
Real-time 16K Video Coding on a GPU

with Complexity Scalable BPC-PaCo

Carlos de Cea-Domingueza,∗, Juan C. Moureb, Joan Bartrina-Rapestaa, Francesc Aulı́-Llinàsa
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Abstract

The advent of new technologies such as high dynamic range or 8K screens has enhanced the quality of digital images

but it has also increased the codecs’ computational demands to process such data. This paper presents a video codec

that, while providing the same coding features and performance as those of JPEG2000, can process 16K video in

real time using a consumer-grade GPU. This high throughput is achieved with a technique that introduces complexity

scalability to a bitplane coding engine, which is the most computationally complex stage of the coding pipeline. The

resulting codec can trade throughput for coding performance depending on the user’s needs. Experimental results

suggest that our method can double the throughput achieved by CPU implementations of the recently approved High-

Throughput JPEG2000 and by hardwired implementations of HEVC in a GPU.
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1. Introduction

Image and video coding are primary needs of indus-

tries such as digital cinema, content streaming or video

production, among others. Two main standards sat-

isfy the requirements of many such industries, namely,

JPEG2000 [1] and HEVC [2]. JPEG2000 is com-

monly employed in digital cinema and medical imag-

ing, whereas HEVC is often used for media streaming

and video production. Both standards have advanced

features like high compression efficiency, quality scala-

bility, interactive transmission, or error resilience. Both

standards also demand ample computational resources,

posing a challenge when high quality video (of 4K or

more resolution and/or with high dynamic range) need

to be coded in real time. In computational-constrained

devices, the image quality may need to be reduced to

achieve real-time processing. Other scenarios such as

digital cinema or medical imaging require the highest

quality possible, so expensive hardware solutions are of-

ten in use.
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The literature employs different approaches to in-

crease the codecs’ throughput. Some works focus on the

coding algorithms to reduce computational complex-

ity [3, 4, 5]. Others implement the codec in hardware

devices such as Field-Programmable Gate Arrays (FP-

GAs) [6, 7, 8, 9]. FPGAs are attractive despite their

high price due to their high performance, so they are

used in scenarios such as digital cinema [10] or medical

imaging [11, 12, 13]. The highly parallel architecture

of Graphics Processing Units (GPUs) has also been em-

ployed to parallelize the codec’s tasks [14, 15, 16]. The

lower cost and the capacity for general-purpose comput-

ing of GPUs have made these accelerators very popular

in recent years.

When the algorithms exhibit fine-grained parallelism,

implementations in GPUs can achieve high throughput

thanks to the inherent Single Instruction Multiple Data

(SIMD) architecture of these devices in combination

with a Multiple Instruction Multiple Data (MIMD) ar-

chitecture. Together, both characteristics allow process-

ing thousands of threads executing the same instruction

on different data. Some algorithms can be accelerated

up to 20× as compared to implementations on tradi-

tional Central Processing Units (CPUs) [17]. Unfor-

tunately, such speedups are not achieved when imple-

menting conventional image/video codecs because their

core algorithms exhibit poor fine-grained parallelism. In
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Figure 1: Evaluation of rate-distortion performance for JPEG2000,

HTJ2K, BPC-PaCo and CS BPC-PaCo (with K = 0.5) when trans-

mitting the color image “Portrait” at 100 different rates.

general, these algorithms are devised to exploit only the

MIMD-based architecture of CPUs (or GPUs), which

can process tenths of threads executing different instruc-

tions on different data.

The coding pipeline of a traditional JPEG2000 codec

has three main stages: discrete wavelet transform

(DWT), bitplane and entropy coding (BPC), and code-

stream re-organization (CR). The DWT and CR stages

can be easily mapped to a SIMD-based architecture

since their operations can be parallelized and do not

hold critical data dependencies. Contrarily, the BPC

stage has data dependencies that force the samples to

be coded sequentially in each tile of data. This stage ac-

counts for 85% of the total execution time, so it is key

in the codec’s overall throughput.

Aimed to provide more parallelism to the BPC en-

gine, the Joint Photographic Experts Group approved in

2019 Part 15 of the standard, named High-Throughput

JPEG2000 (HTJ2K). This new part adopts the algorithm

proposed in [18], which exploits vector (SIMD) instruc-

tions included in modern CPUs and GPUs. HTJ2K can

increase the throughput of a conventional JPEG2000

codec by about 10× at the expense of sacrificing: code-

stream compliance, compression efficiency (about 10%)

and, quality scalability. Codestream compliance and

compression efficiency are inevitably affected when

modifying the coding engine, but these features are not

essential in most scenarios. Quality scalability, on the

other hand, is a valuable feature that allows partial de-

coding of the codestream at different rates while min-

imizing the distortion of the recovered image. See,

for instance, in Fig. 1, the performance achieved by

JPEG2000 and HTJ2K when the “Portrait” image (of

corpus ISO/IEC 12640-1) is compressed and then trans-

mitted at 100 different rates distributed between 0.01

and 3 bits per sample (bps). The vertical axis of the fig-

ure reports the quality of the recovered image in Peak

Signal to Noise Ratio (PSNR), whereas the horizontal

axis is the transmission rate. The quality achieved by

HTJ2K is much lower than that achieved by the original

JPEG2000 due to the lack of quality scalability.

This paper continues our line of research focused on

providing fine-grained parallelism to all coding stages

of an image/video codec. Our work originates in cod-

ing techniques that break the causality of classical cod-

ing strategies [19, 20, 21]. These techniques led to

the development of a lightweight arithmetic coder that

allows fine-grained parallelism [22, 23]. After that,

the research focused on the stages of a JPEG2000-like

codec. First, we proposed a GPU implementation of

the DWT [14, 24] employing a highly-efficient register-

based strategy. Second, the BPC engine was reformu-

lated, resulting in a BPC with parallel coefficient pro-

cessing (BPC-PaCo) [25, 26] that can efficiently exploit

the resources of a GPU [15]. Third, we presented the

GPU architecture for the end-to-end codec [16]. This

codec can code up to 12K video in real time, achieves

a compression efficiency comparable to that of the orig-

inal JPEG2000 standard, and does not sacrifice quality

scalability. See in Fig. 1 that the coding performance

achieved by this codec is approximately only 2% infe-

rior to that of JPEG2000.

Our last step proposes a complexity scalable tech-

nique for the coding engine. Complexity scalability

allows trading computational complexity by compres-

sion efficiency so that the user can tune the codec to

run more or less rapidly while marginally increasing the

size of the compressed file. As it was studied in [27]

and seen in Fig. 1, the proposed Complexity Scalable

BPC-PaCo (CS BPC-PaCo) decreases only slightly the

coding performance with respect to BPC-PaCo. This

paper extends that work by first analyzing the computa-

tional bottleneck of the original BPC-PaCo in the GPU,

which guides the development of the complexity scal-

able technique. Second, the proposed technique is in-

troduced in our end-to-end codec evaluating its memory

footprint, occupancy and performance, as well as the

overall throughput achieved in different test conditions.

Finally, experimental results evaluate the coding perfor-

mance, throughput, and power consumption of the pro-

posed method compared to other state-of-the-art codecs.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the architecture of the GPU, JPEG2000

and HTJ2K. Section 3 overviews the architecture of

our codec, examines the aspects of BPC-PaCo that

limit its throughput, and describes the implementa-
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tion of CS BPC-PaCo. Experimental results are pre-

sented in Section 4 comparing the proposed method

with JPEG2000, HTJ2K, and HEVC. Section 5 con-

cludes with a brief summary.

2. Background

2.1. GPU architecture

Arguably, the most popular accelerators are currently

those manufactured by Nvidia due to their low price,

high performance, and capacity for general-purpose

computing through the CUDA programming language,

so they are employed in this work. Nvidia GPUs are

constituted by many individual computing units called

Streaming Multiprocessors (SM). Each SM is responsi-

ble of managing the execution of multiple 32-wide vec-

tor instructions in parallel. A GPU can have from one

to a hundred of SMs. CUDA virtualizes each lane of a

32-wide vector instruction into a software thread. The

group of 32 threads is referred to as a warp. Warps are

organized in thread blocks, which are assigned to a SM

for execution. Each thread block within a SM can ex-

ecute tasks independently from the others, so different

kernels (i.e., CUDA functions) from the same or differ-

ent applications can run concurrently on the same SM.

To organize the execution of kernels, CUDA provides

the so-called streams. Each stream executes one or var-

ious kernels of an application in a pre-determined order.

Since the GPU has abundant computational resources,

concurrent streams of the same application can be exe-

cuted in parallel to process different data.

Until CUDA v6.2, every thread in a warp executed in-

structions in a synchronous, lock-step fashion with the

other threads of the warp. Implicit synchronization was

featured at the end of every divergence in the execu-

tion flow. Since the release of CUDA v7.0, every thread

in a warp can be executed asynchronously, so synchro-

nization among threads must be explicitly programmed

when needed. Our codec considers this aspect, produc-

ing the same result regardless of the architecture em-

ployed. For simplicity, the following sections assume

that implicit synchronization is employed.

As Fig. 2 depicts, the memory architecture of a GPU

has three levels: global memory, shared memory, and

registers. The global memory is located in the device

RAM or DRAM, has a size in the order of GBs, and is

accessible by all SMs. This memory has high latency

but relatively high bandwidth, so data transfers are to

be carried out in a coalesced way (i.e., using consecu-

tive memory positions) to maximize performance. The

shared memory has a size in the order of MBs, has low

Figure 2: Memory hierarchy of a Nvidia GPU.

latency and higher bandwidth, and can be accessed by

all threads of a block. Each SM has an individual mem-

ory bank for this memory. The registers have very fast

access, very high bandwidth, and a size of typically 256

KB. When the registers can not hold all the data required

by the application, some data are temporarily moved to

a reserved space in the device memory, the so-called

local memory. This is called register spilling. It sig-

nificantly affects the application’s performance because

transfers from/to the device memory render threads in

an idle state due to the memory latency.

The memory architecture of the GPU is devised so

that each execution kernel transfers the data required

for computation from the global memory to the registers

and then transfers back the results to the global memory.

Communication among threads is commonly carried out

via the shared memory or register shuffling. Each GPU

has a Level 1 (L1) and Level 2 (L2) cache to minimize

the latency when moving data from/to the device mem-

ory to/from the shared memory and registers. The L1

cache is located in the memory bank within the SM that

also holds the shared memory, whereas the L2 cache is

in a separate memory bank between the SMs and the

device memory.

2.2. JPEG2000 architecture

As previously stated, the JPEG2000 coding pipeline

has three main stages. The first reduces the spatial re-

dundancy of the image through the DWT. The input to

the DWT is either a gray image or a color image that has

been converted to a color space that holds the luminance

in the first component and the blue and red chrominance

in the second and third component, respectively. The

color transform (CT) is a pixel-wise operation without

dependencies, so it is easily mapped to SIMD-based in-
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structions. The DWT applies a series of arithmetic op-

erations to all rows and columns of the image employ-

ing the so-called lifting scheme [28]. There are no de-

pendencies between rows/columns, so these operations

can be performed in parallel, suiting well SIMD pro-

gramming too. The resulting wavelet coefficients are

then reordered in four different subbands of one quar-

ter the size of the original image. One of these sub-

bands holds the low-pass details of the image, whereas

the other three hold the high-pass details. In general,

the DWT is applied 5 times on the low-pass subband to

further compact the image energy. JPEG2000 provides

reversible and irreversible operations for both the CT

and DWT operations. The reversible path employs in-

teger operations, so the original image can be recovered

losslessly. The irreversible path employs floating-point

operations that provide higher compression efficiency

but produce losses in the reconstructed image. These

losses can be controlled via the dead-zone quantization

that is applied just after the DWT.

The second stage of the coding pipeline is the BPC.

It is applied independently on data tiles that typically

contain a set of 64×64 wavelet coefficients, called code-

blocks. The coefficients within each codeblock are pro-

cessed in a bitplane-by-bitplane fashion. A bitplane

is the collection of bits b j from all coefficients at bi-

nary position j, with [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1}

representing the binary representation of integer υ pro-

duced by the DWT (and quantization when using the

irreversible path). The first non-zero bit of each coeffi-

cient, denoted by bs, is referred to as significant bit. The

sign of υ is denoted by d ∈ {+,−} and is coded immedi-

ately after bs so that the decoder can start approximat-

ing υ as soon as possible. JPEG2000 codes all bits of

each bitplane in three coding passes. Each pass scans all

the coefficients within the codeblock but only codes the

bits of a group of selected coefficients. This three-pass

strategy codes first the information that mostly reduces

the distortion of the image. Each bit, with contextual

information about the coefficient’s neighbors, is fed to

an arithmetic coder. The arithmetic coder employs this

contextual information to adaptively adjust the proba-

bilities of the processed bits, which is key to achieve

compression. The output of the BPC stage is a bitstream

per codeblock that can be truncated and re-organized in

different layers of quality in the final codestream by the

CR stage, the last of the coding pipeline.

The coding of codeblocks by independent threads

provides the coarse-grained parallelism that suits CPUs,

but GPUs need a finer parallelism. The BPC stage has

many data dependencies. The most crucial is imposed

by the arithmetic coder, which requires the result of the

last processed bit to start coding the next. The contex-

tual information and the group of coefficients selected in

each coding pass also depend on the previously coded

data, though these dependencies might be avoided at

the expense of more computations. These aspects pre-

vent parallelism at a coefficient level, which is the kind

of fine-grained parallelism that GPUs may exploit more

efficiently.

Part 15 of JPEG2000 (ISO/IEC 15444-15) provides

more opportunities for fine-grained parallelism [18].

The logical partition in codeblocks is maintained but,

instead of using a bitplane coding strategy, the coeffi-

cients are coded with a single coding pass in sets of 4×4

coefficients called quads. Most of the operations to code

each quad do not hold critical dependencies with other

quads. Entropy coding is carried out via variable-to-

variable length codes, allowing parallel processing of

quads. This coding strategy allows the use of vector

instructions in modern CPUs and GPUs. Nonetheless,

the use of a single coding pass disables quality scalabil-

ity because the bitstream of each codeblock can not be

truncated and re-organized as in the original JPEG2000.

As seen in Fig. 1, this significantly reduces the quality

of a compressed image transmitted at progressive rates.

Also, the compression efficiency is penalized due to the

use of a less efficient entropy coder than that of the orig-

inal JPEG2000.

3. Proposed method

3.1. Codec architecture

The method proposed in this work extends our

previous GPU-based architecture for the end-to-end

codec [16] by introducing complexity scalability. The

goal is to accelerate the coding process at the expense

of decreasing compression efficiency in a way that can

be controlled by the user.

First, let us briefly describe the architecture of our

codec. Fig. 3 depicts the employed kernels. The ar-

chitecture is devised so that each kernel performs all

operations to a chunk of data before it needs to be

re-organized for the following operations. This min-

imizes the transfers from/to the global memory since

the data are fetched and returned to this memory only

once in each kernel. More precisely, the CT kernel

processes data tiles containing three color components

from an image region, the DWT kernel processes data

tiles containing samples of a single component, the

BPC-PaCo kernel codes codeblocks, and the CR ker-

nel re-organizes the bitstreams produced for each code-

block in the final codestream. This organization allows

4



data transfers from host to device (and reverse)

data transfers within device

original

data

disk

main memory

host

device

1..3

host

compressed

data

disk

R
G
B

Y
Cb

Cr

~4% ~9% ~85% ~2%

CT DWT BPC-PaCo CR

fr
a
m

e
s

main memory

frame 1 frame 2

frame bitstream

Figure 3: Illustration of the codec architecture when employing a single stream of execution in the GPU.

each kernel to compute many small data tiles in paral-

lel, maximizing the overall throughput. In addition, the

codec leverages the computational resources of the GPU

through asynchronous I/O and multi-stream processing,

and favors the use of register-based operations to com-

municate among threads in detriment of shared memory

to avoid the latency of this memory.

Fig. 3 depicts below each kernel its computational

load. BPC-PaCo approximately spends 85% of the to-

tal execution time, so its optimization may significantly

increase the overall throughput. The remaining kernels

represent less than 15% of the total load and their oper-

ations are indispensable and already highly optimized.

As it is formulated in [16], the BPC-PaCo kernel uses

two coding passes per bitplane. The significance pass

codes the bits of those coefficients that were not signif-

icant in previous bitplanes, more precisely, those with

s ≤ j, with j representing the current bitplane. The

refinement pass codes the bits of the remaining coeffi-

cients. The scanning order is devised so that each thread

of a warp visits two columns of coefficients from the

top to the bottom row. For significance coding, the

context of the current coefficient υ is determined via

the significance state of its eight adjacent neighbors as

φsig(υ, j) =
∑

k Φ(υk, j), with υk, 1 < k ≤ 8 denoting the

neighbors and Φ(υk, j) = 1 or 0 when υk is significant

or not, respectively. The context employed to code sign

d is denoted by φsign(υ, j) and employs a similar strat-

egy, whereas the refinement pass uses a single context

since little gain is achieved with more complex mod-

els [21], so φre f (υ, j) = 0. The probability estimate that

the encoded bit b j is 0 is extracted from a lookup table

(LUT) known by encoder and decoder that is accessed

as Pu[ j][φsig(·)], with u denoting the wavelet subband.

This LUT is pre-computed offline with a training set of

images according to

Psig(b j = 0 | φsig(υ, j)) =

2 j−1
∑

υ=0

Fu(υ | φsig(υ, j))

2 j+1−1
∑

υ=0

Fu(υ | φsig(υ, j))

, (1)

where Fu(υ | φsig(υ, j)) is the probability mass function

of the quantized coefficients at bitplane j given their

context. Its support is [0, ..., 2 j+1 − 1] since it contains

coefficients that were not significant in bitplanes greater

than j. Probabilities for sign and refinement coding are

derived similarly. Their respective LUTs are denoted

by P′u and P′′u . Entropy coding of the emitted bits and

their probabilities are carried out by each thread with

an arithmetic coder that produces fixed-length code-

words [29]. Threads cooperate among them to dispatch

these codewords to the bitstream in a quality embedded

order.

In BPC-PaCo, coefficients υ and ancillary data to

process them are stored in the registers. Typically,

each thread processes 128 coefficients (belonging to 2

columns of 64 coefficients), ideally requiring 128 reg-

isters of 32 bits plus some more for ancillary data. In

current GPUs, this is too much information to hold in

the register space. Each SM in current GPUs (Turing

architecture) has 256 KB for registers and can run a

maximum of 1024 threads. If all threads run in parallel,

they can only access a maximum of 64 registers without

causing register spilling and rendering some threads in

an idle state.

As illustrated in the first row of Table 1, register

spilling is the main bottleneck of the BPC-PaCo ker-

nel. The table reports the transfers between memory

device MD and registers R that occur when the kernel

processes a 4K image (gray scale, 8 bps). The compo-

nent’s data approximately requires 32 MB but, as seen

in the table, 251 MB are read from MD due to the ex-
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data reading (MB) data writing (MB) cache hit rates

MD → R L2→ L1 L1→ L2 R →MD L1 L2

BPC-PaCo 251 283 129 108 69% 39%
C

S
B

P
C

-P
a
C

o K=0.5 234 265 119 97 70% 39%

K=1 182 212 106 78 72% 43%

K=2 118 145 96 58 76% 51%

K=6 91 108 94 57 79% 55%

Table 1: Evaluation of memory and cache transfers when the kernels BPC-PaCo and CS BPC-PaCo code a 4K image in a RTX 2080 Ti GPU.

tensive use of local memory, as much as 8×. This in-

crease is approximately 4× for writing. Table 1 also

reports the data transfers between caches, which are

similar, and the cache hit rates, which are moderately

high because the data employed by the threads are fre-

quently accessed and easily foreseeable. Despite the ac-

celeration that the caches may provide, register spilling

severely handicaps this kernel.

3.2. Complexity Scalable BPC-PaCo

The register spilling that occurs in BPC-PaCo is

mainly caused by the multiple scanning of the coeffi-

cients during the coding process. The average number

of coded bitplanes is 8, resulting in 16 accesses per coef-

ficient. This generates multiple data transfers back and

forth from the local memory since registers can not hold

all the coefficients simultaneously.

The only way to reduce register spilling is minimiz-

ing the number of times that the coefficients are visited.

However, the two-pass strategy is necessary to provide

accurate estimates that achieve compression, and mul-

tiple truncation points that achieve quality scalability.

The adopted strategy must alleviate the impact on these

coding features, regulating the coding passes performed

in each codeblock but without affecting the most rele-

vant information in terms of distortion.

The technique employed herein was presented in [27]

from a theoretical perspective that evaluates the impact

on coding performance and quality scalability, but with-

out implementing it in our end-to-end GPU codec. Its

main insight is to code bitplanes [M − 1,N] with the

same two-pass strategy of BPC-PaCo, and then use a

fast mode that codes bitplanes [N−1, 0] in a single pass.

This codes the most relevant information in terms of dis-

tortion (contained in the highest bitplanes [M − 1,N])

more progressively than the lesser relevant information,

minimizing the impact on compression efficiency and

quality scalability.

Choosing a suitable N is key to balance throughput

and compression efficiency. A high N causes the coding

of many bitplanes in fast mode, increasing the through-

put but penalizing coding performance. A low N does

not affect coding performance significantly though it

does not provide significant throughput gains either. In-

stead of using the same N for all codeblocks, the strat-

egy proposed in [30] uses different Ns depending on the

codeblock’s wavelet subband u and magnitude bitplanes

M according to

N = min

(

M,

⌊

M ·
K

Lu

⌋)

. (2)

Lu is the L2 norm of the synthesis basis vectors of the

subband filter-bank (which is computed offline assum-

ing equal energy gain factor in all subbands). Large Ks

result in large Ns, so more bitplanes are coded with the

fast mode, increasing the codec’s throughput. Note that

K is the user parameter that controls the speedup or, in

other words, the mechanism through which complexity

scalability is managed.

The coding technique embodied in Eq. 2 sets lower

Ns to codeblocks within subbands in smaller resolution

levels. Although these subbands have fewer codeblocks

than in larger levels, these codeblocks have higher en-

tropy than the rest, so coding them with more coding

passes significantly enhances the quality scalability of

the system. This is illustrated in Fig. 4. It depicts

the images recovered when coding the “Portrait” image

with (a) the same N in all codeblocks, and (b) the pro-

posed strategy. Both codecs are set to achieve the same

throughput.1 The strategy that uses a fixed N (Fig. 4(a))

significantly degrades the image quality because the bit-

stream of some codeblocks within the lowest resolution

levels are not included in the final codestream. The pro-

posed strategy (Fig. 4(b)) provides an image with much

higher quality. This holds for other coding parameters

and images.

1Coding parameters for this test are: lossy compression, 2 DWT

levels, 64×64 codeblocks, target rate 0.25 bps, N = 15, and K = 6 for

the fixed and variable strategy, respectively.
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(a) (b)

Figure 4: Visual evaluation of a (a) fixed and (b) variable strategy to set the bitplanes coded in fast mode with CS BPC-PaCo.

3.3. Implementation

Algorithm 1 details the proposed kernel from a thread

perspective. The bitplanes in the range [M − 1,N] are

coded with the original BPC-PaCo (lines 2 and 3) as de-

scribed in [15, 16]. A significance and refinement pass

are employed in each bitplane. The fast mode is used

from bitplane N − 1 to 0. Instead of visiting the coeffi-

cients twice per bitplane, the fast mode visits them only

once and codes all their bits. Lines 5 and 6 in Algo-

rithm 1 scan the coefficients. Since the context for sig-

nificance coding is the same from bitplane N−1 onward,

it is only computed once in line 7. Our implementation

avoids this operation when all the coefficients are al-

ready significant. The loop in line 8 codes all bits of the

coefficient considering its significance state. The arith-

metic coder employs the procedure described in [15],

which is not detailed herein for simplicity.

As previously stated, key to achieve high throughput

is to reduce the number of registers that each thread em-

ploys. To this end, the 32-bit registers of the GPU hold

all the information needed by the algorithm. In gen-

eral, 24 bits are enough to hold the value of the coef-

ficient (including the possible data expansion that the

lossy DWT may produce), so ancillary data are stored

in the remaining bits. Fig. 5 illustrates the binary repre-

sentation of a GPU register. The lowest 24 bits store

the magnitude and sign of υ, with the sign stored at

the lowest bit. The highest 8 bits are employed for

auxiliary information. The 3 upper bits are used in

the SignificancePass() and RefinementPass() of Algo-

Algorithm 1 CS BPC-PaCo
Parameters: u subband, t stripe, M total magnitude bitplanes, N bit-

planes coded in fast mode

1: for j ∈ [M − 1,N] do

2: SignificancePass()

3: RefinementPass()

4: end for

5: for y ∈ [0, numRows − 1] do

6: for x ∈ [t · 2, t · 2 + 1] do

7: c← φsig(υy,x,N − 1)

8: for j ∈ [N − 1, 0] do

9: if Φ(υy,x, j + 1) = 0 then

10: ACencode(b j, Pu[ j][c], t)

11: if b j = 1 then

12: ACencode(d, P′u[ j][φsign(υy,x,N − 1)], t)

13: end if

14: else

15: ACencode(b j, P
′′
u [ j][0], t)

16: end if

17: end for

18: end for

19: end for

rithm 1 to signal information regarding the significance

state of the coefficient. The remaining 5 bits are em-

ployed to store the significance bitplane of the coeffi-

cient (i.e., s), which is employed in the fast mode to ac-

celerate the operations that compute the context (i.e., in

φsig(·)). In the example of Fig. 5, M = 8 and N = 4. The

bitplanes depicted in blue represent those that are coded

with two coding passes, whereas the bitplanes depicted

7



Figure 5: Illustration of a codeblock and the bit-allocation strategy in the 32-bit registers of the GPU employed by CS BPC-PaCo.

in red are coded with the fast mode.

This bit-allocation strategy in the registers minimizes

the amount of local memory employed during execu-

tion time. The previous analysis of memory transfers

for BPC-PaCo depicted in Table 1 also reports the re-

sults obtained for CS BPC-PaCo when different Ks are

used. Data reading fromMD to R is proportionally re-

duced to the value of K. High Ks employ more exten-

sively the fast mode of CS BPC-PaCo, reducing mem-

ory transfers. When K = 6, the proposed method only

requires 36% of the memory transfers employed by the

original BPC-PaCo. Memory transfers from L2 to L1

are reduced similarly. Data writing is reduced slightly

less, though for K = 6 the proposed method approxi-

mately halves the transfers of BPC-PaCo. Since fewer

data are employed by the algorithm, the cache hit rates

for both L1 and L2 are increased, which provides even

faster access to the data.

Table 2 illustrates the impact in the throughput

achieved by the CS BPC-PaCo kernel when using dif-

ferent Ks as a result of reducing memory transfers. This

evaluation employs the same 4K image of the test re-

ported in Table 1. The second column reports the aver-

age number of clock cycles that each executed instruc-

tion is blocked due to the latency of the local memory,

and the average cycles needed to execute each instruc-

tion (CPI). These metrics clearly illustrate the beneficial

effect of using less local memory. BPC-PaCo blocks al-

most 10 cycles per instruction, requiring 15 cycles to ex-

ecute each instruction. CS BPC-PaCo reduces the num-

ber of cycles in which instructions are blocked propor-

tionally to the use of the fast mode. For K = 6, instruc-

tions are blocked only 1.56 cycles, whereas instructions

only require 8 cycles to complete, on average. This im-

provement is also noted in the instructions executed per

cycle (IPC) reported in the third column, which is al-

most doubled as compared to BPC-PaCo. The memory

bandwidth (fourth column) employed by the kernel in-

dicates that less bandwidth is needed as fewer coding

passes are performed. The warp efficiency and GPU oc-

cupancy (fifth and sixth columns) is almost the same for

all kernels since the algorithms have similar divergence

(i.e., conditional paths in the execution flow). The to-

tal number of executed instructions (seventh column) is

slightly higher in CS BPC-PaCo due to more instruc-

tions are needed when switching to the fast mode. De-

spite executing more instructions, the execution time of

CS BPC-PaCo is reduced for all Ks because of the fewer

memory transfers, with a reduction of 31% when K = 6.

Nvidia allows developers to manually set the num-

ber of registers assigned to the threads of a kernel.

Evidently, to use too few registers per thread requires

more local memory, while too many may cause an un-

deruse of the GPU. Since the throughput achieved by

our method highly depends on the local memory em-

ployed, the register assignment is carefully studied to

yield maximum performance. Table 3 provides an eval-

uation of the throughput achieved when a different num-

ber of registers per thread is assigned to the proposed

kernel. Different Ks are employed to consider differ-

ent running conditions. The test is carried out for the

same conditions as in previous evaluations, though re-

sults hold for other images and parameters. The third

and fourth columns of the table depict the theoretical

maximum and real GPU occupancy achieved, respec-

tively. The maximum occupancy is calculated as the
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#cycles per inst. bandwidth warp #inst.

blocked (total CPI) IPC (GB/s) efficiency occupancy (×106) time (ms)

BPC-PaCo 9.58 (15.29) 65 200 53% 46% 153 2.17

C
S

B
P

C
-P

a
C

o K=0.5 6.49 (12.95) 77 156 56% 46% 159 1.93

K=1 3.73 (10.33) 94 107 55% 46% 157 1.81

K=2 1.86 (8.32) 114 74 53% 45% 153 1.61

K=6 1.56 (8.00) 122 73 53% 46% 152 1.39

Table 2: Evaluation of throughput metrics when the kernels BPC-PaCo and CS BPC-PaCo code a 4K image in a RTX 2080 Ti GPU.

registers occupancy time (in ms)

per thread maximum real kernel total total av.

K=0.5

96 62.5%

48% 1.86 11.77

10.17
K=1 49% 1.76 10.6

K=2 48% 1.6 9.65

K=6 48% 1.4 8.65

K=0.5

80 75%

56% 1.88 11.43

10.06
K=1 54% 1.81 10.53

K=2 55% 1.6 9.65

K=6 56% 1.38 8.65

K=0.5 62% 1.93 11.5

K=1 61% 1.81 10.21

K=2 62% 1.61 9.47

K=6

72 87.5%

64% 1.39 8.59

9.94

K=0.5

64 100%

63% 1.96 11.62

10.4
K=1 61% 1.86 10.73

K=2 64% 1.67 9.78

K=6 66% 1.44 9.47

Table 3: Evaluation of occupancy and execution time achieved by CS BPC-PaCo with different Ks when assigning a different number of registers

to the threads, for a 4K image in a RTX 2080 Ti GPU.

number of threads that can be run in parallel using the

assigned number of registers. It is only from a theo-

retical point of view since, in practice, threads are com-

monly blocked due to register spilling and other aspects.

As seen in Table 3, even though 64 registers per thread

achieves a theoretical maximum occupancy of 100%,

the real occupancy achieved is about 63%. To assign 72

registers per thread decreases the maximum occupancy

to 87,5%, though in practice is about 62% too. Also,

to use 72 registers instead of 64 improves the through-

put achieved since less register spilling occurs, decreas-

ing the execution time of the kernel and of the end-to-

end codec (5th and 6th columns in the table). To use

more registers per thread slightly improves the perfor-

mance of the CS BPC-PaCo kernel because less register

spilling occurs, though for the overall end-to-end codec

this is not beneficial because the other kernels running

in parallel do not have enough resources. In all tests re-

ported in this work, the CS BPC-PaCo kernel uses 72

registers per thread.

The speedup that the proposed kernel achieves with

respect to the original BPC-PaCo is evaluated in Fig. 6.

The figure reports in the vertical axis the speedup

achieved for the Ks depicted in the horizontal axis,

for both lossy and lossless compression when using a

video sequence (see below). The results indicate that

our method yields higher speedups for lossless com-

pression, reaching a speedup of 70% for the highest

K evaluated. Lossy compression achieves more mod-

erate speedups, approximately up to 30%. This is be-

cause the floating-point DWT produces wavelet coeffi-

cients with higher magnitudes, and so more bitplanes

are coded. We remark that the increase in throughput

is higher than the increase in rate in all cases. When

K = 6, for instance, CS BPC-PaCo achieves a speedup

of approximately 65% (23%) while the rate increase is

9



Figure 6: Evaluation of the throughput gain achieved by CS BPC-PaCo with respect to BPC-PaCo for different Ks.

14% (8%) for lossless (lossy) compression.

4. Experimental Results

The proposed CS BPC-PaCo is compared with BPC-

PaCo and state-of-the-art codecs widely employed in

the field, more precisely, the standard JPEG2000 and

its new part HTJ2K, and the standard HEVC. All re-

sults below report the coding performance or through-

put achieved by the end-to-end codec instead of only

focusing on the CS BPC-PaCo kernel as in the previous

section. Our method is run in two commodity GPUs

from Nvidia, namely, the RTX 2080 Ti (68 SMs with

4352 cores at 1.6 GHz with 11 GB of RAM) and the

GTX 1080 Ti (28 SMs with 3585 cores at 1.9 GHz with

11 GB of RAM). The former GPU uses the Nvidia mi-

croarchitecture called Turing (CUDA capability v7.5)

and runs in a workstation with an Intel i9-9900K CPU

with 16 GB of RAM. The latter uses the previous mi-

croarchitecture Pascal (CUDA capability v6.0) and runs

in a workstation with an Intel i7-3770 CPU with 8 GB

of RAM. Results for JPEG2000 and HTJ2K are ob-

tained with Kakadu (v8.0.3) [31], which is among the

fastest CPU implementations for JPEG2000 optimized

with assembly and vector instructions. It runs in the i9-

9900K workstation with 16 execution threads, yielding

higher throughput than implementations of JPEG2000

for GPUs such as CuJ2K [32] and GPU-J2K [33]. Al-

though HTJ2K can also be optimized for GPUs [34], to

the best of our knowledge, there is no implementation

that allows testing in the environment employed herein.

Results for HEVC are obtained with the Nvidia imple-

mentation of the standard [35] running in both GPUs,

which use a hardwired and specialized chip in the de-

vice. Coding parameters for our method and JPEG2000

are: lossy or lossless compression as indicated, 5 DWT

levels, and codeblocks of 64×64. For HTJ2K, param-

eter “Cplex={6,EST,0.25,0}” is also employed to al-

low the codec to attain the specified target rate. HEVC

uses a rate control method with constant quantization

(1-51) for lossy compression, GOP=32, and high per-

formance mode, which achieves maximum throughput

in our tests. Throughput and power consumption re-

sults use a 2-minute segment of the “Star Wars: The

Last Jedi” movie at 4K that has 2,880 color frames, re-

sulting in 67.8 GB of uncompressed data. Coding per-

formance results use the color image “Portrait” (with a

size of 2560×2048) and a segment of the previous video

sequence containing 948 gray-scale frames at 2K.

The first test evaluates lossy coding performance.

Fig. 7 extends the results of Fig. 1 by including different

Ks for the proposed method and the results for video.

We recall that this test depicts rate vs. quality when the

codestream is compressed and then transmitted at dif-

ferent rates. For both tests, the performance achieved

by CS BPC-PaCo decreases as more coding passes are

coded in fast mode (i.e., with higher values of K). The

results indicate that the quality scalability of the pro-

posed method is significantly better than that of HTJ2K

since even when K = 6 and most passes are coded in

a single pass, the drop in quality is approximately 5 dB

with respect to JPEG2000 and BPC-PaCo, as compared

to the losses of about 15 dB of HTJ2K.

The second test evaluates lossless compression. Ta-

ble 4 reports the rate achieved when coding the video

with all methods evaluated. BPC-PaCo yields almost
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Figure 7: Evaluation of rate-distortion performance for JPEG2000, HTJ2K, BPC-PaCo and CS BPC-PaCo (with different Ks) when transmitting

an image at 100 different rates (left) and a video sequence at 30 different rates (right).

CS BPC-PaCo BPC-PaCo JPEG2000 HTJ2K HEVC

K = 0.25 3.82

3.82 3.79 4.06 4.03

K = 0.5 3.83

K = 0.75 3.89

K = 1 3.91

K = 1.5 4.00

K = 2 4.01

K = 6 4.05

Table 4: Evaluation of lossless compression performance for JPEG2000, HTJ2K, HEVC, BPC-PaCo, and CS BPC-PaCo (with different Ks).

Results are reported in bps.

same performance to that of JPEG2000, while CS BPC-

PaCo penalizes it slightly more with increments in rate

of about 7% when K = 6. This increment is lower than

that of HTJ2K, which almost obtains the same perfor-

mance to that of CS BPC-PaCo when K = 6.

The third test evaluates throughput for both lossy and

lossless video compression. In this test, the quality of

the recovered video for lossy compression yields 50 dB

in all codecs. Fig. 8 shows the results for all codecs and

GPUs (or CPU for JPEG2000 and HTJ2K), reported

in mega samples coded per second (MS/s). Two bars

are depicted for each codec. The left bar corresponds

to the encoder whereas the right to the decoder. BPC-

PaCo is depicted with wide blue bars. The proposed

CS BPC-PaCo is depicted with three thinner purple bars

within that of BPC-PaCo, corresponding to the through-

put achieved when K = {0.75, 2, 6}, with the thinnest

bar for the highest K. The figure also shows with hor-

izontal lines the throughput needed to code 4K, 8K,

12K, and 16K video at 24 frames per second in real

time. As seen in the figure, the proposed method signif-

icantly increases the throughput with respect to BPC-

PaCo, mostly in the encoder. In the decoder the gains

are not as significant because the decoding process in

our implementation needs more ancillary data, which

hinders the overall throughput achieved. HTJ2K yields

high throughput too, being slightly superior to that of

our method for the GTX 1080 Ti in the case of loss-

less compression, though being 50% inferior (or more,

depending on the K) when CS BPC-PaCo runs in the

RTX 2080 Ti. The throughput achieved by JPEG2000

is much lower than that of HTJ2K due to the lack of op-

portunities for fine-grained parallelism in the algorithm.

The throughput achieved by HEVC is modest as com-

pared to the other codecs despite using a hardwired chip

in the GPU. This is due to the techniques employed in

this coding system, which achieve high coding perfor-

mance at the expense of higher computational complex-

ity. Finally, we remark that the scalability by complex-

ity introduced in BPC-PaCo allows our codec to encode

11



Figure 8: Throughput evaluation of lossy and lossless video compression for all codecs and GPUs/CPUs.

16K (12K) lossy video in real time with the RTX 2080

Ti (GTX 1080 Ti) when K = 2, obtaining a good trade-

off between coding performance and throughput.

The previous test evaluates throughput for very high

video quality. Some scenarios may allow lower video

quality due to transmission or visualization aspects. The

next test evaluates the throughput achieved when dif-

ferent quality levels are employed. Fig. 9 depicts in

the horizontal axis the quality of the recovered video,

which is set from 50 to 38 dB in all codecs. Lower

quality yields similar results to those obtained for 38

dB. Again, results are reported in MS/s for the encoder

and decoder. Blue and purple plots respectively corre-

spond to BPC-PaCo and CS BPC-PaCo with the same

Ks as those employed before. As expected, the lower

the quality, the higher the throughput since fewer data

are coded. The highest gains are achieved by the en-

coder of the proposed method. At 38 dB, all codecs

except the proposed achieve similar throughput when

encoding, which is about 3 to 4× lower than that of

CS BPC-PaCo. The decoder presents more variations,

with HEVC gaining much throughput for low qualities.

It is worth noting that HTJ2K yields similar results re-

gardless of the quality, obtaining the same throughput to

that of JPEG2000 when encoding or decoding at 38 dB.

These results suggest that the proposed CS BPC-PaCo

achieves the highest throughput gains when using high

quality, while low qualities render the throughput of the

codec to almost the same as that of BPC-PaCo.

The last experimental test is aimed at energy con-

sumption. The power demand of codecs running in the

GPUs (CPUs) is obtained with the nvidia-smi (Power-

TOP) tool, which provides the real consumption of the

microprocessor depending on the workload. Fig. 10 re-

ports the results in MS coded per Joule consumed when

coding video at 50 dB. The figure illustrates the results

in the same form as that of Fig. 8. The proposed method

reduces energy consumption with respect to BPC-PaCo,

with less consumption for higher Ks. Even so, these

improvements are not as high as those obtained with

the throughput. This is seen as the larger bars corre-

sponding to CS BPC-PaCo in Fig. 8 vs. those depicted

in Fig. 10. These results indicate that more energy has

to be spent per coded sample to increment the codec’s

throughput. Even so, the results achieved with the RTX

2080 Ti suggest that our method consumes less energy

than the other codecs evaluated. HTJ2K also consumes

little energy compared to JPEG2000, which is the most

demanding. The hardwired chip of HEVC in the GPU

yields good results as well, except for decoding with the

GTX 1080 Ti, which consumes energy similarly to the

decoder of JPEG2000.

5. Conclusions

High-throughput and low-power consumption image

and video codecs are a current necessity for new appli-

cations, cameras, and displays to allow real-time pro-

cessing of very high resolution video and to extend the

battery life of power-constrained devices. International

organizations and researchers are proposing novel tech-

niques, systems, and standards to fulfill these require-

ments. Some works pursue this goal by exploiting the

high-performance computing of massively parallel ar-

chitectures such as those found in Graphics Processing

Units (GPUs). This is the line of research followed in

this paper, which began by adapting and implementing

all stages of a JPEG2000-based coding pipeline to the
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Figure 9: Throughput evaluation for lossy compression of video at different quality levels. Results are for BPC-PaCo and CS BPC-PaCo except

when indicated.
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Figure 10: Evaluation of energy consumption for lossy video com-

pression for all codecs and GPUs/CPUs.

fine-grained parallelism that suits GPUs. The bottle-

neck of the resulting codec is the bitplane and arithmetic

coding stage, which spends most of the execution time.

This work has analyzed this bottleneck by carefully pro-

filing its execution on a GPU. Its main drawback is that

it needs to transfer too much data from the local mem-

ory of the GPU to the registers (and viceversa) due to

the coding of the image samples in many successive

passes. The complexity scalable technique employed

herein is tailored to increase the codec throughput in

GPUs by reducing the coding passes performed. The

proposed technique allows a user-handled control of

the speedup achieved while minimizing losses in cod-

ing performance and quality scalability. Experimental

results suggest that our codec attains higher through-

put than other state-of-the-art codecs without sacrificing

any feature of the coding system. Under some coding

conditions, our method achieves real-time 16K coding

of color video in a consumer-grade GPU (considering

also memory transfers from host-to-device and vicev-

ersa), which is well above the current needs of most

practical scenarios.
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