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Abstract

A key aspect of image coding systems is the probability model employed to code the data. The more precise the

probability estimates inferred by the model, the higher the coding efficiency achieved. In general, probability models

adjust the estimates after coding every new symbol. The main difficulty to apply such a strategy to a highly parallel

coding engine is that many symbols are coded simultaneously, so the probability adaptation requires a different ap-

proach. The strategy employed in previous works utilizes stationary estimates collected a priori from a training set.

Its main drawback is that statistics are dependent of the image type, so different images require different training sets.

This work introduces two probability models for a highly parallel architecture that, similarly to conventional systems,

adapt probabilities while coding data. One of the proposed models estimates probabilities through a finite state ma-

chine, while the other employs the statistics of already coded symbols via a sliding window. Experimental results

indicate that the latter approach improves the performance achieved by the other models, including that of JPEG2000

and High Throughput JPEG2000, at medium and high rates with only a slight increase in computational complexity.
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1. Introduction

The core of most compression systems holds an en-

tropy coder that converts pre-processed data into a more

compact representation. Key to achieve compression

is to exploit the probabilities of the coded symbols.

Symbols with a higher probability can be represented

more compactly, with the limit imposed by the Shan-

non’s entropy. In general, two aspects affect the ef-

ficiency of the entropy coder: the coding scheme and

the probability model. There are many different coding

schemes, ranging from Huffman coding [1], arithmetic

coding [2], or the recently introduced asymmetric nu-

meral systems [3], among others. Each coding scheme

imposes a computational burden and an efficiency limit.

The probability model, on the other hand, extracts re-

lationships among the coded data in order to estimate

the probabilities of the new symbols fed to the coder. In

∗Corresponding author. Telephone: +34 935811861; Fax: +34

935813443; Postal address: Escola Enginyeria, UAB - 08193 Bel-

laterra, Spain.

Email addresses: francesc.auli@uab.cat
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general, this is achieved employing contextual informa-

tion, since previous symbols with the same context tend

to have similar probabilities.

In the field of image and video coding, the first

compression standards such as JPEG (ISO/IEC 10918-

1) and MPEG-2 (ITU H.262) employed, among oth-

ers, entropy coding schemes based on Huffman. Vari-

ants of such entropy coders and their probability mod-

els were proposed to improve coding efficiency and

reduce computational costs [4, 5, 6]. The next gen-

eration of standards, including JPEG2000 (ISO/IEC

15444-1), AVC (ITU H.264), and HEVC (ITU H.265)

adopted low-complexity, context-adaptive binary arith-

metic coders [7, 8, 9]. They were the topic of many

works in the literature too [10, 11, 12, 13, 14]. The latest

standards such as VVC (ITU H.266) and High Through-

put (HT) JPEG2000 utilize arithmetic coding [15] and

variable length coding [16], respectively. These stan-

dards also provide parallelization opportunities that can

be adopted in implementations tailored for CPUs or

GPUs, since this is the current trend to increase the

throughput of computationally intensive applications.

In the same vein as these latest standards, Bit-

plane Image Coding with Parallel Coefficient Process-
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ing (BPC-PaCo) [17] is a wavelet-based image coding

engine with features similar to those of the JPEG2000

standard. Its main difference is the bitplane and en-

tropy coding engine, which provides more opportunities

to exploit fine-grain parallelism in highly parallel archi-

tectures such as those of GPUs. Contrarily to most im-

age codecs that process image coefficients one by one,

BPC-PaCo codes 32 coefficients in parallel. The proba-

bility model employed by the original BPC-PaCo [17] is

based on stationary probabilities generated with a train-

ing set of images [12]. This model was adopted due

to its low computational complexity, since probability

estimates are obtained by simply accessing a lookup ta-

ble (LUT). The main drawback is that it needs to be

trained with a set of images similar to that coded, which

may not be feasible in some scenarios, and that the LUT

must be (possibly transmitted and) specified in the en-

coder and the decoder. To use adaptive probabilities like

most conventional image coding systems poses a chal-

lenge in the highly parallelized engine of BPC-PaCo be-

cause probability estimates need to be synchronized and

shared among all threads of execution.

This paper approaches this challenge with the study

of two probability models that use adaptive probabili-

ties. This study is carried out mostly from the point of

view of coding performance. The first model employs

a finite state machine that predicts the probability of fu-

ture symbols. This strategy is similar to that employed

in JPEG2000 and other standards such as HEVC and

VVC. The second model is based on a sliding window

mechanism that adjusts probability estimates through

statistics of already coded symbols. This latter approach

achieves high performance regardless of the image type,

improving the results achieved by the remaining models

and also by JPEG2000.

The rest of the paper is structured as follows. Sec-

tion 2 reviews BPC-PaCo. Section 3 describes the orig-

inal probability model employed in BPC-PaCo and in-

troduces the two new models proposed in this paper.

Section 4 provides extensive experimental results with

four different corpora, assessing coding performance

and computational complexity. The final section con-

cludes with a brief summary and some remarks.

2. Bitplane Coding with Parallel Coefficient Pro-

cessing

BPC-PaCo is a coding engine tailored for wavelet-

based image coding systems. The first stage of

such codecs commonly entails one or various trans-

forms, including the discrete wavelet transform, to re-

move spatial, spectral, and/or temporal redundancy.

The resulting wavelet coefficients are quantized and

coded via bitplane and entropy coding, which is the

stage that accounts for more than 80% of the com-

putational workload [18]. There are many bitplane

coding engines in the literature, e.g., SPIHT [19],

SPECK [20], EBCOT [21], JPEG2000’s tier-1 [22], or

BPC-PaCo [17]. To allow coarse-grain parallelism, the

wavelet coefficients are typically partitioned in small

sets, referred to as codeblocks, that are coded indepen-

dently, producing a bitstream for each. These bitstreams

are possibly (truncated and) re-organized to fit a target

rate, or to form layers of quality, in the last stage of the

coding pipeline.

The main idea behind bitplane coding is to code all

data within the codeblock bit by bit, beginning from the

highest magnitude bit of all quantized coefficients and

finishing with the lowest. If [bM−1, bM−2, ..., b1, b0] with

bi ∈ {0, 1} being the binary representation of the abso-

lute value of υ obtained when wavelet coefficient ω is

quantized, bitplane j is defined as the set of bits b j from

all coefficients. The coding engine codes all bits from

bitplane M − 1 to bitplane 0, assuming that all indices υ

are lower than 2M .

The coefficients are defined as significant or non-

significant. A coefficient becomes significant at bit-

plane s when the first non-zero bit of its binary repre-

sentation is found, more precisely, when bs = 1 with

bs′ = 0,M > s′ > s. bs is called the significant bit

for that coefficient, and br, 0 ≤ r < s are called re-

finement bits. Commonly, the coefficients are scanned

multiple times in each bitplane, first coding the bits

of non-significant coefficients in previous bitplanes be-

cause these bits reduce most the image distortion [23].

Then, a second coding pass emits the refinement bits

of the remaining coefficients. JPEG2000 further refines

this procedure employing three coding passes. The first

is called Significance Propagation Pass (SPP) and codes

the bits of non-significant coefficients that are neigh-

bors of already significant coefficients. The second is

the magnitude refinement pass (MRP) and codes refine-

ment bits. The last is the Cleanup Pass (CP) and codes

the bits of the remaining coefficients. Once a coefficient

becomes significant, its sign d ∈ {+,−} is immediately

coded to allow the decoder approximate ω as soon as

possible.

The order in which the coefficients are scanned is a

key difference between JPEG2000 and BPC-PaCo. Fig-

ure 1 illustrates both orders for a codeblock of 16×16

coefficients. In JPEG2000, a single thread consecu-

tively scans all the coefficients within the codeblock,

producing an embedded bitstream in which each bit can

only be decoded after the previous. BPC-PaCo employs
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Figure 1: Scanning orders employed by (a) the original tier-1 coding stage of JPEG2000 standard, and (b) the highly parallel engine BPC-PaCo.

one execution thread per each pair of columns, cod-

ing 32 coefficients simultaneously (in codeblocks of 64

columns). The scanning is repeated three times in each

bitplane, once per coding pass. The parallel processing

of BPC-PaCo is tailored for the highly parallel architec-

ture of GPUs, which typically maps parallel execution

flows to vector instructions. In the following, thread is

referred to such an execution flow.

Each bit emitted by the bitplane coder is fed to the

entropy coder accompanied by its context. The context

is an important aspect of the probability model because

the entropy coder obtains the probability estimate of the

incoming bit depending on its context. A comprehen-

sive study of context formation [24] concludes that sim-

ple strategies obtain high performance. BPC-PaCo em-

braces this simplicity to reduce computational costs too.

Contexts are defined as follows: let the eight adjacent

neighbors of υ be denoted by υk, 1 ≤ k ≤ 8. Its signifi-

cance state in bitplane j is referred to as Φ(υk, j), being

1 when υk has been coded in the previous significance

pass (i.e., if there is an s > j such that bs(υ
k) = 1), or

when it is coded in the current bitplane –and the coeffi-

cient is already visited in the current coding pass. Oth-

erwise Φ(υk, j) = 0. The context employed for signifi-

cance coding in SPP and CP in bitplane j is defined as

the sum of the significance states of the adjacent neigh-

bors of υ, more precisely

φsig(υ, j) =
∑

k=1...8

Φ(υk, j) , (1)

so φsig(υ, j) ∈ [0, 8]. We note that using the significance

state of these neighbors does not create thread depen-

dencies because all threads advance their execution at

the same pace, i.e., in a lockstep synchronous way.

The context for sign coding employs the sign of the

vertical and horizontal adjacent neighbors of coefficient

ω. Let χ(ωk, j) be 0, 1 or −1 at bitplane j when the

coefficient is still not significant, significant and posi-

tive, and significant and negative, respectively. χV and

χH are defined as the sum of χ(ωk, j), respectively for

the two vertical and horizontal adjacent neighbors of ω.

The context for sign coding is defined as

φsign(ω, j) =



















































9 if (χV > 0 and χH > 0) or

(χV < 0 and χH < 0)

10 if χV
= 0 and χH

, 0

11 if χV
, 0 and χH

= 0

12 otherwise

. (2)

A single context is employed for refinement bits since

more complex approaches do not obtain significant cod-

ing gains, so φre f (υ, j) = 13. In total 14 different con-

texts are employed, 9 for significance, 4 for sign, and 1

for refinement coding.

Let Psig(b j = 0 | φsig(υ, j)) denote the probability

estimate for one context of significance coding. Con-

ventional models devised for single-threaded execution,

like JPEG2000, typically set Psig(·) = 0.5 at the begin-

ning of coding and then adjust this probability depend-

ing on every new bit coded. This procedure can not be
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reproduced in BPC-PaCo due to the parallel processing

of coefficients.

3. Probability models

3.1. Stationary

The original model of BPC-PaCo is based on sta-

tionary probabilities. Instead of adjusting probabilities

adaptively depending on the incoming data, this model

uses fixed estimates that depend on the wavelet sub-

band, bitplane, and context. The model is thoroughly

studied in [12]. The main idea is to collect statistics of

images captured with the same sensor in order to build a

LUT that both the encoder and decoder share. The data

produced by the same wavelet filter bank for images of

the same type are statistically similar [25, 24, 26], so the

LUT can be employed to estimate the symbols’ proba-

bility of other images.

First, the probability mass function (pmf) of the quan-

tization indices is computed with all the images in the

training set. The pmf for subband u at bitplane j is re-

ferred to as Fu(υ | φsig(υ, j)) for the contexts of signifi-

cance coding. The support of this pmf is [0, ..., 2 j+1 − 1]

because it considers coefficients υ ∈ [0, 2 j+1). Then, the

probability that b j = 0 is determined as

Psig(b j = 0 | φsig(υ, j)) =

2 j−1
∑

υ=0

Fu(υ | φsig(υ, j))

2 j+1−1
∑

υ=0

Fu(υ | φsig(υ, j))

. (3)

These probabilities populate the LUT for significance

coding, which is accessed as Pu[ j][φsig(·)]. The LUTs

for refinement and sign coding are derived similarly.

Through these LUTs, the coding procedure computes

the coefficient’s context and then accesses the corre-

sponding LUT to obtain the estimate. No further opera-

tions are required since the LUTs are not updated during

the coding process, so the computational complexity of

such a strategy is very low.

3.2. Finite state machine

Adapting the probability estimates with a finite state

machine is a widely employed technique in image and

video coding [27, 22, 8]. Each state holds a probabil-

ity estimate for the most probable symbol (MPS), in the

range [0.5, 1), and has two transitions to other states.

One of the transitions is employed when coding the

MPS, and the other when coding the least probable sym-

bol (LPS). Each context points at one state. They are

commonly initialized at the state with the lowest prob-

ability (i.e., 0.5). Every time a new symbol is coded,

a transition to a new state with a higher (lower) prob-

ability in the case of an MPS (LPS) is carried out. In

general, the state machine contains a series of states that

increase the probability estimate very rapidly at the be-

ginning of coding while MPSs are found, and then the

probabilities are more finely adjusted as more data are

processed.1

Such a state machine works well when transitions

among states are carried out for every new symbol

coded, which is not feasible in BPC-PaCo. The threads

processing coefficients in parallel can not share infor-

mation about the symbols that are currently coding be-

cause that would entail causal relations among them,

disrupting the parallel processing. However, once the

coefficients are processed, the coding results can be em-

ployed to update the probability estimate of each con-

text. Figure 2 illustrates the state machine used in our

approach. It has 64 states depicted with circles. Tran-

sitions of MPSs and LPSs are respectively depicted in

blue and red arrows. The coding of an MPS increases

the probability estimate linearly from 0.5 to 0.992,

whereas coding an LPS decreases the estimate exponen-

tially. Similar strategies are employed in other image

codecs (such as the MQ coder of JPEG2000 [12]). It has

been devised empirically with a large dataset to achieve

high coding efficiency regardless of the image type.

Algorithm 1 describes the three coding passes car-

ried out by BPC-PaCo when encoding. Decoding is the

inverse procedure, so it is not detailed herein. These

coding passes are called consecutively in each bitplane

(not shown in the algorithm). The algorithm is de-

scribed from the point of view of a single execution

flow (i.e., a thread) that codes the data of two adjacent

columns. Nonetheless, note that the execution in the

GPU runs all threads of the codeblock in parallel, ad-

vancing their execution synchronously. The procedures

in Algorithm 1 receive the bitplane and thread as pa-

rameters. The bitplane is employed to emit the corre-

sponding bit and to compute the context, whereas the

thread is employed to compute the processed columns.

The two first lines in each coding pass embody the scan-

ning order. Then, SPP(·) and CP(·) check whether the

coefficient has to be coded in that pass or not. Quanti-

zation indices and coefficients are respectively referred

to as υy,x and ωy,x following the same notation as above

1We refer the reader to [12, Figure 2] for an illustration of the state

machine employed in the MQ coder of JPEG2000.
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Figure 2: Finite state machine employed to estimate probabilities of future symbols. Each state is depicted with a gray circle. The estimated

probability of the MPS symbol associated with each state is depicted in the vertical axis. Blue and red lines indicate transitions when coding an

MPS and LPS, respectively.

but denoting the position within the codeblock. If the

coefficient needs to be coded, ACencode(·) is called.

If the coefficient is significant, sign coding also calls

this procedure with its corresponding context (line 6

in both SPP(·) and CP(·)). Refinement coding is sim-

ilar but without sign coding. ACencode(·) is also exe-

cuted in parallel and synchronously for all threads. If a

thread does not call this procedure, it remains idle un-

til the remaining threads finish its processing. In all

coding passes, ACupdate(·) is called just after the co-

efficient is coded (also in parallel and synchronously

for all threads). The parameter given to this procedure

is thread t, although it is received as context c in Al-

gorithm 2. Whereas Algorithm 1 and ACencode(·) in

Algorithm 2 use one thread per each pair of columns,

ACupdate(·) uses the same threads to update the proba-

bilities of all contexts in parallel. As there are only 14

contexts, threads t ≥ 15 do not contribute to the updat-

ing operation and are idle during this step.

Algorithm 2 describes the operations related to the

probability model that are carried out by the arithmetic

coder. The first line in ACencode(·) sets probability p,

employed to code the interval. In this model, S[c] de-

notes the state of the corresponding context, whereas P′

is the probability associated with that state. Once p is

set, operations to code the interval with that probability

are carried out via code(s, p, t), which uses an indepen-

dent arithmetic coder for each thread. This procedure is

not included in Algorithm 2 for simplicity, but can be

consulted in [17, Algorithm 1]. The remaining lines in

ACencode(·) update the number of 0s and the total num-

ber of symbols coded for this context, which are stored

in T0[c] and T [c], respectively. These operations can

be implemented as atomic increments in a GPU, so that

even if two or more threads use the same context in the

same step, the result remains correct.

The procedure ACupdate(·) employed in this model

(second in Algorithm 2) updates the state of the context.

If one or more symbols have been coded with that con-

text, the state is decreased by the number of LPSs coded

(i.e., T [c]−T0[c]) and then increased by the number of

MPSs coded (i.e., T0[c]). Afterwards, T0[c] and T [c]

are reset to zero.

3.3. Sliding window

A variable-size sliding window [28, 29] is employed

by this last model of probabilities. The main idea is

to use statistics of the last coded symbols, enclosed in

this window, to estimate the probability of the incom-

ing. This strategy assumes that the new symbols have

a similar distribution to the last ones. The window has

between W and 2W symbols, approximately, except at

the beginning of coding. With some abuse of notation,

let the number of 0s and total number of symbols coded
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Algorithm 1 BPC-PaCo with adaptive prob. models

SPP( j bitplane, t thread)

1: for y ∈ [0, numRows − 1] do

2: for x ∈ [t · 2, t · 2 + 1] do

3: if υy,x is not significant AND φsig(υy,x, j) , 0 then

4: ACencode(b j, φsig(υy,x, j), t)

5: if b j = 1 then

6: ACencode(d, φsign(ωy,x, j), t)

7: end if

8: end if

9: ACupdate(t)

10: end for

11: end for

MRP( j bitplane, t thread)

1: for y ∈ [0, numRows − 1] do

2: for x ∈ [t · 2, t · 2 + 1] do

3: if υy,x is significant in j′ > j then

4: ACencode(b j, φre f (υy,x, j), t)

5: end if

6: ACupdate(t)

7: end for

8: end for

CP( j bitplane, t thread)

1: for y ∈ [0, numRows − 1] do

2: for x ∈ [t · 2, t · 2 + 1] do

3: if υy,x is not significant AND not coded in SPP then

4: ACencode(b j, φsig(υy,x, j), t)

5: if b j = 1 then

6: ACencode(d, φsign(ωy,x), t)

7: end if

8: end if

9: ACupdate(t)

10: end for

11: end for

within this window be denoted by T0[c] and T [c], re-

spectively. When T [c] ≥ 2W, the window size is re-

duced subtracting the statistics of the first W symbols,

approximately, which are stored inW0[c] andW[c] for

the 0s and the total, respectively.

Like the previous model, probability estimates are

updated after processing 32 coefficients in parallel, so

the procedures detailed in Algorithm 1 hold for this ap-

proach too. Algorithm 2 details the operations required

to compute the probability and update the window. Pro-

cedure ACencode(·) carries out the same operations for

both models except the first, which in this case uses

P′′[c] to set the probability p corresponding to that con-

text. P′′[c] is updated after checking that at least one

symbol has been coded with this context in the first op-

eration of ACupdate(·) (third procedure in Algorithm 2).

This updating is expressed as a division, though in prac-

Algorithm 2 Arithmetic coder (relevant operations)

ACencode(s symbol, c context, t thread)

1: p←















P′[S[c]] /∗ finite state machine ∗/

P′′[c] /∗ sliding window ∗/

2: code(s, p, t) /∗ interval coding − see [17, Algorithm 1] ∗/

3: if s = 0 then

4: T0[c]← T0[c] + 1

5: end if

6: T [c]← T [c] + 1

ACupdate(c context) /∗ finite state machine ∗/

1: if c < 15 AND T [c] > 0 then

2: S[c]← LPStransition(T [c] − T0[c])

3: S[c]←MPStransition(T0[c])

4: T [c]← 0

5: T0[c]← 0

6: end if

ACupdate(c context) /∗ sliding window ∗/

1: if c < 15 AND T [c] > 0 then

2: P′′[c]← T0[c]/T [c]

3: ifW0[c] = −1 AND T [c] ≥ W then

4: W0[c]← T0[c]

5: W[c]← T [c]

6: end if

7: if T [c] ≥ 2W then

8: T [c]← T [c] −W[c]

9: W[c]← T [c]

10: T0[c]← T0[c] −W0[c]

11: W0[c]← T0[c]

12: end if

13: end if

tice it can be implemented with bit shifts and additions

depending on the interval partitioning procedure em-

ployed. We also note that the result of the division may

never reach 1. At the beginning of coding, all array po-

sitions in P′′[c] are initialized to 0.5 except for the first,

which is set to 0.9. This first context is initialized to

0.9 because it is employed to code the significance bits

of coefficients that do not have any significant neighbor,

so they are generally 0 too. This increases slightly the

efficiency of the coder. The conditional in line 3 checks

if the number of symbols coded in the window exceeds

W for the first time (viaW0[c] that is initialized to -1).

If so, sets variables W0[c] and W[c]. Every time the

window contains 2W symbols or more, it is half emp-

tied as detailed in lines 7-12. Experimental evidence

indicates that W = 256 obtains high coding efficiency.

4. Experimental Results

The experimental tests below utilize 4 corpora with

different types of images to consider a wide variety of
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Figure 3: Evaluation of lossy coding performance for images of different corpora: (a) “Musicians” of the ISO12640-1 corpus, (b) “forest2” of the

aerial corpus, (c)“B” of the x-ray corpus, and (d) “jasper” of the AVIRIS corpus.

scenarios. The first corpus is the ISO 12640-1, which

has eight color images of 2048×2560 and 8 bits per

sample (bps). The images in the second corpus are

captured with an aerial sensor covering vegetation and

urban areas, are gray scale, 8 bps and have a size of

7200×5000. The third corpus belongs to the medical

field. It consists of three x-ray angiography images

with a size of 512×512 with 15 components and 12 bps.

The last corpus consists of three AVIRIS (Airbone Vis-

ible/Infrared Imaging Spectrometer) hyperspectral im-

ages of 512×512 with 224 components and 16 bps that

are provided by NASA. This corpora is the same to

that employed in the original BPC-PaCo paper [17] to

allow comparison. All codecs except HT JPEG2000,

are implemented in our Java framework [30]. Re-

sults for HT JPEG2000 are obtained with Kakadu [31].

Codeblocks of 64×64 and 5 levels of irreversible (re-

versible) wavelet transformation are employed for the

lossy (lossless) regime.2 Training is neither needed by

(HT) JPEG2000 nor by BPC-PaCo using either of the

two models proposed in this work, since probabilities

are adaptively adjusted while coding new data. The

training set required by the stationary model includes all

images of each corpus except the one that is evaluated.

First, lossy coding performance is assessed. The sta-

tionary, state machine, and sliding window models are

compared against JPEG2000 and HT JPEG2000. Each

image is coded at 100 equally spaced rates. Quality is

evaluated in terms of peak signal to noise ratio (PSNR).

Figure 3 reports the results achieved by one image of

each corpus. Similar results hold for the others. Results

are reported as the PSNR difference between that ob-

tained by the evaluated method and that of JPEG2000.

2The proposed methods do not employ the bit stuffing technique

deployed in JPEG2000 that avoids coding bytes with a 0xFF value.

This does not significantly affect the rate-distortion comparisons since

this technique increments negligibly the length of the codestream.
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Figure 4: Evaluation of lossy coding performance, including

JPEG XS, for the “Musicians” image of the ISO12640-1 corpus

The horizontal straight line in each plot is the perfor-

mance of JPEG2000, while the remaining represent the

evaluated methods. Results below (above) this horizon-

tal line indicate lower (higher) performance than that

of JPEG2000. The results of Figure 3 suggest that the

state machine model, which is similar to that employed

by JPEG2000, obtains low performance when applied to

parallel processing. Differences vary depending on the

rate and image type. This seems to indicate that the tran-

sitions among states, which are necessarily performed

only once for every 32 coefficients coded, diminishes

the precision of the probability estimates. Contrarily,

the sliding window model achieves the highest perfor-

mance at medium and high rates in three of the four

types of images evaluated. At these rates, this model

obtains gains in the order of 0.5 dB with respect to

JPEG2000, while at low rates it is in general less than

0.2 dB inferior to the standard, suggesting that very

precise probability estimates are obtained when enough

data are within the window (i.e., from medium to high

rates). Compared to HT JPEG2000, the sliding win-

dow model obtains similar performance at low rates but

much higher at medium and high rates. Similar results

are obtained for codeblocks of smaller size (not shown

in the figure), with the performance achieved by the two

adaptive approaches being slightly more penalized than

that achieved by the stationary model because fewer

data are coded and so the probabilities are adjusted with

less precision. The abrupt variations in coding perfor-

mance seen in Figure 3 for some of the images are due

to the statistical behavior of the data coded in each cod-

ing pass, which is handled differently depending on the

employed probability model.

The evaluation of lossy coding performance is com-

pleted with the test reported in Figure 4, which com-

pares the above-mentioned methods against JPEG XS

(ISO/IEC 21122). JPEG XS is a wavelet-based im-

age compression standard tailored for very low com-

plexity and high throughput. Results are obtained

with the JPEG XS Reference Software using profile

“High444.12.” As seen in the figure, the performance

achieved by this standard is lower than that obtained by

the proposed methods, in part due to the lack of arith-

metic coding. Similar results are obtained for the other

images.

Second, lossless coding performance is appraised.

Table 1 reports the results for all images. They are ex-

pressed in bps of the compressed file except for the av-

erage of each corpus. These rows report the average dif-

ference between the method evaluated and JPEG2000.

The best results are depicted in bold. The sliding win-

dow model obtains the lowest rate for almost all images,

achieving improvements about 0.1 bps with respect to

JPEG2000. Again, these results suggest that this model

is highly efficient at high rates, when more data are

available. This is also seen through the gains obtained

for the x-ray and AVIRIS images, which are slightly

higher than those achieved for the natural and aerial im-

ages because x-ray and AVIRIS images have higher bit-

depths. The state machine model achieves inferior per-

formance to that of JPEG2000, similar to that achieved

by the original stationary model. HT JPEG2000 obtains

lower performance, suggesting that it is more indicated

for lossy regimes.

Third, computational complexity is analyzed. It is

approximated as the execution time spent by the bit-

plane and entropy coder when executed with a single

thread.3 This provides an idea of the complexity burden

imposed by each model as compared to the stationary,

which is the simplest computationally. Our experience

indicates that this burden is similar to that achieved with

GPU implementations. This comparison only consid-

ers the complexity of the probability models proposed

for BPC-PaCo to evaluate its complexity differences,

leaving apart JPEG2000 and HT JPEG2000 since they

utilize different scanning orders and entropy coders. A

workstation with an i7-6700K CPU at 4.00GHz and 32

GB of DDR4 RAM is employed to carry out these tests.

Figure 5 shows the average results achieved in lossy

regime for each corpus. The left and right column de-

picted for each method represent encoding and decod-

ing time, respectively. Results hold for lossless regimes

as well. As seen in the figure, the complexity increase

3The lowest execution time of 10 execution runs is employed,

since that corresponds with the execution that is less disrupted.
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BPC-PaCo

HT station- state sliding

JP2 JP2 ary machine window

IS
O

1
2
6
4
0
-1

Portrait 3.81 4.0 3.94 3.94 3.82

Cafeteria 4.69 4.97 4.79 4.80 4.69

Fruit 3.96 4.22 4.15 4.06 3.96

Wine 3.94 4.20 4.12 4.05 3.94

Bicycle 3.90 4.18 4.09 4.04 3.93

Orchid 3.45 3.69 3.68 3.56 3.46

Music. 5.34 5.63 5.52 5.42 5.29

Candle 4.75 5.03 4.87 4.86 4.75

average 4.23 +0.27 +0.16 +0.11 +0.00
ae

ri
al

forest1 6.20 6.51 6.16 6.25 6.10

forest2 6.28 6.59 6.23 6.33 6.18

urban1 5.54 5.88 5.55 5.68 5.50

urban2 5.20 5.52 5.23 5.33 5.16

average 5.80 +0.32 -0.01 +0.09 -0.07

x
-r

ay

A 6.37 6.68 6.30 6.40 6.27

B 6.48 6.79 6.45 6.52 6.37

C 6.35 6.66 6.29 6.38 6.25

average 6.40 +0.31 +0.05 +0.03 -0.11

A
V

IR
IS

cuprite 7.01 7.32 6.98 7.09 6.90

jasper 7.66 7.98 7.61 7.74 7.52

lunarLake 6.91 7.22 6.89 6.98 6.81

average 7.19 +0.31 -0.03 +0.08 -0.12

Table 1: Evaluation of lossless coding performance.

of the sliding window model is slightly lower than that

of the state machine, requiring an approximate increase

of 10% with respect to the stationary model. In general,

encoding takes slightly more time than decoding in all

tests due to operations required by the rate distortion

optimization process.

5. Conclusions

This work evaluates two probability models for a

wavelet-based, highly-parallel image coding architec-

ture. The main novelty of these models is that they

adaptively adjust the probabilities while coding data in-

stead of using training as required in previous work.

The first proposed model utilizes a finite state machine

to adaptively adjust probabilities. It is inspired in the

same mechanism employed in conventional image and

video codecs. Experimental results indicate regular cod-

ing efficiency, suggesting that this model is not suit-

able for fine-grain parallelism. The second proposed

model employs a sliding window, a completely different

mechanism that determines probability estimates based

on statistical data from past symbols. Experimental

results suggest that the sliding window is well suited

for fine-grain parallelism, achieving higher compression

efficiency than that of the original BPC-PaCo and, at

medium to high rates, than that of JPEG2000. This

model obtains gains of approximately 0.1 bps in lossless

coding as compared to JPEG2000. In terms of computa-

tional complexity, experimental tests indicate a moder-

ate increase of 10%, approximately. Although this work

is based on our previous algorithm BPC-PaCo, conclu-

sions may also be extended to other parallel codecs. Fu-

ture work will implement the sliding window model in a

modern GPU to assess its complexity and performance

when executed in a highly parallel processor.
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