
Journal of Visual Communication and Image Representation (2022)

Contents lists available at ScienceDirect

Journal of Visual Communication and

Image Representation
journal homepage: www.elsevier.com/locate/jvci

Accelerating BPC-PaCo through Visually Lossless Techniques

Francesc Aulı́-Llinàsa,∗, Carlos de Cea-Domingueza, Miguel Hernández-Cabroneroa

aDep. of Information and Communications Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain

A R T I C L E I N F O

Article history:

Received -

Received in final form -

Accepted -

Available online -

Communicated by -

Keywords: High-throughput image cod-

ing, visually lossless coding, JPEG2000

A B S T R A C T

Fast image codecs are a current need in applications that deal with large amounts of im-

ages. Graphics Processing Units (GPUs) are suitable processors to speed up most kinds

of algorithms, especially when they allow fine-grain parallelism. Bitplane Coding with

Parallel Coefficient processing (BPC-PaCo) is a recently proposed algorithm for the

core stage of wavelet-based image codecs tailored for the highly parallel architectures

of GPUs. This algorithm provides complexity scalability to allow faster execution at

the expense of coding efficiency. Its main drawback is that the speedup and loss in im-

age quality is controlled only roughly, resulting in visible distortion at low and medium

rates. This paper addresses this issue by integrating techniques of visually lossless cod-

ing into BPC-PaCo. The resulting method minimizes the visual distortion introduced in

the compressed file, obtaining higher-quality images to a human observer. Experimen-

tal results also indicate 12% speedups with respect to BPC-PaCo.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Imagery employed in myriad scenarios is nowadays expe-

riencing a qualitative and quantitative step forward. Images

with very high spatial and temporal resolution and with high

dynamic range are currently commonplace. This quality incre-

ment is accompanied with a proliferation of image-based ap-

plications such as teleconferencing [1], geographic information

systems [2], and online TV [3], among others [4, 5, 6]. The fast

increase in both quality and quantity requires faster and more

efficient codecs to accelerate the coding and transmission, and

to reduce the storage costs of these images.

The development of faster codecs has followed different

paths in the field of image coding. A common strategy is to

reduce the computational complexity of the algorithms. Popu-

lar coding systems such as SPIHT [7] or EBCOT [8], which

are employed in a wide variety of environments such as the

medical, the remote sensing, or the video edition, have been

∗Corresponding author: Email: francesc.auli@uab.cat; Tel.: +34

935811861; Fax: +34 935813443

re-formulated many times with the aim to reduce their com-

plexity and/or memory requirements [9, 10, 11, 12, 13, 14].

Another strategy is to implement the codec in hardware archi-

tectures such as field-programmable gate arrays [15, 16, 17]

or application-specific integrated circuits [18, 19, 20, 21], so

that these codecs can be employed in mobile devices such

as (video)cameras. More recently, the advent of multi-core

Central Processing Units (CPUs) and highly parallel architec-

tures such as Graphics Processing Units (GPUs) has stimulated

the implementation of codecs with multi-thread capabilities for

CPUs [22, 23, 24, 25] and GPUs [26, 27, 28, 29]. These works

focus on the acceleration of the codecs without modifying their

inner algorithms. This maintains compliance with the original

systems, but limits the parallel strategies that can be employed.

The main handicap of conventional coding engines is that the

core of the coding system commonly uses a single-thread pro-

cedure to code a whole chunk of data, so only coarse-grain par-

allelism can be applied over a multi-tile division of the image.

GPUs are mostly based on the single-instruction multiple data

architecture. To fully use their resources, the core algorithms

must be tailored for fine-grain parallelism [30], so that vector

instructions can be efficiently employed.

http://www.sciencedirect.com
http://www.elsevier.com/locate/jvci

2 Francesc Aulı́-Llinàs et al. / Journal of Visual Communication and Image Representation (2022)

The Joint Photographic Experts Group realized this facet and

in 2019 a new part to the JPEG2000 [31] standard called High

Throughput JPEG2000 (HTJ2K) was introduced [32]. The new

part uses a core algorithm that supports vector instructions sets

included in modern CPUs and GPUs [33, 34, 35], so it can be

employed for fast TV production, digital cinema, and other sce-

narios that require real-time processing. The main drawback of

HTJ2K is that it sacrifices quality scalability, which is a useful

feature to transmit the image progressively by quality [36].

Well before the standardization of HTJ2K, we started a re-

search line whose goal is to introduce fine-grain parallelism

to all stages of a JPEG2000-like codec while keeping all fea-

tures of the original system, including quality scalability. The

first proposed techniques extricated the causality of single-

threaded coding strategies [37], introduced a lightweight arith-

metic coder [38], and a fast GPU implementation of the discrete

wavelet transform [26]. The bitplane coder is the second and

most complex stage of the system. It was re-formulated and tai-

lored for fine grain-parallelism, resulting in a Bitplane Coding

engine with Parallel Coefficient processing (BPC-PaCo) [39,

27]. The end-to-end GPU implementation of our codec was

presented in [29] achieving 12K resolution video compression

in real time with only 2% penalization in coding efficiency. Our

last step introduced a modification to BPC-PaCo to trade cod-

ing efficiency for computational complexity in an adjustable

fashion, resulting in a Complexity Scalable BPC-PaCo engine

(CS BPC-PaCo) [40, 36].

The trading between throughput and image quality in

CS BPC-PaCo is regulated via a user parameter. Rate-distortion

optimization techniques minimize the impact in coding perfor-

mance when more throughput is required, but the parameter

neither regulates the amount of sacrificed quality nor the in-

crease in throughput. This may not suit scenarios in which vi-

sual quality is essential. Visually lossless techniques are inter-

esting in such scenarios since they preserve the level of quality

at which the image distortion becomes indistinguishable for the

human visual system. These techniques set a visually lossless

threshold that estimates the maximum absolute error between

the original and the compressed image, resulting in just imper-

ceptible distortion for a human observer [41]. In the frame-

work of JPEG2000, visually lossless coding has been proposed

in [42, 43, 44, 45] employing different distortion models.

The work proposed herein joins the complexity scalability

techniques employed in CS BPC-PaCo with a visually lossless

model tailored for our engine. Briefly described, the coding

process uses the original algorithm of BPC-PaCo until the visu-

ally lossless threshold is attained. This maximizes the quality

when the image is progressively transmitted. Then, the codec is

maximally accelerated at the expense of coding efficiency via a

fast mode. This penalizes the efficiency in compression only in

data segments that are not visually relevant. Since the employed

model determines the visually lossless threshold autonomously,

the codec does not require user supervision and maximizes the

throughput and quality of the image that is visually relevant for

a human observer.

The rest of the paper is organized as follows. Section 2

reviews the original CS BPC-PaCo. Section 3 describes the

distortion model and details its integration in the coding en-

gine. The proposed method is implemented in a Java frame-

work. Coding performance and computational complexity are

compared with BPC-PaCo and CS BPC-PaCo in Section 4. Ex-

perimental results show that the proposed method significantly

reduces the impact on image quality when the image is trans-

mitted progressively while increasing the coding speed by about

8%, on average. The last section provides conclusions.

2. Review of Complexity Scalable BPC-PaCo

The main stages of the JPEG2000 coding pipeline are [46]:

wavelet transform, bitplane coding, and codestream re-

organization. The discrete wavelet transform decorrelates the

image information producing a multi-resolution decomposition

of the image organized in wavelet subbands that contain the ver-

tical, horizontal, and diagonal details of the image. Each sub-

band is partitioned in small sets of typically 64×64 wavelet co-

efficients called codeblocks. Each codeblock is coded indepen-

dently by the bitplane coding stage, which produces a quality

embedded bitstream that can be truncated at different rates. The

last stage (possibly truncates and) re-organizes the bitstreams of

all codeblocks in a single or multiple layers of quality satisfying

a target rate, commonly employing rate-distortion optimization

techniques.

Bitplane coding is the most sophisticated stage of the im-

age codec, entailing approximately 80% of the total coding

time [27]. Let ω denote a wavelet coefficient and υ an inte-

ger with the magnitude of the quantization index obtained for

such coefficient. The binary representation of υ is expressed

as [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1}, with an M sufficiently

large to hold all coefficients within the codeblock. The same

bit position b j of all coefficients is defined as bitplane j. Bit-

plane coding strategies code all bits from M − 1, the highest

bitplane of the codeblock, to bitplane 0. The collection of bits

in each bitplane is coded in three coding passes. The first is

called Significance Propagation Pass (SPP) and codes bits from

coefficients that were not significant in previous bitplanes but

that have significant adjacent neighbors. A coefficient becomes

significant at bitplane s when bs = 1 with bs′ = 0, s′ > s. The

second coding pass is referred to as Magnitude Refinement Pass

(MRP) and codes the bits of coefficients that where significant

in previous bitplanes, more precisely, those bits br, r < s. The

last is the Cleanup Pass (CP) and codes the bits of the remain-

ing coefficients. If a coefficient becomes significant in the SPP

or CP, its sign d ∈ {+,−} is coded immediately after so that it

can be partially reconstructed at the decoder. The bitstream can

be truncated at the end of each coding pass, if necessary, by the

rate-distortion optimization method to minimize the distortion

of the image when it is progressively transmitted.

As seen in Figure 1, the main difference between JPEG2000

and CS BPC-PaCo is that JPEG2000 uses a single thread (per

codeblock) that scans the coefficients one by one, sending bi to

an arithmetic coder that produces an embedded bitstream. This

bitstream can only be decoded bit by bit through the inverse

procedure, without opportunities for parallelization. Contrarily,

CS BPC-PaCo employs a parallel scanning order in which half

Francesc Aulı́-Llinàs et al. / Journal of Visual Communication and Image Representation (2022) 3

(a) (b)

Fig. 1. Scanning order employed in: (a) JPEG2000 standard, and (b) CS BPC-PaCo.

the coefficients in a row (typically, 32 for codeblocks of 64×64)

are coded in parallel. The bits of these coefficients are coded

with multiple arithmetic coders that are synchronized at some

points to produce the final bitstream. This is the main insight to

obtain fine-grain parallelism.

Regardless of using one or multiple threads of execution, the

coefficients are scanned many times. This slows the coding pro-

cess because, in most architectures, not all coefficients can be

simultaneously stored in the register space of the processor and

they are transferred back and forth from the memory, causing

the so-called register spilling [36]. To accelerate the coding

engine, register spilling must be minimized. The complexity

scalable technique employed in CS BPC-PaCo selects a bit-

plane N from which the bits of all coefficients are coded in a

single pass. So, bitplanes [M − 1,N] are coded with three cod-

ing passes, providing truncation points that can be used by the

rate-distortion optimization method to optimize the image qual-

ity, and bitplanes [N − 1, 0] are coded in a single pass to avoid

register spilling, speeding up the coding process. The selection

of N is key to balance throughput and compression efficiency.

CS BPC-PaCo determines it as

N = min

(

M,

⌊

M ·
K

Lu

⌋)

, (1)

with Lu being the L2norm of the synthesis basis vectors of the

filter-bank of subband u (equal energy gain factor is assumed in

all subbands). K is the user-controlled parameter. Experimental

evidence suggests that this parameter should be in the range

K ∈ [0.5, 1.5] to obtain a compromise between throughput and

quality.

3. Proposed method

3.1. Distortion Model

For the user, parameter K is only indicative. A given value of

K may sacrifice quality and throughput differently for different

images. A more suitable strategy is to reduce the compression

efficiency only when the visual quality of the image is indis-

tinguishable from the original, i.e., when the visually lossless

threshold is attained. The most accurate distortion model for

the deadzone quantizer employed by JPEG2000 is described

in [43]. Such a quantizer reconstructs the wavelet coefficient as

ŵ =















0 if j > s

d([bM−1, bM−2, ..., b j] + δ) · ∆u2 j otherwise
, (2)

where δ ∈ [0, 1) is commonly set to 0.5 to reconstruct the co-

efficient in the middle of the quantization interval. ∆u is the

step size employed for subband u. The distortion model of [43]

considers that coefficients within the deadzone (i.e., those re-

constructed as 0 above), have the same distribution as the orig-

inal coefficients, and the remaining coefficients have a uniform

quantization distortion. This model is employed to estimate vi-

sually lossless thresholds for an assumed coefficient variance

σ2 and quantization step size ∆u, denoted as VTu(σ2). These

thresholds are based on the well-known work of Watson and

Daly [47, 48].

In the encoder of [43], the above perceptual model is intro-

duced as follows. At the end of each coding pass the maximum

absolute error between the original coefficients and those recon-

structed by the decoder is computed as D = max(|w−ŵ|). When

D ≤ VTu(σ2), the remaining passes are discarded since they

do not contain visually relevant information. VTu(σ2) is deter-

mined at the beginning of the coding process computing the co-

efficients’ variance. Other techniques (such as visual masking)

4 Francesc Aulı́-Llinàs et al. / Journal of Visual Communication and Image Representation (2022)

are also employed in [43] to better refine this threshold, though

they are not employed in our codec due to their computational

costs.

3.2. Visually lossless BPC-PaCo

The goal of [43] is to reduce the codestream size by dis-

carding the lesser visually relevant information. Contrarily, the

method presented herein employs the distortion model to accel-

erate the codec only when coding such information. To this end,

three coding passes per bitplane are generated before reaching

the threshold, and then one more for the visually non-relevant

information. The aim of this strategy is to provide many coding

passes at visually relevant rates, optimizing the quality scalabil-

ity of the codestream when the visual information is most rele-

vant. To this end, instead of computing the bitplane at which the

codec is accelerated via Equation 1 and parameter K, it is deter-

mined autonomously during the coding process when VTu(σ2)

is attained.

Unfortunately, the method proposed in [43] is not suitable

for our engine. The main difficulty is that the encoding pro-

cess requires a version of the reconstructed coefficients (i.e.,

ŵ) to compute D. This may significantly increase the memory

needed per coefficient, resulting in more register spilling. An

alternative is to use the model employed in [44], which is de-

vised for the decoder. It modifies [43] in two aspects. The first

is to estimate the variance σ2 for the codeblock depending on

the wavelet subband u and the number of magnitude bitplanes

M. The second is to employ the distortion upper bound D′ in-

stead of D. D′ is determined in bitplane j as

D′ =

∆i2
j if pass = CP

∆i2
j+1 otherwise

}

if ∃ ŵ = 0

∆i2
j if pass = SPP

∆i2
j−1 otherwise

}

otherwise

. (3)

In our engine, σ2 does need to be estimated since it can be

computed when the data are produced just after the wavelet

transform, negligibly increasing computational costs. Bound-

ing the distortion via D′ is helpful and thus applied to our codec

because avoids the need for computing the reconstructed coeffi-

cients, maintaining the same memory requirements of the orig-

inal CS BPC-PaCo.

Algorithm 1 details the main operations of the proposed Vi-

sually Lossless BPC-PaCo (VL BPC-PaCo). The algorithm is

expressed as the execution of one of the threads employed to

code the data of a codeblock. t denotes the thread and serves

to compute the columns that are coded. The first loop (lines 2

to 8) codes the data in the conventional mode of BPC-PaCo,

i.e., using three coding passes per bitplane.1 At the end of

each bitplane (i.e., just after the CP) D′ is computed to check

whether the visually lossless threshold has been attained or not.

1Our previous work also describes a variation of this coding scheme that

employs two coding passes per bitplane (significance and refinement). The

proposed method can be directly applied when using two coding passes too, so

it is omitted herein for simplicity.

Algorithm 1 VL BPC-PaCo
Parameters: M total magnitude bitplanes, σ2 codeblock’s variance, t thread

1: j← M − 1

2: repeat

3: SignificancePropagationPass(j)

4: MagnitudeRefinementPass(j)

5: CleanupPass(j)

6: D′ = ∆i2
j

7: j← j − 1

8: until D′ ≤ VTu(σ2)

9: for y ∈ [0, numRows − 1] do

10: for x ∈ [t · 2, t · 2 + 1] do

11: for j′ ∈ [j, 0] do

12: if j′ ≥ s then

13: ACEncodeSignificance(b j′ , t)

14: if j′ = s then

15: ACEncodeSign(d, t)

16: end if

17: else

18: ACEncodeRefinement(b j′ , t)

19: end if

20: end for

21: end for

22: end for

If so, all remaining bitplanes of each coefficient are coded at

once (lines 9 to 22). Functions ACEncode{Significance | Sign

| Refinement} code the corresponding bit using the arithmetic

coder for that thread. More details on the context formation

and processing of the bitstream can be found in [39, 40].

It is worth noting that Equation (3) is not strictly applied in

Algorithm 1. To do so, D′ should be computed after the SPP

only when there is none reconstructed coefficient (i.e., ŵ) equal

to 0 at bitplane j. Experimental tests indicate that this is an ex-

tremely rare case, so it is deliberately omitted in our algorithm

to simplify and accelerate the implementation.

4. Experimental results

The 8 color images of the ISO 12640-1 corpus are employed

in the following experiments. They are 2560×2048 and have a

bit-depth of 8 bits per sample (bps). Images of different sizes

and from different corpora produce similar results as those re-

ported in the following tests. The results report the performance

achieved by JPEG2000, the original BPC-PaCo, CS BPC-PaCo

(with K ∈ {0.5, 0.75, 1}), and the proposed VL BPC-PaCo. The

values of K employed for CS BPC-PaCo are chosen to achieve

high throughput (when K = 1), minimize the impact on coding

performance (when K = 0.5), and a compromise in between.

All methods are implemented in the same Java framework [49]

so differences in throughput and coding efficiency are only re-

lated to the methods evaluated. To assess the throughput, the

codec is run with a single thread, with the execution time pro-

viding an approximation of computational complexity. The re-

versible CDF 5/3 and irreversible CDF 9/7 filter banks are re-

spectively used for lossless and lossy compression applying 5

levels of decomposition.

Figures 2 and 3 report the results achieved for the “Cafe-

teria” and “Musicians” images when they are transmitted pro-

Francesc Aulı́-Llinàs et al. / Journal of Visual Communication and Image Representation (2022) 5

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5

P
S

N
R

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo

CS BPC-PaCo (K=0.50)
CS BPC-PaCo (K=0.75)
CS BPC-PaCo (K=1.00)

VL BPC-PaCo
 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
S

N
R

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo

CS BPC-PaCo (K=0.50)
CS BPC-PaCo (K=0.75)
CS BPC-PaCo (K=1.00)

VL BPC-PaCo

(a) (b)

Fig. 2. Evaluation of coding performance for the “Cafeteria” image when the codestream is transmitted progressively with a (a) lossy and (b) lossless

regime.

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
S

N
R

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo

CS BPC-PaCo (K=0.50)
CS BPC-PaCo (K=0.75)
CS BPC-PaCo (K=1.00)

VL BPC-PaCo
 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
S

N
R

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo

CS BPC-PaCo (K=0.50)
CS BPC-PaCo (K=0.75)
CS BPC-PaCo (K=1.00)

VL BPC-PaCo

(a) (b)

Fig. 3. Evaluation of coding performance for the “Musicians” image when the codestream is transmitted progressively with a (a) lossy and (b) lossless

regime.

gressively from 0.01 bps to approximately 4 bps, at 50 equally

spaced rates. The vertical axis reports the Peak Signal to Noise

Ratio (PSNR), whereas the horizontal axis reports the bit rate of

the compressed image. As seen in the figures, JPEG2000 and

the original BPC-PaCo achieve similar performance. CS BPC-

PaCo penalizes more the coding performance for larger values

of K. This penalization is approximately uniform from low to

high rates. Contrarily, at low rates, VL BPC-PaCo achieves al-

most the same performance as that of the original BPC-PaCo.

At medium and high rates in lossy regimes, the quality of the

transmitted image starts decreasing since most codeblocks at-

tain the visually lossless threshold. In lossless regimes, the

proposed method penalizes almost nothing the image quality

as compared to the original BPC-PaCo. Regardless of the

compression regime, the penalization in quality produced by

VL BPC-PaCo occurs at a higher rate than when using CS BPC-

PaCo. This indicates that VL BPC-PaCo preserves better the

quality at low rates, when it is more visually relevant. Similar

Table 1. Evaluation of lossless coding performance. Results are reported

in bps. The lowest results among CS BPC-PaCo and VL BPC-PaCo are

reported in bold.

BPC-PaCo

CS CS CS

JP2 original VL K=0.5 K=0.75 K=1

Portrait 3.80 4.00 4.02 4.00 4.04 4.08

Cafeteria 4.68 4.80 4.81 4.82 4.92 4.99

Fruit 3.96 4.15 4.19 4.16 4.20 4.22

Wine 3.94 4.12 4.13 4.13 4.16 4.19

Bicycle 3.90 4.09 4.10 4.10 4.16 4.20

Orchid 3.44 3.68 3.73 3.69 3.72 3.75

Musicians 5.34 5.52 5.54 5.58 5.77 5.86

Candle 4.74 4.87 4.89 4.91 5.03 5.10

average 4.22 4.42 4.44 4.44 4.50 4.55

results hold for the remaining images of the corpus.

Table 1 reports the coding performance achieved with a loss-

less regime for all images. The proposed method penalizes very

6 Francesc Aulı́-Llinàs et al. / Journal of Visual Communication and Image Representation (2022)

 0

 5

 10

 15

 20

VL CS (K=0.5) CS (K=0.75) CS (K=1)

th
ro

u
g
h
p
u
t
in

c
re

a
s
e
 (

in
 %

)

 0

 5

 10

 15

 20

 25

VL CS (K=0.5) CS (K=0.75) CS (K=1)

th
ro

u
g
h
p
u
t
in

c
re

a
s
e
 (

in
 %

)

(a) (b)

Fig. 4. Evaluation of the throughput increase achieved by VL BPC-PaCo (VL) and CS BPC-PaCo (CS) with respect to the original BPC-PaCo, on average

for all images of the corpus when using (a) lossy and (b) lossless compression. The left column in each method reports the results for the encoder, whereas

the right column for the decoder.

Table 2. Evaluation of the throughput increase (in percentage) achieved by VL BPC-PaCo and CS BPC-PaCo with respect to the original BPC-PaCo.

Results are reported for the encoder (left) and decoder (right) in each cell.

lossy lossless

VL CS BPC-PaCo VL CS BPC-PaCo

BPC-PaCo K=0.5 K=0.75 K=1 BPC-PaCo K=0.5 K=0.75 K=1

Portrait 10.8 11.2 0.6 3.4 10.6 11.1 15.5 18.0 10.1 9.5 0.7 0.2 16.2 15.3 23.3 23.2

Cafeteria 9.3 8.2 6.7 5.1 17.2 17.7 26.0 26.1 3.8 5.9 4.2 4.2 21.1 20.5 29.4 28.5

Fruit 12.9 10.8 2.4 2.5 13.6 12.4 18.6 17.8 5.9 4.2 0.1 2.1 12.5 13.0 21.7 21.3

Wine 8.0 9.5 2.5 2.1 11.2 13.6 20.2 19.2 7.8 7.1 0.2 0.4 16.1 17.6 23.7 23.4

Bicycle 8.5 10.0 2.1 3.8 13.0 15.1 21.4 20.4 6.1 10.4 1.6 3.8 19.6 18.9 26.6 27.4

Orchid 12.4 13.3 1.3 3.9 9.8 11.1 15.4 18.9 8.2 11.7 -1.7 2.4 12.6 16.5 18.1 21.1

Musicians 4.5 3.7 5.2 4.2 17.7 17.0 23.7 25.3 -1.0 0.3 2.0 1.4 18.8 19.8 27.3 30.3

Candle 4.2 5.3 3.7 3.8 14.9 16.9 23.4 24.9 5.2 7.1 6.1 5.5 21.1 22.6 30.3 32.1

average 8.4 8.6 3.3 3.7 14.0 14.8 21.1 21.8 5.4 6.8 1.9 2.1 17.6 18.3 25.5 26.4

little the coding performance, with an increase of only 0.02 bps

on average with respect to the original BPC-PaCo. This in-

crease is the same as that achieved with CS BPC-PaCo when

K = 0.5. Nonetheless, the performance achieved by VL BPC-

PaCo when the image is progressively transmitted is signif-

icantly higher than that achieved by CS BPC-PaCo with the

same K, as seen in Figures 2 and 3.

The next test evaluates the throughput achieved by the pro-

posed method. Results are reported as the percentage of

throughput increase in the bitplane coding engine achieved by

the indicated method with respect to the original BPC-PaCo.

Figure 4 depicts average results for all images when coding in

lossy and lossless regimes. As seen in the figure, VL BPC-PaCo

obtains a throughput increase between that achieved for K = 0.5

and K = 0.75. For lossy compression, the proposed codec ac-

celerates both the encoding and decoding process by approxi-

mately 8.5%, whereas for lossless compression the speedup is

approximately 6%. Table 2 details the results for all images of

the corpus. For some images, the proposed method accelerates

the codec by more than 12%. In general, images with fewer

details reach the visually lossless threshold after coding fewer

bitplanes, so the achieved speedup is higher.

5. Conclusions

BPC-PaCo is a bitplane coding engine for wavelet-based

coding systems tailored for fine-grain parallelism in highly par-

allel architectures. Its main insight is to code multiple coef-

ficients within a codeblock in parallel through vector instruc-

tions such as those found in modern CPUs and GPUs. Despite

achieving high throughput, the bottleneck of BPC-PaCo orig-

inates in the use of three coding passes per bitplane, which

causes register spilling since the coefficients are transferred

back and forth from the memory to the register space of the

processor. This shortcoming is alleviated with the introduction

of a complexity scalable technique that safeguards quality scal-

ability while accelerating the coding process. The drawback

of CS BPC-PaCo is that the quality and speedup can only be

roughly controlled via a user parameter. This paper introduces

a visually lossless model for BPC-PaCo that, without needing

the user supervision, maximizes both the throughput and the

quality of the image that is visually relevant for a human ob-

server.

Francesc Aulı́-Llinàs et al. / Journal of Visual Communication and Image Representation (2022) 7

VL BPC-PaCo is implemented for this paper in a Java frame-

work to compare its coding performance and computational

complexity with BPC-PaCo and CS BPC-PaCo. Experimen-

tal tests suggest that the proposed method significantly smooths

the impact on quality when the image is progressively trans-

mitted while accelerating the codec by about 8% on average.

Future work will evaluate this algorithm on modern GPUs.

Acknowledgments

This work has been partially supported by the Spanish Min-

istry of Science, Innovation and Universities (MICIU) and

by the European Regional Development Fund (FEDER) un-

der Grants RTI2018-095287-B-I00 and PID2021-125258OB-

I00, by the Catalan Government under Grants 2018-BP-00008

and 2017SGR-463, and by the Horizon 2020 under the Marie

Skłodowska-Curie grant agreement #801370.

References

[1] H. Chang, M. Varvello, F. Hao, S. Mukherjee, A tale of three videoconfer-

encing applications: Zoom, Webex, and Meet, IEEE/ACM Trans. Netw.

(2022). In Press.

[2] Y. Al-Mulla, A. Al-Ruheili, A. Al-Lawati, K. Parimi, A. Ali, N. Al-Sadi,

F. Al-Harrasi, Assessment of urban expansion’s impact on changes in

vegetation patterns in Dhofar, Oman, using remote sensing and GIS tech-

niques, IEEE Access 10 (2022) 86782–86792.

[3] S.-H. Lee, S.-H. Yoon, H.-W. Kim, Prediction of online video advertis-

ing inventory based on TV programs: A deep learning approach, IEEE

Access 9 (2021) 22516–22527.

[4] C. Yan, B. Gong, Y. Wei, Y. Gao, Deep multi-view enhancement hashing

for image retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 43 (2021)

1445–1451.

[5] C. Yan, Y. Hao, L. Li, J. Yin, A. Liu, Z. Mao, Z. Chen, X. Gao, Task-

adaptive attention for image captioning, IEEE Trans. Circuits Syst. Video

Technol. 32 (2022) 43–51.

[6] C. Yan, L. Meng, L. Li, J. Zhang, Z. Wang, J. Yin, J. Zhang, Y. Sun,

B. Zheng, Age-invariant face recognition by multi-feature fusion and de-

composition with self-attention, ACM Trans. Multimedia Comput. Com-

mun. Appl. 18 (2022) 1–18.

[7] A. Said, W. A. Pearlman, A new, fast, and efficient image codec based

on set partitioning in hierarchical trees, IEEE Trans. Circuits Syst. Video

Technol. 6 (1996) 243–250.

[8] D. Taubman, High performance scalable image compression with

EBCOT, IEEE Trans. Image Process. 9 (2000) 1158–1170.

[9] W. A. Pearlman, A. Islam, N. Nagaraj, A. Said, Efficient, low-complexity

image coding with a set-partitioning embedded block coder, IEEE Trans.

Circuits Syst. Video Technol. 14 (2004) 1219–1235.

[10] G. Xie, H. Shen, Highly scalable, low-complexity image coding using

zeroblocks of wavelet coefficients, IEEE Trans. Image Process. 15 (2005)

762–770.

[11] M. Dyer, D. Taubman, S. Nooshabadi, A. K. Gupta, Concurrency tech-

niques for arithmetic coding in JPEG2000, IEEE Trans. Circuits Syst. I

53 (2006) 1203–1212.

[12] M. Rhu, I.-C. Park, Optimization of arithmetic coding for JPEG2000,

IEEE Trans. Circuits Syst. Video Technol. 20 (2010) 446–451.

[13] F. Auli-Llinas, M. W. Marcellin, Scanning order strategies for bitplane

image coding, IEEE Trans. Image Process. 21 (2012) 1920–1933.

[14] X. Song, Q. Huang, S. Chang, J. He, H. Wang, Three-dimensional sep-

arate descendant-based SPIHT algorithm for fast compression of high-

resolution medical image sequences, IET Image Processing 11 (2017)

80–87.

[15] A. Descampe, F.-O. Devaux, G. Rouvroy, J.-D. Legat, J.-J. Quisquater,

B. Macq, A flexible hardware JPEG 2000 decoder for digital cinema,

IEEE Trans. Circuits Syst. Video Technol. 16 (2006) 1397–1410.

[16] Y. Li, L. Claesen, K. Huang, M. Zhao, A real-time high-quality complete

system for depth image-based rendering on FPGA, IEEE Trans. Circuits

Syst. Video Technol. 29 (2019) 1179–1193.

[17] J. W. Park, H. Lee, B. Kim, D.-G. Kang, S. O. Jin, H. Kim, H.-J. Lee,

A low-cost and high-throughput FPGA implementation of the retinex al-

gorithm for real-time video enhancement, IEEE Trans. VLSI Syst. 28

(2020) 101–114.

[18] A. K. Gupta, S. Nooshabadi, D. Taubman, M. Dyer, Realizing low-cost

high-throughput general-purpose block encoder for JPEG2000, IEEE

Trans. Circuits Syst. Video Technol. 16 (2006) 843–858.

[19] K. Mei, N. Zheng, C. Huang, Y. Liu, Q. Zeng, VLSI design of a high-

speed and area-efficient JPEG2000 encoder, IEEE Trans. Circuits Syst.

Video Technol. 17 (2007) 1065–1078.

[20] M. Dyer, S. Nooshabadi, D. Taubman, Design and analysis of system on

a chip encoder for JPEG2000, IEEE Trans. Circuits Syst. Video Technol.

19 (2009) 215–225.

[21] S. Kim, D. Lee, J.-S. Kim, , H.-J. Lee, A high-throughput hardware

design of a one-dimensional SPIHT algorithm, IEEE Trans. Multimedia

18 (2016) 392–404.

[22] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, L.-G. Chen, Parallel

embedded block coding architecture for JPEG 2000, IEEE Trans. Circuits

Syst. Video Technol. 15 (2005) 1086–1097.

[23] Y. Li, M. Bayoumi, A three-level parallel high-speed low-power architec-

ture for EBCOT of JPEG 2000, IEEE Trans. Circuits Syst. Video Technol.

16 (2006) 1153–1163.

[24] K. Sarawadekar, S. Banerjee, An efficient pass-parallel architecture for

embedded block coder in JPEG 2000, IEEE Trans. Circuits Syst. Video

Technol. 21 (2011) 825–836.

[25] Y. Jin, H.-J. Lee, A block-based pass-parallel SPIHT algorithm, IEEE

Trans. Circuits Syst. Video Technol. 22 (2012) 1064–1075.

[26] P. Enfedaque, F. Auli-Llinas, J. C. Moure, Implementation of the DWT

in a GPU through a register-based strategy, IEEE Trans. Parallel Distrib.

Syst. 26 (2015) 3394–3406.

[27] P. Enfedaque, F. Auli-Llinas, J. C. Moure, GPU implementation of bit-

plane coding with parallel coefficient processing for high performance

image compression, IEEE Trans. Parallel Distrib. Syst. 28 (2017) 2272–

2284.

[28] M. Diaz, R. Guerra, P. Horstrand, E. Martel, S. Lopez, J. Lopez,

R. Sarmiento, Real-time hyperspectral image compression onto embed-

ded GPUs, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 12

(2019) 2792–2809.

[29] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, F. Auli-Llinas,

GPU-oriented architecture for an end-to-end image/video codec based on

JPEG2000, IEEE Access 8 (2020) 68474–68487.

[30] M. S. Nobile, P. Cazzaniga, A. Tangherloni, D. Besozzi, Graphics pro-

cessing units in bioinformatics, computational biology and systems biol-

ogy, Briefings in Bioinformatics 18 (2017) 870–885.

[31] Information technology - JPEG 2000 image coding system - Part 1: Core

coding system, 2000.

[32] Information technology - JPEG 2000 image coding system - Part 15: High

throughput JPEG 2000, 2019.

[33] A. Naman, D. Taubman, Decoding high-throughput JPEG2000 (HTJ2K)

on a GPU, in: Proc. IEEE International Conference on Image Processing,

2019, pp. 1084–1088.

[34] D. Taubman, A. Naman, R. Mathew, High throughput block coding in the

HTJ2K compression standard, in: Proc. IEEE International Conference

on Image Processing, 2019, pp. 1079–1083.

[35] A. Naman, D. Taubman, Encoding high-throughput JPEG2000 (HTJ2K)

images on a GPU, in: Proc. IEEE International Conference on Image

Processing, 2020, pp. 1171–1175.

[36] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, F. Auli-Llinas,

Real-time 16K video coding on a GPU with complexity scalable BPC-

PaCo, ELSEVIER Signal Processing: Image Communication 99 (2021)

1–10.

[37] F. Auli-Llinas, Stationary probability model for bitplane image coding

through local average of wavelet coefficients, IEEE Trans. Image Process.

20 (2011) 2153–2165.

[38] F. Auli-Llinas, Entropy-based evaluation of context models for wavelet-

transformed images, IEEE Trans. Image Process. 24 (2015) 57–67.

[39] F. Auli-Llinas, P. Enfedaque, J. C. Moure, V. Sanchez, Bitplane image

coding with parallel coefficient processing, IEEE Trans. Image Process.

25 (2016) 209–219.

[40] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, F. Auli-Llinas,

Complexity scalable bitplane image coding with parallel coefficient pro-

cessing, IEEE Signal Process. Lett. 27 (2020) 840–844.

8 Francesc Aulı́-Llinàs et al. / Journal of Visual Communication and Image Representation (2022)

[41] A. Watson, G. Yang, J. Solomon, J. Villasenor, Visibility of wavelet quan-

tization noise, IEEE Trans. Image Process. 6 (1997) 1164–1175.

[42] Z. Liu, L. J. Karam, A. B. Watson, JPEG2000 encoding with perceptual

distortion control, IEEE Trans. Image Process. 15 (2006) 1763–1778.

[43] H. Oh, A. Bilgin, M. Marcellin, Visually lossless encoding for JPEG

2000, IEEE Trans. Image Process. 22 (2013) 189–201.

[44] L. Jimenez-Rodriguez, F. Auli-Llinas, M. Marcellin, Visually lossless

strategies to decode and transmit JPEG2000 imagery, IEEE Signal Pro-

cess. Lett. 21 (2014) 35–38.

[45] H. Oh, A. Bilgin, M. Marcellin, Visually lossless JPEG 2000 for remote

image browsing, Information 7 (2016) 1–20.

[46] D. S. Taubman, M. W. Marcellin, JPEG2000 Image compression funda-

mentals, standards and practice, Kluwer Academic Publishers, Norwell,

Massachusetts 02061 USA, 2002.

[47] A. Watson, Efficiency of a model human image code, Journal of the

Optical Society of America 4 (1987) 2401–2417.

[48] S. Daly, The visible differences predictor: An algorithm for the assess-

ment of image fidelity, in: Proc. SPIE Human Vision, Visual Processing

and DigitalDisplay, 1992, pp. 2–15.

[49] F. Auli-Llinas, BOI codec, 2022. URL:

https://deic.uab.cat/~francesc/software/boi.

https://deic.uab.cat/~francesc/software/boi

	Introduction
	Review of Complexity Scalable BPC-PaCo
	Proposed method
	Distortion Model
	Visually lossless BPC-PaCo

	Experimental results
	Conclusions

