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General Embedded Quantization for

Wavelet-Based Lossy Image Coding
Francesc Aulı́-Llinàs, Member, IEEE

Abstract—Embedded quantization is a mechanism employed
by many lossy image codecs to progressively refine the distortion
of a (transformed) image. Currently, the most common approach
to do so in the context of wavelet-based image coding is to couple
uniform scalar deadzone quantization (USDQ) with bitplane
coding (BPC). USDQ+BPC is convenient for its practicality
and has proved to achieve competitive coding performance.
But the quantizer established by this scheme does not allow
major variations. This paper introduces a multistage quanti-
zation scheme named general embedded quantization (GEQ)
that provides more flexibility to the quantizer. GEQ schemes
can be devised for specific decoding rates achieving optimal
coding performance. Practical approaches of GEQ schemes
achieve coding performance similar to that of USDQ+BPC while
requiring fewer quantization stages. The performance achieved
by GEQ is evaluated in this paper through experimental results
carried out in the framework of modern image coding systems.

Index Terms—General embedded quantization, lossy image
coding, JPEG 2000.

I. INTRODUCTION

QUANTIZATION [1] is a signal processing technique

that maps a large set of input values to a smaller

set of output values called quantization indices. A quantizer

is an algorithmic procedure, or a device, that converts the

input values to the output indices. The dequantizer reverses

this operation by reconstructing the original values using the

quantization indices, which commonly implies a loss on the

signal fidelity called quantization error [2].

Scalar and vector quantization are two classic techniques

that have been widely employed in the field of lossy image

coding. Scalar quantization maps one input sample to one

quantization index, whereas vector quantization maps a set

of image samples, called vector, to an index. Commonly,

quantization is applied on the coefficients of an image that has

undergone transformation –rather than on the original image

samples– to gain coding efficiency. When the quantizer assigns

a fixed rate for all indices, compression is achieved at the

expense of larger quantization error by means of reducing

the indices’ rate. Compression can also be achieved by using

indices of variable rate, though variable rate quantization

commonly requires more elaborated methods of rate-distortion

optimization.
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Besides brute compression efficiency, most modern lossy

image codecs provide an interesting feature called quality

progressivity. Quality progressivity refers to the ability of the

coding system to code an image from a coarse to a fine

quality level in successive stages. From the point of view

of quantization, quality progressivity is generally achieved by

means of a quantizer that produces indices that can be split in

short words. Each word is a suffix of the previous ones (if any),

so that they can be transmitted separately and combined by the

dequantizer to reconstruct the original value with more or less

precision depending on the transmitted words. This technique

is called embedded quantization, progressive quantization, or

successive approximation quantization [3].

Embedded quantization enables the generation of a code-

stream that can be truncated at different rates with neither

penalizing coding performance nor requiring re-compression.

This is of utility for image transmission, progressive decoding,

or transcoding, for example, so embedded quantization has

been studied thoroughly and has been adopted by many coding

systems. Without aiming to be exhaustive, scalar quantization

schemes that are adaptively adjusted as more data are transmit-

ted are investigated in [4]–[6], the best size for the deadzone

of uniform scalar quantizers is determined in [7], progressively

refinable vector quantization schemes are studied in [8]–

[12] and the popular SPIHT [13] algorithm is adapted to a

multistage vector quantization scheme in [14], [15]. Embedded

and multistage trellis coded quantization schemes [16] are

explored in [17]–[22] and ordering strategies for wavelet data

are examined in [23].

Currently, most wavelet-based image codecs carry out em-

bedded quantization using uniform scalar deadzone quantiza-

tion (USDQ) [24] together with bitplane coding (BPC) [25].

USDQ is a quantization scheme that partitions the range of

input values into uniform intervals of the same width ∆. ∆
is referred to as the quantization step size. The deadzone is

the interval that contains zero (i.e., (−∆, 0] ∪ [0,∆)), and is

the only interval of width 2∆ because all coefficients in this

interval are mapped to zero. Contrarily to coefficients in other

intervals, no sign is transmitted for the coefficients in the

deadzone. The BPC strategy splits the binary representation

of the quantization indices into words of one bit. The same

words or, otherwise stated, the bits at the same binary position,

from all quantized coefficients form the so-called bitplane.

The bits from all quantization indices are transmitted from

bitplane M − 1 to bitplane 0, M denoting a sufficient number

of bits to represent all coefficients. The dequantizer interprets

this procedure as a multistage quantization scheme that starts

with a step size of ∆2M−1 that is then reduced in each stage

by a power of two until lessened to ∆20 = ∆. The sign of
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the coefficient is transmitted just after the bit indicating that

the coefficient is to be reconstructed outside the deadzone.

Fig. 1(a) illustrates this scheme.

Embedded quantization emerges naturally in the scheme

of USDQ+BPC. Its competitive coding performance and the

convenient use of the binary representation for hardware ar-

chitectures have made this scheme very popular. Nonetheless,

the quantizer established by USDQ+BPC does not allow major

variations. Work on quantization has shown that USDQ might

be an appropriate quantizer for a variety of sources [26]–

[28] but, to the best of our knowledge there is no study

seeking embedded quantizers specifically designed to achieve

optimal coding performance when they are introduced into

modern coding engines based on the wavelet transform. The

embedded quantizer is a key-piece of lossy image codecs, so

the goal of this work is to devise a quantizer that minimizes

quantization error at a range of selected decoding rates. To

achieve this purpose, we investigate embedded quantizers that

are not restricted to the scheme imposed by USDQ+BPC.

The quantizer that arises from our analysis is then introduced

in the core coding system of JPEG 2000 [29]. Experiments

validate our observations during quantizer design: the scheme

of USDQ+BPC is near-optimal from the point of view of

compression efficiency, though sub-optimal from the point of

view of number of quantization stages. This paper extends

our previous works [30], [31] with detailed descriptions and

comparisons of the quantization schemes proposed, compre-

hensive evaluations of the theory and practice behind them,

and an extended set of experimental results.

The paper is structured as follows. Section II introduces

a flexible scheme for embedded quantization and poses the

optimization problem to achieve quantizers with optimal per-

formance for a range of decoding rates. Section III describes

a methodology to exhaustively explore the quantizers’ effi-

ciency and provides a low complexity algorithm to design

quantizers that achieve near-optimal performance. The insights

provided by this analysis are employed in Section IV to

devise a practical quantizer that can be employed in modern

coding systems based on the wavelet transform. Section V

provides experimental results for different types of images

when the proposed quantizer is utilized within the framework

of JPEG 2000. The last section summarizes this work and

provides concluding remarks.

II. QUANTIZER DESIGN

A. General embedded quantization

General embedded quantization (GEQ) is defined as a

coding procedure that transmits the coefficients’ magnitude

of a transformed image through a multistage quantization

scheme that uses arbitrary quantization intervals. To this end,

let Tk denote the quantization threshold employed in stage

k, with Tk ∈ (0,W), W being the largest magnitude of all

coefficients. Fig. 1(b) depicts the procedure carried out by

the GEQ. The first quantization stage indicates whether the

magnitude of each coefficient lies above or below T1. In other

words, it defines quantization intervals [0, T1) and [T1,W].
The second quantization stage partitions one of these intervals
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Fig. 1: Illustration of the quantization intervals produced by

two multistage quantization schemes. The straight line on the

top of each figure represents the range of the input values. Only

the magnitude is depicted (omitting the sign) in all figures

since symmetry about zero is assumed. The intervals produced

in each quantization stage are depicted with a new line from

the top to the bottom in each figure. (a) and (b) illustrate the

USDQ+BPC and the GEQ scheme, respectively.

into two intervals. In the example of Fig. 1(b), the second stage

operates only on coefficients whose magnitudes lie within

the quantization interval [T1,W]. For this case, T2 is used

to indicate whether the relevant coefficient magnitudes lie in

[T1, T2) or in [T2,W]. Nothing is emitted for coefficients with

magnitudes outside [T1,W] during the second quantization

stage of this example. The third stage partitions one of the

three intervals previously defined. In the example of Fig. 1(b),

the third stage operates on coefficients within the deadzone,

indicating whether coefficient magnitudes in [0, T1) lie in

[0, T3) or [T3, T1). The procedure continues in this fashion

resulting in k + 1 intervals at the end of the quantization

stages. The coding of a stage that partitions the deadzone (first

and third stages in the example of Fig. 1(b)) is referred to

as significance coding, whereas the coding of other stages is

referred to as refinement coding. The GEQ does not impose

any restriction on the quantization thresholds employed in

each stage, thus the order in which quantization intervals

are partitioned is not fixed a priori. The possibilities for the

quantizer design are hence immense.

Coefficients inside the deadzone are reconstructed by the

dequantizer as zero. The sign of coefficients outside the

deadzone is transmitted just after the symbol indicating that

the coefficient is to be reconstructed as nonzero. The dequan-

tization operation for such a coefficient, say ω, consists of

assigning a reconstruction value ω̂ that lies somewhere in the

indexed quantization interval. The dequantization operation is

expressed as ω̂ = sign(ω) (Tl + δ(Th − Tl)), with [Tl, Th)
denoting the quantization interval of the reconstructed coeffi-

cient. δ ∈ [0, 1) adjusts the reconstruction value in the interval.
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The procedure carried out to select δ in each interval is similar

to that described in [32]. It is employed herein rather than

the classic mid-point reconstruction (i.e., selecting δ = 0.5
for all intervals) to maximize distortion decreases in each

quantization interval, which provides a robust framework to

evaluate embedded quantizers [7]. As common, the distortion

metric employed to evaluate the quantization error is mean

squared error (MSE).

GEQ distinguishes from USDQ+BPC in that each quan-

tization stage operates only on selected coefficients –rather

than on all of them–, and in that the quantization thresholds

are selected without any restriction. One quantization stage of

GEQ is not equivalent to the coding of one bitplane as defined

in USDQ+BPC. We note that, except for the first stage of the

quantizer, the GEQ scheme requires the application of multiple

stages to refine the magnitude of all coefficients.

GEQ requires that quantization thresholds {Tk} are known

by coder and decoder to reproduce the same procedure. This

section and the following one are aimed to explore designs for

optimal quantizers, assuming that {Tk} are known. This aspect

is approached in Section IV through a practical mechanism.

B. Optimization problem

Our analysis adopts a coding engine that uses GEQ to apply

successive stages of quantization until a pre-defined target rate,

denoted as R, is attained. The rate and the distortion achieved

at the end of quantization stage k are denoted as rk and

dk, respectively. The goal of the coding engine is to produce

a quality progressive codestream that, when decoded at any

rate r ∈ (0, R], results in the smallest possible distortion. To

this end, let fR(r) be the probability density function (pdf)

indicating the probability of decoding the codestream at a

specified rate r in the range (0, R]. As stated in [33], fR(r) can

be used to model a variable-rate channel, or to assign different

weights to different decoding rates. For simplicity, this density

is assumed to be uniform herein (i.e., fR(r) = 1/R), though

other distributions such as the exponential or the Laplacian

might also be employed. The objective is then to find quan-

tization thresholds t = {T1, T2, ..., TK} that produce a set of

rate/distortion points {rk, dk}, 1 ≤ k ≤ K, that minimize the

expected multirate distortion in the rate range, i.e.,

min
t

∫ R

0

fR(r) · d(r) dr (1)

with

Tk ∈ (0,W) ∀ 1 ≤ k ≤ K. (2)

The distortion achieved at rates between the end of quantiza-

tion stages is assumed to decrease linearly with rate. That is,

d(r) in (1) is determined according to

d(r) = dk − (dk − dk+1) ·
r − rk

rk+1 − rk
, rk < r < rk+1, (3)

which corresponds to well-known models that use MSE as the

distortion metric [29, Ch. 5.4], [34].

The wavelet transform [35], [36] is employed by many

image coding systems [13], [25], [37] and standards [38],

[39] to decorrelate image data. The following analysis and the

subsequent practical approach investigate GEQ schemes for

the coding of coefficients produced by a wavelet transform.

Two approaches are employed in this and following sections

to appraise the performance of each quantizer tested. The first

approach utilizes the tier-1 coding procedure of the JPEG 2000

standard [29], [38]. JPEG 2000 is chosen due to its widespread

use, excellent coding performance and context-based adaptive

mechanisms, which are sound for many types of data and cod-

ing parameters. As originally formulated, tier-1 codes wavelet

coefficients quantized by USDQ performing multiple coding

passes per bitplane, which is a common practice of BPC

strategies [37]. Herein, tier-1 is modified to allow the coding

through the GEQ. To do so, one coding pass is employed at

each stage of the GEQ scheme that operates on the relevant

coefficients for that stage. The context-based probability model

for the symbols emitted, as well as the arithmetic coder MQ,

defined by JPEG 2000 are left unmodified in this approach.

The second approach employed by our analysis estimates

the rate and the distortion achieved by the GEQ scheme using

an i.i.d. generalized Gaussian distribution (GGD) that models

wavelet data [40]–[42]. The magnitude of a wavelet coefficient

is denoted as ν, and its pdf is determined through a GGD

denoted as fV (ν). When the interval being partitioned in

quantization stage k is the deadzone, the rate and the distortion

achieved just after coding stage k are estimated according to

r̂k = r̂k−1 +

∫ TH

0

fV (ν) dν ·

[

H
(

P (Tk ≤ ν < TH | ν < TH)
)

+

P (Tk ≤ ν < TH | ν < TH)
]

(4)

and

d̂k = d̂k−1 −

∫ TH

Tk

fV (ν) · (ν
2 − (ν − ν̂)2) dν , (5)

with TH denoting the upper limit of the quantization interval

(i.e., [0, TH) is the deadzone before quantizing stage k),

and H(·) denoting the binary entropy function.1 The second

term of Equation (4) represents the rate increase due to

the quantization stage. The integral
∫ TH

0
fV (ν) dν represents

the fraction of coefficients coded in the stage, whereas the

parenthetical portion of this term (i.e., second and third lines

of (4)) corresponds to the rate increase per coefficient coded in

1The maximum probability of the entropy function in Equation (4) is set
to 0.9999 by means of replacing H(P (Tk ≤ ν < TH | ν < TH))
by H(min(P (Tk ≤ ν < TH | ν < TH), 0.9999)). This approximately
approaches the performance limit of real implementations of arithmetic
coding.
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the stage. P (Tk ≤ ν < TH | ν < TH) refers to the probability

of coefficients becoming significant, more precisely,

P (Tk ≤ ν < TH | ν < TH) =

∫ TH

Tk

fV (ν) dν

∫ TH

0

fV (ν) dν

. (6)

The quantity H
(

P (Tk ≤ ν < TH | ν < TH)
)

accounts

for coding the coefficient magnitudes, whereas P (Tk ≤ ν <
TH | ν < TH) accounts for coding the signs. The cost

of coding the sign is assumed to be 1 bit in this approach

since fV (ν) is symmetric about 0. Equation (5) determines

the distortion achieved just after coding stage k as the square

error before coding that stage (i.e., d̂k−1) minus the squared

error decrease produced in that stage. Such a decrease is

determined as the squared error before coding coefficient ν
(i.e., ν2) minus the squared error after coding coefficient ν
(i.e., (ν− ν̂)2). The derivation of r̂k and d̂k for intervals other

than the deadzone is determined similarly as in Equations (4)

and (5). An extended description of rate and distortion models

similar to those employed in this work can be found in [32],

[37], [42].

The use of a codec like JPEG 2000 in the first approach

provides actual coding performance. The rate and the distor-

tion achieved after coding each quantization stage corresponds

exactly with those achieved when using the sophisticated

mechanisms [29], [43], [44] employed by modern engines

such as context adaptive coding of coefficient magnitudes and

signs, scanning order strategies aimed to reduce the number

of emitted symbols, etc. Contrarily, the rate determined by the

second approach via Equation (4) is an estimate that uses zero-

order entropy, without taking into account the aforementioned

mechanisms. Even so, the second approach is employed be-

cause the deployment of a real codec like JPEG 2000 in the

exhaustive search below can be computationally expensive.

Estimates of rate and distortion allow the extension of our

analysis to quantizers containing a number of stages that would

otherwise be too computationally complex to evaluate.

Each quantizer tested produces a codestream with a par-

ticular set of rate/distortion points {rk, dk}. These points

are calculated from the compressed codestream in the first

approach, and using Equations (4) and (5) in the second

approach. The first approach employs the high vertical- low

horizontal-frequency subband of the first decomposition level

produced by the irreversible 9/7 wavelet transform applied on

the “Portrait” image.2 To simplify the performance analysis

of the next section, all coefficients in the subband are coded

together –rather than using small sets of coefficients as defined

by JPEG 2000. Wavelet data in this subband have W = 199.

This value is measured for this particular image and wavelet

subband. Reported results are similar for other subbands and

images. The GGD employed by the second approach is set

with mean, shape parameter, and standard deviation 0, 0.45

2The image belongs to the ISO 12640-1 corpus, and is 2560 × 2048, 8
bit, gray-scale.
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Fig. 2: Distortion and rate achieved by a GEQ scheme with

K = 1 and ∆ = 1.0. Results for the JPEG 2000- and

estimation-based approach are depicted by the continuous and

the dotted lines, respectively.

and 18.68, respectively. These parameters approximate the

data of the wavelet subband used in the first approach.

Quantizers are designed by means of selecting a set of

distinct quantization thresholds. We discretize the problem

of threshold selection by assuming that all thresholds are a

multiple of a given step size ∆. Under this assumption, there

are Γ = ⌊W/∆⌋ possible thresholds. Assuming all thresholds

are distinct, there are then Γ!/(Γ − K)! different quantizers

that satisfy (2), with K denoting the number of quantization

stages.

III. QUANTIZER EVALUATION

A. Preliminary evaluation

First, the rate and the distortion achieved by a GEQ scheme

with K = 1 and thresholds resulting from ∆ = 1.0 are

examined to illustrate the differences achieved by the use

of different quantization thresholds. Fig. 2 depicts the results

achieved by the both approaches described before. The hor-

izontal axis of the figure is the threshold T1, whereas the

vertical axes are the distortion (left axis) and rate (right axis)

achieved after coding the first quantization stage using T1.

Rate is reported in bits per sample (bps). Results indicate

that little rate is required when T1 is high. This is because

most coefficients are inside the deadzone, which decreases

the entropy and does not require the transmission of signs.

When T1 decreases, more coefficients are dequantized outside

the deadzone, which requires more rate due to higher entropy

and transmission of more signs. The distortion has a different

behavior. The higher the T1, the larger the distortion because

most coefficients are reconstructed as 0. Distortion decreases

as lower is T1, until T1 = 16 (this value is rounded off).

For these data and quantization stage, T1 = 16 achieves the

minimum quantization error, i.e.,
∫ T1

0
ν2dν +

∫W

T1

(ν − ν̂)2dν
is minimized when T1 = 16. Distortion escalates again for

T1 < 16.

Different data achieve slightly different results than those

depicted in Fig. 2, though rate and distortion behaves similarly

depending on the quantization threshold employed. This eval-

uation is aimed to remark the differences in distortion and rate



5

(a)

(b)

Fig. 3: Evaluation of the performance achieved with GEQ

when up to K quantization stages are coded. (a) First approach

(JPEG 2000-based) (b) Second approach (estimation-based).

produced by the use of different quantization thresholds. Dif-

ferences are also noteworthy for quantizers with K > 1 (not

illustrated in Fig. 2). The rate and the distortion achieved at

each quantization stage determine the quantizer’s performance

via (1) and (3), hence, quantizers with distinct thresholds may

achieve considerably different performance.

B. Exhaustive search

The preliminary test reported in Fig. 2 evaluates a GEQ

scheme with a single stage. Next, quantizers with K ≥ 1 are

assessed. To appraise their performance according to (1), in

what follows the expected multirate distortion is referred to as

Θ =

∫ R

0

fR(r) · d(r) dr , (7)

and serves as the performance metric to evaluate all GEQ

schemes tested. d(r) in (7) is computed via (3) using the

rate/distortion points achieved by the quantizer at each quan-

tization stage.

Our analysis makes no assumptions in advance, so an

exhaustive search is performed over all possible quantizers

in order to disclose those with best performance. We recall

that the exhaustive search evaluates Γ!/(Γ − K)! quantizers

for a scheme having K stages. Results achieved for the

first approach with quantizers using 1, 2, 3, and 4 stages are

depicted in Fig. 3(a). For K = 1 and 2, ∆ = 1.0. To

alleviate the computational load when K = 3 and 4, ∆ is

chosen as 3.0 and 8.0, respectively. The horizontal axis of

the figure is the rate achieved for a given quantizer after the

last quantization stage is coded (i.e., R = rK). The vertical

axis is the performance, expressed as Θ. The performance of

every quantizer tested is shown in this figure; not just the

ones with best performance. As expected, there are multiple

quantizers that yield the same rate, but different values of the

performance metric Θ (lower is better). Results suggest that at

very low rates, approximately until 0.05 bps, the differences

in performance among the different quantizers are very small.

At higher rates, quantizers coding one stage (i.e., with K = 1)

achieve inferior performance to quantizers coding more stages.

Careful examination of Fig. 3(a) reveals some interesting

patterns. Consider first a quantizer having one stage. Selection

of the single threshold T1 then uniquely determines the rate

and distortion achieved (at the end of the single stage). The

results obtained are illustrated by the darkest points along

the top of the shaded area in the figure. Each such point

corresponds to a different value of T1. For a given T1, say

T1 = T , consider now all quantizers having 2 stages, with

thresholds T1 = T and T2 = T ′, T ′ ∈ (0,W). With respect to

the single stage quantizer with threshold T , the addition of a

second stage can only increase R. Consider now thresholds

T ′ > T . When T ′ is close to the opposite end of its

quantization interval [T,W) or, in other words, when T ′ is

close to W , the increase in R is negligible. This is because

the density of coefficients between T ′ and W is negligible,

resulting in negligible entropy in the second stage. As T ′

moves away from W , the increase in R will grow. When T ′

approaches T the entropy of the second quantization stage

decreases, and the associated increase in R grows smaller.

This can be seen in Fig. 3(a) as a “trace” leaving each darkest

point (single stage quantizer) that then reverses its direction.

Contrarily, for thresholds T ′ < T the rate always grows

as T ′ moves away from T because the second quantization

stage codes coefficients inside the deadzone, requiring the

transmission of the sign for all significant coefficients. This is

observed in Fig. 3(a) as a “trace” that leaves each darkest point,

though this “trace” is more difficult to identify in the figure

due to the high density of points. A similar behavior occurs for

quantizers having 2 stages with T1 = T ′′, T ′′ ∈ (0,W) and

T2 = T . This produces four “traces” that leave each darkest

point in Fig, 3(a).

Fig. 3(b) reports the results achieved by the second ap-

proach. The GGD support in this experiment is cut-off at

W = 199. Coefficient densities for ν > 199 are negligible

for the selected parameters of the GGD. Quantizers with up

to 6 stages are analyzed. ∆ is selected as 5.0, 8.0 and 14.0,

respectively for K = 4, 5, and 6, and as ∆ = 1.0 otherwise.

The similarity between Figs. 3(a) and 3(b) seems to indicate

that the two approaches are consistent to appraise quantizers.

Similar patterns as those found in Fig. 3(a) are also observed
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in this figure. These patterns can be more clearly observed in

the video sequence at [45], which extends Fig. 3(b) showing

the formation of selected quantizers in a sequential fashion.

The sequence begins with a quantizer having one stage. T1 is

selected as T1 = W − ∆ at the beginning of the sequence,

and is decreased by ∆ until T1 = ∆. The threshold of the last

quantizer tested is indicated with the label at the top-center

of the figure, whereas its performance is indicated with a red

cross. The performance of the previous quantizers tested are

indicated with green points. After depicting the performance of

the single stage quantizers, quantizers with K = 2 and either

T1 or T2 equal to 15 are showed. The patterns described in

the previous paragraph can be observed in the video sequence.

After depicting the performance of quantizers with two stages,

selected quantizers with K = 3 are showed. “Traces” with

similar patterns as those described before are discerned, and

similar observations also hold for quantizers with K > 3 (not

shown in the video). It also worth noting that the quantizers

that achieve the best performance are those that partition the

deadzone in all stages. This is also seen in the following test.

The performance and the overall design of many GEQ

schemes are studied in the test of Fig. 3. The aim of the

following test is to examine more in-depth the design of the

best GEQ schemes depicted in that figure. To this end, the

quantization thresholds of the best GEQ scheme achieved at a

pre-defined target rate are analyzed. We note that the target rate

R is now defined a priori instead of assuming that R coincides

with rK as in Fig. 3. For this purpose, all quantizers that

achieve rK ≥ R should be evaluated via (3) and (7) and that

with lowest Θ kept. Unfortunately, the use of large ∆s in the

previous test, which is required to contain computational costs,

does not produce sufficient finely rate-spaced GEQ schemes

to approximate the target rate with precision. Therefore, an

alternative procedure is devised whose goal is to approximate

quantizers that attain R with more precision. The estimated

performance of these quantizers may not be exact, but the

proposed technique is computationally simple and provides

the necessary insights to further the research.

The main idea is to linearly interpolate the distortion and

the threshold of GEQ schemes having the last quantization

thresholds that differ by ∆. Let us define two GEQ schemes

that each codes K stages, achieving rate/distortion points

{rk, dk} and {r′k, d
′

k}, respectively, with 1 ≤ k ≤ K.

The quantization thresholds respectively employed by these

quantizers are denoted by {Tk} and {T ′

k} with Tk = T ′

k ∀ 1 ≤
k < K and T ′

K = TK ± ∆. Of course, then rk = r′k and

dk = d′k ∀ 1 ≤ k < K as well. When the target rate R
lies between the final rate achieved by these two quantizers

(i.e., rK < R < r′K or rK > R > r′K ), a GEQ scheme

having the same thresholds and rate/distortion points –except

for the case of k = K– is fabricated. The final desired rate

of this quantizer, say r̃K , is R and linear interpolation is

employed to estimate both the required threshold T̃K and the

achieved distortion d̃K at the last quantization stage according

to T̃K = TK+α(T ′
K−TK) and d̃K = dK+α(d′K−dK), with

α = R−rK
r′
K
−rK

. This technique only modifies the last quantization

stage and it does not affect previous stages.
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Fig. 4: Quantization thresholds achieved at different rates cor-

responding to GEQ schemes of Fig. 3 with best performance.

(a) First approach (JPEG 2000-based) (b) Second approach

(estimation-based).

The technique described before results in quantizers with

a more regular structure than those achieved when the code-

stream produced by a quantizer with rK ≥ R is truncated at

R. The reason is that codestream truncation does not alter the

thresholds of the quantizer, which complicates the evaluation

of quantization thresholds when one quantizer is found optimal

at more than one target rate. This may happen often at high

rates, since the exhaustive search using large ∆ obtains few

near-optimal quantizers at these rates.

Fig. 4 reports the results obtained when the procedure

described before is carried out over a range of R, for both ap-

proaches. When two or more quantizers with different number

of quantization stages achieve same performance at the same

target rate, that with the lowest number of stages is selected.

The horizontal axis of the figure is the desired rate R, whereas

the vertical axis is the thresholds employed by the quantizer.

The results depicted in this figure are achieved under the same

conditions as those of Fig. 3. Our first observation is that

quantizers use more stages as the target rate increases, which

coincides with our previous analysis. Quantization thresholds

follow an exponentially decreasing pattern, approximately.

This is most clear for the last quantization threshold employed,

which has more variability due to the interpolation procedure

http://www.deic.uab.es/~francesc/research/embedded_quantization/performance.avi
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described before. Finally, we note again that all quantizers de-

picted in the figures carry out significance coding exclusively.

This can be seen by noting that

Tk+1 < Tk ∀ 1 ≤ k < K . (8)

C. Low complexity algorithm

The previous analysis aids the development of an algorithm

aimed to determine near-optimal GEQ schemes at a given

target rate. The main insight behind the proposed algorithm is

that quantization thresholds in consecutive quantization stages

have strictly lower magnitudes, as expressed in (8). The algo-

rithm is devised to determine the thresholds of an embedded

quantizer with a fixed number of quantization stages. Roughly

speaking, the algorithm begins by initializing the thresholds

of a quantizer with the highest values that respect (8). Then

the quantizer is iteratively modified to increase the target rate

while maximizing performance. In each iteration, the rate-

performance slope (decrease in Θ divided by the increase in

R) is computed assuming a single threshold is provisionally

decreased by ∆. This slope is computed for all thresholds as

permitted by (2) and (8). That threshold achieving the highest

slope is then actually decreased. This process is iterated until

R is achieved. Quantizers found by the algorithm differ only

slightly in each iteration, so the target rate R can be achieved

with high precision. The algorithm does not assure optimality,

though the exponentially decreasing pattern of Fig. 4 together

with the following experimental results seem to indicate that

the quantizers found by this method achieve near-optimal

performance. Despite using the rate-performance slope, the

procedure carried out by this algorithm is not based on

Lagrange optimization.

Alg. 1 summarizes the steps carried out by the proposed

method. The function “evaluateGEQ(·)” (lines 4 and 12)

returns the rate/distortion points achieved when the coding

engine uses K quantization stages using the provided quan-

tization thresholds. The function “evaluatePerformance(·)”
(lines 5 and 13) computes the metric Θ for the given set of

points. The algorithm finishes execution when R is achieved

or when a quantizer with that number of stages is not found

for that R.

The computational complexity of Alg. 1 is much lower than

that of the exhaustive search employed in the previous section.

A maximum of K different quantizers are evaluated in each

iteration of the algorithm, and each threshold can be decreased

⌊W/∆⌋ times, at most. The computational complexity of

Alg. 1 is then O(K⌊W

∆ ⌋).

Alg. 1 allows us to determine a near-optimal quantizer at

a pre-defined rate without needing the interpolation technique

described before. This facilitates an accurate analysis of op-

timally designed quantizers. To this end, Alg. 1 is executed

to find quantizers with K = 1..10 for values of R varying

from a low to a medium rate. From the collection of all

quantizers, that with the smallest Θ at rate R is kept. Fig. 5(a)

reports the performance achieved by the quantizers determined

by the proposed algorithm. This figure reports results for

Algorithm 1

1: for k ∈ [1,K] do
2: T •

k ← ⌈W/∆⌉∆− k∆
3: end for
4: {r•k, d

•

k} ← evaluateGEQ({T •

k })
5: Θ• ← evaluatePerformance({r•k, d

•

k})
6: while r•K < R do
7: β◦, {T ◦

k }, {r
◦

k, d
◦

k},Θ
◦ ← null

8: for k ∈ [1,K] do
9: {T ⋆

k } ← {T
•

k }
10: if (T ⋆

k > T ⋆

k+1 +∆) or (k = K and T ⋆

k > ∆) then
11: T ⋆

k ← T ⋆

k −∆
12: {r⋆k, d

⋆

k} ← evaluateGEQ({T ⋆

k })
13: Θ⋆ ← evaluatePerformance({r⋆k, d

⋆

k})
14: β⋆ ← (Θ⋆ −Θ•)/(r⋆K − r•K)
15: if (r⋆K > r•K) and (β◦ = null or β⋆ < β◦) then
16: β◦, {T ◦

k }, {r
◦

k, d
◦

k},Θ
◦ ← β⋆, {T ⋆

k }, {r
⋆

k, d
⋆

k},Θ
⋆

17: end if
18: end if
19: end for
20: if β◦ 6= null then
21: {T •

k }, {r
•

k, d
•

k},Θ
• ← {T ◦

k }, {r
◦

k, d
◦

k},Θ
◦

22: else
23: exit
24: end if
25: end while
26: output({T •

k }, {r
•

k, d
•

k},Θ
•)

the second approach, though similar results hold for the first

too. This figure is similar to Fig. 3(b), so to facilitate the

comparison between the quantizers determined by Alg. 1 and

those tested in the previous exhaustive search, all quantizers

depicted in Fig. 3(b) are also depicted in Fig. 5(a) in gray.

Results indicate that all quantizers determined by Alg. 1

always achieve equal or lower Θ than those tested in the

exhaustive search, which suggests that they are (close to) the

optimal solution. Evidently, the quantizers achieving lower Θ
than those found in the exhaustive search were not evaluated

in the exhaustive search due to the use of large ∆.

The thresholds employed by the near-optimal quantizers de-

termined by Alg. 1 are reported in Fig. 5(b). The exponentially

decreasing pattern of the thresholds is evident in this figure. As

in Fig. 4, the last threshold of all quantizers shows the clearest

pattern, though the remaining thresholds behave similarly.

It is worth noting that quantizers determined by the pro-

posed method can attain any target rate with more precision

than that achieved by the classic USDQ+BPC scheme. To

illustrate this point, Fig. 6 reports the rate/distortion points

obtained by the optimal GEQ schemes depicted in Fig. 5

at target rates R = 0.05, 0.6, and 1.4 bps. The target

rate R is represented as a dotted horizontal line in this

figure. Fig. 6 also reports the performance achieved by the

USDQ+BPC scheme,3 which is identical in each subfigure.

Evidently, the codestream generated by USDQ+BPC needs

to be truncated at R, which rarely coincide with the end of

quantization stages. Contrarily, there exist a high density of

optimal GEQ schemes in any rate range. This is illustrated

3Rate-distortion points of the USDQ+BPC scheme correspond to a BPC
strategy that carries out two coding passes per bitplane (significance and
refinement coding), which is a common approach of coding engines [37].
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Fig. 5: Evaluation of the quantizers generated by the proposed

algorithm. Data corresponds to the estimation-based approach.

(a) Performance evaluation (b) Thresholds analysis.

in the video sequence at [46], which extends Fig. 6 showing

all quantizers found by Alg. 1 between 0.001 to 1.4 bps in a

sequential fashion. Since fR(r) in (1) is chosen to be uniform,

the quantizer’s performance for a given R can be conceptually

seen as the area below the rate-distortion points up to rate R.

The smaller the area (or, equivalently, the lower the distortion

over the rate range (0, R]), the better the performance. In

general, the more precise attainment of the target rate achieved

by the optimal GEQ scheme provides slightly better coding

performance than that achieved by USDQ+BPC. This evalua-

tion is carried out for low-to-medium rates since Algorithm 1

is devised employing the insights provided in the exhaustive

search described before. The algorithm is not appropriate for

high rates. The next section approaches this issue.

IV. PRACTICAL APPROACH

Sections II and III analyze the efficiency that can be

achieved by the GEQ. Alg. 1 describes a low-complexity

procedure to achieve optimal GEQ schemes for a target rate.

Four issues need to be addressed before implementing the

optimal GEQ scheme in practice:

1) Target rate: in order to find an optimal quantizer for

a target rate, Alg. 1 needs to code the data more than

once. In practical terms, this means coding the image

many times, which lays a computational burden on the

codec that is not assumable in practice.

2) Rate-distortion optimization procedures: some modern

coding systems enhance the scalability features of the

codestream by means of coding small sets of wavelet

coefficients (commonly called codeblocks) indepen-

dently [38], [43], [44]. After coding the codeblocks,

a rate-distortion optimization procedure truncates the

codestream generated for each codeblock selecting the

segments that are included in the final file. The difficulty

of using the optimal GEQ scheme in such a coding

system is that neither the rate for the codeblock’s

codestream nor the distortion-rate slope threshold [29]

selected to attain the rate of the final codestream is

known a priori. As seen before, different target rates

require different GEQ schemes, so the truncation of a

codestream at an arbitrary rate would penalize perfor-

mance unless data are coded again.

3) Side information: the GEQ scheme employs distinct

quantization thresholds depending on the data coded.

These thresholds are selected by the encoder and have to

be known by the decoder. The rate needed to transmit

the thresholds is negligible when the whole image, or

when every wavelet subband, is coded together because

only one set of thresholds, or one set of thresholds per

subband, is used. But this side information may grow

significantly when codeblocks are used since one distinct

GEQ scheme may be necessary for each codeblock.

4) High target rates: the analysis of the previous section

explores the design of optimal GEQ schemes only for

low and medium rates. Real codecs require the coding

of data for high rates as well.

To overcome these four issues we need to design a GEQ

scheme that: 1) codes the data only once, 2) allows the

truncation of the codestream at any point, 3) requires the trans-

mission of none (or little) side information, and 4) is able to

generate a codestream for low, medium, and high target rates.

To fulfill these requirements, a GEQ scheme different from

that produced by Alg. 1 is needed. Although a different GEQ

scheme may penalize the quantizer’s performance, empirical

evidence indicates that GEQ has enough flexibility to achieve

a quantizer that fulfills the previous requirements without

significantly penalizing its performance. Let us explain further.

The exhaustive search of Section III-B discloses many existing

quantizers at a fixed target rate. Note in Fig. 3(b), for instance,

that at R = 0.1 bps there exist many quantizers having

performance Θ between 111 to 122, approximately. Although

the most interesting quantizers are those with lowest Θ, the

examination of quantizers that are close to the optimal reveals

an interesting aspect regarding their design. Fig. 7 reports

the thresholds employed by quantizers shown in Fig. 3(b)

at R = 0.1 bps, K = 3 and Θ ∈ [111.32, 111.9]. The

horizontal axis of the figure is Θ, whereas the vertical axis

is the quantization thresholds employed by the quantizer. The

quantizer depicted on the most left side of the figure achieves

the best performance (i.e., is that in Fig. 3(b) achieving the

http://www.deic.uab.es/~francesc/research/embedded_quantization/quantizers.avi
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Fig. 6: Evaluation of the rate-distortion performance achieved by the USDQ+BPC scheme and the optimally designed GEQ

schemes. Data corresponds to the estimation-based approach. The target rate R is indicated with an horizontal dotted line,

being R = 0.05 bps for (a), R = 0.6 bps for (b) and R = 1.4 bps for (c).
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Fig. 7: Thresholds employed by quantizers with K = 3 that

achieve different performance at the target rate R = 0.1 bps.

Results for the estimation-based approach.

lowest Θ at 0.1 bps). From left to right, the performance

of quantizers decreases, though only slightly. Although all

quantizers depicted in the figure achieve similar performance,

their quantization thresholds differ significantly. In this figure,

threshold T1 ranges from 90 to 160, whereas T2 ranges

from 55 to 85, approximately. The last threshold exhibits less

variability since small changes on T3 may produce significant

variations on the rate due to the larger density of significant co-

efficients coded by the threshold. Similar results are achieved

for other target rates, which seems to indicate that quantizers

with slightly different thresholds to those used by the optimal

GEQ scheme can also achieve competitive performance.

The flexibility on the selection of the quantization thresholds

together with the insights provided in Section III guide the

design of a GEQ scheme that fulfills the aforementioned

requirements. Three main structural ideas are used in the

conception of the practical GEQ scheme. The first is that the

thresholds of the quantizer need not to vary depending on

the target rate. This eliminates the need of coding the data

many times, addressing the first and second issue described

before. As seen in the next section, this reduces only slightly

the efficiency of the quantizer due to the non-optimality of the

thresholds employed at some rates and due to the target rate

may not coincide exactly with the end of a quantization stage.

The second structural idea behind the design of the practical

GEQ is to establish the thresholds depending on the largest

magnitude of the coefficients to be coded (i.e., W). This entails

negligible computational costs since W is easy to compute

for subbands or codeblocks, and allows the use of a distinct

set of thresholds for each subband/codeblock requiring the

transmission of little side information. Experimental evidence

indicates that the rate increase due to the transmission of W is

negligible. Our experience indicates that only using W to de-

sign the quantizer already achieves near-optimal performance,

so the use of other parameters such as the variance or shape

of the distribution can be avoided. The third aforementioned

issue is thus resolved.

The third idea behind the practical GEQ is to devote the

first stages of the quantizer to significance coding, as indicated

by the analysis of the previous sections. After coding several

significance stages, our experience seems to indicate that the

most effective means of attaining higher rates is to interleave

stages of refinement with stages of significance coding. This

is intuitively explained by considering that every significance

coding stage lessens the width of the deadzone interval, which

reduces the density of coefficients in the deadzone and the rate

produced in further significance stages. By carrying out first

several significance coding stages and then interleaving signif-

icance with refinement, the rate can be grown until necessary

without penalizing performance significantly. This strategy

addresses the fourth issue mentioned before. We note that most

USDQ+BPC strategies, including tier-1 of JPEG 2000, also

interleave significance coding with refinement coding.

The design of the practical GEQ is depicted in Fig. 8(a). We

note that, for some rates, the proposed design may have thresh-

olds with variations with respect to the optimal one that are

larger than those depicted in Fig. 7. The first three quantization

stages carry out significance coding, with thresholds T1 =
2
3W , T2 = 1

3W , and T3 = 1
6W . These thresholds have been

determined empirically to yield competitive performance for

a variety of data found in wavelet subbands. Small variations

on these thresholds do not affect the quantizer’s performance

significantly. As indicated in Fig. 8(a), the fourth stage of
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Fig. 8: Illustration of the quantization intervals produced by

two multistage quantization schemes. The representation of

the quantization stages is equivalent to that of Fig. 1. (a) and

(b) illustrate the proposed GEQ scheme for practical imple-

mentations and an observation of the USDQ+BPC scheme,

respectively.

the quantizer partitions all quantization intervals except the

deadzone. This requires a small variation on the structure of

the GEQ as is described in Section II-A because more than

one quantization threshold is necessary in this stage. Such a

variation allows the refinement of all coefficients outside the

deadzone in a single stage. The refinement thresholds are in the

middle of the quantization interval. Our experience indicates

that to select different thresholds, or to split the refinement

in more stages, does not affect performance. These thresholds

are selected as T4 = T3+
1
2 (T2−T3), T

′
4 = T2+

1
2 (T1−T2),

and T ′′
4 = T1 +

1
2 (W − T1).

The fifth stage of the practical GEQ carries out significance

coding, partitioning the interval that contains zero, this is,

T5 = 1
2T3 = 1

12W . The sixth stage carries out refinement

coding partitioning all intervals except the deadzone. The

quantizer continues interleaving one significance stage with

one refinement stage until the target rate is attained. This

design achieves a multistage scheme with quantization inter-

vals having two different widths depending on the interval

laying on the left or right side of T2. See in Fig. 8(a) that in

quantization stage 5 all intervals on the left side of T2 have

width w = T2/4, whereas all intervals on the right side of T2

have width w′ = (W − T2)/4. More generally, the interval

width can be expressed as w = T2/2
(k−1)/2, k = 3, 5, 7, ...

and w′ = (W − T2)/2
k/2, k = 2, 4, 6, 8, ... for intervals on

the left and right side of T2, respectively. The intervals on the

right side of T2 have a width twice as large as that of the

intervals on the left side of T2.
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GEQ, the practical GEQ, and USDQ+BPC. Data corresponds

to the estimation-based approach. For the sake of clarity, the

vertical axis of the figure is in logarithmic scale.

The design of the practical GEQ is convenient since the

density fV (ν) of coefficients on the right side of T2 (i.e.,

coefficients with large magnitudes) is very low. For the data

used by the first and second approach of the previous section,

for example, the density
∫W

1

3
W

fV (ν) dν is 0.5% and 0.6%,

respectively. The larger intervals on the right side of T2 adjust

coefficients ν ≥ T2 with less precision than coefficients

ν < T2, but this does not affect performance –even when

many quantization stages are applied– because less than 1%
of coefficients are greater than T2, in general. Fig. 9 reports the

performance Θ achieved by the practical GEQ as compared

to the optimal GEQ produced by Alg. 1. As stated before,

the quantizers produced by Alg. 1 can not be employed

in practice, so, in this context, the practical GEQ and the

quantizers produced by Alg. 1 can only be compared through

the evaluation provided in this figure. The “optimal GEQ” plot

reported in this figure is the same as that in Fig. 5(a). Results

suggest that the performance achieved by the practical GEQ

is near-optimal, commonly being less than 3% worse than

the optimal. Fig. 9 also reports the performance achieved by

USDQ+BPC, which is almost the same as that of the practical

GEQ. We remark that the design of the practical GEQ restricts

some features of GEQ. The loss in flexibility is inevitable to

achieve practicality.

It is worth noting one observation from the structure of

the practical GEQ when compared to the classic scheme of

USDQ+BPC. Commonly, USDQ+BPC is described as a mul-

tistage quantization scheme that produces intervals of uniform

width. Contrarily, the practical GEQ produces non-uniform

quantization intervals due to the use of particular thresholds at

the first three quantization stages. This may seem an structural

difference between USDQ+BPC and the practical GEQ but,

studied more in detail, this difference renders insignificant

in practice. Let us recall the use of codeblocks, or similar

conceptual partitions, to code the data of wavelet subbands.

In general, one quantization step size ∆ is employed for the

whole subband [29], and the number of magnitude bits neces-

sary to code all coefficients in the codeblock is transmitted
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to the decoder. This strategy is employed by JPEG 2000,

for instance. Through this method, the available range for

input values at the most significant bitplane of the codeblock,

say M ′, is utilized only partially. This is due to the largest

magnitude of all coefficients (i.e., W) does not commonly

coincide with the largest magnitude available at that bitplane,

which is 2M
′

− 1. Although this does not affect the coding

performance achieved in practice due to the use of arithmetic

coding, it conceptually approaches the quantization schemes

of the practical GEQ and the USDQ+BPC.

Fig. 8(b) illustrates the scheme of USDQ+BPC taking into

account the range of input values that may not be utilized in

practice. The line at the top of figure represents the available

range for the input values, with W situated on the left side

of the maximum value. This happens often in practice. The

range (W,∆2M
′

) is depicted as a dotted line in the figure

to indicate that there is none coefficient at this range. Since

the interval partitioning is carried out through bitplane coding,

the resulting quantization intervals achieve a similar structure

as that of the practical GEQ, especially at the first stages.

Two quantization stages per bitplane are depicted in the figure

to differentiate significance coding from refinement coding.

Although the practical GEQ and USDQ+BPC are devised

using different points of view, this observation indicates that

both achieve a similar structure. We stress this point since

provides a theoretical justification behind the well-known

competitive performance of USDQ+BPC.

V. EXPERIMENTAL RESULTS

The practical GEQ is implemented in the tier-1 cod-

ing procedure of JPEG 2000. The resulting system is not

JPEG 2000 compliant since the standard does not support

GEQ-like quantizers, but provides an appropriate framework

to evaluate the proposed method. Tier-1 defines three cod-

ing passes per bitplane called Significance Propagation Pass

(SPP), Magnitude Refinement Pass (MRP), and Cleanup Pass

(CP) [29]. SPP and CP carry out significance coding. The

main difference between them is that SPP scans those co-

efficients that are more likely to become significant in the

current bitplane. MRP refines the magnitude of coefficients

that become significant in previous bitplanes. The practical

GEQ is integrated in tier-1 without modifying these coding

passes. Only the significance/refinement state of coefficients

is computed differently when the practical GEQ is in use. The

significance/refinement state is the function that determines

whether a coefficient has to be reconstructed in the upper or

lower quantization interval defined in that stage. In a compliant

JPEG 2000 implementation these thresholds are imposed by

the USDQ+BPC scheme, whereas the proposed method uses

the thresholds defined by the practical GEQ. Also, the practical

GEQ executes MRP only when defined by the quantizer. All

the aspects of a conventional JPEG 2000 codec, including

the use of codeblocks, rate-distortion optimization procedures,

etc. need not to be modified when the practical GEQ is

implemented in tier-1.

The images employed in the experiments are chosen from

different corpora. “Portrait” (2048 × 2560) and “Flowers”

(2731 × 2048) are natural images that belong to the ISO

12640-1 and ISO 12640-2 corpus, respectively. “Barcelona”

(4096×4096) is an aerial image provided by the Cartographic

Institute of Catalonia [47] that belongs to the remote sensing

community. “Hip” (2048 × 2495) is a computer radiology

provided by the UDIAT Centre Diagnostic [48] that belongs

to the medical community.

The evaluation of the practical GEQ considers two as-

pects of the quantizer: coding performance and complexity.

Coding performance is evaluated by compressing the image

at different target rates and computing the Peak Signal to

Noise Ratio (PSNR). This is a conventional test to assess the

performance of image codecs that provides PSNR values for

selected target rates. The quantizer’s complexity is assessed

in terms of quantization stages or, equivalently, in terms of

coding passes included in the codestream at a target rate.

The quantizer’s complexity evaluation is relevant since, in

general, a codec that codes fewer coding passes spends less

computational resources as well [37]. The number of coding

passes of the practical GEQ is computed as 2k′ when k′ ≤ 3
(recall that each significance coding stage requires 2 coding

passes), and as (3k′+3)/2 and (3k′+2)/2 when k′ is odd and

even, respectively, with k′ denoting the number of quantization

stages coded for that codeblock.

Fig. 10 reports the results obtained when coding the afore-

mentioned images using codeblocks of size 64 × 64. The

horizontal axis of each figure is the rate, whereas the vertical

axes are the PSNR (left axis) and the number of coding passes

(right axis). For clarity, the right axis is reversed (higher means

fewer coding passes). Coding performance and coding passes

are reported with crosses and points, respectively. Results

suggest that, in this framework, the coding performance of the

practical GEQ and the USDQ+BPC scheme are virtually the

same. This is in agreement with the analysis of the previous

sections, which indicated the reasons behind the near-optimal

performance of USDQ+BPC and the practical GEQ. Results

also suggest that the complexity of the practical GEQ is lower

than that of USDQ+BPC. At some rates this difference is

significant. See, for instance, that at 0.8 bps the practical

GEQ codes approximately 30% fewer coding passes than

USDQ+BPC, for the “Hip” image. Similar results hold for

other coding parameters, and for the reversible 5/3 wavelet

transform included in JPEG 2000. Although the differences

between the coding performance and the computational com-

plexity achieved by the practical GEQ and JPEG 2000 vary

depending on the image, these results also hold for other

images as well.

Table I reports the same results as those of Fig. 10 for

a selected set of target rates. The column “JP2” reports

the PSNR, number of coding passes, and Θ achieved by

JPEG 2000 at the target rate specified on the top of the

column. The column “GEQ” reports the difference between

the practical GEQ and JPEG 2000. For the “Portrait” image

at 0.50 bps, for instance, the practical GEQ achieves a PSNR

0.04 dB lower than that achieved by JPEG 2000. These results

indicate that the practical GEQ achieves a coding performance

(in terms of PSNR and Θ) very similar to that of USDQ+BPC

while significantly reducing the number of passes coded.
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Fig. 10: Evaluation of the coding performance (plots with crosses) and the quantizer’s complexity (plots with dots) achieved

by JPEG 2000 and the practical GEQ. Codeblocks of size 64× 64. (a) “Portrait” (b) “Flowers” (c) “Barcelona” (d) “Hip”.

TABLE I: Evaluation of the coding performance, the quantizer’s complexity, and the multirate distortion measure Θ achieved

by JPEG 2000 and the practical GEQ. Codeblocks of size 64 × 64. The last three columns report the minimum, maximum,

and average values depicted in the “GEQ” columns.

“Portrait”
0.50 bps 1.00 bps 1.50 bps 2.00 bps 2.50 bps 3.00 bps 3.50 bps

JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ min, max aver.

PSNR 34.24 -0.04 39.08 -0.03 42.20 -0.03 44.73 0.03 47.40 -0.17 49.72 -0.14 52.28 -0.21 -0.21, 0.03 -0.08

cod. pass. 5317 -1016 9023 -1478 11742 -1674 13612 -1499 15614 -1613 17436 -1772 18493 -1405 -1772, -1016 -1494

Θ 66.08 -0.03 40.15 0.01 28.66 0.01 22.21 0.02 18.11 0.01 15.23 0.03 13.15 0.01 -0.03, 0.03 0.01

“Flowers”
0.20 bps 0.40 bps 0.60 bps 0.80 bps 1.00 bps 1.20 bps 1.40 bps

JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ min, max aver.

PSNR 43.03 0.00 47.12 0.01 49.33 -0.09 50.54 -0.05 51.49 -0.07 52.20 -0.06 52.93 -0.16 -0.16, 0.01 -0.06

cod. pass. 3103 -541 5642 -859 7743 -1229 9107 -1218 10167 -1178 11310 -1371 12390 -1864 -1864, -541 -1180

Θ 11.62 0.02 6.81 0.00 4.86 0.01 3.81 0.00 3.15 0.01 2.70 0.00 2.36 0.01 0.00, 0.02 0.01

“Barcelona”
0.70 bps 1.40 bps 2.10 bps 2.80 bps 3.50 bps 4.20 bps 4.90 bps

JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ min, max aver.

PSNR 28.73 0.04 32.86 0.15 37.08 -0.13 41.18 -0.19 44.91 0.13 48.75 0.20 52.55 -0.25 -0.25, 0.20 -0.01

cod. pass. 14250 -1667 26390 -3850 36724 -6317 41836 -3350 51487 -5586 58672 -5148 67773 -5993 -6317, -1667 -4559

Θ 207.64 -0.34 130.95 -0.10 94.48 -0.14 73.03 -0.13 59.09 -0.09 49.47 -0.09 42.49 -0.08 -0.34, -0.08 -0.14

“Hip”
0.20 bps 0.40 bps 0.60 bps 0.80 bps 1.00 bps 1.20 bps 1.40 bps

JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ JP2 GEQ min, max aver.

PSNR 46.22 0.02 47.40 0.00 48.56 -0.12 49.65 -0.18 50.49 -0.06 51.44 0.00 52.62 0.05 -0.18, 0.05 -0.04

cod. pass. 2702 -588 4095 -846 5219 -1218 6342 -1726 6837 -1504 7288 -1359 7849 -1356 -1726, -588 -1228

Θ 1.81 0.00 1.59 0.00 1.40 0.00 1.25 0.00 1.13 0.01 1.03 0.01 0.94 0.01 0.00, 0.01 0.00

Fig. 11 reports the results obtained when all coefficients

of the subband are coded together (i.e., without using code-

blocks). This is not supported in JPEG 2000, but it is reported

herein to appraise the practical GEQ when codeblocks are

not in use. Again, results suggest that the coding performance

achieved by both USDQ+BPC and the practical GEQ is very

similar. Also, the practical GEQ codes fewer coding passes

than USDQ+BPC, although in this test the differences are

not as significant as when codeblocks are used. These results

suggest that the practical GEQ adjusts with high precision the

quantization thresholds especially when small portions of data

(i.e., codeblocks) are coded independently.
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Fig. 11: Evaluation of the coding performance (plots with crosses) and the quantizer’s complexity (plots with dots) achieved

by JPEG 2000 and the practical GEQ. All the coefficients of the subband are coded together. (a) “Portrait” (b) “Flowers” (c)

“Barcelona” (d) “Hip”.

VI. CONCLUSIONS

Embedded quantization is a fundamental mechanism em-

ployed by lossy image coding systems to generate a quality

progressive codestream. This work explores embedded quan-

tizers aimed to the wavelet-based lossy, or lossy-to-lossless,

compression of images. First, general embedded quantization

(GEQ) is introduced. GEQ is a multistage quantization scheme

that codes arbitrary quantization intervals in each quantization

stage. This provides a greater flexibility to the quantizer than

that provided by other schemes. Second, the optimization

problem posed to achieve optimal performance for a selected

range of decoding rates is described. This specifies an appro-

priate metric to appraise the performance of quantizers tested.

Third, an exhaustive search evaluates the performance of GEQ

for two different approaches. The first approach uses a codec

based on JPEG 2000, which precisely appraise the efficiency

of GEQ when introduced into an image codec employing

advanced coding mechanisms. The second approach uses

estimates of rate and distortion, which permits the extension

of the exhaustive search to quantizers that would otherwise be

too complex to evaluate. Fourth, the design of the quantizers

achieving best performance found in the exhaustive search is

studied, and a low-complexity algorithm that produces near-

optimal GEQ schemes is proposed. Fifth, the insights learned

during this analysis are employed to devise a practical GEQ

scheme that achieves performance close to the optimal, and

that can be implemented in an image codec. Sixth, the practical

GEQ is integrated in the core coding system of JPEG 2000

and evaluated in terms of coding performance and quantizer’s

complexity. Experimental results suggest that the coding per-

formance achieved by the practical GEQ is very similar to

other conventional quantization schemes, though it requires

fewer quantization stages. This is convenient for codecs since,

in general, fewer stages implies less computational resources.

This seems to indicate that the implementation of the practical

GEQ into codecs may reduce computational costs without

sacrificing coding performance.

The development carried out in this work seeks quantizers

designed to achieve optimal coding performance. Nonetheless,

the flexibility provided by GEQ can also be employed to devise

quantizers with other purposes, such as the reduction of the

maximum distortion or the maximum rate in each stage, the

accurate attainment of a target rate, or the lossless coding of

images. Also, GEQ may be adopted in other disciplines such

as speech or audio coding.
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the Universitat Autònoma de Barcelona (Spain). He
received the B.Sc. and B.E. degrees in Computer
Management Engineering and Computer Engineer-
ing in 2000 and 2002, respectively, both from the
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