the subband, respectively. After the wavelet transform, the

coefficients are quantized with a uniform deadzone scalar

quantizer with step size ∆. The quantization operation is

expressed as x =

⌊

|w|

∆

⌋

, with w denoting the wavelet

coefficient and ⌊·⌋ denoting the floor operation. For simplicity,

in this paper ∆ is assumed to be the same for all wavelet

subbands, though other quantization schemes might also be

employed.

The second stage of the coding scheme utilizes an engine

that exploits psycho-visual redundancies to progressively re-

duce the image distortion. To do so, most systems employ

a bitplane coding strategy [11]. Let [bM−1, bM−2, ..., b1, b0],
bi ∈ {0, 1} be the binary representation for the quantization

index x, with M denoting a sufficient number of bits to

represent all coefficients. Let d ∈ {+,−} be the sign of w.

Bitplane coding strategies define bitplane j as the collection

of bits bj from all coefficients, and encode coefficients from

the most significant bitplane M − 1 to the least significant

bitplane 0. The first non-zero bit of a coefficient, i.e., that

bs = 1 such that ∄ s′ > s with bs′ = 1, is called the

significant bit of the coefficient. The sign of the coefficient

is coded immediately after its significant bit. The remaining

bits br, r < s are called refinement bits.

The third stage of a typical wavelet-based coding scheme is

aimed at the reduction of statistical redundancies produced

by the bitplane coding engine. Arithmetic coding [22] is

among the most efficient techniques to do so. Key to achieve

competitive performance is to employ a model of probabil-

ities that predicts with accuracy the symbols emitted by the

coding engine. Generally, such models determine probabilities

employing the so-called context of the coefficient, which is

obtained considering the significance state (see below), the

magnitude, the sign, or other relevant features of some neigh-

bors of the coefficient coded. The context helps determining

the probability of the index to become significant in the current

bitplane, its refinement bits, and its sign.

III. PROPOSED MEASURE

A. Definition

First, we define the order-zero entropy of the coefficients

in wavelet subband v. Let us denote the marginal probability

mass function (pmf) of the quantization indices and the

coefficients signs in v as PXv
(x) and PDv

(d), respectively.

The order-zero entropy of the data in v is computed as the

entropy of the indices plus the weighted entropy of the signs,

i.e.,

H(v) = H(Xv) +H(Dv) , (1)

with

H(Xv) = −
∑

x

PXv
(x) log2 PXv

(x) , (2)

and

H(Dv) = −

(

∑

d

PDv
(d) log2 PDv

(d)

)

·
||x 6= 0 ∈ v||

||x ∈ v||
. (3)

||x ∈ v|| and ||x 6= 0 ∈ v|| in (3) denote the number of indices

(i.e., all quantized coefficients), and the number of indices

different from 0, in subband v, respectively. (3) multiplies the

entropy of the signs by the percentage of indices different

from 0 because the sign needs only to be transmitted for non-

zeros. The order-zero entropy of the transformed image is then

computed as the weighted sum of the subbands’ entropy as

H(V ) =
∑

v

H(v) ·
||x ∈ v||

||x||
, (4)

with ||x|| denoting the number of quantization indices of the

whole image. This definition of the zero-order entropy of the

image is similarly derived in [4].

As previously stated, bitplane coding strategies do not

code wavelet coefficients at once. They progressively refine

the quantization indices in each bitplane. It is of interest

to analyze whether the bit-by-bit transmission of the indices

affects their entropy. Instead of computing H(Xv) as in (2),

the entropy obtained when the indices are transmitted bit by

bit is computed as

Ĥ(Xv) = −
∑

x

PXv
(x) ·

[

log2 PBv
(bM−1)+

log2 PBv
(bM−2 | bM−1) + . . .+

log2 PBv
(b0 | b1, b2, . . . , bM−1)

]

.

(5)

PBv
(bk) above is the marginal pmf of bits bk from all quan-

tization indices in subband v. The sum of logarithms in (5)

accounts for the number of bits necessary to transmit index

x when its binary representation is transmitted bit by bit. By

expressing PBv
(bk) through PXv

(x), this sum of logarithms

is expressed as
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log2 PBv
(bM−1) + log2 PBv

(bM−2 | bM−1) + . . .+

log2 PBv
(b0 | b1, b2, . . . , bM−1) =

log2 PBv
(bM−1) + log2

PBv
(bM−2, bM−1)

PBv
(bM−1)

+ . . .+

log2
PBv

(b0, b1, b2, . . . , bM−1)

PBv
(b1, b2, . . . , bM−1)

=

log2

2M−1−1
∑

x=0

PXv
(x)

2M−1
∑

x=0

PXv
(x)

+ log2

2M−2−1
∑

x=0

PXv
(x)

2M−1−1
∑

x=0

PXv
(x)

+ . . .+

log2

20−1
∑

x=0

PXv
(x)

21−1
∑

x=0

PXv
(x)

= log2

20−1
∑

x=0

PXv
(x)

2M−1
∑

x=0

PXv
(x)

=

log2 PBv
(b0, b1, b2, . . . , bM−1) = log2 PXv

(x = 0)

,

(6)

when x = 0, and in log2 PXv
(x) in general. Although the

bit-by-bit transmission of the indices have practical advan-

tages, (6) shows that, in terms of entropy, the transmission of

the indices bit-by-bit or at once is equivalent. So (2) and (5)

are considered indistinctly herein.

The order-zero entropy of the transformed image does

not consider the context-modeling mechanisms employed by

current coding systems. Instead of using marginal pmfs, the

context model is introduced into the measure through the

conditional pmfs of the indices and signs, which are referred

to as P ′
Xv

(x | Θx) and P ′
Dv

(d | Θd), respectively. Θx and Θd
denote the context employed for the indices and for the signs,

respectively. The conditional entropy of the data in subband v
is expressed as

H ′(v) = −
∑

x

P ′
Xv

(x | Θx) log2 P
′
Xv

(x | Θx)

−

(

∑

d

P ′
Dv

(d | Θd) log2 P
′
Dv

(d | Θd)

)

·
||x 6= 0 ∈ v||

||x ∈ v||

.

(7)

The conditional entropy of the image, denoted by H ′(V ), is

derived as in (4) but employing H ′(v) instead of H(v). The

conditional bit-by-bit entropy is denoted by Ĥ ′(Xv), and is

derived as in (5) but replacing PBv
(bi) by P ′

Bv
(bi | Θx).

Again, Ĥ ′(Xv) = H ′(Xv).

H ′(V ) employs contexts Θx and Θd. As seen below, these

contexts intentionally require the complete quantized represen-

tation of the neighbors of the coefficient. In a practical system,

the neighbors are not fully reconstructed at the decoder until

the transmission ends, so contexts are commonly computed

employing partial representations of the coefficients [13],

[17]. Contrarily to practical systems, Θx and Θd employ

the complete representation of the coefficients because the

proposed measure is aimed at the prediction of the maximum

compression performance attainable in practice. This is, at

most, real codecs can obtain estimates of the contexts as

good as Θx, Θd. The better the estimates, the higher the

coding performance, with H ′(V ) representing the maximum

efficiency.

H ′(V ) is computed using a wavelet-transformed image in

which the energy gain factor of all subbands is set to 1. This

is achieved by multiplying wavelet data by the L2-norm of

the synthesis basis vectors of the subband’s filter-bank. Then,

the quality of the image that is obtained when reversing the

wavelet transform is controlled through the quantization step

size ∆, which is the same for all subbands. Large ∆s achieve

low quality images due to rough quantization, while small ∆s

achieve high quality images. The rate-distortion analysis for

an image is obtained computing its entropy using different

∆s. In the experiments of Section IV, the irreversible 9/7

wavelet filter-bank is employed with ∆ ∈ [1, 1000], which

achieves Peak Signal to Noise Ratios (PSNR) ranging from

20 to 55 dB for natural images, approximately. The proposed

entropy-based measure can also be employed with quantization

schemes that employ a different ∆ for each subband, though

then the subbands’ energy gain factors must be considered

accordingly.

To control the image quality, or the coding rate, through

∆ achieves results similar to those achieved with more so-

phisticated methods of rate-distortion optimization like, for

instance, that described in [13]. This is due to the rate-

distortion properties of wavelet data and bitplane coding. As

appraised in [11], [23], the truncation of all quantization

indices at the same bitplane or, equivalently, the transmission

of all quantized coefficients using the same ∆, achieves near-

optimal performance for that rate, or quality.

B. Context models

The efficiency of an image coding system greatly depends

on the context model. Effective context models produce condi-

tional pmfs with highly skewed probabilities, resulting in low

coding rates. Four different context models summoning most

of the approaches employed in the literature are described

herein. In what follows, the symbol Θ is substituted by σ,

φ, ϕ, or ψ depending on the context model that it refers to.

For each context model, three different types of dependencies

of wavelet data are evaluated. Superindices INTRA, INTER,

and 3D are added to the context symbol to denote the type

of dependency. INTRA considers intra-scale dependencies,

so only coefficients within the same subband are utilized to

determine the context. INTER considers inter-scale depen-

dencies, employing coefficients of the subband that are at

the immediately higher decomposition level. 3D considers 3D

dependencies in images that have more than one component,

utilizing coefficients at the same subband but at the previous,
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Fig. 1: Coefficients considered by the three types of dependencies evaluated when coding index x and sign d. INTRA employs

adjacent coefficients within the same subband, INTER utilizes coefficients of the same subband but at the immediately higher

decomposition level, and 3D uses coefficients at the same spatial position but of the previous, or next, component. The sign

is not considered by INTER since little correlation exists between signs of different subbands [24]–[29].

or at the next, component. Fig. 1 depicts the coefficients

utilized by these three types of dependencies. The figure also

provides the notation employed to refer them.

The first context model is the simplest. It is denoted by

σ and considers the index and the sign of only one coeffi-

cient, more precisely, the left/parent/previous coefficient for

the intra/inter/3D dependency type. σx and σd are equal to

the corresponding index or sign, respectively. For example,

σINTRAx = xw, and σINTRAd = dw. Table I summarizes the

coefficients employed to compute this and following contexts.

The second context model, denoted by φ, is borrowed

from the JPEG2000 standard [30]. The main idea behind the

JPEG2000 context model is to use the significance state of

the indices and the signs of the coefficients. The significance

state of coefficient x at bitplane j is 1 if its significance bit is

already coded, and 0 otherwise, i.e.,

S(x) =

{

1 if j ≤ s

0 otherwise
. (8)

Function fx(·) then employs the significance state of the eight

adjacent neighbors of the coefficient to determine nine differ-

ent contexts. These nine contexts are devoted to significance

coding. A function of the signs of the four adjacent neighbors,

denoted by fd(·), determines five different contexts devoted to

sign coding. More details on the JPEG2000 context model can

be found in [30]. Herein, φINTRAx employs the same function

fx(·) as that defined in JPEG2000 but slightly modifying the

definition of the significance state to

S′(x) =

{

1 if x 6= 0

0 otherwise
(9)

so that it can be used in the conditional pmf P ′
Xv

(x | φINTRAx ).
For sign coding, φINTRAd employs fd(·) as defined in

JPEG2000. The two remaining contexts models ϕ and ψ
also employ the sign coding directives of JPEG2000 since,

to the best of our knowledge, they achieve some of the best

results reported in the literature. Although JPEG2000 defines

a different context model for the coding of the refinement

bits, its effectiveness is low [17], so it is not used herein. The

INTER and 3D dependencies use functions similar to fx(·)
and fd(·) but employing the coefficients defined in Table I.

The third context model, denoted by ϕ, is based on the so-

called local average of wavelet coefficients [17]. It assumes

that the magnitude of an index can be approximated as the

arithmetic mean of its neighbors’ magnitude, and that symbols

emitted by bitplane coding engines are under-complete repre-

sentations of the signal. In [17], a mathematical framework that

characterizes the signal produced by wavelet transforms aids

the development of this context model. Herein, the use of the

complete quantized representation of the quantized coefficients

simplifies its application. It can be implemented through an

arithmetic mean as detailed in Table I.
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TABLE I: Formation of the context models evaluated. R(·) denotes the rounding operation.

INTRA INTER 3D
si

m
p
le σx = xw xp x−1

σd = dw dp d−1

JP
E

G
2
0
0
0 φx = fx(S

′(xn, xne, xe, f ′

x(S
′(xp, xpn, f ′′

x (S′(x−1, x−1n, x−1e, x−1s,

xse, xs, xsw, xw, xnw)) xpe, xps, xpw)) x−1w, x+1, x+1n, x+1e, x+1s, x+1w))

φd = fd(d
n, de, ds, dw) − f ′

d(d
−1, d−1n, d−1e, d−1s,

d−1w, d+1, d+1n, d+1e, d+1s, d+1w)

lo
ca

l
av

. ϕx = R((xn + xne + xe + xse+ R((xp + xpn + xpe+ R((x−1 + x+1)/2)

xs + xsw + xw + xnw)/8) xps + xpw)/5)

ϕd = − − −

G
ra

d
ie

n
t-

b
as

ed

ψx =



























R((xn + xs)/2) if xn, xs ≥ Tx and gn, gs < Tg

R((xw + xe)/2) if xw, xe ≥ Tx and gw, ge < Tg

R((xnw + xse)/2) if xnw, xse ≥ Tx and gnw, gse < Tg

R((xsw + xne)/2) if xsw, xne ≥ Tx and gsw, gne < Tg

R((xn + xe + xs + xw)/4) otherwise

−



























similar as in INTRA but

considering 5 directions that involve

coefficients from other components

R((x−1 + x+1)/2) otherwise

ψd = − − −

The fourth context model, denoted by ψ, is conceived from

the gradient adjusted predictor employed in CALIC [31], and

the local average. ψ combines both approaches so that the

gradient in the surroundings of the coefficient determines the

neighbors that are employed to compute the local average.

Such a model has never been proposed in the framework

of wavelet-based image coding, so it is described with more

detail. First, the gradients are computed as the absolute dif-

ference between two consecutive neighbors in the immediate

surroundings of x. Fig. 2 depicts the coefficients involved

to compute these gradients. Then, context ψx is computed

as the local average of two adjacent neighbors that are on

one of the four directions considered (vertical, horizontal, and

two diagonals). The direction is chosen as that having the

feeblest gradient. For intra-scale dependencies, for instance,

the vertical direction is considered with a feeble gradient

when indices xn and xs are both equal or greater than

threshold Tx and gradients gn and gs are both lower than

threshold Tg. As indicated in Table I, the other directions

have equivalent considerations. When none direction has a

feeble gradient, the context is computed as the local average of

xn, xs, xw, xe. Thresholds Tx and Tg are selected to discard

low intensity coefficients and strong gradients, respectively.

They are empirically adjusted as Tx = max(⌊22+l+α ·∆⌋, 1),
with l being the decomposition level (the first is 0), and

α =











2 if v = LL

1 if v = HL/LH

0 if v = HH

. (10)

Tg = 4 for all subbands. Due to the use of gradients that

are adjacent to the coded coefficient, inter-scale dependencies

can not be considered in this approach. ψ3D
x considers the

five basic directions that involve only coefficients from the

immediately previous and following component. These 3D

directions are not fully specified herein due to page constraints,

though they can be found in the implementation provided

below.

x
 ssww

g = |x -x |n n nn

g = |x -x  |ne ne nnee

g = |x -x |e e ee

g = |x -x  |se se ssee

g = |x -x |s s ss

g = |x -x |w w ww

g = |x -x  |nw nw nnww

g = |x -x  |sw sw ssww

Fig. 2: Coefficients employed to compute eight gradients

around x. Only intra-scale dependencies are illustrated.

We note that the four context models described above are

devised for wavelet-transformed data. Other context models

such as those employed in the latest video compression stan-

dard HEVC can not be directly applied herein since they are

specifically devised for another type of transformed data [32].

IV. EXPERIMENTAL RESULTS

A. Natural images

The first set of experiments employ the eight natural images

of the ISO 12640-1 corpus. These images are gray-scale, 8

bits per sample (bps), and have a size of 2560 × 2048. Five

levels of irreversible 9/7 wavelet decomposition are applied in

all experiments except when indicated. The objective of the

first test is to compare the entropy given by the proposed

measure with the coding rate achieved by JPEG2000. Our

JPEG2000 implementation BOI [33] is employed to carry

out this test. JPEG2000 coding parameters are: lossy mode,

codeblocks of 64 × 64, and no precincts. Fig. 3 shows the

results achieved when H ′(V ) employs the context model

borrowed from JPEG2000 with the use of intra-scale depen-

dencies (i.e., φINTRA), which is mostly similar to the model of

the standard. In this and following figures, the key provides the

type of entropy reported (H(V ) or H ′(V )), and the context

model employed to compute it. The solid plots depicted in
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Fig. 3: Comparison between the entropy given by H ′(V ) (solid

plots) and the coding rate achieved with JPEG2000 (plots with

dots), for four natural images of the ISO 12640-1 corpus.

Fig. 3 correspond to the entropy computed via H ′(V ), whereas

the plots with dots correspond to the results achieved with

the actual JPEG2000 codec. The entropy is reported in bps,

whereas the image quality is reported in PSNR. The results

achieved for the four images depicted in the figure indicate that

the proposed measure approximates with high accuracy the

JPEG2000 coding rate, with only small variations that show a

slightly larger rate for JPEG2000, in general. These variations

may be caused due to the auxiliary information required in

the JPEG2000 codestream. The differences between H ′(V )
and JPEG2000 are negligible, validating the soundness of the

proposed measure. These results hold for the other images of

the corpus.

The second test evaluates the efficiency of the four context

models when they exploit intra-scale dependencies. Fig. 4(a)

depicts the results achieved for the “Bicycle” image. The figure

also reports the entropy achieved when none context model

is used (i.e., H(V )). The results suggest that the use of a

context model significantly reduces the entropy. The context

models φ (JPEG2000-like), ϕ (local-average approach), and

ψ (gradient-based approach) achieve the lowest entropies for

low image qualities. From medium to high PSNR values, the

context models that achieve lowest entropies are ϕ and ψ. The

JPEG2000-like context model achieves regular performance

for these PSNRs when compared to the other models. Even the

simplest context model σ (left-coefficient approach) achieves

lower entropy than that of φ. At the highest image quality

reported in the figure, the entropy of σ and ϕ is approximately

5% and 10% lower than that of φ, respectively.

The solid plots of Fig. 4(b) report the same results as

those of Fig. 4(a). To ease the comparison, the horizontal

axis in Fig. 4(b) is the PSNR, whereas the vertical axis is the

difference, in bps, between the evaluated model and H(V ).
The local average approach experiences a slight degradation

at low qualities. Note that in the quality range from 25 to

35 dB, ϕ achieves entropies that are approximately 0.03 bps

higher than those of φ and ψ. The context model based on

the gradient approach does not experience this degradation,
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Fig. 4: Evaluation of the four context models, for the “Bicycle”

image of the ISO 12640-1 corpus. (a) and (b) report the same

results in different forms. The plots with dots of (b) indicate

that the pmf are generated using data from all images of the

corpus except “Bicycle”.

achieving the lowest entropies at all quality levels. Results

hold for the other images of the corpus.

As stated before, the pmfs employed by H ′(V ) are gen-

erated using the data of the image being evaluated. In prac-

tical systems, P ′
Xv

(x | Θx) is typically approximated with

adaptive mechanisms [13]. However, P ′
Xv

(x | Θx) might also

be approximated employing data from other images using a

stationary probability model such that described in [17]. So,

it is also of interest to appraise the entropy achieved when the

pmfs are generated with a training set of images –that does not

include the image evaluated. If P ′′
Xv

(x | Θx) denotes the pmf

generated with the training set, then such an approach replaces

the first line of (7) by −
∑

x P
′
Xv

(x | Θx) log2 P
′′
Xv

(x | Θx).
Equivalent changes are done in the second line of (7). The

plots with dots depicted in Fig. 4(b) report the entropy

achieved with this approach. Evidently, the entropy is higher

than that achieved when using the conventional pmfs because

P ′′
Xv

(x | Θx) capture the statistical behavior of natural images
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Fig. 5: Evaluation of the context models employed to code

the sign, for the “Portrait” image of the ISO 12640-1 corpus.

Only the entropy for the coefficients’ signs is reported.

in general rather than the specific behavior of the image

evaluated. Nonetheless, it is worth noting that the increase

in entropy produced due to the use of general pmfs does not

modify significantly the behavior of the context models. In

particular, the JPEG2000-like context model results almost

unaffected by this variation, which suggest that the adaptive

mechanisms employed in the standard might be removed

without a significant penalization in coding performance. This

insight has been used in [34] to enhance parallelism strategies

in the JPEG2000 bitplane coding engine.

The next test evaluates the efficiency of context models

σINTRAd and φINTRAd , employed for sign coding. Fig. 5 shows

the entropy required to code the sign of the coefficients. For

low quality levels, the entropy is low because most coefficients

are quantized as 0. The higher the image quality, the higher the

entropy. The context model that achieves the lowest entropy is

that of JPEG2000 (i.e., φINTRAd ). The efficiency of σINTRAd is

similar to that achieved when none context model is employed,

i.e., H(D). At the highest quality reported in the figure, H ′(D)
using φINTRAd achieves an entropy 10% lower than that of

H(D).
The last test of this section evaluates the differences between

the use of intra- and inter-scale dependencies. Fig. 6 reports

the results achieved when using context models φx and ϕx.

To enhance the comparison, the figure only reports the entropy

of the indices, disregarding the entropy of the signs. For both

models, the use of intra-scale dependencies achieves the lowest

entropies, which corresponds with [2], [18]. The model that

exploits the least the inter-scale dependencies is φ.

B. AVIRIS hyperspectral images

The next tests evaluate the entropy of three hyperspectral

images that belong to the remote sensing field. The images

are captured by the AVIRIS (Airbone Visible/Infrared Imaging

Spectrometer) sensor. They are 16 bits per sample, have a size

of 512× 512, contain 224 components, and are referred to as

“cuprite”, “jasper”, and “lunarLake”. Two typical transform
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Fig. 6: Evaluation of the use of intra- and inter-scale depen-

dencies with two context models, for the “Portrait” image of

the ISO 12640-1 corpus. Only the entropy of the quantization

indices is reported.

strategies are employed to decorrelate the redundancy of

the image samples: “2D” and “1D+2D”. “2D” applies five

levels of 2D wavelet decomposition in the image components.

“1D+2D” first applies five levels of 1D wavelet decomposition

along the depth axis of the image (i.e., on the spectrum),

and then five levels of 2D wavelet decomposition on each

component. The “1D+2D” transform strategy is called 3D

hybrid transform and it is known to be among the most

efficient transform strategies for this type of images [16].

The first test evaluates the four context models. Fig. 7

reports the entropy achieved by both the “2D” and “1D+2D”

transform strategies, for the “cuprite” image. The same plot

color reporting one context model is employed for both

transform strategies because they can be clearly discerned in

the figure. The context models utilized by the “2D” trans-

form strategy exploit intra-scale dependencies, whereas the

context models utilized by the “1D+2D” strategy exploit 3D

dependencies. Regardless of the context model, the “1D+2D”

strategy achieves lower entropies than those achieved by “2D”.

This correspond with results in the literature [16]. All context

models achieve similar results for low image qualities. At

medium and high qualities, all context models achieve similar

entropies except for φ (JPEG2000-like). At the highest quality

level reported in the figure, φ achieves almost the same entropy

as that achieved with H(V ), i.e., when none context model is

employed. This seems to indicate that, for these images and

transform strategies, context models based on the significance

state are not appropriate.

Fig. 8 reports with solid plots the same evaluation as that

of the previous figure but for the “jasper” image and only

for the “2D” transform strategy. As before, this figure reports

the entropy difference to ease the comparison. The context

models φ and ϕ are reported for both intra- and inter-scale

dependencies. Inter-scale dependencies are depicted with the

plots with dots. Similarly to the results achieved for the natural

images in Fig. 6, the use of φINTERx does not reduce the

entropy. Contrarily to the results achieved for the natural
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Fig. 7: Evaluation of the four context models when the “2D”

and “1D+2D” transform strategies are applied on the AVIRIS

image “cuprite”.
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Fig. 8: Evaluation of intra- and inter-scale dependencies for

the transform strategy “2D”, for the AVIRIS “jasper” image.

images, the use of inter-scale dependencies with the context

model ϕINTERx reduces the entropy in approximately 20% at

the highest quality level reported in the figure. This observation

also holds for the other images.

Fig. 9 reports with solid plots the same evaluation as that

of Fig. 7 but for the “lunarLake” image and only for the

“1D+2D” strategy. Again, the context model that achieves

lowest entropies is ϕ (local-average approach). The plots with

dots depicted in the figure report the entropies achieved when

the context models exploit intra-scale dependencies. As seen in

the figure, the use of such dependencies significantly increases

the entropy achieved.

The type of wavelet transform employed in a coding system

has an important impact on the coding efficiency achieved. To

illustrate this point, Fig. 10 reports the entropy obtained for

the “cuprite” image when four different wavelet transforms are

employed, namely, the irreversible 9/7, the reversible 5/3, the

irreversible Haar, and the reversible Haar (or S-transform). In

order not to clutter the figure, only the local average-based

context model is depicted. The model employs intra-scale
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Fig. 9: Evaluation of intra-scale and 3D dependencies for

the transform strategy “1D+2D”, for the AVIRIS “lunarLake”

image.
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Fig. 10: Evaluation of four different wavelet transforms when

the “2D” and “1D+2D” transform strategies are applied on the

AVIRIS image “cuprite”.

dependencies for the “2D” strategy, and 3D dependencies for

the “1D+2D” strategy. The lowest entropies are achieved by

the irreversible 9/7, though at high quality levels the Haar

transform achieves almost equivalent results, especially for the

“1D+2D” transform strategy. This does not happen with the

JPEG2000-like context model (not shown in the figure). Even

though the reversible 5/3 wavelet achieves lower entropies than

the S-transform at low quality levels, from medium to high

qualities, the S-transform achieves lower entropies than the

5/3. This indicates that the transform employed to code an

image is a choice that has to be taken considering the quality,

or the rate, at which it will be transmitted.

The last test reveals a peculiar feature of these hyperspectral

images. Fig. 11 reports the entropy obtained with the “2D”

strategy when the context models employ 3D dependencies.

All context models except φ enormously reduce the entropy

of the image. To illustrate this point, the figure also depicts,

with the plot with dots, the entropy achieved by the “1D+2D”

strategy using the context model that achieves lowest entropy
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Fig. 11: Evaluation of 3D dependencies when employed with

the “2D” transform strategy, for the AVIRIS “cuprite” image.

for that transform strategy (i.e., ϕ3D). For low-to-medium

quality levels, the “1D+2D” strategy results in the lowest

entropies reported, however, from medium to high quality

levels, the context models σ3D, ϕ3D, and ψ3D employed with

the “2D” strategy achieve the lowest entropies. These results

indicate that these context models are able to decorrelate the

entropy of the image as well as a 1D wavelet transform applied

on the spectrum of the image. This insight is employed in [35]

to reduce the computational costs of a coding scheme for

hyperspectral images.

C. Computed Tomography images

The following tests evaluate the entropy of 3D images

that belong to the medical field. The images are Computed

Tomographies (CT) of a human chest. They are 12 bits per

sample, have a size of 512×512, contain 112 components, and

are referred to as “A”, “B”, and “C”. The transform strategies

“2D” and “1D+2D” are also applied for these images. Fig. 12

shows the entropy obtained by these two transform strategies.

In order not to clutter the figure, only two context models are

depicted. As before, the context models employed with the

“1D+2D” strategy exploit 3D dependencies, whereas context

models employed with the “2D” strategy exploit intra-scale

dependencies. The differences between the “1D+2D” and

“2D” strategies are not as significant as those found for the

AVIRIS images. However, the context models show a similar

behavior, suggesting that the best results are achieved by the

gradient-based approach or the local average approach (not

shown in the figure). At the highest quality level reported

in the figure, the entropy difference between the gradient-

based approach employing the “1D+2D” and “2D” strategies

is almost negligible.

Figs. 13 and 14 report the same evaluations as those of

Figs. 8 and 9 but for the CT images. The results achieved for

the evaluation of the “2D” strategy in Fig. 13 are similar to

those achieved for the AVIRIS images. The results achieved

for the “1D+2D” evaluation in Fig. 14 are notably different

from those obtained for the AVIRIS images. In this case,
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Fig. 12: Evaluation of the two context models when the “2D”

and “1D+2D” transform strategies are applied on the CT image

“A”.
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Fig. 13: Evaluation of intra- and inter-scale dependencies for

the transform strategy “2D”, for the CT “B” image.

the use of intra-scale dependencies achieve equal or lower

entropies than when using 3D dependencies. This suggest that

the coding of different types of images should exploit different

types of dependencies to achieve maximum coding efficiency.

V. DISCUSSION AND CONCLUSIONS

This paper introduces an entropy-based measure to eval-

uate different context models employed to code wavelet-

transformed images. Four context models that can exploit three

types of wavelet dependencies are employed with the proposed

measure. The analysis obtained with this framework reveals

interesting aspects of context models that may be employed

to devise coding schemes that target particular types of images,

transform strategies, or coding rates.

The main conclusions obtained for natural images suggest

that: 1) context models based on the significance state are ap-

proximately 10% less efficient at high rates than the remaining

models, 2) the context model that achieves lowest entropy is

that that combines the gradient adjusted predictor with the
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Fig. 14: Evaluation of intra-scale and 3D dependencies for the

transform strategy “1D+2D”, for the CT “C” image.

local average approach, 3) the context model for signs that

achieves lowest entropy is that defined in the JPEG2000 stan-

dard, 4) the context model of JPEG2000 may use stationary

probabilities without a significant loss on coding performance,

and 5) the use of intra-scale dependencies achieves the lowest

entropy.

Results achieved for AVIRIS hyperspectral images suggest

that: 1) the use of the significance state to define the context

of a coefficient is not appropriate for these images, 2) the

context model based on the local average can be effectively

combined with the use of inter-scale dependencies to enhance

compression efficiency, 3) 3D dependencies of wavelet data

may significantly reduce the entropy when employing the

“1D+2D” transform strategy, 4) the wavelet transform em-

ployed should be chosen together with the context model

and the quality range at which the image is transmitted, and

5) 3D dependencies may be used with a “2D” transform

strategy to enhance coding efficiency. For the CT images,

similar conclusions as those drawn for the AVIRIS images

are obtained except for the use of 3D dependencies with the

“1D+2D” transform strategy, which does not achieve entropies

as low as those achieved with intra-scale dependencies.

The experimental section of this paper reports only a small

part of the experimental results generated to compile this

summary. The proposed measure is especially useful to aid

the design of new image codecs, and can be employed to test

many other types of images, transforms, and context models.

To ease its dissemination, the software tool developed in this

work is left freely available in [36]. It is named ENTIMA

and incorporates 10 different context models, 4 wavelet filter-

banks, and several transform strategies for gray, color, and

multi-component images.
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