
1

2-Step Scalar Deadzone Quantization

for Bitplane Image Coding
Francesc Aulı́-Llinàs, Member, IEEE

Abstract—Modern lossy image coding systems generate a
quality progressive codestream that, truncated at increasing
rates, produces an image with decreasing distortion. Quality
progressivity is commonly provided by an embedded quantizer
that employs uniform scalar deadzone quantization (USDQ)
together with a bitplane coding strategy. This paper introduces a
2-step scalar deadzone quantization (2SDQ) scheme that achieves
same coding performance as that of USDQ while reducing the
coding passes and the emitted symbols of the bitplane coding
engine. This serves to reduce the computational costs of the
codec and/or to code high dynamic range images. The main
insights behind 2SDQ are the use of two quantization step sizes
that approximate wavelet coefficients with more or less precision
depending on their density, and a rate-distortion optimization
technique that adjusts the distortion decreases produced when
coding 2SDQ indices. The integration of 2SDQ in current codecs
is straightforward. The applicability and efficiency of 2SDQ is
demonstrated within the framework of JPEG2000.

Index Terms—2-step scalar deadzone quantization, general
embedded quantization, bitplane image coding, JPEG2000.

I. INTRODUCTION

QUALITY progressivity is a feature provided by many

image coding systems that permits the truncation of a

codestream in a set of increasing rates at which the image dis-

tortion decreases strictly. This is of utility to applications that

need to transmit, decode, or transcode images because it allows

the partial processing of the codestream without needing to re-

encode. Quality progressivity has been thoroughly studied and

adopted by modern coding systems and standards in different

forms. First wavelet-based coding engines like EZW [1] or

SPIHT [2], for instance, generate an embedded codestream

that can be truncated at any point providing the best possible

quality for that rate. JPEG2000 standard [3] constructs a

highly scalable codestream in which explicitly defined layers

of quality can be identified and decoded providing optimal

quality for that decoding rate.

Despite adopting different forms, most mechanisms that

provide quality progressivity employ an embedded quantizer.

An embedded quantizer is a procedure, or a device, that splits

the quantization indices of a (transformed) image in short

words. Each word is a suffix of the previous ones (if any)

so that they can be consecutively transmitted and combined

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Dr. Francesc Aulı́-Llinàs is with the Department of Information and Com-
munications Engineering, Universitat Autònoma de Barcelona, Spain (phone:
+34 935813571; fax: +34 935814477; e-mail: fauli@deic.uab.cat). This work
has been partially supported by the Spanish Government (MINECO), by
FEDER, and by the Catalan Government, under Grants RYC-2010-05671,
TIN2012-38102-C03-03, and 2009-SGR-1224.

by the dequantizer to reconstruct the original indices with

more or less precision depending on the transmitted words.

Embedded quantization has been approached from different

points of view. Progressively refinable vector quantization

schemes are studied in [4]–[10], scalar quantization schemes

that are adaptively adjusted as more data are transmitted are

investigated in [11]–[13], and the best size for the deadzone

of uniform scalar quantizers is determined in [14]. Embedded

and multistage trellis coded quantization schemes [15] are

explored in [16]–[21], and ordering strategies for wavelet data

are examined in [22].

Early work on quantization suggested that a uniform scalar

deadzone quantization (USDQ) scheme may be appropriate for

a variety of sources [23]–[25]. Currently, most codecs employ

USDQ together with a bitplane coding (BPC) strategy. Such

a scheme splits the quantization indices into words of one bit

that correspond to the binary representation of the indices. Bits

from all indices are transmitted from the most significant bit to

the least significant bit [26]. This is interpreted by the decoder

as a multistage quantization procedure in which each stage

produces quantization intervals half the size of the previous

ones.

USDQ+BPC has become popular due to its competitive

coding performance and the convenient use of the binary

representation. Nonetheless, USDQ+BPC is not specifically

designed to achieve optimal coding performance for a selected

range of decoding rates, and it permits only small variations

on the quantization scheme. Motivated by these issues, our

previous work [27] introduced a more flexible scheme named

general embedded quantization (GEQ). The focus of that work

is to explore the performance, in terms of coding efficiency

and quantizer complexity, that can be achieved by GEQ.

Empirical evidence suggests that well-designed GEQ schemes

can achieve same coding performance as that of USDQ+BPC

while requiring fewer quantization stages.

Unfortunately, the approach of [27] requires structural mod-

ifications when introduced in conventional codecs. Mainly,

these modifications are needed due to 1) the abandonment

of the indices’ binary representation, 2) a different order of

coding passes, and 3) the selective operation of the quantizer

on coefficients that vary at each stage. This entails a complete

re-modulation of the codec because bitplane coding strategies

can not be employed with such a quantization scheme. In

addition, bit-wise operations, which are commonly exploited

in software and hardware architectures to accelerate the coding

process, can neither be utilized.

The purpose of this work is to introduce an embedded

quantization scheme that –without requiring modifications

in the bitplane coding engine– decreases the stages of the



2

quantizer and achieves same coding performance as that of

USDQ+BPC. The main advantages of the proposed scheme are

that it reduces the computational load of the codec and permits

the coding of high dynamic range images. The main insight

behind it is a quantizer with 2 step sizes that are selectively

employed depending on the magnitude of the coefficients.

The use of distortion-optimization techniques that adjust the

distortion decreases produced when coding 2SDQ indices is

fundamental to achieve competitive coding performance. This

paper continues our previous work [28] providing extended

rate-distortion analysis, an efficient implementation that uses

distortion estimators, and an experimental section with more

results and different types of evaluations.

The paper is organized as follows. Section II reviews

bitplane coding and describes the main idea behind GEQ.

Section III introduces the proposed quantization scheme and

details its implementation. Section IV demonstrates the advan-

tages of the proposed quantizer through experimental results

that assess coding performance, coding passes executed, and

symbols emitted. The last section summarizes this work and

provides conclusions.

II. OVERVIEW OF CURRENT APPROACHES

A. Bitplane image coding

Let ω be a coefficient of a wavelet-transformed image that

undergoes quantization through USDQ with base step size ∆.

The quantizer partitions the range of input values into uniform

intervals of width ∆ except for the interval that contains zero

(i.e., (−∆, 0]∪[0,∆)), which is called deadzone and has width

2∆ because all coefficients within are mapped to zero. The

operation carried out by USDQ at the encoder is expressed as

υ =

⌊

|ω|

∆

⌋

, (1)

where ⌊·⌋ denotes the floor operation. Let

[bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1}, be the binary

representation for the quantization index υ, with M denoting

a sufficient number of bits to represent all coefficients. The

collection of bits bj from all coefficients is called bitplane.

Bitplane coding strategies code bits from the most significant

bitplane M − 1 to the least significant bitplane 0. The first

non-zero bit of the binary representation of υ is denoted

as bs and is referred to as the significant bit. The sign of

the coefficient is coded immediately after bs, so that the

dequantizer can reconstruct the coefficient somewhere in the

indexed quantization interval. If bj′ denotes the last available

bit of υ, the reconstruction procedure carried out at the

decoder is expressed as

ω̂ =

{

0 if j′ > s

sign(ω) (υ̂ + δ)∆2j
′

otherwise
, (2)

where υ̂ = [bM−1, bM−2, ..., bj′ ], and δ ∈ [0, 1) adjusts

the reconstruction value ω̂ within its quantization interval.

Typically, δ = 1/2.

0 Wrange of
input values

quant.
stage

1

2

3

4

(a)

0 W

quant.
stage

1

2

3

T1

T
2

T
3

range of
input values

4

5

T
4

T'
4

T''
4

T
5

(b)

Fig. 1: Illustration of the quantization intervals employed by

different embedded quantization schemes. The gray circles

represent the reconstruction points when using δ = 1/2. Only

the magnitude of coefficients is depicted (omitting the sign)

since symmetry about zero is assumed. (a) and (b) depict the

USDQ+BPC scheme and the practical GEQ [27], respectively.

Fig. 1(a) illustrates the quantization intervals produced by

the USDQ+BPC scheme. The top horizontal line of the figure

represents the range of the input values in absolute value,

i.e, |ω| ∈ [0,W] with W denoting the largest magnitude of

the coefficients to be quantized. The first quantization stage –

represented as the second topmost horizontal line in Fig. 1(a)–

partitions [0,W] into two intervals of same width. When using

mid-point reconstruction, coefficients within [W/2,W] are

reconstructed in the middle of the interval as depicted with

the gray dot in the figure. Coefficients within [0,W/2) are

reconstructed as 0. Each quantization stage or, equivalently,

the coding of each bitplane, halves the previous intervals.

The procedure continues in this fashion until the width of all

intervals is ∆, which occurs when all bitplanes are coded.

Bitplane coding of USDQ indices is often fractioned in

multiple coding passes per bitplane, which helps to produce a

more optimized codestream in terms of rate-distortion [29]. In

general, most engines employ, at least, two coding passes. The

first coding pass is devoted to significance coding, scanning

coefficients that were not significant in previous bitplanes. The

second pass is devoted to refinement coding, adjusting with

more precision the magnitude of significant coefficients.

B. General embedded quantization

GEQ is defined as a multistage quantization scheme that

uses quantization intervals of arbitrary width. To do so, the

quantizer employs a threshold at each stage that approximates

with more precision the coefficients whose magnitude lies

within the same interval as that of the threshold. Let Tk

denote the threshold employed in quantization stage k and

let [Tl, Th) denote the interval in which threshold Tk lies

(i.e., Tl < Tk < Th). Quantization stage k operates only on

coefficients |ω| ∈ [Tl, Th), coding whether they are smaller

than Tk or not. Conceptually, this splits quantization interval



3

[Tl, Th) in two (i.e., [Tl, Tk) and [Tk, Th)), approximating

the magnitude of coefficients within with more precision. A

detailed description of the GEQ coding procedure is found

in [27].

The main advantage of GEQ is that widens the possi-

bilities to design the quantizer. Note, for instance, that by

restricting thresholds to be a multiple of a given step size

∆∗, the quantizer can chose among Γ = ⌊W/∆∗⌋ different

thresholds. Assuming that all thresholds are distinct, there

are then Γ!/(Γ − K)! different quantizers of K quantization

stages. Our previous work [27] explores the efficiency of GEQ

exhaustively, disclosing those schemes that achieve the best

rate-distortion performance. Inspired by the design of such

quantizers, then a practical approach of GEQ is proposed and

tested in the framework of JPEG2000.

The practical GEQ proposed in [27] produces quantization

intervals of width twice larger for coefficients |ω| ≥ W/3
than for coefficients |ω| < W/3. Fig. 1(b) depicts the

quantization intervals produced by the practical GEQ. The

first three quantization stages carry out significance coding,

with thresholds T1 = 2
3W , T2 = 1

3W , and T3 = 1
6W . As

indicated in the figure, the fourth stage of the quantizer halves

all quantization intervals except the deadzone. The procedure

continues interleaving one stage of significance coding with

one stage of refinement coding until the target rate, or the

target distortion, is achieved.

Unfortunately, the practical GEQ needs to be implemented

in the coding engine by substituting the emission of bits

corresponding to the binary representation of coefficients by

symbols corresponding to the conditional that checks whether

the magnitude of the coefficient lies below or above Tk. This

prevents the use of the binary representation of the indices and,

by extension, of bitplane coding strategies. In addition, the

coding pass order needs to be modified to perform significance

coding exclusively at the first three stages of the quantizer, and

new data structures that store the quantization interval of each

coefficient have to be added to permit the selective operation of

the quantizer on some of the coefficients. All these operations

are needed in the bitplane coding engine, which is commonly

the most elaborated module of the codec (see [30], [31], for

instance).

III. PROPOSED QUANTIZER

A. Design

We define 2-step scalar deadzone quantization (2SDQ) as a

scheme that employs two quantization step sizes as they are

illustrated in Fig. 2. The intervals produced in the last stage

of 2SDQ are intentionally similar to those of the practical

GEQ, since this interval partitioning was proven to be most

effective in [27]. 2SDQ forms these intervals in a way that

permits their use in bitplane coding strategies. The quantizer

employs step size ∆L for coefficients |ω| < αW , and step

size ∆H for coefficients |ω| ≥ αW , producing intervals with

two different widths. We restrict step sizes to ∆H > ∆L,

so that coefficients whose magnitude is greater than αW are

quantized more roughly than coefficients whose magnitude

is smaller than αW . More important, the consequent use of

0 Wrange of
input values

quant.
stage

1

2

3

4
HL L L L L L L L H H H H H H H

 W 

(a)

Fig. 2: Illustration of the quantization intervals employed by

the proposed scheme.

bitplane coding compels to the partitioning of the intervals

above and below αW into the same number of subintervals.

This restricts the size of ∆H and ∆L to

∆H =
(1− α)∆L

α
. (3)

From the bitplane coding perspective, this scheme uses the

widest step size ∆H for quantized coefficients that are signif-

icant at the most significant bitplane, and ∆L otherwise.

The operation carried out at the encoder is expressed as

υ′ =



















⌊

|ω|

∆L

⌋

if |ω| < αW

⌈

αW

∆L

⌉

+

⌊

|ω| − αW

∆H

⌋

otherwise

, (4)

where ⌈·⌉ denotes the ceiling operation. This expression pro-

duces 2SDQ indices that are encoded by a conventional bit-

plane coding engine. The decoder reconstructs the coefficients

according to

ω̂′ =























































0 if j′ > s

sign(ω) (υ̂′ + δ)∆L2
j′

if j′ ≤ s and υ̂′2j
′

<

⌈

αW

∆L

⌉

sign(ω)
[

αW +

(

(υ̂′ + δ)2j
′

−

⌈

αW

∆L

⌉)

∆H

]

otherwise,
(5)

where υ̂′ denotes the binary representation of υ′ up to bit j′.

Our implementation of the 2SDQ scheme uses a ∆L that

is similar to that ∆ employed by USDQ. This means that

coefficients |w| < αW are approximated similarly by USDQ

and 2SDQ. Due to (3), this also implies that the ∆H employed

by 2SDQ is significantly larger than ∆, so coefficients whose

magnitude is greater than αW are approximated more roughly

than when using USDQ.

The overall quantization error produced by 2SDQ is akin

to that of USDQ. This is explained due to the distribution of

coefficients in wavelet subbands. We recall that the probability



4

TABLE I: Evaluation of the cumulative pdf of coefficients in

some wavelet subbands. The vertical and horizontal frequen-

cies of the subband are indicated with two letters denoting

high- (H) or low-frequencies (L), followed with the decompo-

sition level in subscript. Each cell of the table is the cumulative

probability up to σW .

∫
σW

−σW

f(ω) dω

σ = 0.01 0.02 0.05 0.10 0.15 0.30 0.60

“Portrait” (natural image)

HL1 68% 76% 86% 93% 96% 99.4% 99.9%

LH2 59% 71% 81% 90% 94% 98% 99.9%

HH3 58% 66% 76% 86% 90% 97% 99.8%

HL4 63% 72% 86% 93% 96% 98% 99.8%

LH5 60% 70% 83% 91% 95% 98% 99.9%

“Barcelona” (aerial image)

HH1 35% 41% 72% 89% 95% 99.6% 99.9%

LH2 23% 32% 55% 76% 87% 98% 99.9%

HL3 23% 31% 51% 71% 84% 97% 99.9%

HH4 16% 22% 38% 52% 70% 92% 99.6%

LH5 14% 20% 35% 55% 69% 92% 99.7%

density function (pdf) of wavelet coefficients has a Laplace-

like shape [32] with long and thin tails. Such a pdf indicates

that the density of coefficients with large magnitudes is much

lower than the density of coefficients with small magnitudes.

See, for instance, in Table I the cumulative pdf found in

some wavelet subbands. The results reported in this table

are generated applying five levels of irreversible 9/7 wavelet

transform to two images of the corpus employed in Section IV.

If f(ω) denotes the pdf of coefficients in a subband, each

cell of the table reports the coefficient density in the range

(−σW, σW) or, more precisely,

∫ σW

−σW

f(ω) dω. Although

that it depends on the image, the wavelet transform, and

the subband, in general, more than 98% of the coefficients

in a wavelet subband are smaller than 0.3W . Therefore, to

reconstruct large-magnitude coefficients roughly does not have

a significant impact on the overall quantization error due to the

scarcity of such coefficients. The principal advantage of using

a large ∆H is that the number of stages of the quantizer is

decreased. This is the main insight behind 2SDQ, which results

in a codec that, performing fewer coding passes, achieves

similar coding performance to that of USDQ.

α determines the coefficients that are quantized with ∆L

and with ∆H . Our experience indicates that a good choice is

to quantize 98% of coefficients, or more, with ∆L. In general,

α = 0.3 is an appropriate choice for a large variety of images,

wavelet filters, and subbands, so it is used in the experiments

of Section IV.

B. Implementation

2SDQ can be implemented in any wavelet-based coding

system that employs bitplane coding. Herein, it is tested in

colour

transform

wavelet

transform

quanti-

zation

bitplane

coding

arithmetic

coding

RD-opt

headers

coding

JPEG2000

codestream

transform

coding building

reconstructed

samples

colour

transform

wavelet

transform

dequanti-

zation

bitplane

decoding

arithmetic

decoding

headers

decoding

original

samples

2SDQ

+header bit

adjust.

Fig. 3: Main stages of a typical JPEG2000 implementation.

2SDQ is integrated in the coding pipeline through the opera-

tions in gray.

the framework of the JPEG2000 standard (ISO/IEC 15444-

1). JPEG2000 is chosen due to its widespread use, advanced

features, and excellent coding performance. Fig. 3 depicts the

main stages of a typical JPEG2000 implementation [3]. The

first group of operations decorrelates the image information

through a color and a wavelet transform, and quantizes wavelet

data using USDQ. Then, the image is conceptually partitioned

in small sets of wavelet coefficients called codeblocks. The

second group of operations codes the quantized coefficients

within codeblocks using a three-coding-pass bitplane coding

engine. Symbols emitted by the coding engine are fed to the

arithmetic coder MQ. The last operations build the final code-

stream selecting bitstream segments of codeblocks through

rate-distortion optimization (RD-opt) techniques. They also

code auxiliary information.

2SDQ is integrated in the framework of JPEG2000 intro-

ducing as few changes as possible. The gray boxes depicted

in Fig. 3 are the operations that are introduced in the coding

pipeline when applying 2SDQ. Rather than replacing the

original quantization stage of JPEG2000 –which may not

be suitable in some implementations–, 2SDQ is introduced

through a strategy that converts wavelet coefficients to 2SDQ

indices. This operation is labeled “2SDQ” in the figure.

Before describing the 2SDQ stage, let us explain the quan-

tization operation carried out by JPEG2000. In a conventional

JPEG2000 implementation, the coefficients in each subband

are quantized using USDQ with step size ∆ as detailed in

Equation (1). This produces quantization indices υ ∈ [0, 2Mz ),
with Mz denoting a sufficient number of bits to represent all

quantized coefficients in subband z. ∆ can be chosen so that

the coefficient of largest magnitude within the subband, say

Wz , approaches 2Mz . Nonetheless, the quantized coefficients

within a codeblock, referred to as υ[χ] for codeblock x, may

suffice with a smaller number of bits, i.e., υ[χ] ∈ [0, 2Mx),
with Mx ≤ Mz . This is taken into account in JPEG2000 by

transmitting Mx to the decoder, so that the bitplane coding

engine avoids coding Mz −Mx bitplanes that contain zeroes

for that codeblock.

Herein, 2SDQ is applied on selected codeblocks by decreas-

ing in Rx the number of magnitude bits that are used to code

the coefficients via USDQ. When 2SDQ is applied on the



5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

c
u
m

u
la

ti
v
e
 d

e
n
s
it
y

|ω| / Wx

M
x
 = 6

M
x
 = 5

M
x
 = 4

M
x
 = 3

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

c
u
m

u
la

ti
v
e
 d

e
n
s
it
y

|ω| / Wx

M
x
 = 7

M
x
 = 6

M
x
 = 5

M
x
 = 4

(b)

Fig. 4: Evaluation of the cumulative pdf of coefficients in

codeblocks with different Mx. Data belong to codeblocks of

subbands (a) HL1 of “Portrait” and (b) HH1 of “Barcelona”.

codeblock, M ′
x = Mx − Rx bitplanes are coded. The step

sizes ∆L and ∆H are then

∆′
L = ∆

α2Mx

2M
′
x
−1

= ∆α2Rx+1 (6)

and

∆′
H = ∆(1− α)2Rx+1 . (7)

The codeblocks in which 2SDQ is applied and their corre-

sponding M ′
x are signaled in the headers of the codestream

as depicted with the operation labeled “+header bit” in Fig. 3.

The extra bits necessary to transmit this information increase

negligibly the length of the final codestream.

Even though 2SDQ might be applied using other techniques,

our experience indicates that the application of 2SDQ in code-

blocks as described before enhances its efficiency since the

number of dismissed bits Rx can be adjusted independently

for each codeblock. The pdf of coefficients is again the reason

behind this strategy. Fig. 4 reports the cumulative pdf of the

subbands of the first decomposition level reported in Table I.

The pdf of codeblocks with different Mx is reported separately

in this figure, so each plot is the average cumulative pdf

for codeblocks with same Mx. To ease the comparison, the

horizontal axis of the figure is normalized to the nominal

range, i.e., we plot |ω|/Wx on the horizontal axis, with Wx

denoting the coefficient of largest magnitude in the codeblock.

Results indicate that codeblocks with few magnitude bits

(i.e., with a small Mx) have a more uniform distribution

than codeblocks with large Mx. As described before, 2SDQ

approximates roughly large-magnitude coefficients, so its use

is more appropriate in codeblocks having many bitplanes since

the density of large-magnitude coefficients is low.

As seen in the next section, the selection of codeblocks

in which 2SDQ is applied can be carried out using different

strategies. The conversion from wavelet coefficients to 2SDQ

indices is carried out as follows. The encoder applies the 2SDQ

stage just after the wavelet transform (see Fig. 3) performing

the operation expressed as

υ′′ =















|ω|

α2Rx+1
if |ω| < ∆α2Mx

∆2M
′

x
−1 +

|ω| −∆α2Mx

(1− α)2Rx+1
otherwise

. (8)

Then υ′′ is quantized in the JPEG2000 quantization stage (i.e.,

as in (1) but replacing |ω| by υ′′) and coded through conven-

tional bitplane coding. The (partially) transmitted index to the

decoder is transformed in the JPEG2000 dequantization stage

producing 2SDQ indices that are referred to as υ̂′′ (i.e., (2)

is applied replacing ω̂ by υ̂′′). 2SDQ indices are converted to

wavelet coefficients just before the wavelet transform through

ω̂ ≈



















sign(ω) |υ̂′′|α2Rx+1 if |υ̂′′| < ∆2M
′

x
−1

sign(ω)
[

∆α2Mx + (|υ̂′′| −∆2M
′

x
−1)(1− α)2Rx+1

]

otherwise.

(9)

Contrarily to Equations (4) and (5), the two expressions above

multiply α by 2Mx instead of using W because W is not

commonly available in implementations. In general, this does

not penalize performance.

We note that the proposed 2SDQ scheme may also be seen

as a compander [33]–[35] that employs the piecewise functions

expressed in (8) and (9) as the compression and expanding

functions, respectively. Appendix A expands this point of view

further.

C. Rate-distortion optimization aspects

JPEG2000 employs RD-opt techniques to construct the final

codestream [36], [37]. When the distortion metric is Mean

Squared Error (MSE), RD-opt methods commonly determine

the image distortion achieved at the end of coding pass l com-

puting the squared difference between the original coefficients

and the reconstructed coefficients of the codeblock, i.e.,



6

Dl = G2
z

∑

χ

(ω[χ]− ω̂[χ])2 , (10)

with Gz denoting the energy gain factor of subband z to

which the codeblock belongs. Then, the distortion decrease

produced when transmitting coding pass l is determined as

▽Dl = Dl−1 − Dl. The distortion decrease together with

the increase in rate is employed by optimization procedures

such as the generalized Lagrange multiplier [38] to select the

bitstream segments that are included in the final codestream.

In practice, the encoder neither keeps in memory the original

coefficients nor reconstructs them at each coding pass to com-

pute the squared error as it is formulated in (10). Generally, the

squared difference between the original and the reconstructed

coefficients is approximated using the quantization indices

according to

Dl ≈ G2
z∆

2
∑

χ

(

(υ[χ] + δ)−

{

0 if j′ > s

(υ̂[χ] + δ)2j
′

otherwise

)2

.

(11)

In this expression, υ[χ] + δ is the reconstructed coefficient

when all bits are transmitted to the decoder, whereas (υ̂[χ] +
δ)2j

′

is the reconstructed coefficient when bits up to j′

are transmitted. Expression (11) is computationally simpler

than (10) since υ[χ] is employed by the bitplane coding engine

and (υ̂[χ]+δ)2j
′

can be computed through bit-wise operations

when δ = 1/2. The power of two is the only computationally

complex operation, though it can also be avoided as described

below.

The RD-opt method must take into account that 2SDQ

produces a deviation on these quantities. Before determining

this deviation, we first define β as the scale factor of conven-

tional USDQ indices to indices in which the 2SDQ stage is

applied, more precisely, β = υ/υ′′′, with υ′′′ representing

the index obtained via (8) and (1). Fig. 5 reports β for

different values of α when Rx = 1. Indices υ′′′ < 2M
′

x
−1

are uniformly scaled with respect to USDQ indices. For such

indices, βL = α2Rx+1, which is seen in the figure as the

uniform β from 0 to 2M
′

x
−1. Indices υ′′′ ≥ 2M

′

x
−1 are

logarithmically scaled with respect to USDQ indices. As

indicated in the figure, β grows logarithmically from 2M
′

x
−1

to 2M
′

x , being β = α2Rx+1 at 2M
′

x
−1 and β = 2Rx at 2M

′

x .

β indicates that the deviation produced on the squared

error computed in (11) when coding 2SDQ indices has to be

determined differently for indices that are smaller or greater

than 2M
′

x
−1. The deviation for indices υ′′′ < 2M

′

x
−1 is

β2
L. The deviation for indices υ′′′ ≥ 2M

′

x
−1 is different

depending on their magnitude due to the non-uniform scale

factor seen in Fig. 5. Even so, we recall that coefficient

densities corresponding to indices υ′′′ ≥ 2M
′

x
−1 are very

low, so an estimate is enough for our RD-opt purposes. This

estimate is computed as the average scale factor in the interval

according to

 0

 0.4

 0.8

 1

 1.2

 1.6

 2

0 2
M’ - 1

2
M’

β
 =

 υ
 /

 υ
’’’

υ’’’

α = 0.50
α = 0.40
α = 0.30
α = 0.25
α = 0.20
α = 0.10
α = 0.00

Fig. 5: Evaluation of the scale factor β. Experiments of

Section IV employ α = 0.3. Results are reported for Rx = 1.

βH =

∫ ∆2Mx

∆α2Mx

f(|ω|) β dω

≈

∫ ∆2Mx

∆α2Mx

f(|ω|)

⌊

|ω|
∆

⌋

2M
′
x
−1 +

⌊

|ω|/∆−α2Mx

(1−α)2Rx+1

⌋ dω

≈ (α2 ln 2− α+ 1− ln 2)2Rx+1 .

(12)

The above equation is expressed using coefficients ω and

densities f(ω) as they are defined previously to allow in-

tegration. The result on the third line of the expression is

computed assuming a uniform distribution in the interval (i.e.,

f(ω) = 1/(1 − α)∆2Mx ). This simplifies the calculation

without penalizing performance.

Through βL and βH , the squared error determined in

Equation (11) is reformulated for codeblocks using 2SDQ

according to Equation (13).

Even though implementations may employ (13), the use of

the recently introduced distortion estimators [39] can further

reduce the computational complexity of this expression. The

main idea behind the distortion estimators is to approximate

distortion decreases through the number of significant and

refinement coefficients coded at each coding pass. Distortion

estimators ▽Dsig
j′ and ▽Dref

j′ are respectively defined as

the average squared error decrease that is produced when a

coefficient is found significant, or is refined, at bitplane j′.
The details on how these estimators are determined can be

found in [39]. The distortion decrease at coding pass l is then

determined according to

▽Dl ≈ G2
z∆

2(▽Dsig
j′ ·#Sl + ▽Dref

j′ ·#Rl) , (14)

where #Sl and #Rl denote the number of significant and

refinement coefficients coded in coding pass l, respectively.

The main advantage with respect to the classic approach

embodied in (11) is that (14) neither requires the (partial)

reconstruction of the coefficient nor the power of two. The

only operation carried out in (14) during bitplane coding is to



7

Dl ≈ G2
z∆

2































β2
L

∑

χ

(

(υ[χ] + δ)−

{

0 if j′ > s

(υ̂[χ] + δ)2j
′

otherwise

)2

if υ[χ] < 2M
′

x
−1

β2
H

∑

χ

(

(υ[χ] + δ)−

{

0 if j′ > s

(υ̂[χ] + δ)2j
′

otherwise

)2

otherwise

(13)

count the number of significant/refinement coefficients at each

coding pass, which is computationally inexpensive.

Distortion estimators can be used together with 2SDQ. Due

to the uniform scale factor of indices υ′′′ < 2M
′

x
−1, the

deviation on ▽Dsig
j′ and ▽Dref

j′ for such coefficients is β2
L. For

indices υ′′′ ≥ 2M
′

x
−1, the deviation produced for significance

coding is determined according to

β2
Hsig =

∫ 2Mx

α2Mx

f(|ω|)
[

ω2 −
(

ω −
(

α2Mx + (1− α)2Mx−1
))2
]

dω

∫ 2M
′
x

2M
′
x
−1

f(|ω|)

[

ω2 −
(

ω −
(

2M
′

x
−1 + 2M

′

x
−2
))2

]

dω

= (α2 + 2α+ 1)
22Rx+2

9
.

(15)

The numerator and denominator in the second line of this

expression are the average squared error decrease that is

produced when coefficients quantized with USDQ and 2SDQ

are found significant, respectively. In the numerator, ω2 is

the squared error produced for the coefficient when none

bit is transmitted, whereas
(

ω −
(

α2Mx + (1− α)2Mx−1
))2

is the squared error produced when the significant bit is

transmitted. The denominator is derived accordingly. Again,

f(ω) is assumed uniform in (15). For notational simplicity,

coefficients are assumed to be normalized by the quantization

step size ∆ in (15). The deviation for refinement coding is

derived similarly, resulting in β2
Href = (α2− 2α+1)22Rx+2.

Then, the squared error determined in Expression (14) is

reformulated for codeblocks using 2SDQ as

▽Dl ≈ G2
z∆

2































β2
Hsig · ▽D

sig
j′ ·#Sl if j′ = M ′

x − 1

β2
L · ▽Dsig

j′ ·#Sl +

β2
L · ▽Dref

j′ · (#Rl −#RM ′
x
−1) +

β2
Href · ▽Dref

M ′
x
−1 ·#RM ′

x
−1 otherwise

(16)

where #RM ′
x
−1 is the number of coefficients found significant

in the most significant bitplane of the codeblock. Experimental

evidence indicates that the performance achieved with (13)

and (16) is virtually the same, so our implementation computes

distortion decreases via (16). It is represented in Fig. 3 as the

operation labeled “· adjust”

D. Summary

To summarize, the integration of 2SDQ into the coding

pipeline of JPEG2000 requires three operations at the encoder

and two operations at the decoder. The first operation trans-

forms wavelet coefficients to 2SDQ indices. This operation

requires one or two floating point operations per coefficient

at the codeblocks in which 2SDQ is applied. This increases

in less than 1% the computational costs of a conventional

JPEG2000 implementation. The codeblocks in which 2SDQ

is applied are signaled in the headers of the codestream, so

the decoder can identify them. This second operation has

negligible computational costs. The third operation multiplies

the distortion decreases computed by the RD-opt method by

the deviations determined above. This operation does not

imply significant computational resources either, and is applied

at the encoder only.

IV. EXPERIMENTAL RESULTS

The proposed method is evaluated in terms of coding perfor-

mance achieved, coding passes executed, and symbols emitted

by the bitplane coding engine. The results achieved with 2SDQ

are compared with those achieved with a compliant JPEG2000

implementation using USDQ. The images employed in the

experiments are chosen from different corpora: “Portrait”

(2048×2560) and “Flowers” (2731×2048) are natural images

that belong to the ISO 12640-1 and ISO 12640-2 corpus,

respectively, “Barcelona” (4096 × 4096) is an aerial image

provided by the Cartographic Institute of Catalonia (ICC) [40]

that belongs to the remote sensing community, and “Hip”

(2048×2495) is a computer radiology provided by the UDIAT

Centre Diagnostic [41] that belongs to the medical community.

All images are 8 bit, gray scale. Coding parameters are: 5

levels of irreversible 9/7 wavelet transform, codeblock size of

64×64, single quality layer codestreams, and no precincts. The

codestream generated when 2SDQ is in use is not JPEG2000

compliant.

A. Optimal coding performance

First, 2SDQ is employed with the aim to achieve same

coding performance as that of USDQ while minimizing the

number of coding passes performed by the bitplane coding

engine. This may help to reduce the computational load of

the codec since to execute more coding passes commonly

implies additional computational time [29]. Our JPEG2000

implementation [42] determines the USDQ step size ∆ ac-

cording to the L2-norm of the subband synthesis basis, which

is a common practice in JPEG2000. In this context, 2SDQ is

applied in codeblocks with Mx ≥ 5 dismissing one bitplane



8

 20

 25

 30

 35

 40

 45

 50

 55

 0  0.5  1  1.5  2  2.5  3  3.5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

P
S

N
R

 (
in

 d
B

)

c
o
d
e
d
 p

a
s
s
e
s
 (

x
1
0

2
)

rate (in bps)

JPEG2000
practical GEQ [27]
2SDQ

(a)

 25

 30

 35

 40

 45

 50

 55

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

 0

 2

 4

 6

 8

 10

 12

 14

P
S

N
R

 (
in

 d
B

)

c
o
d
e
d
 p

a
s
s
e
s
 (

x
1
0

2
)

rate (in bps)

JPEG2000
practical GEQ [27]
2SDQ

(b)

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  1  2  3  4  5

 0

 10

 20

 30

 40

 50

 60

 70

P
S

N
R

 (
in

 d
B

)

c
o
d
e
d
 p

a
s
s
e
s
 (

x
1
0

2
)

rate (in bps)

JPEG2000
practical GEQ [27]
2SDQ

(c)

 42

 44

 46

 48

 50

 52

 54

 56

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

P
S

N
R

 (
in

 d
B

)

c
o
d
e
d
 p

a
s
s
e
s
 (

x
1
0

2
)

rate (in bps)

JPEG2000
practical GEQ [27]
2SDQ

(d)

Fig. 6: Evaluation of the coding performance and coding passes executed by JPEG2000, the practical GEQ, and 2SDQ. The

setting of 2SDQ is aimed to achieve optimal coding performance in this test. (a) “Portrait” (b) “Flowers” (c) “Barcelona” (d)

“Hip”.

(i.e., Rx = 1), except for the “Hip” image, in which 2SDQ is

applied in codeblocks with Mx ≥ 4 dismissing one bitplane

as well.1 This strategy is applied on all codeblocks of the

image except those within the lowest frequencies subband

(LL), since the pdf in LL is not Laplace-like. We recall that

LL corresponds to the smallest resolution level, containing

few coefficients. Fig. 6 depicts the results achieved. The

horizontal axis of these figures is the rate, reported in bits

per sample (bps), whereas the left vertical axis is the Peak

Signal to Noise Ratio (PSNR) and the right vertical axis is

the number of coding passes executed. For clarity, the right

axis is reversed (higher means fewer coding passes). For

comparison, these figures also report the performance achieved

by the practical GEQ [27]. The coding performance achieved

by the three approaches, namely, JPEG2000, the practical

GEQ, and 2SDQ is very similar for the four images evaluated.

JPEG2000 is the approach that executes more coding passes,

whereas the practical GEQ and 2SDQ achieve similar results.

In this context, results indicate that 2SDQ achieves same

coding performance as that of JPEG2000 while executing

significantly fewer coding passes. For the “Hip” image at 1

bps, for instance, 2SDQ codes 22% fewer coding passes than

1The “Hip” image has low contrast, which causes that most codeblocks
have lower Mxs than the codeblocks of the other images.

JPEG2000 while achieving same PSNR. Results also suggest

that 2SDQ achieves virtually same results as those of the

practical GEQ [27], indicating the (near-)optimality of the

proposed 2SDQ scheme.

Even though the previous tests indicate that 2SDQ decreases

the coding passes executed, it is of interest to evaluate the

number of symbols that the bitplane coding engine emits. In

general, emitted symbols are directly related to the compu-

tational time spent by the bitplane coding procedure. Coding

passes executed and symbols emitted are not directly related

since coding engines may use strategies to code more than

one coefficient per emitted symbol [3]. Fig. 7(a) reports the

results achieved for the “Portrait” image. For completeness,

the figure also reports coding performance, which corresponds

to that reported in Fig. 6(a). These results suggest that the

number of symbols emitted by the 2SDQ is lower than that

of JPEG2000, though the differences are not as significant as

those found when evaluating coding passes. This is caused due

to the run mode of JPEG2000. The run mode of JPEG2000

is a coefficient scanning mode that is activated under some

special circumstances that occur mostly at the most significant

bitplanes of the codeblock, in which most coefficients are not

significant [3]. When it is activated, the run mode codes the

significance state of four adjacent coefficients emitting a single

binary symbol. The 2SDQ embeds more information at the



9

 20

 25

 30

 35

 40

 45

 50

 55

 0  0.5  1  1.5  2  2.5  3  3.5

 0

 50

 100

 150

 200

 250

P
S

N
R

 (
in

 d
B

)

c
o

d
e

d
 s

y
m

b
o

ls
 (

x
1

0
4
)

rate (in bps)

JPEG2000
2SDQ

(a)

 20

 25

 30

 35

 40

 45

 50

 55

 0  0.5  1  1.5  2  2.5  3  3.5

 0

 50

 100

 150

 200

 250

 300

 350

P
S

N
R

 (
in

 d
B

)

c
o

d
e

d
 s

y
m

b
o

ls
 (

x
1

0
4
)

rate (in bps)

JPEG2000 (no runMode)
2SDQ (no runMode)

(b)

Fig. 7: Evaluation of the coding performance and symbols

emitted by JPEG2000 and 2SDQ, for the “Portrait” image

when using and not using the run mode of JPEG2000 in (a)

and (b), respectively.

most significant bitplanes of the codeblock, so the run mode

is not activated as often as when using USDQ. This is seen in

Fig. 7(b), which reports the same evaluation as that of Fig. 7(a)

but when the run mode of JPEG2000 is deactivated. In this

figure, the differences between JPEG2000 and 2SDQ are more

akin to those found in Fig. 6(a). Similar results hold for the

other images.

B. Limited bit-depth coding

Next, 2SDQ is employed in an application that limits the

number of magnitude bits available to code the coefficients.

Among others, this requirement may appear in devices with

memory constrained resources, when images with a very

high bit-depth have to be coded, or when the use of ROI-

specific techniques that enlarge the dynamic range of the

image [43] are in use. 2SDQ is applied in codeblocks that

have Mx > Mmax removing Rx = Mx −Mmax magnitude

bits, with Mmax denoting the maximum number of magnitude

bits allowed. Again, this is only applied on subbands other

than the LL. Fig. 8 reports the coding performance achieved

when 2SDQ is applied using Mmax = 8, 7, 6, 5, and 4.

For comparison, the performance achieved by a conventional

JPEG2000 implementation –without limits on the number

of magnitude bits used– is also reported in this figure. To

provide an idea on the number of bitplanes coded by this

conventional JPEG2000 implementation, the JPEG2000 plot

depicts the coding end of each bitplane with a dot and a

label indicating the bitplane number. Studies on rate-distortion

optimization [29], [37] show that the bitstream segments of all

codeblocks corresponding to one bitplane are included in the

final codestream before including segments of the immediately

lower bitplane. Therefore, the dots depicted in the JPEG2000

plot of Fig. 8 indicate the number of magnitude bits that

have been used by a conventional JPEG2000 implementation

until that rate. Note that by using 8 magnitude bits (i.e.,

Mmax = 8), 2SDQ achieves a coding performance similar to

that achieved with a conventional JPEG2000 implementation

using 13 bits, for all images reported. The coding performance

achieved by 2SDQ is penalized when Mmax is reduced,

mostly from medium to high rates. Even so, 2SDQ codes an

image with a very high quality using very few bitplanes. See,

for instance, that using only 4 magnitude bits 2SDQ codes

the “Portrait” image achieving a quality of 37 dB, whereas

JPEG2000 needs almost 10 bits to achieve a similar quality.

Although a conventional JPEG2000 implementation codes

the image as stated before, a smarter JPEG2000-compliant

strategy to code images using a limited dynamic range is

to code only the most significant Mmax bitplanes of each

codeblock. Fig. 9 reports the performance achieved by such

a strategy and 2SDQ. In this figure, the results achieved

by 2SDQ are the same as those reported in Fig. 8(a). For

each 2SDQ plot using a specific Mmax, the figure depicts

a JPEG2000 plot with the same point type that reports the

performance achieved by this JPEG2000-compliant strategy.

To avoid cluttering the figure, the key is simplified. The results

suggest that, in this context, 2SDQ also achieves better coding

performance than that of JPEG2000. The smaller the Mmax,

the larger the difference. At 2 bps, for instance, the difference

between 2SDQ and JPEG2000 when Mmax = 5 is almost 5
dB. Similar results hold for the other images.

V. CONCLUSIONS

Embedded quantization is a mechanism employed by most

modern image coding systems to generate a quality progressive

codestream. Commonly, embedded quantization is achieved

by means of a bitplane coding (BPC) strategy that codes

(wavelet) coefficients quantized through uniform scalar dead-

zone quantization (USDQ). Recent work has shown that the

use of general embedded quantization (GEQ) can achieve vir-

tually same coding performance as that of USDQ+BPC while

reducing the number of quantization stages of the scheme.

Unfortunately, the practical implementation of the GEQ in

current systems requires modifications in the bitplane coding

engine, which is the most sophisticated piece of the codec.

This work overcomes this drawback through 2-step scalar

deadzone quantization (2SDQ). The structure of the proposed

2SDQ scheme allows the use of an unmodified bitplane coding

engine. This is achieved through a quantizer that applies

two different step sizes depending on the magnitude of the



10

 25

 30

 35

 40

 45

 50

 55

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
S

N
R

 (
in

 d
B

)

rate (in bps)

13

12

11

10

9

8

7

2SDQ (M
max

 = 4)
2SDQ (M

max
 = 5)

2SDQ (M
max

 = 6)
2SDQ (M

max
 = 7)

2SDQ (M
max

 = 8)
JPEG2000

(a)

 30

 35

 40

 45

 50

 55

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

P
S

N
R

 (
in

 d
B

)

rate (in bps)

13

12

11

10

9

8

2SDQ (M
max

 = 4)
2SDQ (M

max
 = 5)

2SDQ (M
max

 = 6)
2SDQ (M

max
 = 7)

2SDQ (M
max

 = 8)
JPEG2000

(b)

 20

 25

 30

 35

 40

 45

 50

 55

 0  1  2  3  4  5

P
S

N
R

 (
in

 d
B

)

rate (in bps)

13

12

11

10

9

8

7

2SDQ (M
max

 = 4)
2SDQ (M

max
 = 5)

2SDQ (M
max

 = 6)
2SDQ (M

max
 = 7)

2SDQ (M
max

 = 8)
JPEG2000

(c)

 42

 44

 46

 48

 50

 52

 54

 56

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

P
S

N
R

 (
in

 d
B

)

rate (in bps)

13

12

11

10

2SDQ (M
max

 = 4)
2SDQ (M

max
 = 5)

2SDQ (M
max

 = 6)
2SDQ (M

max
 = 7)

2SDQ (M
max

 = 8)
JPEG2000

(d)

Fig. 8: Evaluation of the coding performance achieved by JPEG2000 and 2SDQ. 2SDQ is employed to decrease the number

of magnitude bits required by the coding engine. (a) “Portrait” (b) “Flowers” (c) “Barcelona” (d) “Hip”.

 25

 30

 35

 40

 45

 50

 55

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
S

N
R

 (
in

 d
B

)

rate (in bps)

JPEG2000 (constrained to M
max

 bits)
2SDQ (M

max
 = 4)

2SDQ (M
max

 = 5)
2SDQ (M

max
 = 6)

2SDQ (M
max

 = 7)
2SDQ (M

max
 = 8)

Fig. 9: Evaluation of the coding performance achieved by

2SDQ and a JPEG2000 implementation with the number of

magnitude bits constrained to Mmax, for the “Portrait” image.

coefficients, and a rate-distortion optimization analysis that

establishes the deviations on the distortion produced when

coding 2SDQ indices. The implementation of the 2SDQ in

current codecs requires simple modifications that neither affect

the codec’s architecture nor its throughput. In this work, this is

demonstrated integrating the 2SDQ in the core coding system

of JPEG2000.

The main insight behind 2SDQ is to exploit the low den-

sity of coefficients with large magnitudes found in wavelet

subbands, which are quantized rougher than the remaining

coefficients. Conceptually, this can be seen as the introduction

of more information at the most significant bitplanes of the

quantized image, which in general contain mostly zeroes.

The main advantage of 2SDQ is that decreases the number

of magnitude bits (or bitplanes) coded without penalizing

coding performance. This may be of utility to reduce the

computational load of the codec, to simplify the scanning

order of the bitplane coding engine, to transmit high quality

images using few bitplanes, to code high bit-depth images, or

to enhance the coding capabilities of devices with constrained

resources.

ACKNOWLEDGMENT

The author thanks the associate editor and the anonymous

reviewers for their comments, which helped to improve the

quality of this manuscript.

APPENDIX A

A compander is a signal processing technique that defines a

function through which an input signal is compressed before

quantization and transmission, and then expanded again after



11

0

∆2
M’ - 1

∆2
M’

0 α∆2
M

∆2
M

υ
’’

|ω|

2SDQ - Eq. (8)
Eq. (17)

Fig. 10: Illustration of two companders. The horizontal axis

is the input signal, whereas the vertical axis is the signal after

companding.

dequantization. The 2SDQ scheme defined in this work can

also be seen as a compander that employs the piecewise linear

functions expressed in (8) and (9) to respectively compress and

expand the signal. Fig. 10 illustrates the companding function

embodied by the 2SDQ scheme.

In general, companders employ logarithmic or exponential

functions to transform the signal. An alternative to (8), (9)

might be the logarithmic function

υ′′ = ∆2M
′

x

(

1−
φ1−|ω|/∆2Mx

− 1

φ− 1

)

, (17)

where φ represents its shape. Fig. 10 illustrates this function

with φ = 6.25. Logarithmic functions are not employed in

this work because their are more computationally complex

than the operations required in (8) and (9), and because our

experience indicates that the use of such functions does not

improve performance significantly.

REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Image Process., vol. 41, no. 12, pp. 3445–
3462, Dec. 1993.

[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits

Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[3] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression

fundamentals, standards and practice. Norwell, Massachusetts 02061
USA: Kluwer Academic Publishers, 2002.

[4] W.-Y. Chan, S. Gupta, and A. Gersho, “Enhanced multistage vector
quantization by joint codebook design,” IEEE Trans. Commun., vol. 40,
no. 11, pp. 1693–1697, Nov. 1992.

[5] H. Jafarkhani and N. Farvardin, “A scalable wavelet image coding
scheme using multi-stage pruned tree-structured vector quantization,”
in Proc. IEEE International Conference on Image Processing, vol. 3,
Oct. 1995, pp. 81–84.

[6] C. F. Barnes, S. A. Rizvi, and N. M. Nasrabadi, “Advances in residual
vector quantization: A review,” IEEE Trans. Image Process., vol. 5,
no. 2, pp. 226–262, Feb. 1996.

[7] E. A. B. da Silva, D. G. Sampson, and M. Ghanbari, “A successive
approximation vector quantizer for wavelet transform image coding,”
IEEE Trans. Image Process., vol. 5, no. 2, pp. 299–310, Feb. 1996.

[8] K. Bao and X.-G. Xia, “Image compression using a new discrete
multiwavelet transform and a new embedded vector quantization,” IEEE

Trans. Circuits Syst. Video Technol., vol. 10, no. 6, pp. 833–842, Sep.
2000.

[9] D. Mukherjee and S. K. Mitra, “Successive refinement lattice vector
quantization,” IEEE Trans. Image Process., vol. 11, no. 12, pp. 1337–
1348, Dec. 2002.

[10] ——, “Vector SPIHT for embedded wavelet video and image coding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 231–246,
Mar. 2003.

[11] P. W. Wong, “Progressively adaptive scalar quantization,” in Proc. IEEE

International Conference on Image Processing, vol. 1, Oct. 1996, pp.
357–360.

[12] Z. Xiong, K. Ramchandran, and M. T. Orchard, “Space-frequency
quantization for wavelet image coding,” IEEE Trans. Image Process.,
vol. 6, no. 5, pp. 677–693, May 1997.

[13] A. Ortega and M. Vetterli, “Adaptive scalar quantization without side
information,” IEEE Trans. Image Process., vol. 6, no. 5, pp. 665–676,
May 1997.

[14] G. J. Sullivan, “On embedded scalar quantization,” in Proc. IEEE

International Conference on Acoustics, Speech, and Signal Processing,
vol. 4, May 2004, pp. 605–608.

[15] M. W. Marcellin and T. R. Fischer, “Trellis coded quantization of
memoryless and Gauss-Markov sources,” IEEE Trans. Commun., vol. 38,
no. 1, pp. 82–93, Jan. 1990.

[16] A. Aksu and M.Salehi, “Multistage trellis coded quantisation (MS-TCQ)
design and performance,” IEE Proceedings- Communications, vol. 144,
no. 2, pp. 61–64, Apr. 1997.

[17] H. Brunk and N. Farvardin, “Embedded trellis coded quantization,” in
Proc. IEEE Data Compression Conference, Apr. 1998, pp. 93–102.

[18] H. Jafarkhani and V. Tarokh, “Successively refinable trellis coded
quantization,” in Proc. IEEE Data Compression Conference, Apr. 1998,
pp. 83–92.

[19] A. Bilgin, P. J. Sementilli, and M. W. Marcellin, “Progressive image
coding using trellis coded quantization,” IEEE Trans. Image Process.,
vol. 8, no. 11, pp. 1638–1643, Nov. 1999.

[20] P. Seigneurbieux and Z. Xiong, “Progressive trellis-coded space-
frequency quantization for wavelet image coding,” IEEE Trans. Circuits

Syst. Video Technol., vol. 12, no. 7, pp. 587–591, Jul. 2002.

[21] S. Steger and T. Richter, “Universal refinable trellis coded quantization,”
in Proc. IEEE Data Compression Conference, Mar. 2009, pp. 312–321.

[22] M. D. Gaubatz and S. S. Hemami, “Ordering for embedded coding
of wavelet image data based on arbitrary scalar quantization schemes,”
IEEE Trans. Image Process., vol. 16, no. 4, pp. 982–996, Apr. 2007.

[23] H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,” IEEE

Trans. Inf. Theory, vol. 14, no. 5, pp. 676–683, 1968.

[24] N. Farvardin and J. W. Modestino, “Optimum quantizer performance for
a class of non-gaussian memoryless sources,” IEEE Trans. Inf. Theory,
vol. 30, no. 3, pp. 485–497, May 1984.

[25] G. J. Sullivan, “Efficient scalar quantization of Exponential and Lapla-
cian random variables,” IEEE Trans. Inf. Theory, vol. 42, no. 5, pp.
1365–1374, Sep. 1996.

[26] M. W. Marcellin, M. A. Lepley, A. Bilgin, T. J. Flohr, T. T. Chinen, and
J. H. Kasner, “An overview of quantization in JPEG 2000,” ELSEVIER

Signal Processing: Image Communication, vol. 17, no. 1, pp. 73–84,
Jan. 2002.

[27] F. Auli-Llinas, “General embedded quantization for wavelet-based lossy
image coding,” IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1561–
1574, Mar. 2013.

[28] ——, “Low complexity embedded quantization scheme compatible with
bitplane image coding,” in Proc. IEEE Data Compression Conference,
Mar. 2013, pp. 271–280.

[29] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for
bitplane image coding,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1920–1933, Apr. 2012.

[30] Y.-Z. Zhang, C. Xu, W.-T. Wang, and L.-B. Chen, “Performance analysis
and architecture design for parallel EBCOT encoder of JPEG2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 10, pp. 1336–
1347, Oct. 2007.

[31] K. Sarawadekar and S. Banerjee, “An efficient pass-parallel architecture
for embedded block coder in JPEG 2000,” IEEE Trans. Circuits Syst.

Video Technol., vol. 21, no. 6, pp. 825–836, Jun. 2011.

[32] F. Auli-Llinas, “Stationary probability model for bitplane image coding
through local average of wavelet coefficients,” IEEE Trans. Image

Process., vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[33] W. R. Bennett, “Spectra of quantized signals,” Bell System Technical

Journal, vol. 27, no. 3, pp. 446–472, Jul. 1948.

[34] J. Z. Sun and V. K. Goyal, “Scalar quantization for relative error,” in
Proc. IEEE Data Compression Conference, Mar. 2011, pp. 293–302.

[35] M. Petkovic, Z. Peric, and A. Mosic, “Optimisation of variable-length
code for data compression of memoryless Laplacian source,” IET

Communications, vol. 5, no. 7, pp. 906–913, Apr. 2011.



12

[36] F. Auli-Llinas, “Model-based JPEG2000 rate control methods,” Ph.D.
dissertation, Universitat Autònoma de Barcelona, Barcelona, Spain,
Dec. 2006. [Online]. Available: http://www.deic.uab.cat/∼francesc

[37] F. Auli-Llinas and J. Serra-Sagrista, “JPEG2000 quality scalability
without quality layers,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 7, pp. 923–936, Jul. 2008.

[38] H. Everett, “Generalized Lagrange multiplier method for solving prob-
lems of optimum allocation of resources,” Oper. Res., vol. 11, pp. 399–
417, 1963.

[39] F. Auli-Llinas and M. W. Marcellin, “Distortion estimators for bitplane
image coding,” IEEE Trans. Image Process., vol. 18, no. 8, pp. 1772–
1781, Aug. 2009.

[40] Institut Cartografic de Catalunya. (2013, May) ICC. Barcelona 08038
(Spain). [Online]. Available: http://www.icc.cat

[41] Corporacio Parc Tauli. (2013, May) UDIAT centre diagnostic. Sabadell
08208 (Spain). [Online]. Available: http://www.parctauli.es/webcspt/
udiat

[42] F. Auli-Llinas. (2013) BOI codec. [Online]. Available: http://www.deic.
uab.cat/∼francesc/software/boi

[43] J. Bartrina-Rapesta, J. Serra-Sagrista, and F. Auli-Llinas, “JPEG2000
ROI coding through component priority for digital mammography,”
ELSEVIER Computer Vision and Image Understanding, vol. 115, no. 1,
pp. 59–68, Jan. 2011.

Francesc Aulı́-Llinàs (S’2006-M’2008) is a Ramón
y Cajal fellow in the Department of Informa-
tion and Communications Engineering, Universitat
Autònoma de Barcelona (Spain). He received the
B.Sc., B.E., M.Sc., and Ph.D. degrees in Com-
puter Science from the Universitat Autònoma de
Barcelona in 2000, 2002, 2004, and 2006, respec-
tively. Since 2002 he has been consecutively funded
with doctoral and postdoctoral fellowships in com-
petitive calls. From 2007 to 2009 he carried out two
research stages of one year each with the group of

David Taubman, at the University of New South Wales (Australia), and with
the group of Michael Marcellin, at the University of Arizona (USA). He
develops and maintains BOI, a free-source JPEG2000 implementation. In 2000
and 2002 he received two awards of Bachelor given to the first students of the
promotion. In 2006 he was awarded with a free software mention from the
Catalan Government for the development of BOI. In 2013, he was awarded
with a distinguished R-Letter given by the IEEE Communications Society
for a paper co-authored with Michael Marcellin. He is reviewer for various
magazines and symposiums and has authored numerous papers in the top
journals and conferences of his field. His research interests include a wide
range of image coding topics, including highly scalable image and video
coding systems, rate-distortion optimization techniques, parallel architectures
for image and video coding, distortion estimation, embedded quantization,
and interactive image and video transmission, among others.


