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ABSTRACT Modern image and video compression standards employ computationally intensive algo-
rithms that provide advanced features to the coding system. Current standards often need to be implemented
in hardware or using expensive solutions to meet the real-time requirements of some environments.
Contrarily to this trend, this paper proposes an end-to-end codec architecture running on inexpensive
Graphics Processing Units (GPUs) that is based on, though not compatible with, the JPEG2000 international
standard for image and video compression. When executed in a commodity Nvidia GPU, it achieves real
time processing of 12K video. The proposed S/W architecture utilizes four CUDA kernels that minimize
memory transfers, use registers instead of shared memory, and employ a double-buffer strategy to optimize
the streaming of data. The analysis of throughput indicates that the proposed codec yields results at
least 10× superior on average to those achieved with JPEG2000 implementations devised for CPUs,
and approximately 4× superior to those achieved with hardwired solutions of the HEVC/H.265 video
compression standard.

INDEX TERMS Wavelet-based image coding, high-throughput image coding, JPEG2000, GPU, CUDA.

I. INTRODUCTION

OVER the past decades, the computational complex-
ity of image and video coding systems has increased

notably. In the early nineties, the JPEG standard (ISO/IEC
10918) [1] employed the low-complexity discrete cosine
transform [2] and Huffman [3] coding. Ten years after, the
JPEG2000 standard (ISO/IEC 15444) [4] introduced more
computationally demanding algorithms such as the discrete
wavelet transform (DWT) [5] and bitplane coding [6]. In
the last years, HEVC/H.265 (ISO/IEC 23008) [7] doubled
the compression efficiency of previous standards by using
complex techniques that exploit intra- and inter-redundancy
of frames. Nowadays, most codecs (including JPEG2000
and HEVC) provide advanced features such as scalability by
quality, interactive transmission, and error resilience, among

others. To do so, they use algorithms that scan, transform, and
code the samples1 of the image multiple times, consuming
significant processing time even when executed in the latest
processors.

JPEG2000 is a widespread standard in fields that deal with
large sets of images and/or videos. Its coding pipeline has
three main stages [8]. The first reduces the image redundancy
through a color transform (CT) and the DWT. The second
employs bitplane coding together with arithmetic coding to
reduce the statistical redundancy of wavelet coefficients. The
third reorganizes the data to produce the final codestream.
The high computational complexity of these stages poses

1A sample is the basic unit of a digital image, representing a level of
brightness in a grayscale or color component (each RGB pixel has three
samples).
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a challenge to meet the real-time requirements of some
scenarios. In Digital Cinema, for instance, JPEG2000 needs
to be implemented in Field-Programmable Gate Arrays to
process 2K (i.e., 2048×1024) and 4K (i.e., 4096×2048)
resolution [9]. In medical and remote sensing applications,
dedicated servers and workstations are employed to manage
and store the large quantity of images that are produced
daily [10], [11]. This has motivated many works in the
literature that propose hardware architectures to accelerate
particular stages of the JPEG2000 coding pipeline [12]–[22].

Highly parallel architectures may help to reduce process-
ing time and costs in some environments. Graphics Process-
ing Units (GPUs) may be ideal due to their high through-
put, low cost, and widespread availability. Their architecture
is mainly based on the Single Instruction Multiple Data
(SIMD) paradigm, which executes a flow of instructions
on multiple data in a lock-step synchronous way. When
the program allows data (in addition to task) parallelism,
thousands of threads can be executed in parallel, achieving
a throughput that is potentially an order of magnitude higher
than that achieved by conventional Central Processing Units
(CPUs) [23]. This is in part because the architecture of the
CPUs is more based on the Multiple Instruction Multiple
Data (MIMD) paradigm, which allows the asynchronous
execution of fewer threads over different sets of data.

Most of the workload in the first stage of the JPEG2000
pipeline lies in the DWT, which is well-suited to the
SIMD paradigm. The first implementations of the DWT for
GPUs appeared in the 2000s making use of the graphics
pipeline [24]–[26]. Later, the use of the Compute Unified
Device Architecture (CUDA) programming language intro-
duced by Nvidia increased the throughput of such imple-
mentations significantly [27]–[31]. Recently, we proposed a
register-based implementation of the DWT for GPUs [32]
that yields 40× speedups compared to CPU implementations.
Similar results are also achieved in [33].

In general, the DWT takes 15% of the total execution time
of the codec. The most expensive stage is the bitplane and
arithmetic coding, which spends about 80% of the time. This
stage poses the major challenge for GPUs because it is not
well-suited to the SIMD paradigm. In this stage, the wavelet-
transformed image is partitioned in small sets of typically
64×64 wavelet coefficients, called codeblocks, and codes
them independently. This provides coarse-grain parallelism.
The coding within each codeblock must be carried out by a
single thread, since there exist causal relationships among co-
efficients. This means that the coding of a coefficient depends
on the output of the previous, so they can not be processed in
parallel. Even so, there have been efforts to implement this
stage in GPUs [34]–[40], though these solutions do not to
fully occupy the resources of the GPU due to the lack of fine-
grain parallelism. In 2014, we started a line of research [41]–
[45] focused on providing fine-grain parallelism to this stage
without sacrificing any feature of the system. The goal was
not to implement the compliant JPEG2000 algorithm, but
to redevise it keeping in mind the SIMD architecture of

GPUs. The proposed algorithm is not compatible with the
standard, but it allows parallel coefficient processing within
the codeblock.

Following a similar line, in 2017 the Joint Photographics
Experts Group launched a call for proposals with the aim to
augment the parallelism in the second stage of the coding
pipeline. This new part of JPEG2000 (ISO/IEC 15444-15)
adopts the algorithm proposed in [46]. Such algorithm is
devised to mostly benefit from the modern instruction sets
like AVX2, NEON, and BMI2 included in new CPUs, though
it can also be implemented in GPUs [47]. It is about 10×
faster than the standard, but it penalizes coding performance
in approximately 10%. Also, it sacrifices quality scalability,
which is a valued feature of the system since it permits the
transmission of an image progressively by quality.

This paper introduces a highly-parallel, GPU-oriented
codec based on JPEG2000. The proposed codec is the final
piece of our research line that was aimed to explore new cod-
ing techniques for image/video compression tailored for the
fine-grain parallelism of GPUs. The JPEG2000 framework is
employed to show that the proposed techniques can virtually
obtain the same coding performance of this standard without
sacrificing any feature. Evidently, compliance with the stan-
dard is lost since the proposed techniques require significant
changes in the core coding system. A preliminary version
of the proposed codec was partially described in [48], [49].
This paper vastly improves our previous work by describing
the complete coding pipeline with the needed machinery
to avoid bottlenecks, providing the color transform and the
codestream reorganization stages with an in-depth analysis
of the kernel metrics and memory transfers, and reporting ex-
tensive experimental tests. The obtained results show that the
proposed S/W architecture can process real-time 12K (i.e.,
12288×6144) video, achieving a throughput 4× superior to
that achieved by the state-of-the-art Nvidia codec of HEVC
that is supported by in-chip dedicated hardware.

The rest of the paper is structured as follows. Section II
briefly overviews the architecture of Nvidia GPUs and
JPEG2000. Section III describes the proposed codec from
a top-down perspective and Section IV details each kernel
employed. Section V evaluates the throughput of our archi-
tecture and compares it to some of the fastest JPEG2000 and
HEVC implementations. The last section contains conclu-
sions.

II. BACKGROUND
A. NVIDIA GPU ARCHITECTURE
Nvidia GPUs are hardware devices that are mainly consti-
tuted by individual computing units called Streaming Mul-
tiprocessors (SMs). Depending on the model and the ar-
chitecture, a Nvidia GPU may contain from one to tens of
SMs. Each SM can work independently, allowing the GPU to
process sequences of instructions from different algorithms.
Typically, SMs execute multiple 32-wide vector instructions
in parallel.

CUDA refers vector instructions as warps. Each lane of
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FIGURE 1: JPEG2000 coding pipeline.

a vector is virtualized into a software thread. Aggregations
of 32 threads form a warp. A group of warps, called thread
block, is assigned to a SM for execution. From the first
CUDA-compatible architecture (v1.0) up to Pascal (v6.2),
warps are always executed synchronously and in a lock-step
fashion, featuring an implicit synchronization at the end of
any divergence [50]. Volta (v7.0) introduced a modification
in the warp scheduler that allows the execution of warp
threads asynchronously [51], so the synchronization among
threads must be explicitly programmed when needed. Our
codec is adapted to work with both implicit and explicit
synchronization.

The memory architecture of the GPU is organized in
three levels: global, shared, and local. The size of the global
memory is, in general, in the order of GBs and is accessible
by all SMs. When this memory is accessed in a coalesced
way (i.e., via consecutive positions) the available bandwidth
is used efficiently and the latency is minimized. The size of
the shared memory is in the order of MBs and its latency is
lower than that of the global, though it can only be shared
within the thread blocks. The local memory is the fastest
though it is also limited in size and is only accessible by the
threads within a warp. The data allocated in the local memory
are commonly stored in the registers, though they may be
temporarily moved to the device memory (i.e., DRAM of
the GPU) when the register space is saturated. Typically, the
global memory is employed to read and store the applica-
tion’s data, the shared memory is used for communication
among threads of different warps, and the local memory is
utilized for intermediate computation. The local memory can
be shared among threads within a warp via the low-level
shuffle operation. This kind of memory sharing technique
proved to be very efficient in some applications [32], [52]–
[54]. The GPU has two levels of cache, denoted by L1 and
L2. The registers and the L1 cache are in the SM. The data
transferred from the device memory to the registers passes
through the L1 and L2 caches, which are reservoirs of the
most recently accessed data to be (possibly) reused in future
petitions.

As previously mentioned, each SM runs thread blocks.
These blocks can execute code from one or more CUDA
functions, called kernels, independently. This allows the par-
allel execution of many different kernels from a single or
various applications. CUDA provides the so-called streams to

organize the execution of running kernels. Each stream may
process a sequence of kernels of an application in a set of
SMs asynchronously from the rest. An appropriate use of the
streams optimizes the use of the GPU resources, which can
help to increase the throughput.

B. JPEG2000
As previously stated, JPEG2000 is an image/video coding
standard employed in professional environments due to its
excellent features and performance. The proposed codec
carries out almost the same operations as JPEG2000, so
they are briefly described herein for completeness. Figure 1
depicts these operations. Depending on whether lossy or
lossless compression is needed, some of these operations are
irreversible or reversible. As stated before, the first stage of
JPEG2000 applies several transformations to the image. The
first is carried out for color images, converting the red, green,
and blue (RGB) components to the lesser redundant color
space YCbCr, which holds the luminance information in the
first component and the chrominance with respect to blue and
red in the second and third components, respectively. This
is a pixel-wise operation that holds no dependencies among
pixels. It is carried out applying floating-point or integer
operations for the irreversible or reversible path, respectively.

The second operation is the DWT. Most implementations
apply it via the lifting scheme [55] since it has low com-
putational complexity. The main idea behind this scheme is
to first apply a series of arithmetic operations to all rows of
the image and then to all columns. These operations can be
carried out in parallel to all rows and then to all columns
since there are no inter-row/column dependencies. Then, the
resulting coefficients are re-ordered taking the coefficients in
the even and odd positions in each direction. This produces
four different subbands of one quarter the size of the original
image. In general, the same procedure is applied again four
more times in the subband that contains the low-detail image.
The operations carried out in each step apply a low- and high-
pass filter. JPEG2000 uses the irreversible CDF 9/7 and the
reversible CDF 5/3.

The irreversible filter bank employs floating-point arith-
metic, so the resulting coefficients need to be converted
to integers before bitplane coding. This operation is called
deadzone quantization [8]. It multiplies the coefficients by
a step size and keeps the integer part. This operation is
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not necessary for the reversible transform since it already
produces integer coefficients.

The second main stage of the coding pipeline carries out
bitplane coding together with arithmetic coding. As stated
before, this stage is applied in each codeblock independently.
Through the binary representation of the integer coefficients
(without sign), a bitplane is defined as the set of bits from all
coefficients in the same binary position. Bitplanes are coded
from the most to the least significant. Just after the first non-
zero bit of a coefficient is coded (referred to as significance
bit), its sign is coded too so that the decoder can reconstruct
that coefficient. The bits coded for a coefficient after its
significance bit are called refinement bits. The coefficients
within a codeblock are scanned in a pre-defined order that
visits four rows of coefficients, called stripes, consecutively.
In each stripe, coefficients are scanned from the left- to right-
most column and, in each column, from the top to the bottom
row. JPEG2000 codes each bitplane in three coding passes.
The first is called significance propagation. It follows the
scanning order processing only those coefficients that have
at least one significant neighbor. The second is called mag-
nitude refinement. It processes coefficients that were found
significant in previous bitplanes. The third pass processes the
remaining coefficients. It is called cleanup. This multiple-
pass coding is aimed to code first the information that reduces
the most the distortion of the image [6].

Each processed bit is fed to the arithmetic coder together
with its contextual information. The context considers the
significance, or sign, of its eight neighbors. One of 18
different pre-defined contexts is chosen depending on this
information. The context of the coefficient is employed by the
arithmetic coder to establish a probability for the currently
processed bit, generating a compacted stream of bits.

The output produced in this stage for each codeblock is a
bitstream that can be truncated at the end of each coding pass.
Like most coding systems, JPEG2000 permits specifying a
size for the final codestream, so bitstreams may be truncated
to fit the target rate. This rate-distortion optimization proce-
dure is not defined in the standard, so each codec can choose
among a great variety of methods [56]. The final operation
re-organizes these bitstreams to put them in the compressed
file together with ancillary information for decoding. The
decoder carries out the same operations in reverse order
except the rate-distortion optimization stage, which is not
necessary.

III. OVERVIEW OF THE CODEC ARCHITECTURE
A. OVERVIEW
Except for bitplane and arithmetic coding, all operations of
the JPEG2000 coding pipeline offer fine-grain parallelism.
Our codec implements these operations following the stan-
dard, so their input/output is the same as that obtained
by a conventional JPEG2000 implementation. To use the
JPEG2000’s bitplane and arithmetic coder would signifi-
cantly hinder the throughput of the GPU, so this is the only
stage that is not compliant with the standard. This stage is

replaced by the coding engine proposed in [44], [45]. The aim
of our codec is to code large quantities of images. The input
data set may contain frames of a video sequence or images
of the same size. For convenience, frame is used to refer both
terms in the following.

When possible, the proposed architecture joins operations
in a single kernel instead of using a straightforward approach
that uses one kernel per operation. Within the same kernel,
the data are always accessed in the same fashion and the data
types do not change. This permits the kernels to maximize the
use of local memory in detriment of shared memory, using
a register-based strategy [52]–[54] that minimizes memory
latencies. When the data set needs to be re-organized or
the data type is changed, then the data are transferred to
the global memory preparing them for the next kernel. This
architecture minimizes the overall memory transfers and
significantly increases performance.

Algorithm 1 describes the main routine of the codec. Its
architecture is also illustrated in Figure 2. First, all memory
needed during the coding process is pre-allocated both in the
host RAM and the device DRAM, which are respectively
referred to asMH andMD. This allocation (lines 1 and 2 in
the algorithm) considers the space needed for a double buffer
strategy to load the frames (see below), auxiliary memory
structures, and number of GPU streams employed. The host
RAM allocation is performed in pinned memory2 to avoid
memory positions requests to the CPU when transferring
data. This allocation greatly improves the memory bandwidth
achieved in some GPUs. See, for instance, in Table 1 the
difference in the bandwidth achieved by our codec when
coding a 4K video (with the test environment described in
Section V) using pinned or paged memory. To use pinned
memory in the Nvidia GTX 1080 Ti (Pascal architecture)
almost doubles the bandwidth achieved as compared to paged
memory. For the RTX 2080 Ti (Turing architecture), the
differences are much smaller due to the use of DDR4 RAM
modules in the host, though there is a slight increase of 4% in
the bandwidth achieved. It is worth noting that the practical
maximum speed of the PCI-E 3.0 bus employed is 13.2 GB/s
(with 15.8 GB/s of theoretical maximum), so our codec yields
maximum bandwidth in practice.

Memory transfers are programmed to be asynchronous
so they can absorb variations in the time spent to process
each frame. The reading of frames is managed by a thread,
denoted by t1 in Algorithm 1, that is executed by the host.
Each stream, denoted by Sj , j ∈ {1..Ŝ} with Ŝ being the
number of streams, employs two input buffers in both MH

andMD so that when a buffer is being processed the other
can be filled. These buffers are referred to asMH [i],MD[i]
with i ∈ {1..2Ŝ}. This filling is carried out in lines 3-6. t1
continuously checks if there is any empty buffer inMH . If
so, it reads the data from disk and transfers them to MH .
Then, it issues an asynchronous copy to the device memory

2Pinned memory indicates that the allocated space has a fixed location in
the RAM module(s) during the whole execution.
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FIGURE 2: Illustration of the codec architecture when using 2 CUDA streams. The cycle of the data is as follows. First, frame
data (individually identified by color) are read from disk to a RAM buffer. Then the data are managed by a stream in the GPU.
Within the device the data are transferred from global memoryMD to local memoryR and inversely before and after running
each kernel. The kernel execution is illustrated by the matrix of 0s and 1s. Each stream processes the three components of the
frame before transferring the compressed data back to the host memoryMH and disk.

GTX 1080 Ti RTX 2080 Ti
MH →MD MD →MH MH →MD MD →MH

paged 7.5 GB/s 6.226 GB/s 12.746 GB/s 12.502 GB/s
pinned 12.431 GB/s 12.725 GB/s 13.182 GB/s 13.175 GB/s

speedup 1.65 2.04 1.03 1.05

TABLE 1: Evaluation of the memory bandwidth achieved by our codec when transferring data from host to device (MH →
MD) and device to host (MD →MH ) with pinned and paged memory, for two different GPUs.

in line 5. t1 is active until all frames have been buffered.
The data are read and stored considering their original bit-
depth to optimize transfers and memory space. In general,
8-bit integers are employed.

The writing of the compressed data to the disk is done
similarly by thread t2, which is executed by the host in
lines 13-16. A double-buffer strategy is also employed so
that when a stream finishes coding a frame, it can readily
start coding another without waiting for the compressed data
to be transferred to the host memory. These output buffers
are referred to asMH [o],MD[o] with o ∈ {1..2Ŝ}. Again,
the data transfer from device to host is carried out via an
asynchronous copy in line 14. Once the transfer is done,
t2 writes them to the disk. The data are copied in the disk
orderly, i.e., following the same frame order of the original
sequence.

Lines 7-12 in Algorithm 1 describe the calls to the ker-
nels and the auxiliary memory structures employed in the
GPU. Four kernels are used. The first carries out the color
transform. It transfers all frame data from MD[i] to local
memory converting them to 32-bits integers (floats) for the
(ir)reversible path and performs the arithmetic operations
on the registers. The result is left in the auxiliary structure
denoted by A1..3 using the same data type employed in the

Algorithm 1 Main routine of the codec

1: CPUMemoryAllocation()
2: GPUGlobalMemoryAllocation()
3: for each emptyMH [i] do
4: MH [i]← HDRead()
5: MD[i]←MH [i]
6: end for
7: A1..3 ← CT(MD[i])
8: for k ∈ {1..3} do
9: Dk ← DWT_Q(Ak)

10: {Bl} ← BPC_AC(Dk)
11: MD[o]← CR({Bl})
12: end for
13: for each filledMD[o] do
14: MH [o]←MD[o]
15: HDWrite(MH [o])
16: end for

t1

Sj

t2

kernel. After this, each component is processed indepen-
dently. The next kernel carries out the DWT and, if using
lossy compression, quantization. Our codec employs a rate-
distortion optimization method that controls the rate through
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occupancy warp efficiency bandwidth (GB/s) time (µs) #inst. (×106) #inst. per sample
2K 4K 2K 4K 2K 4K 2K 4K 2K 4K 2K 4K

CT(·) 90% 87% 100% 100% 483 495 65 255 3.08 12.32 1.47 1.47
DWT_Q(·) 84% 90% 97.5% 97.5% 471 511 36 135 2.45 9.81 1.17 1.17

BPC_AC(·) 18% 61% 63% 63% 69 189 1150 2000 32.61 107.01 15.54 12.75
CR(·) 88% 88% 99% 99% 181 210 15 35 0.82 3.05 0.39 0.36

TABLE 2: Analysis of the codec’s kernels when coding a 2K and 4K frame with the Nvidia RTX 2080 Ti.

registers data reading (MB) data writing (MB)
per thread MD →R L2→ L1 L1→ L2 R→MD

2K 4K 2K 4K 2K 4K 2K 4K 2K 4K
CT(·) 18 18 6 24 6 24 24 96 24 96

DWT_Q(·) 63 63 8.22 33.89 14.93 61.05 9.95 40.18 8.21 32.39
BPC_AC(·) 60 60 48.59 251.79 67.01 293.38 37.26 129.58 26.95 108.97

CR(·) 24 24 1.04 3.24 1.11 3.46 0.64 2.01 0.87 2.75

TABLE 3: Analysis of the hierarchical memory transfers of the codec’s kernels when coding a 2K and 4K frame with the
Nvidia RTX 2080 Ti.

the quantization step employed in this operation [56]. It
transfers the data from Ak to the registers, applies the lifting
scheme, and leaves the result in Dk. The third kernel is the
most complex. It applies bitplane and arithmetic coding. Like
the other kernels, it reads the data from the global memory
and puts them in the local. These data are organized in
codeblocks holding 64×64 coefficients. Each codeblock is
processed by an individual warp of 32 threads. The result of
this kernel is stored in the set {Bl} that contains one bitstream
per codeblock, with l ∈ {1..L̂} and L̂ being the number of
codeblocks per component. The length of each bitstream is
not known before coding, so the space for bitstreams {Bl}
is pre-allocated amply. As a result, the bitstream data are
scattered throughout the whole structure. These data must be
compacted before transferring them to the host memory and
disk, which is the function of the last kernel. Contrarily to the
other kernels, it does not put the frame data to the registers but
only the lengths of the generated bitstreams (via pointers to
memory positions), so that it can compute the final position of
each compressed byte. Then, it re-organizes the compressed
frame data in the global memory leaving them in one of the
two output buffers.

The decoder employs a similar structure to that of the
encoder. It executes the kernels in inverse order, performing
the reverse operations.

B. ANALYSIS

Table 2 and 3 report the kernels’ metrics obtained via the
Nvidia Nsight Compute tool when coding a 2K and 4K frame
using the test environment described in Section V. The first
kernel (i.e, ICT(·)) achieves high occupancy, optimal warp
efficiency (since it does not have divergence), and very high
memory bandwidth (see Table 2). These results are due to
the pixel-wise operation that it carries out. The differences
between the 2K and 4K frame with respect to execution
time and total number of instructions executed are a 4 fold
increase, coinciding with the increase in number of processed

samples. We recall that this kernel processes the three image
components, whereas the following kernels process only
one. As seen in Table 3, the three image components are
transferred fromMD to R requiring 6 and 24 MB for a 2K
and 4K frame, respectively. Once the data are in the SM, they
are converted from 8-bit integers to 32-bit integers or floats
depending on whether the reversible or irreversible transform
is selected. This conversion is seen in the memory transfers
when the data are transferred back from the registers to the
device memory via the L1 and L2 caches.

The DWT_Q(·) kernel can perform a variable number of
transformation levels, typically 5. The metrics reported in Ta-
ble 2 correspond to the first call to the kernel, which performs
the first level of transformation. The achieved occupancy
is about 84% for 2K and 90% for 4K. This indicates that
other computations can be done while this kernel is running.
Similar to the previous kernel, the warp efficiency is almost
100% since there are no divergent paths. The increase in
execution time and total number of instructions between 2K
and 4K is also proportional to the frame size. As seen in
Table 3, this kernel utilizes more registers per thread due to
a larger data tile processed by each warp. The data require 8
MB and 32 MB for the 2K and 4K frame, respectively, which
approximately correspond to the transfers between MD to
R and inversely. The extra data transferred correspond to
auxiliary information. The transfers between the L1 and
L2 cache are higher than those from the device memory
to the registers because this kernel processes the data tiles
employing a redundant halo.

As shown by the metrics, the BPC_AC(·) kernel is the
most complex. First, the occupancy is much lower than that
achieved by the other kernels, especially for 2K frames. This
is because 2K frames do not have enough data to fill the
resources of the GPU. 4K frames achieve higher occupancy,
though it is still below that achieved by the other kernels.
Second, the warp efficiency is 63% due to the multiple diver-
gent paths of the algorithm. Third, the memory bandwidth
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is much lower than that achieved by the other kernels since
BPC_AC(·) is bounded by the latency of the computing
instructions [45]. Fourth, the time spent for coding a 2K
and 4K frame is not proportional to the frame size. This is
due to the low occupancy that is achieved for 2K frames
and due to the image content. Let us explain further. The
codeblock size is 64×64 regardless of the frame size. This
causes that codeblocks of 2K frames have more details (i.e.,
more entropy) than codeblocks of 4K frames, requiring more
instructions to code their information. This is manifested in
the total number of instructions and instructions per sample
executed, since the 4K frame requires approximately 20%
fewer instructions to code each sample. The memory trans-
fers when reading the data are higher than in the other kernels
mainly due to the register pool size (see Table 3). Differently
from the previous kernels, BPC_AC(·) visits each coefficient
of the codeblock many times. The number of visits depends
on the codeblock’s data, but is approximately 8 or 9 times
per coefficient on average. Since the size of the register space
is limited, once a coefficient is visited it is transferred back
to the device memory so the register can be employed for
other coefficients. When the coefficient is needed again, it is
transferred from the device memory to the registers. Many
of these coefficients are kept in cache and are reused, so
the transfers between the L2 and L1 cache are high as well.
The data transfers when writing are not as high because the
kernel only stores the compressed data. Even so, the data in
the compressed bitstream are accessed many times, so the
transfers between registers and device memory are higher
than in the previous kernels.

The occupancy and efficiency of the CR(·) kernel is similar
to that achieved by ICT(·) and DWT_Q(·). The execution
time for 4K frames is twice as that needed for 2K. This
is because both frames require 5µs to generate preliminary
tables, and then the data to be reorganized are about 1 MB
and 3 MB respectively for the 2K and 4K frame,3 requiring
10µs and 30µs. The memory bandwidth is lower than that
obtained in the first two kernels since the transferred data are
already compressed(also seen in Table 3).

This analysis indicates that the BPC_AC(·) kernel con-
sumes most of the total execution time and it achieves the
lowest occupancy. This suggests that the codec may underuse
the resources of the GPU when coding large sets of images
or video unless more workload is feed to the device. The pro-
posed architecture alleviates this issue by employing multiple
streams of execution. Each stream processes a frame, so more
data are processed in parallel, employing more resources
and increasing the overall throughput. See in Figure 3 the
throughput achieved by our multiple-streamed codec when
encoding 2K and 4K video in the same conditions as before.
The results are reported as the number of Mega Samples
coded per second (MS/s). The figure depicts the throughput
needed to code 4K, 8K, and 12K video in real-time with

34K frames are compressed more efficiently than 2K frames, so they
generate fewer data per sample coded.
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FIGURE 3: Analysis of the throughput achieved by the pro-
posed codec when encoding 2K and 4K video using different
number of execution streams, for the RTX 2080 Ti.

Algorithm 2 Kernel routine CT(MD[i])

1: GPULocalMemoryAllocation()
2: R1..3 ←MD[i]
3: R′

1..3 ← φ(R1..3)
4: A1..3 ← R′

1..3

5: return(A1..3)

straight horizontal lines for the convenience of the reader.
As seen in the figure, the throughput increases notably when
multiple streams are employed. In the case of 2K (4K) video,
13∼14 (7∼8) streams obtain maximum efficiency. Again, the
coding of 4K video achieves higher throughput due to the
nature of the data.

As seen in Section V the throughput achieved by the de-
coder is only slightly lower than that of the encoder because
the decoder requires more local memory, which reduces the
occupancy. The rest of the decoding process is very similar
to that of the encoder, so it is not reported herein for brevity.

IV. DESCRIPTION OF THE KERNELS
Algorithm 2 details the routine of the CT(·) kernel. In this
and following kernels, the algorithm describes the main op-
erations that are performed at a thread level. Like in the other
kernels, the first instruction allocates the local memory. All
kernels only use registers since this increases the throughput.
After allocating the required space, the data of the three
frame components are transferred from the global memory
to the register space, referred to as R for the input data.
This is the only kernel that needs the three components of
the frame. It applies a transformation that involves several
arithmetic operations, denoted by φ(·) in line 3, and the result
is left in the output register space R′. Then the data are
returned to the global memory, ready to be fetched by the
next kernel. Both reading and writing in the global memory
in this and following kernels is carried out in a coalesced
way to maximize memory performance since the GPU stores
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Algorithm 3 Kernel routine DWT_Q(Ak)

1: GPULocalMemoryAllocation()
2: R ← Ak

3: for y ∈ {1..Ŷ } do
4: for x ∈ {0..1} do
5: R[y][x]← ϕ(R[y][x])
6: end for
7: end for
8: for x ∈ {0..1} do
9: for y ∈ {1..Ŷ } do

10: R[y][x]← ϕ(R[y][x])
11: end for
12: end for
13: for y ∈ {1..Ŷ } do
14: for x ∈ {0..1} do
15: if (y, x) /∈ halo then
16: R[y][x]← R[y][x] ·Q
17: Dk ← R[y][x]
18: end if
19: end for
20: end for
21: return(Dk)

data blocks adjacent to that requested in the L2 cache for
(possible) future requests. Depending on whether lossy or
lossless compression is selected, the operations and the data
types employed in the registers are floating points or integers,
respectively.

The second kernel is detailed in Algorithm 3. The wavelet
transform is applied in blocks of 64×Ŷ samples that are
processed by a single warp.4 This allows communication
among threads without needing shared memory. The height
of the block is denoted by Ŷ . Each thread processes two
columns of a block. The kernel applies a 2D high-pass/low-
pass filter to all samples. First, the filter ϕ(·) is applied
horizontally (lines 3-7) and then vertically (lines 8-12). The
filter consists in a series of arithmetic operations that use the
adjacent samples to the processed coefficient, in which the
result is left. This type of operation does not require two
register spaces (for input and output) like in the previous
kernel, but only one that is referred to asR. When the thread
needs data from other threads, it uses shuffle instructions
(not shown in Algorithm 3) since they have lower latency
than using shared memory [32]. If more than one level of
wavelet transform is selected, the instructions from line 3
to 12 are repeated each time over a quarter of the last data
processed, which contains the results of the low-pass filter.
This is carried out calling the kernel again. It is not detailed
in Algorithm 3 for the sake of clarity. The final step in
this routine is to transfer the data from the local space to

4Note that these blocks are not the codeblocks utilized in BPC_AC(·), but
a tile of the original image. Although the partitioning is similar for paral-
lelism purposes, the block transformed by DWT_Q(·) contains overlapped
samples of adjacent blocks.

the global memory. It is only done for those samples that
do not belong to the halo.5 Before transferring the data, a
quantization step size, denoted by Q in line 16, may be
applied. Again, lossy and lossless compression respectively
requires the use of floating points and integers when applying
ϕ(·). Quantization is only applied for lossy compression.

The BPC_AC(·) kernel is detailed in Algorithm 4. It is
applied to all codeblocks of the component, though we recall
that the algorithm details the operations carried out at thread
level. The kernel receives a frame component that is parti-
tioned in codeblocks of 64×Ŷ ′ coefficients, with typically
Ŷ ′ = 64. The data for the codeblock are implicitly trans-
ferred to the local memory in line 2 of the algorithm. Then the
coefficients are coded from bitplane B̂, which is a sufficient
number of magnitude bits to code all coefficients within the
codeblock, to the lowest bitplane 0. This is performed in
the loop of line 3. Like in the previous kernel, each thread
processes two columns and each codeblock is processed by a
warp. Contrarily to JPEG2000, this kernel carries out 2 cod-
ing passes instead of 3 since virtually same compression effi-
ciency is achieved [6], [44], [45] while increasing throughput
about 40%. The loop in lines 4-17 performs significance
coding. It checks whether the coefficient was significant in
previous bitplanes via the γ(·) function, which returns the
significance bitplane of the coefficient. If not, significance
coding is performed. First, context C of the coefficient is
determined via Φ(·) and, through this context and the current
bitplane, probability P for the coded bit is extracted from
the lookup table LUTsig . This table contains pre-computed
probabilities determined with a training set of images. Then,
the bit is coded via arithmetic coding. The procedure for
AC(·) is not detailed in the algorithm for simplicity. It can
be found in [45]. If the coefficient is significant in the current
bitplane (i.e., γ(R[y][x]) = b), its sign is coded in lines 11-13
with a similar procedure to that of significance coding. Re-
finement coding is carried out in lines 18-25. In this case, no
context is employed. The return of the AC(·) function is the
bitstream Bl that contains the compressed information. Each
time that this function is called, some data may be added to
Bl. We note that Bl is in the global memory. Each thread
puts data in Bl asynchronously from the others ensuring
mutual exclusion. This exclusion is guaranteed considering
the threads that need a new chunk of memory to write their
information, assigning positions based on the thread index
within the warp. This kernel also stores the length of Bl in a
separate global memory region, denoted by L.

The last kernel (i.e., CR(·)) is detailed in Algorithm 5. It
receives the set of bitstreams {Bl}. As previously stated, its
purpose is to reorganize the bitstream data in a compact struc-
ture. To do so, blocks of 2 bytes are assigned to each thread in
the warp to be written in the final memory positions. The first
step is to generate a memory map to know these positions.
This map is denoted as L′ and contains an aggregated list of

5The halo is an area surrounding the processed samples that is employed
by the warp to obtain the correct result of the wavelet transform.
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Algorithm 4 Kernel routine BPC_AC(Dk)

1: GPULocalMemoryAllocation()
2: R ← Dk

3: for b ∈ {B̂..0} do
4: for y ∈ {1..Ŷ ′} do
5: for x ∈ {0..1} do
6: if γ(R[y][x]) ≤ b then
7: C ← Φ(R[y][x])
8: P ← LUTsig[C][b]
9: Bl ← AC(R[y][x], P )

10: if γ(R[y][x]) = b then
11: C ′ ← Φ′(R[y][x])
12: P ′ ← LUTsign[C ′][b]
13: Bl ← AC(R[y][x], P ′)
14: end if
15: end if
16: end for
17: end for
18: for y ∈ {1..Ŷ ′} do
19: for x ∈ {0..1} do
20: if γ(R[y][x]) > b then
21: P ′′ ← LUTref [b]
22: Bl ← AC(R [y][x], P ′′)
23: end if
24: end for
25: end for
26: end for
27: Ll ← length(Bl)
28: return(Bl)

Algorithm 5 Kernel routine CR({Bl})
1: S ← computePosition(T,LUTL′ ,L′)
2: if (S ∈ {L′}) then
3: MD[o][H]← Bl[S]
4: else
5: MD[o][D]← Bl[S]
6: end if
7: return(MD[o])

lengths, more precisely, L′ = {0,L1,L1 + L2, · · · ,L1 +
· · · + LL̂}. L

′ is generated via the Device Scan primitive
from the Nvidia CUB framework [57]. To accelerate the
access to this map, a fast lookup table, denoted by LUTL′ , is
created. This LUT is generated applying a binary search over
L′ in which each position represents some positions of the
original map. Our experience indicates that speedups about
2× are achieved by using such a strategy. These operations
are carried out before running the CR(·) kernel, so they are
not specified in Algorithm 5.

Once the LUTL′ is created, each warp thread T computes
the position S of the data to be written (line 1). Then, it
checks whether the information to be copied is auxiliary
information of the codeblock (i.e., most significant bitplane),

or compressed data. This is carried out in line 2 checking
if the thread is copying the first bytes of the codeblock’s
bitstream. The corresponding bytes are either copied to the
header or body section of the final structure, respectively
denoted byMD[o][H] andMD[o][D]. The data transfers are
also performed in a coalesced fashion to maximize through-
put.

Again, the kernels employed in the decoder are very simi-
lar to those of the encoder, so they are not detailed herein.

V. EXPERIMENTAL RESULTS
The proposed codec is evaluated with four Nvidia GPUs,
namely, the RTX 2080 Ti, the GTX 1080 Ti, the Xavier,
and the Tegra X2. These devices are commodity GPUs, with
prices ranging from 650C to 1350C. Their specifications are
reported in Table 4. Both the RTX 2080 Ti and the GTX
1080 Ti are commonly employed in workstations for design
applications and gaming. The RTX 2080 Ti has the highest
peak throughput. It is employed with an i9 9900K CPU
workstation with 16 GB of DDR4 RAM. The 1080 Ti is used
on an i7-3770 workstation with 8 GB of DDR3 RAM. Both
the Xavier and the Tegra X2 are GPUs devised for devices in
which efficiency and size are important aspects, for example
in the Nintendo Switch. In our tests, they run on a Jetson
SDK platform [58]. Both GPUs have low performance, but
consume very little power. Both allow different power modes
with varying performance and Thermal Design Power (TDP).
The results reported below correspond to the maximum per-
formance mode except when indicated.

JPEG2000 results are obtained with Kakadu (v8.0.2) [59].
Kakadu is among the fastest CPU implementations of the
standard. It is heavily optimized in assembler, achieving su-
perior throughput than other implementations for GPUs such
as CuJ2K [60] and GPU-J2K [61]. It is executed in a work-
station with an Intel i9-9900K CPU with 8 cores and 16 GB
of DDR4 RAM. Kakadu is compiled for this architecture and
it is run with 16 threads of execution to achieve maximum
throughput. The compression parameters for both Kakadu
and our codec are: lossy or lossless compression as indicated,
5 levels of DWT, and codeblocks of 64×64. Although there
are other competitive GPU implementations of JPEG2000
such as Comprimato [62] and CUDA-JPEG2000 [63], it was
not possible to compare them in our test environment. Some
results reported in their corresponding webpages suggest that
they obtain competitive throughput, though lower to that
achieved by the proposed codec.

For comparison purposes, the following experiments also
provide the throughput achieved with the HEVC implemen-
tation developed by Nvidia [64], which is executed with the
RTX 2080 Ti and the GTX 1080 Ti. This codec runs in
the GPU employing in-chip support and dedicated hardwired
components. The parameters for HEVC are: rate control
with constant quantization 1-51 (0) for lossy (lossless), inter-
frame coding with GOP=32, and high performance mode.
This configuration achieves maximum throughput in our
tests. We note that HEVC is not supported in Jetson GPUs.
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cores clock memory peak FP32 compute memory
SMs × SM frequency bandwidth throughput capability TDP size

RTX 2080 Ti 68 64 1601 MHz 616 GB/s 13.935 TFlops 7.5 (Turing) 260 W 11 GB
GTX 1080 Ti 28 128 1923 MHz 484 GB/s 13.78 TFlops 6.1 (Pascal) 250 W 11 GB

Xavier 8 64 854∼1377 MHz 137 GB/s 1.4 TFlops 7.2 (Volta) 10/15/30 W 16 GB?

Tegra X2 2 128 854∼1465 MHz 58.4 GB/s 0.75 TFlops 6.2 (Pascal) 7.5 - 15 W 8 GB?

TABLE 4: Features of the GPUs employed. ?Both the Xavier and Tegra X2 do not have dedicated GPU memory. Memory is
shared by both the CPU and GPU.
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FIGURE 4: Analysis of the throughput achieved by the proposed codec when coding 2K (left) and 4K (right) video using
different number of execution streams, for lossy compression at maximum quality.

The data set employed in the experiments is a 2-minute
segment of the movie “Star Wars: The Last Jedi,” at a
resolution of 2K and 4K. The video contains 2,880 color
frames with a bit-depth resolution of 24 bits per pixel (i.e.,
8 bits per pixel per component), resulting in 67,5 GB (16,875
GB) of uncompressed data for the 4K (2K) resolution. The
HEVC codec uses a subsampled 4:2:0 version of the video
for compatibility issues with the 4K resolution in the GTX
1080 Ti. This is taken in consideration when measuring the
performance achieved. In general, the size of this data set is
sufficiently large to fill the resources of the GPU. Larger data
sets achieve similar results as those reported below. In all
results, the execution time is measured without considering
the I/O time spent to read/write the files from/to the disk
since that would affect results significantly depending on
the hard drive employed. The results below evaluate only
the throughput achieved since coding performance of the
proposed codec is extensively analyzed in [44]. Herein, the
codecs are compared when their coding options yield equiv-
alent image quality.

The first test evaluates the throughput achieved by the
proposed codec with the four GPUs when using a different
number of execution streams. The test evaluates both the
encoder and decoder in lossy mode with a quantization step

size that achieves maximum quality (about 50 dB). Figure 4
reports the results achieved. Again, this figure depicts with
horizontal lines the throughput needed to yield 4K, 8K, and
12K video compression in real time, assuming a frame rate
of 24 frames per second. The results indicate that both the
RTX 2080 Ti and GTX 1080 Ti increase the throughput as
more streams are employed, yielding optimal performance
depending on the frame resolution and GPU employed. The
Xavier and Tegra X2 do not benefit as much of using multiple
streams because they have fewer SMs, so their resources are
mostly filled with a single execution stream. In all results,
the decoder yields slightly lower throughput than the encoder
because it requires more local memory. This behavior is not
common in software implementations of image and video
codecs since the encoder generally requires more compu-
tations. Highly optimized implementations such as the pre-
sented herein, however, may obtain different results due to
the need of different data structures in the decoder. In the
following tests, 20 and 9 streams are employed for the RTX
2080 Ti and GTX 1080 Ti, respectively, to achieve maximum
throughput. The Xavier and Tegra X2 employ 14 and 10
streams, respectively, though their throughput is almost the
same as when using only 2.

The next test evaluates the number of kernels that are
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cuted per unit of time depending on the number of streams
employed.

executed in parallel depending on the number of streams
employed. This analysis complements the previous for the
RTX 2080 Ti. The GTX 1080 Ti, Xavier, and Tegra X2 are
not included in this analysis. Figure 5 depicts the results
achieved. For 4K video, the maximum number of running
kernels is 4, which is yield when employing 10 streams.
4 parallel kernels already fill the resources of the GPU.
This indicates that no more kernels can be executed despite
increasing the number of streams employed, although a slight
increase in throughput can be achieved as it seen in the pre-
vious figure. 2K video obtains a different behavior. Number
of streams and running kernels are almost directly related,
reaching a peak at 20 streams and 10 parallel kernels. This
is because 2K frames have only a quarter of the data of 4K
frames, so the GPU requires more kernels to fill its resources.

Figure 6 reports the throughput achieved by the proposed
codec with the four GPUs, Kakadu, and HEVC when coding
4K video in lossy and lossless mode. For lossy compression,
the average image quality yield for all codecs is about 50
dB. At this level of quality, distortion is not perceptible by
the human eye. Each codec has a pair of columns. The first
reports the results for the encoder whereas the second for
the decoder. The results for 2K video are similar but with
lower performance, so they are not included in this figure.
Results for the Xavier and Tegra X2 are reported when
using three power modes, namely, maximum (0), minimum
(1), and mid-tier (2) performance. The results show that the
proposed codec yields superior performance to that achieved
by Kakadu and HEVC for both the RTX 2080 Ti and GTX
1080 Ti regardless of using lossy or lossless compression. In
all codecs, the performance in lossless mode is slightly lower
than that achieved in lossy since more data are processed,
generating larger compressed files. Even so, real-time 12K
video can be managed by our codec for both compression
modes. The Xavier and Tegra X2 GPUs do not achieve such a
high performance, but the Xavier is able to process 4K video
in real time when employing the maximum performance

mode. This throughput is similar to that obtained by Kakadu,
though we recall that Kakadu employs a modern CPU and the
Xavier is an embedded mobile solution. Both for the Xavier
and the Tegra X2, the minimum power mode significantly
lowers performance and the mid-tier mode achieves an inter-
mediate performance. This is more pronounced in the Xavier.
HEVC yields higher performance than Kakadu, though it
is lower than that achieved by our codec. Surprisingly, the
HEVC encoder achieves higher throughput with the GTX
1080 Ti than with the RTX 2080 Ti. Even though it is
executed using the Nvidia SDK HEVC software (v9.0) [64]
in maximum performance mode in both, each GPU has its
own hardwired solution for this codec. More precisely, the
RTX 2080 Ti includes one NVEnc Turing engine whereas the
1080 Ti includes two Pascal engines. Note also that the GTX
1080 Ti obtains higher throughput for the encoder than for
the decoder, whereas the RTX 2080 Ti yields more balanced
results.

The previous test evaluates the performance achieved
when there is (almost) no quality loss. Scenarios such as
video streaming or TV broadcast may tolerate more distor-
tion. Reducing the image quality results in higher throughput
since fewer data are coded. Figure 7 depicts the throughput
achieved by Kakadu, HEVC, and the proposed codec when
coding 4K video at different levels of quality, namely, from
50 dB to 20 dB, which is the quality range employed in
most scenarios. The image quality is controlled via the quan-
tization parameter Q in our codec, and similarly in HEVC
and Kakadu. As seen in the figure, reducing the quality has
a direct impact on throughput for all codecs. The proposed
codec achieves real-time encoding of 16K video for qualities
below 46 dB. The decoder has a lower increase in perfor-
mance as the quality decreases because the aforementioned
need of more local memory. The Xavier and Tegra X2 also
increase their throughput, though more gradually due to their
inferior performance power. It is worth noting that, even
though the RTX 2080 Ti and GTX 1080 Ti have a similar
peak throughput (about 14 TFlops), the RTX 2080 Ti obtains
approximately 50% more throughput when encoding. This is
due to the distribution of performance power in the GPU. The
RTX 2080 Ti has fewer CUDA cores in each SM, but more
than twice SMs than the GTX 1080 Ti. This provides more
resources per thread, especially, more local memory. Our
codec greatly benefits from this architectural improvement
since it employs registers extensively. The highest speedups
reported in Figure 6 are achieved by the HEVC decoder,
which increases the throughput almost 6×.

Power consumption is nowadays an important aspect due
to the advent of mobile devices. Figure 8 evaluates the power
consumption of our codec, HEVC, and Kakadu when coding
4K video at 50 dB, like in Figure 6. The results are depicted
in MS processed per Watts consumed. A Nvidia tool that
measures consumption in real-time is employed to obtain
these results. Kakadu’s consumption is measured via the
utility PowerTOP. The results depicted in Figure 8 suggest
that the proposed codec is the most efficient in terms of power
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consumption. Evidently, the Xavier and Tegra X2 yield the
best results due to its architecture. Our codec employed with
the three power modes of these GPUs is less power-hungry
than the remaining, with the minimum mode achieving the
highest efficiency. The proposed codec is more efficient than
HEVC even when executed in the RTX 2080 Ti and GTX
1080 Ti, though moderately so. In general, CPUs consume
more power than GPUs, so Kakadu seems to consume the
most. The low power consumption of our codec means that,
in practice, it can allow batteries of mobile devices last much
longer and/or code more minutes of video for the same
battery capacity.

VI. CONCLUSIONS

Faster and less power-hungry image and video codecs
are currently needed in multiple scenarios. Typically, high
throughput codecs are achieved by means of integrated hard-
ware architectures such as ASICs or FPGAs. GPUs are also
a widely pursued means to accelerate codecs, though these
architectures do not commonly obtain the high performance
of their counterparts. This is because the core algorithms
of conventional image and video coding systems do not
provide enough fine-grain parallelism to fully exploit the
SIMD architecture of GPUs. This paper introduces an im-
age/video codec based on the JPEG2000 standard. All stages
of the coding pipeline have been devised to extract fine-grain
parallelism. All stages are compliant with the standard except
for the core algorithm called bitplane and arithmetic coding.
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FIGURE 8: Power consumption evaluation when encoding
4K video at 50 dB. Each pair of columns reports the results
for the encoder (back) and decoder (front).

The proposed codec introduces a similar algorithm to that of
JPEG2000 that augments its parallel capabilities. Although
the resulting codestream is not compliant with JPEG2000,
the coding system has the same advanced features of the
standard. The throughput of the resulting architecture when
executed in consumer-grade GPUs is at least 10× higher than
that achieved with CPU implementations executed in high-
end workstations, and superior to that achieved by Nvidia’s
SDK implementation of the HEVC video standard. Exper-
imental results suggest that our codec can encode (decode)
real-time 12K (8K) video in a Nvidia RTX 2080 Ti and that
it consumes very little power, especially in mobile GPUs.
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