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Abstract—The conventional strategy to download images cap-
tured by satellites is to compress the data on board and then
transmit them via the downlink. It often happens that the
capacity of the downlink is too small to accommodate all the
acquired data, so the images are trimmed and/or transmitted
through lossy regimes. This paper introduces a coding system
that increases the amount and quality of the downloaded imaging
data. The main insight of this work is to use both the uplink and
the downlink to code the images. The uplink is employed to send
reference information to the satellite so that the on-board coding
system can achieve higher efficiency. This reference information
is computed on the ground, possibly employing extensive data
and computational resources. The proposed system is called dual
link image coding. As it is devised in this work, it is suitable
for Earth observation satellites with polar orbits. Experimental
results obtained for datasets acquired by the Landsat 8 satellite
indicate significant coding gains with respect to conventional
methods.

Index Terms—Dual link image coding, satellite data transmis-
sion, JPEG2000.

I. INTRODUCTION

S INCE the launch of Sputnik 1 in 1957, the number and

diversity of satellites orbiting the Earth has not stopped

growing. Nowadays, there are more than 2,000 satellites

dedicated to communications, navigation, astronomy, weather,

reconnaissance, and Earth observation (EO). These satellites

provide services in our every-day lives such as TV, Internet,

weather forecast, or geolocation, among others.

Most satellites are situated in either a geostationary or a po-

lar orbit (see Fig. 1). Satellites in geostationary orbits are at an

altitude of approximately 22,000 miles and are located above a

stationary point on the Earth’s equator. Their communications

rely on ground stations that have an uninterrupted line of sight

to the satellite. Despite the fact that the high altitude restricts

the communication to medium/low capacity channels, these

satellites are in constant contact with the ground station, so

they can transmit great amounts of data. They are commonly

employed for communication-related tasks.
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Fig. 1: Illustration of geostationary and polar orbits.

Satellites in polar orbits revolve around the Earth from the

North to the South Pole. They are at altitudes ranging from

100 to 10,000 miles, approximately. Due to their proximity

to the surface, they are ideal to observe and monitor the

surface of the Earth and/or its atmosphere. The data acquired

by EO satellites are employed in applications to manage

natural resources, forecast the weather, or monitor climate

change, among others. Except for the poles, these satellites

cover different areas of the globe in each revolution due to

the Earth’s rotational movement. For this reason, the most

effective stations to download their data are located near the

poles. These stations make contact with the satellite in each

revolution, though the transmission time is limited to a few

minutes per orbit.

The imaging sensor of an EO satellite acquires huge

amounts of data. The Landsat 8 satellite, for instance, carries

two sensors that capture 11 spectral bands with a spatial

resolution of up to 15 meters and a bit-depth resolution of up to

16 bits per sample (bps). The acquired data are downloaded to

the ground station for further processing and distribution. Yet,

it is common that satellite sensors can capture more data than

the available download capacity. Often, this forces the acquired

data to be trimmed in some fashion, which may negatively

affect applications and users.

Satellites have two channels of communication: the down-

link and the uplink. The downlink is employed to transmit the

data acquired by the satellite to the ground station, whereas

the uplink is employed to transmit commands and ancillary

information from the ground station to the satellite. In EO

satellites, the downlink has a much higher capacity than the

uplink, and the particular configuration changes depending

on the necessities of the sensors. The communication sys-



2

tem has full duplex capacity, i.e., transmission can occur in

both directions simultaneously. Advances in electronics and

telecommunications have increased the capacity of the satellite

channels to a few hundreds of megabits per second (Mbps)

in the most modern satellites. Yet, each new EO satellite is

equipped with sensors that can capture the surface or the

atmosphere of our planet with more detail. This trend, which

has been observed for the last two decades, together with the

inability to provide significant additional improvements in the

download capacities, pulls down the acquisition capabilities of

EO satellites.

The current approach to download the datasets captured

by the satellites is as follows. Once (or while) the image

is acquired at the satellite, it is compressed using a coding

system. Compression helps to reduce the size of the data. Both

lossless and lossy compression regimes have been considered:

the former allows perfect reconstruction while achieving low

compression ratios; the latter improves the compression ratio

at the expense of introducing distortion. Once the data are

compressed –either with or without loss– to a size that fits

the bit budget of the downlink, they are (stored and then)

transmitted during the time in which the ground station(s)

is in contact with the satellite. Among others, standards and

coding systems devised for the coding of satellite images using

lossless and lossy regimes are respectively described in [1]–[6]

and [2], [5], [7], [8].

Most techniques for the coding of satellite imagery either

exploit the spatial or the spectral redundancy of the images, or

both. Nonetheless, there exists another type of redundancy that

is usually not taken advantage of. As previously described, EO

satellites with polar orbits revolve around the Earth from pole

to pole. The Earth’s rotation causes the satellite to capture

a different area of the planet in each orbit but, after some

number of orbits, the satellite is situated at the starting point

again, scanning areas that were already captured. This is called

the repeat cycle. The Landsat 8 satellite, for instance, has a

repeat cycle of 16 days. As can be observed in Figs. 11 and 13

(see pages 13 and 14), the images captured of the same area

on different dates are very similar, or otherwise stated, they

have high periodic temporal redundancy.

Current coding systems employed in satellites do not con-

sider the temporal redundancy. In order to do so, different

temporal samples of the same location would need to be

available, which may not be possible using onboard storage.

The Landsat 8 satellite may capture 725 images every day with

a raw size of approximately 480 MB each. As the acquired

data between repeat cycles is about 6 TB, a mass memory of

at least this size would be needed so that just two temporal

samples of the same location would be available on board

the satellite. In addition, properly exploiting such redundancy

requires that temporal samples are co-registered, so that vari-

ations in satellite position and direction between consecutive

repeat cycles must be carefully compensated. This is a task that

is commonly performed on the ground before science data are

disseminated. Hence, high requirements of mass memory and

computational resources prevent a straightforward exploitation

of the temporal redundancy on the satellite.

The purpose of this research is to enhance the ability of

EO satellites to download the data acquired by their imag-

ing sensors while increasing only slightly the computational

complexity of the codec. To this end, our solution consists

of exploiting the large computational power of the ground

station as well as the capacity of the satellite uplink, which

is idle during most of the transmission time. The idea is that

the ground station can use already-stored data to generate a

reference image. This image is then (coded and) transmitted

via the uplink channel, allowing the satellite to benefit from

the temporal redundancy during the compression process of a

recently acquired image. The satellite only needs to store the

compressed reference image, and decode it before its use. Both

processes require few computational resources. The proposed

coding scheme employs both the downlink and the uplink,

so we refer to it as dual link image coding. This research

is built upon our previous work [9]. That work provides a

proof of concept and demonstrates that the proposed method

is feasible, but it employs only simple test images, does not

propose a practical implementation, and does not consider

synchronization aspects that may significantly affect perfor-

mance. Herein, these drawbacks are overcome. This paper

presents a coding system that considers the relevant aspects

–from an image coding perspective– to transmit imaging data

employing both channels of communication. We explore the

performance that the dual link image coding can achieve with

Landsat 8 images. Data from Landsat 8 are employed due

to their free and ready availability in Earth Explorer [10], an

online application provided by the U.S. Geological Survey.

The obtained conclusions may hold for other EO satellites

with similar features.

The rest of the paper is organized as follows. Section II

formulates the problem and reviews our previous work [9].

Section III introduces a practical image codec that utilizes

the dual link image coding scheme. Any engine can be

employed together with this scheme. The codec proposed

herein employs the engine of JPEG2000 due to its excellent

coding performance and advanced features. Also, because

JPEG2000 is a widespread reference in the field and results can

be compared to those from numerous works of remote sensing

data coding (e.g., [8], [11]–[16]). Future work will propose a

dual link image coding scheme for CCSDS standards [1]–[3].

Section IV presents experimental results for both lossless and

lossy compression. The results obtained demonstrate coding

gains of up to 8 dB for lossy compression and up to 0.8 bps

for lossless compression when the captured imagery has no

meteorological events (e.g., clouds or snow), and the same

efficiency as a traditional approach when there are such events.

The last section concludes the paper with a brief summary.

II. DUAL LINK IMAGE CODING SCHEME

A. Traditional approach

Let X = {Xi}, 0 ≤ i < N , denote the image acquired

by the satellite sensor, with N being the total number of

samples in the image. Let B↓ = T · C↓ denote the total

bit budget of the downlink, with T and C↓ being the time

that the satellite is in contact with the ground station and the

channel transmission rate of the downlink, respectively. The
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bit-depth resolution of the sensor is denoted by DX . The size

of the raw data is SX = N · DX , whereas their entropy is

referred to as H(X). When SX > B↓, traditional approaches

code the data to reduce their size before transmitting them

down. For simplicity, in the following discussion we assume

that the compression system in the satellite produces a code-

stream whose length is that of the data entropy [17]. When

H(X) > B↓, lossless compression is not possible. The coding

process must then (transform and) quantize the data. The goal

of this quantization is to reduce the entropy while minimizing

the loss introduced into the data. The quantization procedure

uses a step size, denoted by ∆
X̂

, that is commonly selected as

the smallest that respects the bit budget (i.e., the smallest ∆
X̂

that yields H(X̂) ≤ B↓). The (transformed) samples recovered

in the ground station are referred to as X̂ = {X̂i}. They are

computed as

X̂i =

(⌊
Xi

∆
X̂

⌋
+ δ

)
·∆

X̂
, (1)

with ⌊·⌋ denoting the floor operation. When ∆
X̂

= 2DX−D
X̂ ,

the quantization procedure is equivalent to discard the DX −
D

X̂
least significant bits of the (transformed) samples. Other

values of ∆
X̂

may help to adjust H(X̂) more finely to fit

B↓. The division and floor operation in (1) are carried out in

the satellite, whereas the remaining operations are carried out

in the ground station. δ ∈ [0, 1) is the reconstruction factor

employed to recover the samples [18]. Typically, δ = 0.5.

When mean squared error (MSE) is the quality metric em-

ployed, the image distortion is computed as D = 1
N

∑
i(Xi−

X̂i)
2. The objective of traditional lossy coding schemes is to

minimize the distortion while respecting the total bit budget

of the downlink, i.e.,

min D s.t. H(X̂) ≤ B↓ . (2)

B. Proposed approach

Contrary to traditional approaches, the dual link image

coding scheme utilizes both the downlink and the uplink.

The main idea is that some reference information, say s,

is computed in the ground station and transmitted to the

satellite via the uplink. The computation of s may employ

huge amounts of data and/or complex algorithms since storage

and computational power are not constrained on the ground.

Once transmitted, the satellite uses s to code X . If s and X
exhibit statistical dependency, then H(X | s) < H(X), so the

amount of information that is transmitted downwards can be

reduced by the mutual information I(X; s) between X and

s. This approach differs from methods based on distributed

source coding proposed in the literature [19] since they do

not consider the uplink channel to transmit information. It

also differs from cloud-based image coding [20], [21] since

our approach generates the reference image on the ground and

then (partially) transmits it to the satellite. Nonetheless, ideas

from these two coding approaches may also be employed in

future work to enhance the features of the proposed method.

1) generate Y

2) transmit Y
^

3) compute R = X - Y
^

4) transmit R
^

5) compute X = R + Y
^ ^^

Fig. 2: Overview of the dual link image coding scheme.

Key to achieving high coding efficiency is to obtain an s
sufficiently similar to X . As described in the next section,

this paper explores three methods to generate s. Regardless

of the method employed, this information takes the form of a

reference image denoted by Y = {Yi}. The total bit budget

of the uplink is denoted by B↑ = T · C↑, with C↑ being its

channel transmission rate. The bit-depth of Y is that of X
(i.e., DY = DX ). Y needs to be coded when SY = N ·
DY > B↑. Again, the coding process employs (transformation

and) quantization. The (transformed) samples recovered in the

satellite are computed as in (1), i.e.,

Ŷi =

(⌊
Yi

∆
Ŷ

⌋
+ δ

)
·∆

Ŷ
, (3)

with Ŷi and ∆
Ŷ

denoting the recovered samples of the

reference image and the step size, respectively. Note that in (3)

the division and floor operation are carried out in the ground

station, whereas the other operations are performed on board.

Any ∆
Ŷ

that satisfies H(Ŷ ) ≤ B↑ may be chosen.

Once Ŷ is received, the satellite computes the residual

image, referred to as R, via Ri = Xi−Ŷi. The bit-depth of the

residual is DR = DX + 1. If H(R) > B↓, then quantization

is needed to transmit R to the ground station. The coding

process (transforms and) quantizes R employing a step size

∆
R̂

so that H(R̂) ≤ B↓. Once R̂ is at the ground station, the

image is recovered employing R̂ and Ŷ . With some abuse of

notation, the samples recovered in the ground station through

the dual link image coding scheme are also referred to as X̂ .

They are computed as X̂i = Ŷi + R̂i. Fig. 2 summarizes the

steps of the dual link image coding scheme.

Using MSE as the quality metric, the objective of the

proposed scheme is to minimize the distortion between X and

X̂ while respecting the bit budget of both the uplink and the

downlink, i.e.,

min D s.t. H(Ŷ ) ≤ B↑ and H(R̂) ≤ B↓ . (4)

If the capacity of the downlink is high enough (i.e., B↓ ≥
H(R)), then the residual image can be transmitted to the

ground station without information loss, so X is recovered

losslessly. Note that this also holds for traditional approaches

when B↓ ≥ H(X). When lossless coding is employed, the
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coding system must employ reversible transformations to allow

the perfect recovery of the data.

The preliminary study carried out in [9] indicates that the

use of a dual link image coding scheme may increase the com-

pression efficiency of the coding system. Fig. 3 reports some

of the results achieved in [9]. Lossless coding performance is

appraised in Fig. 3(a). This figure reports the minimum bit

budget necessary to downlink the images with no losses, as a

function of the uplink bit budget. Specifically, the horizontal

axis is the entropy of the quantized reference image that is

transmitted upwards (i.e., H(Ŷ )), whereas the vertical axis

is the entropy of the residuals transmitted downwards (i.e.,

H(R̂)). It is worth emphasizing that even though the estimates

are quantized, lossless compression can be achieved if the

residuals are not quantized (i.e., R̂ = R). The figure depicts

the results achieved when the image samples are directly

transmitted and when they are first transformed via the 5/3

reversible wavelet transform [22]. The results indicate that the

use of the wavelet transform reduces the entropy of the signal

by approximately 2.5 bps. Regardless of whether the wavelet

transform is used or not, transmission of the reference image

increases the compression efficiency. This is seen in the figure

as the decreasing amount of data that is transmitted via the

downlink as more data are transmitted upwards. The figure

also provides the lossless compression performance achieved

by JPEG2000 when no reference image is transmitted, which

corresponds to a traditional downlink compression system.

The test reported in Fig. 3(b) evaluates lossy coding perfor-

mance (employing the 9/7 irreversible wavelet transform). To

do so, the bit budget of the uplink is fixed to a specific rate of

B↑ corresponding to 2 bps. The horizontal axis is the entropy

of the downlinked quantized residuals, whereas the vertical

axis is the quality of the image reconstructed on the ground,

reported as the Signal to Noise Ratio (SNR) [23]. Results for

the lossy mode of JPEG2000 are also reported in the figure.

As before, the results of JPEG2000 correspond to the case

where no reference image is employed, i.e., when B↑ = 0 bps.

These results suggest that the dual link image coding scheme

significantly increases the quality of the images, especially at

low rates. When the wavelet transform is employed, the gains

can be more than 8 dB compared to JPEG2000 used in the

conventional manner. Further details regarding test conditions

and images employed for these experiments can be found

in [9].

C. Synchronization aspects

The application of the dual link image coding scheme needs

to consider the synchronization between the ground station and

the satellite. In order to compute Ri, the satellite needs Ŷi,

so some kind of synchronization is required. Let us assume

that Ŷ is transmitted in J packets of data. The packets are

denoted by Φ↑
j , 0 ≤ j < J , and each contains a set of

(transformed and) quantized samples of size M = N/J .

More precisely, Φ↑
j = {Ŷj·M , ..., Ŷ((j+1)·M)−1}. Once Φ↑

j is

uploaded, the satellite decodes it, computes the corresponding

residuals, and codes them in a packet referred to as Φ↓
j that

contains Φ↓
j = {R̂j·M , ..., R̂((j+1)·M)−1}. The entropies of
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Fig. 3: (a) Entropy of image samples and wavelet coefficients

in the lossless regime, and (b) SNR vs. download rate for lossy

transmission with a fixed uplink rate of 2 bps. These figures

are reproduced from [9].

these packets are denoted by H(Φ↑
j ) and H(Φ↓

j ), respectively.

The time spent to transmit them is TΦ↑

j

= H(Φ↑
j )/C

↑ and

TΦ↓

j

= H(Φ↓
j )/C

↓. As seen in Fig. 4, packets Φ↑
j are uploaded

consecutively, with tΦ↑

j

=
∑j−1

k=0 TΦ↑

k

being the instant at

which packet Φ↑
j begins to be transmitted. On the other hand,

there may be gaps (idle periods) between the transmission of

packets Φ↓
j as discussed below.

The transmission of Φ↓
j must consider that the satellite needs

some time to decode Φ↑
j and to compute the residuals. This

computation time is referred to as cj for packet j. The time tΦ↓

j

at which Φ↓
j begins to be transmitted can then be computed

as

tΦ↓

j

= max

{
cj +

j∑

k=0

TΦ↑

k

, tΦ↓

j−1

+ TΦ↓

j−1

}
, (5)

which corresponds to the earliest instant at which the packet

is ready and the downlink is not occupied. For packets Φ↓
0

and Φ↓
5 depicted in Fig. 4, tΦ↓

j

is the instant in which packets

Φ↑

k, 0 ≤ k ≤ j have been transmitted plus the time needed to

compute Φ↓
j . This quantity is expressed by the left argument of

the max{·} operator in (5). For the other packets of the figure,

the earliest instant is when the previous packet (i.e., Φ↓
j−1) has
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Fig. 4: Illustration of the synchronization needed to transmit and process packets of data.

just completed transmission, which is expressed by the right

argument of the max{·} operator. Note that (5) assumes that

processing times cj are shorter than transmission times TΦ↑

j

.

The synchronization needed between the ground station

and the satellite may reduce the effective bit budget of both

channels from their ideal values of T · C↑ and T · C↓. As seen

in Fig. 4, there can be periods in which one or both channels

are idle. Because the transmission of packets is performed

consecutively in the uplink, this channel is idle only at the end

of transmission. The downlink is idle from the beginning of

transmission until tΦ↓

0

. Additionally, for the example shown

in the figure, the downlink is idle from the completion of

transmission of Φ↓
4 until tΦ↓

5

. The effective bit budget of the

uplink is then determined as B′↑ =
(∑

j TΦ↑

j

)
· C↑, whereas

that of the downlink is determined as B′↓ =
(∑

j TΦ↓

j

)
· C↓.

In practice, the reduction in the bit budget of the uplink is not

significant. Depending on the packets sizes, the reduction in

the downlink may be significant since idle periods such as that

occurring after Φ↓
4 in Fig. 4 may be more or less frequent.

Depending on the requirements of the scenario, the dual

link image coding scheme can use more or less packets of

data. In general, we envisage three levels of synchronization.

The first is for (transformed) samples (i.e., when J = N ).

Each sample is coded and transmitted independently from

the others. This maximizes B′↑ and B′↓. Nonetheless, it may

penalize compression efficiency since each reference sample

and residual is coded independently. At the other extreme, the

synchronization can be carried out at the level of the image

(i.e., when J = 1). This may help to reduce H(Φ↑
0) and H(Φ↓

0)
though it may halve the bit budget of both channels since tΦ↓

0

is significantly increased. When 0 < J < N , each packet may

contain a reasonable number of reference samples/residuals,

achieving a tradeoff between the size of the packets and the

bit budget of the channels. As seen in the next section, the

division of image samples into blocks (as carried out by many

coding systems) may naturally correspond to these packets

of data, simplifying the synchronization between satellite and

ground station.

We remark that the synchronization discussed above is

applicable when the satellite transmits the image captured in

the current orbit. If the satellite had enough computational

power and storage, such synchronization might be avoided by

delaying the transmission of each image by one orbit, i.e., by

sending up the reference image in the current orbit, computing

and coding the residual during the next orbit, and transmitting

it down in the next transmission slot.

III. PRACTICAL APPROACH

A. Implementation modules

The results in [9] are based on the order-zero entropy of

the data. Though being indicative, the performance of a real

system is influenced by other aspects such as the coding strat-

egy, the context formation approach, the probability model,

or the entropy coder [24]. Practical implementations of the

dual link image coding scheme may employ the engine of

any image codec. As previously stated, the implementation

proposed herein employs that of JPEG2000 [22] due to its

advanced features.

The main stages of a JPEG2000 coding engine are [22]:

1) wavelet transform, 2) bitplane and entropy coding, and 3)

codestream organization. As shown in the previous section, R
can be computed in the image domain or in the transformed

domain. The entropy-based results of Fig. 3 indicate that

higher efficiency is obtained in the transformed domain, so

our implementation uses the wavelet transform. The proposed

implementation is depicted in Fig. 5. The ground station uses

a JPEG2000 encoder to code the reference image Y . To

distinguish the wavelet transform from the subsequent stages

of JPEG2000, Fig. 5 depicts this stage separately from the

other coding modules. The codestream generated for Ŷ is

transmitted to the satellite. After (partially) decoding Ŷ , the

satellite computes the corresponding residuals employing Ŷ
and X . Note that the decoder for Ŷ in the satellite does

not detransform the data, since R is computed in the wavelet

domain. The satellite encoding module generates the packets

that are put in the codestream for R̂. Both the codestream for

Ŷ and R̂ are the inputs to the decoding modules in the ground

station, which produces the recovered image X̂ .

It is worth noting that JPEG2000 divides the transformed

image in small sets of wavelet coefficients called codeblocks.

The codeblocks are independently coded using bitplane and

entropy coding, producing a bitstream for each. These bit-

streams are truncated at a convenient length and organized

in the codestream including headers that provide ancillary

information to decode them. JPEG2000 also allows for the

formation of quality layers, though they are not employed in

our implementation. As mentioned previously, the codeblocks

provide a convenient mechanism for synchronization in the

dual link image coding scheme. Specifically, the codeblocks

serve to segment the transmission of the image into small

packets that can be processed independently by the satellite.

Section IV provides experimental evidence that this segmen-

tation helps to maximize the use of the channel capacity.
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Fig. 5: Coding modules deployed in the dual link image coding scheme.

B. Specific modifications

Two modifications have been applied to the original

JPEG2000 coding engine. The first is associated with the

bitplane coding process. For a given codeblock, the sum of

absolute residuals is computed, i.e., S =
∑

l |Xl − Ŷl|, with

| · | denoting the absolute value and the subindex l denoting

the coefficients within the codeblock. S is compared with the

absolute sum of the coefficients, i.e., S′ =
∑

l |Xl|. If S < S′,

then the residuals for that codeblock (i.e., Rl) are coded as

planned. On the other hand, if S′ < S, the original coefficients

Xl are coded for that codeblock. This conditional is performed

to mitigate the effects of meteorological events such as clouds.

When such events occur, the reference and the captured images

may be significantly different within certain spatial regions.

In such cases, coding Rl typically produces a larger bitstream

than that for Xl. Performing this conditional on a codeblock-

by-codeblock basis is ideal to take into account that there

often exist spatial regions with meteorological events and

others without. Evidently, the use of this conditional requires

signaling which type of data are coded in each codeblock,

though this does not penalize coding performance since it

only requires one bit per codeblock. We note that computing

the sum of absolute differences is a low-complexity technique

that is employed only once per codeblock (unlike in motion

estimation and disparity maps for video coding [25], [26],

where it is employed repetitively in a search).

The second modification applied in our implementation is

to skip arithmetic coding of the refinement bits coded with

context 17. This context is employed in JPEG2000 for all

refinement bits of each coefficient except the first [22]. It has

been shown [16], [17], [27] that such bits are nearly random,

so entropy coding does not provide coding gains, especially

when applied in remote sensing images with high bit-depths.

The next section provides experimental evidence of this fact.

JPEG2000 defines five codestream progression orders [22].

A progression order for a JPEG2000 file defines the order

in which JPEG2000 packets are stored in the file. In this

work, packets are transmitted in an order chosen to maximize

channel utilization. Once the packets are received, they can be

stored in any of the standard JPEG2000 progression orders.

As described in conjunction with Fig. 4, the uplink is

fully occupied (except at the end of the transmission time)

because Φ↑
j are transmitted consecutively. The downlink, on

the other hand, may experience periods in which no data are

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0

0

0c 1c 2c 3c 4c 5c 6c 7c 8c 9c

Fig. 6: Illustration of the intended synchronization between

the ground station and the satellite.

transmitted (e.g., the gap between Φ↓
4 and Φ↓

5 in the figure).

Our implementation transmits the data in an order so that

these idle moments are minimized. More precisely stated, the

data are transmitted so that tΦ↓

j

is (almost) always computed

via the left argument of the max{·} operator in (5). The

idea is to transmit the shortest codeblock bitstreams at the

beginning of the transmission period T . This also serves to

shorten the time that the downlink is idle prior to the trans-

mission of the first packet. Generally, the shortest bitstreams

correspond to codeblocks that are in the largest resolution

levels of the wavelet decomposition, i.e., in those levels that

contain the finest details of the image. Typically, the downlink

packets for these subbands are significantly larger than the

corresponding uplink packets due to the higher rates (i.e.,

fidelity) typically employed in the downlink. Accordingly, our

implementation transmits the bitstreams of the codeblocks

in the largest resolution levels of all components first, then

those within the next resolution level, and so on. Fig. 6

illustrates the synchronization that is intended to be achieved

with this strategy. As seen in the experimental results section,

this transmission order almost eliminates idle periods in the

downlink.

C. Generation of the reference image

The performance achieved by the proposed method depends

both on the amount of data uploaded to the satellite and the

mutual information between the reference and the captured

image. This work explores three strategies to generate the

reference image Y . The first uses the most recent previous

image captured of the same area. As seen in Fig. 11 and 13,

consecutive images tend to be similar except when meteoro-

logical events occur. This similarity is due to the images being

captured during similar times of the year, in which lakes/rivers

and vegetation present similar features. We remark that most

EO satellites are positioned in sun-synchronous orbits, which



7

is a special type of polar orbit in which the repeat cycle covers

the same area of the Earth at the same time of the day. This

results in nearly identical illumination, which further increases

the temporal correlation of the images. When meteorological

events occur, the previous image may not be similar to that

captured. Even so, this strategy still employs the most previous

image so that the results provided below cover a wide range

of favorable and non-favorable conditions for the proposed

system.

The second strategy employs all available images to com-

pute an average in a sample-by-sample fashion. The experi-

ments described below employ a temporal series covering one

year. In practice, a full year of images prior to X would be

employed in the computation of Y . However, due to the data

available for our experiments, Y is computed here with all

images of the series except the one that is being compressed,

which is sufficiently valid for evaluation purposes. When data

from multiple years are available, the reference image could be

computed as the average of images only from the same period

of the year since images captured during different seasons are

commonly different due to the meteorology.

The last strategy employs the correlation between images. In

Fig. 12(a) and 14(a) the (Pearson product-moment) correlation

coefficient is depicted for all image pairs within each temporal

series. Both the vertical and horizontal axes of the figures

correspond to an index of an image of the series in chrono-

logical order. Each colored cell in the figure represents the

correlation coefficient between the two corresponding images,

depicted with a blue-to-red color map. As expected, the figure

is symmetric about the diagonal, and all cells on the diagonal

have a correlation coefficient of 1. The results in these figures

indicate that some image pairs in a series are more highly

correlated than others. In general, they tend to be images with

few or no meteorological events (see, for instance, the images

captured on 3/12/15, 3/28/15, and 4/13/15 from the series

“Barcelona” and the images captured on 3/27/15, 4/12/15, and

4/28/15 from the series “Salt Lake City”).

The correlation coefficients discussed above were computed

using all samples (of all components) of the corresponding im-

age pairs. However, the correlation can vary significantly from

component to component. This is illustrated in Fig. 12(b,c)

and 14(b,c), which report the correlation coefficient for com-

ponents 6 and 9 from all image pairs. Accordingly, the third

strategy proposed to generate Y may utilize components

from different images within the temporal series. Specifically,

for each component of the target image X , the reference

component is chosen as the component among all images

(excluding X) having the highest correlation with the target

component. Evidently, this strategy can not be applied in

practice since the correlation can only be computed when both

images are available. It is employed herein due to its interest

from a theoretical perspective, showing that the correlation is

a good metric in this scheme. It could be employed in future

work to aid other strategies to generate the reference image,

or to analyze the performance of the system depending on

the correlation of the images. Experiments indicate that the

use of other metrics, such as mutual information, do not yield

increased performance.

IV. EXPERIMENTAL RESULTS

The dual link image coding scheme is evaluated with the

two temporal series depicted in Figs. 11 and 13, which have a

total of 45 images and more that 15 GB of data. The temporal

series are respectively referred to as “Barcelona” and “Salt

Lake City” since they cover wide areas around these cities in

Spain and the USA. The series have all images captured by

the Landsat 8 satellite during a period of a year. “Barcelona”

corresponds to the orbit WRS-2 path 198, row 31 and the

images are all those available in [10] from October 10, 2014

to October 6, 2015.1 “Salt Lake City” corresponds to the orbit

WRS-2 path 38, row 32 and the images are all those available

in [10] from November 3, 2014 to October 21, 2015. All

images in both series are 4096×4096, have 11 components

and a bit-depth of 16 bps. The raw size of each image is 352

MB. As seen in the figures, the images are from regions with

different types of vegetation, mountains, urban areas, lakes,

and seas, and have abundant meteorological events, including

snow and clouds.

Our implementation is based on the free JPEG2000 codec

BOI [28].2 The coding parameters are: codeblocks of size

64×64, 5 levels of wavelet decomposition, and a single quality

layer. Results for lossless compression utilize the reversible

CDF 5/3 wavelet transform, whereas results for lossy com-

pression utilize the irreversible CDF 9/7 wavelet transform.

No transform along the spectral axis is applied to simplify

the evaluation and because these images have few spectral

components, so the coding gains when such a strategy is

employed are limited [11], [13]. Inter-component redundancy

might be exploited to enhance coding performance if the

proposed method were employed to code hyperspectral images

with hundreds of components.

The first test evaluates lossless performance. The reported

results are the minimum channel capacity needed in the

downlink to transmit the images losslessly. If the downlink

capacity were lower than that, then only lossy regimes could

be employed (see results below). Fig. 7 depicts the results

obtained for three representative images of each series. In

this test, Y is the previous image. The leftmost charts in

Fig. 7 are from days in which the current and the previous

image have no meteorological events; the charts in the middle

are from days in which both the reference and the captured

image have some clouds; and the rightmost charts are from

days in which X or Y is completely clouded. The results are

reported under the same conditions as described with respect

to Fig. 3(a). The results indicate that, when no meteorolog-

ical events occur, the proposed method, labeled as “DLIC,”

increases the coding efficiency by up to 0.8 bps compared

to a conventional strategy, which is almost a 10% increase

in coding efficiency. When meteorological events occur, these

coding gains decrease according to the dissimilarity between

the reference and the captured images. Note that the efficiency

of our implementation increases as more data are uploaded,

1Note that there is no image on 1/23/15 since it was not available.
2BOI is a compliant implementation of the JPEG2000 standard (ISO/IEC

15444-1). Its coding performance is the same as that achieved by other codecs
such as Kakadu or Jasper.
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Fig. 7: Evaluation of the lossless coding performance for three images of each temporal series. The DLIC scheme employs

the previous image as the predictor.

though it saturates around 3 bps for most images. When the

reference image is completely different from the acquired (as

it may happen when clouds cover the whole image), or when

no data are uploaded, the efficiency of “DLIC” is virtually

the same as that achieved by the conventional JPEG2000

system (that does not use the uplink). The slight increase in

the efficiency of “DLIC” with respect to JPEG2000 seen in

Fig. 7(c) and (f) is due to the skipping of the entropy coding

for context 17 as described before.

The second test evaluates lossy performance. Fig. 8 depicts

the results obtained for the same images as in Fig. 7 also

using the previous image for Y . The results are depicted

as described in conjunction with Fig. 3(b), setting the bit

budget of the uplink to 0.1, 0.5, 1, 2, and 4 bps. When Y
and X are similar (leftmost charts), the proposed method

significantly increases the efficiency of the coding system for

all downloading rates. The increase in efficiency depends on

the upload bit budget, achieving gains of up to 8 dB. When

the images are completely covered with clouds (rightmost

charts), the efficiency of the system is virtually the same as that

of a conventional method. The gains achieved with partially

clouded images vary depending on the clouded areas, with

coding gains of up to 3 dB.

The next test evaluates the performance achieved when

using the three aforementioned strategies to generate Y . Fig. 9

reports the results for lossless compression when coding one

image of each series. The selected image for “Barcelona” is

one for which the immediately previous image is completely

covered by clouds, whereas that for “Salt Lake City” is only

partially covered with clouds. The results of Fig. 9 indicate

that the use of the previous image as Y does not achieve

competitive results for such images. The strategy that averages

all available images achieves higher efficiency, whereas the

strategy based on the correlation coefficient achieves the best

results reported, though is not practical as explained before.

Evidently, the gains depend on the intensity of the meteorolog-

ical events as seen in the larger differences among strategies

depicted in Fig. 9(a). We also note that none strategy works

well when coding images that are covered by clouds (not seen

in Fig. 9) since, to the best of our knowledge, they can not

be predicted with accuracy. In such case “DLIC” achieves the

same performance as a traditional approach.

Fig. 10 reports the lossy coding results for the same images

as used in Fig. 9. Three charts per image are depicted, each

corresponding to a different bit budget of the uplink. Again,

for each uplink rate, the Y that achieves the highest efficiency

is that generated via the correlation coefficient, especially for

“Barcelona.” These results suggest that the use of the average

image is most effective when the previous image has promi-

nent meteorological events. Otherwise the previous image is

adequate. The results achieved by the strategy that employs the

correlation coefficient are slightly better, indicating that such

a metric suits this coding scheme. This may serve in future

work to devise more efficient strategies and/or for theoretical

studies.

Table I and Table II report the results achieved for the

two series and for the three strategies that generate Y , for

lossless and lossy compression respectively. The results are

reported on average for all images of the series. For lossless

compression, the most competitive results for “Barcelona” are
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Fig. 8: Evaluation of the lossy coding performance for three images of each temporal series. The DLIC scheme employs the

previous image as the predictor. The upload rate is reported between parentheses.
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Fig. 9: Evaluation of the lossless coding performance for one image of each temporal series. The DLIC scheme employs three

different predictors (reported between parentheses).

achieved when Y is the previous image, whereas for “Salt

Lake City” the most competitive results depend on the upload

rate, though the strategy that averages all images is slightly

superior to the others. This indicates that, on average, the

previous image is already a good reference for X . The strategy

that employs the correlation coefficient achieves virtually the

same performance as the respective best strategy in each

case. On average, the coding gains for lossless compression

are about 5% with respect to a conventional method. For

comparison, Table I also reports the results achieved by the

CCSDS standard 123.0-B-1 [3]. Like with the other methods

evaluated, this standard is employed so that inter-component

redundancy is not exploited. The coding parameters are set

as: sample adaptive mode, neighbor oriented predictor, and

full local sum. The results indicate that the performance of

this CCSDS standard is higher than that of JPEG2000, though

lower than that achieved by the proposed scheme.

The results of Table II for lossy compression suggest similar

conclusions to those for the lossless mode. The previous image

is the best predictor for “Barcelona,” whereas the average

strategy is slightly better than the others for “Salt Lake City”

though in this case there is some dependency on the upload

and download rate. Again, the correlation coefficient strategy

achieves (practically) the same SNR as the best strategy in

most tests. The average gains obtained for lossy compression

vary significantly depending on the upload rate. For 0.1, 1, and
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Fig. 10: Evaluation of the lossy coding performance for one image of each temporal series. The DLIC scheme employs three

different predictors (reported between parentheses). The upload rate is reported in the caption of each figure.

TABLE I: Evaluation of the lossless coding performance for

all images of each temporal series. The required average

download rate is reported for each coding scheme, expressed

in bps.

upload rate (in bps): 0.1 0.5 1 2 4

B
ar

ce
lo

n
a

JPEG2000 9.21 9.21 9.21 9.21 9.21

CCSDS 123.0-B-1 9.11 9.11 9.11 9.11 9.11

DLIC (previous) 9.02 8.98 8.93 8.87 8.82

DLIC (average) 9.02 8.99 8.96 8.93 8.92

DLIC (correlation) 9.02 8.98 8.95 8.89 8.86

S
al

t
L

ak
e

C
it

y JPEG2000 8.99 8.99 8.99 8.99 8.99

CCSDS 123.0-B-1 8.92 8.92 8.92 8.92 8.92

DLIC (previous) 8.81 8.78 8.75 8.70 8.67

DLIC (average) 8.81 8.77 8.74 8.70 8.68

DLIC (correlation) 8.81 8.78 8.75 8.70 8.67

4 bps of upload rate, the gains are around 0.3, 1, and 2 dB,

respectively, with variations depending on the image and the

download rate. If the captured image has heavy meteorological

events, the dual link image coding scheme does not provide

enhancements, though it does no worse than a conventional

system. When the captured image has no meteorological

events, the proposed method significantly increases the coding

performance.

The last test evaluates the efficiency with which the down-

link is used. Table III reports the results, which are expressed

as the percentage of effective transmission time, given by

B′↓/B↓ · 100%. The results are averaged over all images of

each series. As described previously, the upload transmission

is constructed to minimize idle moments in the downlink –

assuming that the channel transmission rate of the downlink is

higher than that of the uplink. The results of Table III indicate

that the effective utilization of the downlink is nearly 100%

when this assumption is valid. Only when the transmission

rate of the downlink is smaller than that of the uplink (third

rightmost column in Table III), the effective bit budget of

the downlink is reduced around 10%. In practice, such a

configuration should not occur and, if it does, a conventional

transmission order for JPEG2000 might then be more appro-

priate. The effective utilization of the uplink (i.e., B′↑/B↑) is

virtually 100% for all tests, and is not reported herein.

V. CONCLUSIONS

Typically, image coding communication systems are devised

to compress an image when all information is available at

the sender side. The compressed image is transmitted to the

receiver employing a single channel of communication. In

many systems, however, there are two channels of communica-

tion with full duplex capacity. Conventional methods employ

only one of these channels while the other is idle. This work

introduces a coding system that utilizes both channels of

communication. It is called dual link image coding. Its main

insight is to transmit some reference information from the

receiver to the sender at the same time that the sender is coding

and transmitting the image. This reference information is
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TABLE II: Evaluation of the lossy coding performance for all images of each temporal series. The results are reported as

average SNR (in dB) for each coding scheme.

upload rate (in bps): 0.1 1 4

download rate (in bps): 0.1 0.5 1 2 4 0.1 0.5 1 2 4 0.1 0.5 1 2 4

B
ar

ce
lo

n
a

JPEG2000 29.12 36.10 41.20 49.46 63.55 29.12 36.10 41.20 49.46 63.55 29.12 36.10 41.20 49.46 63.55

DLIC (prev.) 29.46 36.21 41.29 49.59 63.85 30.80 37.48 42.22 50.27 64.43 30.97 38.05 43.13 51.28 65.01

DLIC (av.) 29.43 36.21 41.29 49.59 63.83 30.47 37.06 41.89 50.07 64.24 30.58 37.39 42.36 50.43 64.50

DLIC (corr.) 29.44 36.21 41.30 49.60 63.83 30.65 37.25 42.01 50.17 64.36 30.80 37.74 42.81 50.96 64.91

S
al

t
L

ak
e

C
it

y JPEG2000 31.21 38.61 43.69 51.54 65.04 31.21 38.61 43.69 51.54 65.04 31.21 38.61 43.69 51.54 65.04

DLIC (prev.) 31.42 38.68 43.75 51.63 65.30 32.51 39.61 44.38 52.07 65.75 32.64 40.09 45.07 52.72 66.27

DLIC (av.) 31.56 38.78 43.84 51.70 65.31 32.63 39.71 44.49 52.16 65.75 32.80 40.19 45.14 52.70 66.17

DLIC (corr.) 31.47 38.76 43.84 51.70 65.31 32.58 39.65 44.39 52.09 65.75 32.74 40.19 45.18 52.79 66.27

TABLE III: Evaluation of the efficiency with which the downlink is utilized, expressed as B′↓/B↓ · 100%.

upload rate (in bps): 0.5 1 2

download rate (in bps): 1 2 4 1 2 4 1 2 4

“Barcelona” 99.85% 99.98% 99.99% 98.42% 99.97% 99.98% 91.24% 98.60% 99.84%

“Salt Lake City” 99.25% 99.98% 99.99% 97.06% 99.96% 99.98% 89.59% 98.03% 99.80%

correlated with the image and would not normally be available

at the sender due to storage restrictions or other factors. Once

at the sender, the reference information helps to compress the

image resulting in higher coding efficiency.

The dual link image coding scheme is evaluated in this work

for the transmission of Earth observation images captured by

satellites with polar orbits. Our practical approach employs

the coding engine of the well-known compression standard

JPEG2000. Data from the Landsat 8 satellite are employed

to evaluate the performance of the method. Experimental

results indicate that practical implementations of the dual link

coding scheme can significantly increase the efficiency of

compression systems for both lossy and lossless regimes. The

more correlated the reference information is with the acquired

image, the higher the efficiency achieved. The proposed system

is never inferior to conventional schemes. Future work may

propose the use of the dual link image coding scheme with

CCSDS standards and/or employing techniques of distributed

and cloud-based image coding.
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(a) 10/3/14 (b) 10/19/14 (c) 11/20/14 (d) 12/6/14 (e) 12/22/14 (f) 1/7/15

(g) 2/8/15 (h) 2/24/15 (i) 3/12/15 (j) 3/28/15 (k) 4/13/15 (l) 4/29/15

(m) 5/15/15 (n) 5/31/15 (o) 6/16/15 (p) 7/2/15 (q) 7/18/15 (r) 8/3/15

(s) 8/19/15 (t) 9/4/15 (u) 9/20/15 (v) 10/6/15

Fig. 11: Temporal image series “Barcelona.”
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Fig. 12: Correlation between the images of the temporal series “Barcelona.”



14

(a) 11/3/14 (b) 11/19/14 (c) 12/5/14 (d) 12/21/14 (e) 1/6/15 (f) 1/22/15
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(s) 8/18/15 (t) 9/3/15 (u) 9/19/15 (v) 10/5/15 (w) 10/21/15

Fig. 13: Temporal image series “Salt Lake City.”
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Fig. 14: Correlation between the images of the temporal series “Salt Lake City.”


