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Distortion Estimators for Bitplane Image Coding
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Abstract—Bitplane coding is a common strategy used in
current image coding systems to perform lossy, or lossy-to-
lossless, compression. There exist several studies and applications
employing bitplane coding that require estimators to approximate
the distortion produced when data are successively coded and
transmitted. Such estimators usually assume that coefficients are
uniformly distributed in the quantization interval. Even though
this assumption simplifies estimation, it does not exactly corre-
spond with the nature of the signal. This work introduces new
estimators to approximate the distortion produced by the suc-
cessive coding of transform coefficients in bitplane image coders,
which have been determined through a precise approximation
of the coefficients’ distribution within the quantization intervals.
Experimental results obtained in three applications suggest that
the proposed estimators are able to approximate distortion with
very high accuracy, providing a significant improvement over
state-of-the-art results.

Index Terms—Distortion estimation, bitplane coding, image
coding, rate-distortion optimization, JPEG2000.

I. INTRODUCTION

S INCE the seminal work of Mallat [1] introducing the

use of the wavelet transform for the coding of images,

and of Shapiro [2] introducing the bitplane coding strategy

to successively refine image distortion in wavelet image

coding, most of the proposed lossy image coding systems

encode wavelet coefficients in a bitplane by bitplane basis.

Let [tK−1, tK−2, ..., t1, t0] be the binary representation for

an integer v which, in the discussion below, denotes the

magnitude of the index obtained by quantizing a wavelet

coefficient y, and with K denoting a sufficient number of

bits to represent all coefficients. Bitplane coding strategies

generally define a bitplane j as the same bit tj from all

coefficients, and encode the image from the most significant

bitplane K − 1 to the lowest bitplane 0. The first non-null

bit of a coefficient, i.e., that ts = 1 such that ∄ s′ > s with

ts′ = 1, is called the significant bit of the coefficient. The

remaining bits tr, r < s are called refinement bits.

A valuable advantage of bitplane image coding is that

it can generate a quality progressive bitstream that can be

successively transmitted and decoded at increasing bitrates.

When the bitstream is truncated, wavelet coefficients may not

be fully transmitted, and thus the decoder carries out a de-

quantization operation consisting of assigning a reconstruction
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value ŷ that lies somewhere in the corresponding quantization

interval. If tP denotes the last transmitted bit of v, in the

case of a deadzone scalar quantization with step size Φ, the

reconstruction procedure is expressed as

ŷ =

{

0 if P > s

(v̂ + δ) · Φ2P if P ≤ s
, (1)

where v̂ = [tK−1, tK−2, ..., tP ], and δ ∈ [0, 1) adjusts

the reconstruction value ŷ within the quantization interval

[Φ2P ,Φ2P+1).
The most common approach to carry out the reconstruc-

tion procedure is to set coefficient ŷ to the center of the

quantization interval, for both significance and refinement

coding, which corresponds to setting δ = 1/2. Mid-point

reconstruction satisfies the minimax criterion and minimizes

mean squared error if the wavelet coefficients are uniformly

distributed within the quantization interval. It has been sug-

gested [3, Ch. 10.5.1], [4] that other δ parameters might better

represent the signal, and that the distribution of wavelet coef-

ficients can be modeled by a generalized Laplacian distribu-

tion [5]. However, this issue has not been carefully addressed

in the context of bitplane coding, and it has implications that

go beyond the reconstruction procedure carried out in the

decoder.

Some encoders, for instance, employ approximations of

the image distortion to optimize the construction of the

codestream [6], while other applications need to estimate the

distortion of the image after coding [7]. When the distortion

metric is Mean Squared Error (MSE), image distortion is ap-

proximated as D =
∑

k[Gb ·(y[k]− ŷ[k])2], with y[k] and ŷ[k]
respectively denoting transform coefficients and their quan-

tized representation after transmission, and with Gb denoting

the energy gain factor of subband b to which the coefficients

belong. When the original coefficients y[k] are not available,

or when computational resources are restricted, distortion may

be estimated rather than actually computed. One strategy is

to estimate the initial squared error and the squared error

decreases that can be expected from coding significance and

refinement bits. Such an approach was proposed by Li and

Lei [8] to determine a rate-distortion optimized scanning order

that could be implicitly followed by both the encoder and

the decoder. In [9], an estimator was used to adapt the Set

Partitioning In Hierarchical Trees (SPIHT) [10] to memory

constrained environments, and in [4] image distortion was

estimated to protect real-time image and video transmissions.

Within the framework of JPEG2000, the a priori computation

of distortion-rate slopes using expected distortion decreases

helps to reduce the computational load of the encoder [11],

and to model the rate-distortion characteristics of codeblocks
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for transcoding purposes [12]. Several other studies and ap-

plications have employed mid-point reconstruction when de-

coding the image, estimating distortion, or optimizing coding

procedures.

The main purpose of the research described here is to accu-

rately determine the squared error and squared error decrease

expected from significance and refinement bits considering a

probability distribution model that better captures the nature

of the signal. We show that, through the proposed estimators,

distortion can be approximated with very high accuracy. This

has several practical applications: rate-distortion models can be

better adjusted, the computational complexity of implementa-

tions can be reduced, and transcoding procedures can obtain

essentially the same performance whether or not the original

image is available. We restrict our attention to three scenarios

in which the accuracy of estimators is evaluated for the 9/7

discrete wavelet transform (DWT), and the 5/3 integer wavelet

transform (IWT). Our conclusions can be easily extended to

other applications and wavelet-based approaches.

This paper is structured as follows: Section II formulates

the expected squared error and squared error decrease per

coded bit in a general manner, and proposes the use of an

accurate probability distribution conceived from experimental

evidence; Section III describes three applications in which the

estimators can be employed to approximate image distortion;

and Section IV assesses the performance of the proposed

approach through experimental results. The last section draws

conclusions.

II. EXPECTED SQUARED ERROR PER CODED BIT

A. General formulation

For notational simplicity, we assume that coefficients are

normalized by the quantization step size Φ in what follows.

Let us first consider the squared error produced by those

coefficients that become significant at bitplane P ∗. If x denotes

the magnitude of such a coefficient, i.e., 2P
∗

≤ x < 2P
∗+1,

and p(x) denotes the conditional probability density function

for x, the initial squared error Dsig
P∗ of such coefficients can

be determined as

Dsig
P∗ =

∫ 2P
∗+1

2P∗

p(x) x2 dx. (2)

Following the same notation, we determine the squared

error decrease that can be expected when such coefficients

are encoded to bitplane P ∗ as

△Dsig
P∗ =

∫ 2P
∗+1

2P∗

p(x)

[

x2 −
(

x− (2P
∗

+ δP∗ · 2P
∗

)
)2
]

dx,

(3)

where δP∗ stands for the reconstruction factor δ used at

bitplane P ∗. The distortion decrease in this expression is

determined as the squared error before coding bit P ∗, minus

the squared error after coding bit P ∗. Since coefficients that

become significant in bitplane P ∗ are recovered as zero for

previous bitplanes, △Dsig
P = 0, P > P ∗.

When assuming a uniform probability distribution within

the significance interval, p(x) = 1/2P
∗

and the δP∗ value

that maximizes the average distortion decrease is at the center

of the interval, i.e., δP∗ = 1/2. Substituting δP∗ = 1/2 and

p(x) = 1/2P
∗

in (2) and (3) results in Dsig
P∗ = 7/3 · 22P

∗

and

△Dsig
P∗ = 9/4 · 22P

∗

, which corresponds to [8], [9], and [4].

The squared error after the significance bit is transmitted is

Dref
P∗−1 =

∫ 2P
∗+1

2P∗

p(x)
(

x− (2P
∗

+ δP∗ · 2P
∗

)
)2

dx, (4)

and the squared error decrease expected for refinement coding

at bitplane P ∗ − 1 is determined according to

△Dref
P∗−1 =

∫ 1.5·2P∗

2P∗

p(x)

[

(

x− (2P
∗

+ δP∗ · 2P
∗

)
)2

−

(

x− (2P
∗

+ δP∗−1 · 2
P∗−1)

)2
]

dx +

∫ 2P
∗+1

1.5·2P∗

p(x)

[

(

x− (2P
∗

+ δP∗ · 2P
∗

)
)2

−

(

x− (2P
∗

+ 2P
∗−1 + δP∗−1 · 2

P∗−1)
)2
]

dx ,

(5)

where the first and the second integrals denote the average

distortion decrease when the refinement bit is 0 and 1, respec-

tively. Note that with some abuse of notation, the densities may

be different in the two integrals. In each integral, the distortion

decrease is determined as the squared error after coding the

significant bit minus the squared error once the refinement bit

is transmitted.

When mid-point reconstruction is used and a uniform

distribution is assumed, expressions (4) and (5) simplify to

Dref
P∗−1 = 1/12 · 22P

∗

and △Dref
P∗−1 = 1/16 · 22P

∗

. More

generally, Dref
P = 1/3 ·22P and △Dref

P = 1/4 ·22P , P < P ∗,

which also corresponds to [8], [9], and [4].

In addition to considering Dsig
P and Dref

P when estimating

the image distortion (see below), it is worth considering the

distortion produced by coefficients with null contributions for

the given quantizer step size, i.e., the distortion caused by co-

efficients x ∈ [0, 1). Such distortion is denoted as Dnull in this

work, and is determined according to Dnull =
∫ 1

0
p(x) x2dx.

In the case of the uniform distribution, this simplifies to

Dnull = 1/3.

B. Determination of the probability distribution

Assuming a uniform probability distribution within the

quantization intervals enormously simplifies the expressions

above. However, the parameters δP and p(x) should ideally

be chosen to reflect the actual nature of the signal.

The primary objective when reconstructing coefficients is

to minimize the average distortion between the dequantized

coefficients and the original ones. This is ideally achieved
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(a) Experimental results (9/7 DWT)
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(b) Experimental results (5/3 IWT)
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Fig. 1: Experimental results in (a),(b) depict the estimated δP,b parameter for the “Portrait” image (gray scale, size 2048×2560, 5

wavelet decomposition levels) when using the DWT and IWT respectively. (c) depicts the resemblance to exponential functions.

Horizontal axes represents the bitplane number normalized to [1, 0].

when, for instance, coefficients that have to be recovered

within the quantization interval [2P , 2P+1) are reconstructed

as the centroid of this interval. If #C stands for the number of

coefficients that have non-null contributions just after bitplane

P is transmitted, i.e., those x ≥ 2P , the centroid IP,b of

subband b at bitplane P can be estimated as

IP,b =
1

#C

∑

x∈b

(

x− 2P ·
⌊ x

2P

⌋)

∀ x ≥ 2P , (6)

where ⌊·⌋ denotes the floor operation. Note that no distinction

between significant and refinement coefficients is made since

experimental evidence suggests that no substantial gains are

achieved in doing so.

We have estimated the centroids for the “Portrait” image

of the ISO 12640-1 corpus using 5 levels of the 9/7 DWT.

To ease the visual interpretation, instead of depicting IP,b

for each subband and bitplane, Figure 1(a) depicts the cor-

responding values of the reconstruction factor, calculated as

δP,b = IP,b/2
P , with the bitplane number P normalized to

the nominal range, i.e., we plot P/Kb on the horizontal axis,

Kb denoting the number of bitplanes needed to represent the

coefficients in subband b. Except for the lowest frequency

subband (not depicted in the graphs), all subbands have similar

statistical centroids, which are significantly different from 1/2,

especially for the higher bitplanes. Similar results are obtained

for other images of the corpus.

Taking δP,b as an indicator of the actual probability distribu-

tion within the quantization interval, it is clear that different

probability distributions rather than the uniform one should

be considered. The objective is to unbalance the probability

of coefficients within the quantization interval, especially for

the highest bitplanes. We assume that the probability density

function (pdf) takes the lineal form p′(x) = c+ α · x, though

others functions are valid and achieve similar results. We

also assume that the centroid occurs at a point within the

quantization interval at which the accumulated probability of

coefficients is 1/2. More precisely
∫ 2P+δ·2P
2P

p′(x) dx = 0.5.

The solution to the linear system

0

1/2
P

1/2
P-1

1/2
P-2

2
P

1.5 * 2
P

2
P+1

p
’(
x
)

x

δ=0.125
δ=0.1875
δ=0.25
δ=1 - sqrt(2)/2
δ=3/8
δ=1/2
δ=5/8
δ=sqrt(2)/2
δ=0.75
δ=0.8125
δ=0.875

Fig. 2: Probability density functions calculated for different

values of the parameter δP .



















∫ 2P+δP ·2P

2P
(c+ α · x) dx = 0.5

∫ 2P+1

2P
(c+ α · x) dx = 1

, (7)

with respect to variables c and α, allows us to express p′(x)
as a function of bitplane P and parameter δP as

p′(x) =
δP · 21−P − 3 · 2−1−P + (δP )

2 · 2−P

(δP )2 − δP
−

2−2P (2 · δP − 1)

(δP )2 − δP
· x

. (8)

When δP = 1/2, expression (8) simplifies to p′(x) = 1/2P .

As shown in Figure 2, when δP 6= 1/2, p′(x) slopes down

or up balancing the probabilities of coefficients within the

quantization interval. As seen in Figure 2, when δP < 1−
√
2
2

or δP >
√
2
2 , p′(x) becomes the max between the lineal form

and 0.

Preferably, the values for Dsig
P , △Dsig

P , Dref
P , and △Dref

P

are determined through the estimated centroids from each

individual image, as described above. However, this may not

be practical. A simple yet effective strategy is to approximate
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the centroids through some function, since our experience

suggests that a coarse estimation, roughly approximating low

reconstruction factors for the highest bitplanes and high re-

construction factors for the lowest bitplanes, is sufficient to

approximate distortion with high accuracy (see Section IV).

Figure 1(c) depicts, for example, some exponential functions

that resemble the experimentally calculated values for δP,b.

Since all subbands have similar statistical centroids, a single

function can be employed for all of them. Experiments in

Section IV approximate δP,b through

δ′P,b =
log10

(

Kb−P
Kb

)

5
+ 0.475 , (9)

except for the lowest frequency subband, which has mid-point

centroids. Variations on this function, or even the consideration

of different functions for each subband, do not change results

significantly.

C. Other considerations

A practical advantage derived from using a function to

approximate the values of δP,b is that the distortion and dis-

tortion decrease expected per coded bit can be pre-computed

for different values of Kb, and used through lookup tables

in implementations. Table I depicts, for example, the lookup

table of the squared error and the squared error decrease

for significance and refinement coding when Kb = 8. For

comparison purposes, this table1 also shows the estimators for

δ = 1/2. Another practical advantage derived from using a

function to approximate the values of δP,b is that the decoder

can use pre-computed lookup tables containing the estimated

value for the non-transmitted bits of the coefficient, thus the

reconstruction procedure can be carried out through a bitwise

operation joining transmitted and non-transmitted bits. This

operation has negligible computational costs.

Regarding the use of the IWT, the decoder must take

into account that when integer transformations are employed,

wavelet coefficients are represented in a discrete space, and

the reconstruction procedure must carry out a rounding oper-

ation [13]. Furthermore, estimators need to consider the fact

that the quantization interval is [2P , 2P+1 − 1] rather than

[2P , 2P+1). To the best of our knowledge, this issue has not

previously been studied in the context of distortion estimation.

As we will see in Section IV, it may have a significant impact.

Even though the approach described above still holds, the

expressions need to be re-written to consider the discrete space

as

D̂sig
P∗ =

2P
∗+1−1
∑

x̂=2P∗

p̂(x̂) x̂2 , (10)

△D̂sig
P∗ =

2P
∗+1−1
∑

x̂=2P∗

p̂(x̂)

[

x̂2 −
(

x̂− R(2P
∗

+ δP∗ · 2P
∗

)
)2
]

,

(11)

1Extended lookup tables can be found at http://www.deic.uab.es/∼francesc

TABLE I: Squared error and squared error decrease expected

at each bitplane from significance and refinement bits.

Dsig

P
Dref

P

P δ = 1
2

δ′P,b (according exp. (9)) δ = 1
2

7 38229.33 30120.28 δ′ = 0.294

6 9557.33 8256.06 δ′ = 0.355 946.45 1365.33

5 2389.33 2152.14 δ′ = 0.389 301.79 341.33

4 597.33 552.40 δ′ = 0.415 80.34 85.33

3 149.33 140.76 δ′ = 0.434 20.64 21.33

2 37.33 35.72 δ′ = 0.450 5.23 5.33

1 9.33 9.04 δ′ = 0.463 1.32 1.33

0 2.33 2.28 δ′ = 0.475 0.33 0.33

△Dsig

P
△Dref

P

P δ = 1
2

δ′P,b (according exp. (9)) δ = 1
2

7 36864 29173.83 δ′ = 0.294

6 9216 7954.26 δ′ = 0.355 616.77 1024

5 2304 2071.79 δ′ = 0.389 215.98 256

4 576 531.76 δ′ = 0.415 58.83 64

3 144 135.53 δ′ = 0.434 15.27 16

2 36 34.39 δ′ = 0.450 3.89 4

1 9 8.71 δ′ = 0.463 0.98 1

0 2.25 2.20 δ′ = 0.475 0.25 0.25

D̂ref
P∗−1 =

2P
∗+1−1
∑

x̂=2P∗

p̂(x̂)
(

x̂− R(2P
∗

+ δP∗ · 2P
∗

)
)2

, (12)

and

△D̂ref
P∗−1 =

1.5·2P∗−1
∑

x̂=2P∗

p̂(x̂)

[

(

x̂− R(2P
∗

+ δP∗ · 2P
∗

)
)2

−

(

x̂− R(2P
∗

+ δP∗−1 · 2
P∗−1)

)2
]

+

2P
∗+1−1
∑

x̂=1.5·2P∗

p̂(x̂)

[

(

x̂− R(2P
∗

+ δP∗ · 2P
∗

)
)2

−

(

x̂− R(2P
∗

+ 2P
∗−1 + δP∗−1 · 2

P∗−1)
)2
]

,

(13)

where R(·) denotes the rounding operation, and p̂(x̂) =
∫ x̂+1

x̂
p′(x) dx is an estimate of the probability that the

coefficient takes the value x̂. In the case of the IWT, Dnull is

obviously not relevant. As depicted in Figures 1(a) and 1(b),

statistical centroids are similar for both the DWT and the IWT

except for the lowest bitplane. Thus, experiments carried out

in Section IV use equation (9) for centroids estimated in the

case of both transforms. The one exception is for the lowest

bitplane for the IWT, in which δ′0,b = 0.

For the sake of simplicity, throughout this section we have

ignored the energy gain factor Gb for each subband, that arises

when the transform is not orthonormal. When non-orthonormal

filter-banks are employed, the energy gain factor Gb must

multiply the values determined for the distortion estimators

for each subband.
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III. APPLICATION CASES

A. Post compression rate-distortion optimization

A suitable application in which the proposed estimators

may be employed is in the post-compression rate-distortion

(PCRD) optimization process described in [6]. The PCRD

optimization process is often used in JPEG2000 encoders

to select those bitstream segments that minimize the image

distortion at a given target bitrate. Such a process is useful

since JPEG2000 encodes sets of wavelet coefficients (called

codeblocks) independently, producing one embedded bitstream

for each. These bitstreams can be potentially truncated at three

points per bitplane, coinciding with the end of each coding

pass as defined by the JPEG2000 standard. These coding

passes are named the Significance Propagation Pass (SPP),

the Magnitude Refinement Pass (MRP), and the Cleanup Pass

(CP). The coding pass SPP encodes the significance state of

those coefficients that are more likely to become significant

in the current bitplane; MRP encodes the refinement bits of

coefficients that have become significant in previous bitplanes;

and CP encodes the significance state of coefficients not

encoded in SPP or MRP.

The PCRD algorithm employs a generalized Lagrange mul-

tiplier formulation for a discrete set of points. In brief, PCRD

first identifies the convex hull of the operational distortion-

rate function for each codeblock bitstream. It then selects

from the union of all codeblocks those segments with the

highest distortion-rate slopes. When the distortion metric is

MSE, the distortion of the bitstream segments corresponding to

codeblock Bi are computed as Dl
i = Gb

∑

k∈Bi
(y[k]− ŷl[k])2,

where ŷl[k] denotes the quantized representation of wavelet

coefficients y[k] when the bitstream for Bi is truncated after

coding pass l, 0 ≤ l ≤ lmax. l identifies the coding pass

as l = P · 3 + cp, where P is the bitplane number, and

cp = {2, 1, 0} respectively for the SPP, MRP, and CP coding

passes. The distortion-rate slope of coding pass l is computed

as

Sl
i =

△Dl
i

△Rl
i

=
Dl−1

i −Dl
i

Rl
i −Rl−1

i

, (14)

with Rl
i denoting the length (in bits) of the bitstream at

truncation point l.
Since PCRD is used in many JPEG2000 implementations,

this optimization process has been widely studied in the

literature and several different methods have been proposed. In

some cases, inexpensive estimations of the distortion decrease

△Dl
i are employed in order to reduce the computational load

of the encoder (see [7], [11], for instance). In other cases,

the optimization of the distortion computation is a cause of

concern, especially in software and hardware implementations.

Kakadu2, for example, which is well known for its excellent

compression performance, uses a lookup table considering the

5 most significant bits of the coefficients to reduce computa-

tional costs and, more recently, a novel strategy for hardware-

based architectures has been presented in [14].

2See http://www.kakadusoftware.com

Through the estimators introduced in the previous section of

this paper, the distortion decrease of bitstream segments can

be estimated by considering only the number of significant

and refinement bits encoded in each coding pass, referred to

as #Sl and #Rl, according to

△Dl
i = Gb ·

[

△Dsig
P ·#Sl +△Dref

P ·#Rl
]

, (15)

where P is the bitplane to which coding pass l belongs. To

count the number of significant/refinement bits is a computa-

tionally inexpensive operation during the encoding process [4],

and has a low complexity when it is carried out before

coding [11]. In addition to speed-up of the bitplane coding

engine, the use of this technique may also help to reduce the

memory requirements of the block coder [3, Ch. 17.2.4].

B. Intrinsic distortion estimation

The second application in which the use of the proposed

estimators can be beneficial is image distortion estimation.

It may be desirable to target image quality rather than the

bitrate [7], or to approximate image distortion without com-

paring to the original samples. This latter case may be useful

to minimize computational resources, or to aid in transcoding

procedures [12].

Still within the framework of JPEG2000, and considering

Dl
i as an additive metric [6], the distortion of the image is

determined as D =
∑

i D
λ(l)
i , where λ(l) denotes the optimal

set of truncation points given for a target bitrate, or quality.

In this paragraph, we treat the case for the DWT. The IWT

case is addressed in the paragraph that follows. The distortion

produced by the quantized representation of the coefficients in

Bi at coding pass l is estimated according to

D′l
i = Gb ·

[

l−1
∑

L=0

#SL · Dsig
⌊L/3⌋ +

(

lmax
∑

L=l

#SL

)

· Dref
⌊l/3⌋−1 +

#Rl−1 · △Dref
⌊l/3⌋ + #N · Dnull

]

,

(16)

where the floor operation ⌊·⌋ is used here to determine a

bitplane number from a coding pass. The first term of this

expression accumulates the distortion produced by coefficients

that become significant below the current coding pass. The

second term accounts for the distortion produced by coeffi-

cients that become significant in the current or previous coding

passes. This term is valid even when all bitplanes have been

encoded (i.e., l = 0). In this case, the distortion is due to

the initial quantization. In the case of δ = 1/2, for example,

this is Dref
−1 = 1/12 according to expression (4). The third

term accounts for the distortion decrease produced when the

MRP pass of the current bitplane is coded, and therefore it is

only non-null when the current coding pass is the SPP. The

last term of the expression takes into account the distortion

caused by coefficients with null contributions, #N denoting

the number of such coefficients.
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Due to the perfect reconstruction of the IWT from in-

teger coefficients, the estimation of the distortion for such

transforms must consider that null coefficients produce null

distortion, and that when coefficients are completely trans-

mitted there is no remaining distortion. On the other hand,

it is worth considering the noise introduced by the nonlinear

transform when coefficients are not perfectly reconstructed.

This was first studied in [13] through a model that considered

the degradation produced in the reconstructed coefficients due

to the rounding operations of the IWT’s lifting scheme. In

the case of the 5/3 IWT with 3 levels of decomposition, the

impact on the MSE was determined to be around β = 0.5.

For the experiments carried out in the next Section using the

5/3 IWT with 5 levels of decomposition, our empirical results

confirm that β = 0.5 is an appropriate choice. The distortion

of coefficients at coding pass l for the IWT is estimated as

D′′l
i = Gb ·

[

l−1
∑

L=0

#SL · D̂sig
⌊L/3⌋ +

(

lmax
∑

L=l

#SL

)

· D̂ref
⌊l/3⌋−1 +

#Rl−1 · △D̂ref
⌊l/3⌋ + #T · β

]

, (17)

with #T denoting the number of coefficients that have not

been perfectly reconstructed.

C. Extrinsic distortion estimation

When the number of significant/refinement bits per coding

pass is available or, in other words, when the intrinsic char-

acteristics of the coding process are available, distortion can

be determined through the previous approach. However, once

the image has been already encoded, this information is not

commonly available unless the codestream is fully decoded.

Applications such as real-time video rendering [15], or inter-

active image and video transmission [16], require distortion

estimation, but may have limited computational resources.

Therefore, decoding the codestream to estimate distortion may

not be an option.

An effective strategy to avoid decoding is to estimate the

number of significant/refinement bits encoded in each coding

pass. This can be carried out by considering only the length

of the bitstream generated for coding passes, which can be

obtained for JPEG2000 by decoding only packet headers3.

This operation is computationally inexpensive. In other coding

systems, the length of coding passes might also be extracted

without needing to decode the full codestream [4].

With Ll
i standing for the length (in bits) of coding pass

l, the number of significant/refinement bits can be simply

estimated as #S = γ · Ll
i, where γ represents the efficiency

factor achieved by the coding engine, i.e., the number of

significant/refinement bits that are encoded per emitted bit,

on average. For the JPEG2000 coding engine, γ has been

experimentally determined as 1.075 for MRP coding passes.

For SPP coding passes (CP, respectively), γ shows a lineal

3We assume that the restart coding variation is active [3, Chapter 12.4].

increase from 0.25 (0.15, respectively) at the highest bitplane,

to 0.3 (0.2, respectively) at the lowest bitplane.

IV. EXPERIMENTAL RESULTS

We report the performance of the proposed estimators for

the images “Portrait” and “Cafeteria” of the ISO 12640-1

corpus (8-bit gray-scale, size 2560×2048). Similar results

are obtained for all images of the corpus. In all results4,

both the encoder and the decoder use the same values for

the reconstruction factor δ, and the performance is reported

when: 1) the actual centroids of the image are used (denoted

as actual δ); 2) the δ values are approximated through

expression (9) (denoted as approx δ); and 3) when mid-point

reconstruction is employed (denoted as δ = 0.5).

For the first application (PCRD minimization of distortion

for a given target bitrate), images are encoded at 600 target

bitrates uniformly distributed between 0.01 to 6 bits per

sample (bps). The images are then decoded and compared

with the originals. To fairly assess the proposed estimators,

the images are also encoded at the same bitrates with Kakadu

v6.1 employing its lookup table-based strategy to compute

distortion (denoted as KDU ), and decoded using mid-point

reconstruction. Figures 3(a) and 3(b) depict the Peak Signal

to Noise Ratio (PSNR) difference between the usual strategy

of Kakadu (horizontal line) and the proposed estimators when

the lossy mode of JPEG2000 is used. Labels in these plots

report the actual PSNR at several points. Results suggest that

the mid-point estimator achieves similar coding performance

to that of Kakadu, and that pdf-based estimators improve it

slightly, though the differences are minimal (no more than

0.07 dB). Figures 4(a) and 4(b) depict the results of the same

test when using the JPEG2000 lossless mode. In this case,

the best performance is achieved with pdf-based estimators,

especially at high bitrates, where improvements around 1 dB

are achieved. The figure also includes a plot labeled δ =
0.5 (DWT) which depicts the coding performance achieved

by the estimator determined for the DWT case (paragraph 2

of Section III-B) to stress the low performance of such an

estimator in the IWT case.

The improvement in performance over that of Kakadu

for the IWT case is due to both the encoder and decoder.

As mentioned previously, the Kakadu encoder and decoder

assume mid-point reconstruction when they respectively com-

pute distortion decreases and dequantize coefficients, which is

a common approach in most studies and implementations [17].

The maximum gains are achieved at high bit-rates, when bits

belonging to the lowest bitplane are encoded. This suggests

that the employed centroid has a significant displacement.

To better appraise the improvement achieved with the pdf-

based estimators when the JPEG2000 lossless mode is used,

Figure 5 depicts the coding performance achieved when dif-

ferent assumptions are used in the encoder and the decoder.

More precisely, we evaluate the coding performance achieved

when the encoder computes the actual distortion decreases

4Coding parameters are: 5 levels of WT, 64×64 codeblocks, no precincts,
restart coding variation.



7

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  1  2  3  4

P
S

N
R

 d
if
fe

re
n
c
e
 (

in
 d

B
)

bits per sample (bps)

30.5 dB 34.2 dB 39.0 dB 42.1 dB 44.6 dB 47.3 dB 49.6 dB 52.1 dB 54.5 dB

KDU
δ = 0.5

approx δ
actual δ

(a) Coding performance - “Portrait”

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  1  2  3  4  5

P
S

N
R

 d
if
fe

re
n
c
e
 (

in
 d

B
)

bits per sample (bps)

23.7 dB
27.3 dB 32.5 dB 36.5 dB 39.5 dB 42.4 dB 44.9 dB 47.7 dB 50.0 dB 52.6 dB

55.1 dB

KDU
δ = 0.5

approx δ
actual δ

(b) Coding performance - “Cafeteria”

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16

R
M

S
E

 d
if
fe

re
n
c
e

actual RMSE

0.02 bps 0.04 bps 0.08 bps 0.14 bps 0.22 bps 0.38 bps

0.68 bps 1.48 bps

null difference
approx δ
actual δ
δ = 0.5

approx δ (EXTRINSIC)

(c) Estimated distortion - “Portrait”

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35

R
M

S
E

 d
if
fe

re
n
c
e

actual RMSE

0.04 bps 0.08 bps 0.17 bps 0.31 bps

0.57 bps 1.22 bps

null difference
approx δ
actual δ
δ = 0.5

approx δ (EXTRINSIC)

(d) Estimated distortion - “Cafeteria”

Fig. 3: Evaluation of the proposed estimators when using the 9/7 DWT (JPEG2000 lossy mode).

assuming mid-point reconstruction or when it uses the pdf-

based estimators, respectively labeled as encode KDU and

encode approx δ, and when the decoder uses mid-point or

pdf-based reconstruction, respectively labeled as decode δ =
0.5 and decode approx δ. Results are reported as the PSNR

difference between coding and decoding using actual distor-

tion decreases and mid-point reconstruction – which is the

usual strategy of Kakadu and the most common approach in

implementations – against the other combinations. Note that

the plot labeled encode approx δ / decode approx δ reports
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Fig. 4: Evaluation of the proposed estimators when using the 5/3 IWT (JPEG2000 lossless mode).

the same results as the plot labeled approx δ in Figures 4(a)

and 4(b). Figure 5 suggests that, even though the encoder may

compute actual distortion decreases in the usual way, assuming

mid-point reconstruction, the decoder can enhance the quality

of the image through pdf-based reconstruction. Furthermore,

we remark that, in spite of recovering coefficients using mid-

point reconstruction, decoders may still enhance the quality of

decoded images for the IWT case by using the dequantization

interval [2P , 2P+1 − 1] instead of [2P , 2P+1). Though this

enhancement should be considered when evaluating bitplane
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Fig. 5: Evaluation of the coding performance achieved when different assumptions of mid-point and pdf-based reconstruction

are used in the encoder and the decoder, with the 5/3 IWT (JPEG2000 lossless mode).

coding engines or rate-distortion optimization methods, the

largest gains are achieved in a bitrate range that is typically

visually lossless.

For the second application (intrinsic distortion estimation),

the estimators can be either applied to target a quality for the

final codestream, or to estimate the image distortion given a

target bitrate. In both cases the results are the same, hence

a single graph is provided. Figures 3(c) and 3(d) depict the

difference between the estimated Root Mean Squared Error

(RMSE) and its actual value. Labels in these plots report the

bitrate at several points. For both the “Portrait” and “Cafeteria”

images, the estimated distortion when using pdf-based esti-

mation is close to the actual distortion, whereas the accuracy

achieved with the mid-point approach is poor, especially at low

bitrates. Similar results hold for the JPEG2000 lossless mode

(Figures 4(c) and 4(d)). The graphs also depict the extrinsic

distortion estimation (denoted as approx δ (EXTRINSIC)) as

the third practical application for the estimators. Note that,

even though the values for δ, and the number of signifi-

cant/refinement coefficients are approximated (i.e., there is no

reference to the original image), the difference between the

estimated RMSE and the actual one is never higher than ±0.5
for the lossy mode, and ±0.75 for the lossless mode.

V. CONCLUSIONS

Distortion estimation is an important issue in studies and ap-

plications of lossy, and lossy-to-lossless, image compression.

Most work estimates the distortion induced in wavelet coeffi-

cients assuming that they are uniformly distributed within the

quantization interval, even though this does not correspond

with the actual nature of the signal. The first contribution

of this work is the presentation of a theoretic approach

to determine distortion for non-uniform distributions. This

has lead to estimators that can accurately approximate the

distortion, and distortion decrease, due to bits emitted by

bitplane coding engines. The second main contribution of this

work is the introduction of the proposed estimators in three

applications within the framework of JPEG2000. Experimental

results suggest that, with the proposed approach, distortion

estimators agree closely with actual distortion computations,

significantly surpassing the performance of estimators using

mid-point reconstruction. Our estimators can be employed in

studies and applications to better adjust rate-distortion mod-

els, improve compression performance, reduce computational

costs, determine distortion with high accuracy, and optimize

transcoding procedures.
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