
1

Implementation of the DWT in a GPU

through a Register-based Strategy
Pablo Enfedaque, Francesc Aulı́-Llinàs, Senior Member, IEEE, and Juan C. Moure

Abstract—The release of the CUDA Kepler architecture in
March 2012 has provided Nvidia GPUs with a larger regis-
ter memory space and instructions for the communication of
registers among threads. This facilitates a new programming
strategy that utilizes registers for data sharing and reusing in
detriment of the shared memory. Such a programming strat-
egy can significantly improve the performance of applications
that reuse data heavily. This paper presents a register-based
implementation of the Discrete Wavelet Transform (DWT), the
prevailing data decorrelation technique in the field of image
coding. Experimental results indicate that the proposed method
is, at least, four times faster than the best GPU implementation
of the DWT found in the literature. Furthermore, theoretical
analysis coincide with experimental tests in proving that the
execution times achieved by the proposed implementation are
close to the GPU’s performance limits.

Index Terms—Discrete Wavelet Transform (DWT), Graphics
Processing Unit (GPU), Compute Unified Device Architecture
(CUDA).

I. INTRODUCTION

Over the last ten years, the computational power of Graphics

Processing Units (GPUs) has grown notably. Once devised

to alleviate the Central Processing Unit (CPU) from the

computational burden imposed by the rendering of graphics in

computer-aided design or video games, GPUs are nowadays

employed for computation tasks in mainstream applications as

well. The evolution of GPUs has undergone major revisions.

Arguably, the most relevant was the release in November 2006

of the Nvidia Compute Unified Device Architecture (CUDA),

which provided tools for general-purpose computing together

with the first C compiler for the GPU.

Nowadays, the computational power of GPUs surpasses that

of CPUs. The reason behind the GPUs’ great improvement lies

in their innermost architectural principle. CPUs are mainly

based on the Multiple Instruction, Multiple Data (MIMD)

principle. They are structured in cores. Each can process a

flow of instructions on a piece of data independently and

asynchronously from the others. GPUs, on the other hand,

are mainly based on the Single Instruction, Multiple Data

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Pablo Enfedaque and Francesc Aulı́-Llinàs are with the Department of
Information and Communications Engineering, Universitat Autònoma de
Barcelona, Spain (phone: +34 935811861; fax: +34 935813443; e-mail:
{pablo | fauli}@deic.uab.cat). Juan C. Moure is with the Department of
Computer Architecture and Operating Systems, Universitat Autònoma de
Barcelona, Spain (e-mail: juancarlos.moure@uab.es). This work has been
partially supported by the Spanish Government (MINECO), by FEDER, and
by the Catalan Government, under Grants UAB-472-02-2/2012, RYC-2010-
05671, TIN2012-38102-C03-03, TIN2011-28689-C02-1, and 2014SGR-691.

(SIMD) principle. They are devised so that one flow of

instructions is applied to different pieces of data in parallel

and synchronously. This simplifies the chip design, permitting

the allocation of more resources to sustain parallel threads.

Modern GPUs can execute peaks of almost 30,000 threads, as

opposed to the tens of threads that the best CPUs can execute.

In addition to provide high computational power, GPUs are

more cost and power efficient than CPUs, which make them an

ideal choice for a large variety of applications. Both the CPUs

and the GPUs are not only based on a single architectural

principle, but they combine MIMD and SIMD in different

ways. As described below, the GPU can be programmed to

execute different flows of instructions in a MIMD fashion,

though each flow of instructions is applied on multiple pieces

of data as dictated by the SIMD principle.

Implementations in GPUs must be carefully realized to

fully exploit the potential of the device. Data management

is a fundamental aspect. The key is to store the data in the

appropriate memory spaces. From a general perspective, the

GPU has three main spaces: global, shared, and registers. The

largest is the global memory, which is located in the off-

chip DRAM and has very high latency. The shared memory

and the registers are located on-chip and can be explicitly

managed. They are significantly faster than the global memory,

but their size is much smaller. The difference between the

shared memory and the registers is that the shared memory

is commonly employed to store and reuse intermediate results

and to efficiently share data among threads. The registers are

private to each thread and they are employed to perform the

arithmetic and logical operations of the program.

The CUDA performance guidelines [1] recommend the use

of the shared memory for data reuse and data sharing. Surpris-

ingly, these recommendations were challenged in November

2008 by Volkov and Demmel [2], [3], who stated that an

extensive use of the shared memory may lead to suboptimal

performance. This is caused by a combination of three factors.

The first is the bandwidth of the shared memory that, despite

being very high, may become a bottleneck in applications

that need to reuse data heavily. The second is that arithmetic

or logical operations carried out with data located in the

shared memory implicitly need to move these data to the

registers before performing the operations, which requires

more instructions. And the third is that the register memory

space is commonly larger than that of the shared memory.

In their paper, Volkov and Demmel indicated that the only

way to increase the GPU’s performance is to directly use the

registers, minimizing the use of the shared memory. Their

results suggest that maximum performance is achieved when

2

the registers are employed as the main local storage space for

data reusing, though the results may vary depending on the

algorithm. At that time, there was no operations to share the

data in the registers among threads, and the register memory

space was very limited. This restrained the use of register-

based implementations.

The release of the Kepler CUDA architecture in March 2012

unlocked these restrictions. In Kepler, the size of the register

memory space has been doubled, the number of registers that

each thread can manage has been quadruplicated, and a new

set of instructions for data sharing in the register space has

been introduced. These improvements facilitate register-based

strategies to program the GPU. This is an emerging approach

that can significantly enhance the performance achieved. In

the fields of image processing and computational biology, for

example, this trend has already been employed to achieve good

results [4]–[6].

This paper explores the use of a register-based strategy to

implement the Discrete Wavelet Transform (DWT). The DWT

is a prevalent data decorrelation technique in the field of image

and video coding. It is employed in international compression

standards such as JPEG2000 [7], [8] or CCSDS-ILDC [9]

as well as in numerous widespread coding schemes such as

SPIHT [10], EBCOT [11], or SPECK [12]. Realizations of

the DWT in GPUs require carefully implemented strategies of

data reuse. As seen below, there are many different approaches

in the literature. The use of a register-based strategy allows a

particular approach that differs from the state-of-the-art meth-

ods. The implementation has to be rethought from the scratch.

The most critical aspects are data partitioning and thread-to-

data mapping (see below). To the best of our knowledge, this

is the first implementation of the DWT employing a register-

based strategy. The proposed method achieves speedups of 4

compared to the best method found in the literature.

The paper is structured as follows. Section II provides a

general description of the DWT, Section III overviews the

CUDA architecture, and Section IV reviews state-of-the-art

implementations of the DWT in GPUs. Section V describes

the method proposed detailing the data partitioning scheme

employed and its implementation in the GPU. Section VI

assesses the performance of the proposed implementation

through extensive experimental results. The last section sum-

marizes this work.

II. REVIEW OF THE DWT

The DWT is a signal processing technique derived from

the analysis of Fourier. It applies a bank of filters to an input

signal that decompose its low and high frequencies. In image

coding, the forward operation of the DWT is applied to the

original samples (pixels) of an image in the first stage of the

encoding procedure. In general, coding systems use a dyadic

decomposition of the DWT that produces a multi-resolution

representation of the image [13]. This representation organizes

the wavelet coefficients in different levels of resolution and

subbands that capture the vertical, horizontal, and diagonal

features of the image. The decoder applies the reverse DWT

in the last stage of the decoding procedure, reconstructing the

image samples.

Fig. 1: Illustration of the lifting scheme for the forward

application of the reversible CDF 5/3 transform.

The filter bank employed determines some features of the

transform. The most common filter banks in image coding

are the irreversible CDF 9/7 and the reversible CDF 5/3 [14],

which are employed for lossy and progressive lossy-to-lossless

compression, respectively. The proposed method implements

these two filter banks since they are supported in JPEG2000,

though other banks could also be employed achieving similar

results.

The DWT can be implemented via a convolution oper-

ation [13] or by means of the lifting scheme [15]. The

lifting scheme is an optimized realization of the transform

that reduces the memory usage and the number of operations

performed, so it is more commonly employed. It carries out

several steps in a discretely-sampled one-dimensional signal,

commonly represented by an array. Each step computes the

(intermediate) wavelet coefficients that are assigned to the

even, or to the odd, positions of the array. Each coefficient

is computed using three samples: that in the even (or odd)

position of the array, and its two adjacent neighbors. Such

a procedure can be repeated several times depending on the

filter bank employed. An important aspect of the lifting scheme

is that all coefficients in the even (or odd) positions can be

computed in parallel since they do not hold dependencies

among them.

Formally expressed, the lifting scheme is applied as follows.

Let {ci} with 0 ≤ i < I be the original set of image samples.

First, ci is split into two subsets that contain the even and the

odd samples, referred to as {d0i } and {s0i }, respectively, with

0 ≤ i < I/2. The arithmetic operations are performed in the

so-called prediction and update steps. As seen in Fig. 1, the

prediction step generates the subset {d1i } by applying to each

sample in {d0i } an arithmetic operation that involves d0i , s0i ,

and s0i+1. This operation is generally expressed as

dj+1

i = dji − αj(sji + sji+1
) . (1)

The update step is performed similarly, producing the subset

{sj+1

i } that is computed according to

sj+1

i = sji + βj(dj+1

i + dj+1

i+1
) . (2)

Depending on the wavelet filter bank, (1) and (2) may be

repeated several times. The result of these steps are the subsets

{dJi } and {sJi }, which contain the low and high frequencies of

the original signal, respectively, with J denoting the number

of iterations performed. αj and βj in the above equations

depend on the filter bank and change in each step j. The 5/3

3

Fig. 2: Application of two levels of DWT decomposition to

an image.

transform has J = 1 whereas the 9/7 has J = 2. The reverse

application of the transform applies the same procedure but it

swaps additions for subtractions.

The application of the lifting scheme to an image is carried

out in two stages. First, the lifting scheme is applied to all

rows of the image, which is called horizontal filtering. Then,

it is applied to the resulting coefficients in a column-by-

column fashion in the so-called vertical filtering. The order in

which the horizontal and the vertical filtering are applied does

not matter as far as the decoder reverses them appropriately.

As seen in Fig. 2, these filtering stages produce a dyadic

decomposition that contains four subsets of coefficients called

wavelet subbands. Subbands are commonly referred to as LL,

HL, LH, and HH, with each letter denoting Low or High

frequencies in the vertical and horizontal direction. The size

of the LL subband is one quarter of that of the original image.

Its content is similar to the original image, so coding systems

commonly generate new levels of decomposition by applying

the DWT to the resulting LL subband. Fig. 2 depicts this

scheme when two levels of decomposition are applied to an

image. The reverse DWT applies the inverse procedure starting

at the last level of decomposition. In general, five levels of

decomposition are enough to achieve maximum decorrelation.

III. OVERVIEW OF CUDA

CUDA is the most popular architecture for general-purpose

GPU computing. The CUDA programming model defines a

computation hierarchy formed by threads, warps, and thread

blocks. A CUDA thread represents a single lane of a vector

instruction. Warps are sets of (currently 32) threads that

advance their execution in a lockstep synchronous way. Warps

are the smallest scheduling units in a GPU. Commonly, all

threads in a warp are executed simultaneously, as a single

vector operation. Control flow divergence among the threads

results in the sequential execution of the divergent paths, so

it is commonly avoided. Thread blocks group several warps

that are executed independently but that can cooperate via

synchronization operations that permit the sharing of data.

Warps from multiple blocks are scheduled for execution on a

SIMD processing unit called streaming multiprocessor (SM).1

The occupancy of the GPU (or of a SM) is the percentage of

allocated threads relative to the theoretical maximum. Current

1The streaming multiprocessor is named slightly different in each CUDA
architecture, namely, SM in Fermi, SMX in Kepler, and SMM in Maxwell.
For simplicity, the acronym SM is adopted herein for all architectures.

GPUs include up to 15 SMs. The unit of work sent from the

CPU (host) to the GPU (device) is called a kernel. The host

can launch some kernels for parallel execution, each composed

from tens to millions of thread blocks. The thread blocks are

scheduled for independent execution in multiple SMs.

As described before, the memory is organized in three logi-

cal spaces: global, shared, and registers. The global memory is

shared by all threads in a kernel and has a capacity of several

GBs. Data already accessed in the global memory is kept in

two levels of on-chip cache for their (possible) reusing. The

shared memory is accessible by all warps in a block, while the

registers are local to each thread. The communication between

the threads in a thread block is commonly carried out via the

shared memory. Threads in a warp can also communicate using

the shuffle instruction, which permits the access to another

thread register of the same warp. The Kepler architecture

provides 48 KB and 256 KB for the shared memory and

the registers, respectively, per SM. The number of threads

allocated in a SM (i.e., its occupancy) is constrained by the

amount of shared memory and registers assigned to its threads.

The registers have the highest bandwidth and lowest latency,

whereas the shared memory bandwidth is significantly lower

than that of the registers. The shared memory provides flexible

accesses, while the accesses to the global memory must be

coalesced to achieve higher efficiency. Among other ways, a

coalesced access occurs when consecutive threads of a warp

access consecutive memory positions.

IV. PREVIOUS AND RELATED WORK

The pre-CUDA GPU-based implementations of the DWT

employed manifold devices and programming languages.The

implementation proposed in [16], for instance, was based on

OpenGL, whereas [17], [18] employed OpenGL and Cg. Most

of these earliest methods used convolution operations and were

tailored to each filter bank. [18] evaluated for the first time the

use of the lifting scheme, though the convolution approach

was preferred because the lifting requires the sharing of

intermediate values among coefficients. At that time there were

no tools to implement that efficiently. This was experimentally

confirmed in [19], in which both the convolution and the lifting

approach were implemented.

The aforementioned pre-CUDA implementations were con-

strained by the lack of a general-purpose GPU architecture

and its programming tools. The operations of the DWT had

to be mapped to graphics operations, which are very limited.

Though these works accelerated the execution of the DWT

with respect to a CPU-based implementation, their perfor-

mance is far from that achieved with current GPUs that have

an enhanced memory hierarchy and support general-purpose

computing. Key in current CUDA implementations is how

the image is partitioned to permit parallel processing. Fig. 3

illustrates the three main schemes employed in the literature.

They are named row-column, row-block, and block-based.

The first DWT implementation in CUDA was proposed

in [20]. It employs the row-column scheme. First, a thread

block loads a row of the image to the shared memory and

the threads compute the horizontal filtering on that row. After

4

(a)

(b)

(c)

Fig. 3: Illustration of the a) row-column, b) row-block, and c)

block-based partitioning schemes to allow parallel processing

in the GPU. Horizontal arrows indicate the main data transfers

to/from the global memory.

the first filtering stage, all rows of the image are returned

to the global memory, in which the image is stored as a

matrix. After transposing it, the same procedure is applied,

with the particularity that in this second stage the rows are

in reality the columns of the original image, so the vertical

filtering is actually executed (see Fig. 3(a)). Even though this

work still uses convolution operations, speedups between 10

to 20 compared to a multi-core OpenMP implementation are

achieved. Its main drawback is the matrix transpose, which

is a time-consuming operation. A similar strategy is utilized

in [21] and [22] for other types of wavelet transform.

The first CUDA implementation based on the lifting scheme

was presented in [23] employing the block-based scheme. The

main advantage of this scheme is that it minimizes transfers to

the global memory since it computes both the horizontal and

the vertical filtering in a single step. It partitions the image in

rectangular blocks that are loaded to the shared memory by

a thread block. Both the horizontal and the vertical filtering

are applied in these blocks, neither needing further memory

transfers nor a matrix transpose. The only drawback of such an

approach is that there exist data dependencies among adjacent

blocks. In [23] these dependencies are not addressed. The

common solution to avoid them is to extend all blocks with

some rows and columns that overlap with adjacent blocks.

These extended rows/columns are commonly called halos.

The fastest implementation of the DWT found in the

literature is that proposed in [24], in which the row-block

scheme is introduced. The first step of this scheme is the

same as that of the row-column, i.e., it loads rows of the

image to the shared memory to apply the horizontal filtering

on them. Then, the data are returned to the global memory.

The second step is similar to what the block-based scheme

does. It partitions the image in vertically stretched blocks

that are loaded to the shared memory. Consecutive rectangular

blocks in the vertical axis are processed by the same thread

block employing a sliding window mechanism. This permits

the thread block to reuse data in the borders of the blocks,

handling the aforementioned problem of data dependencies.

The only drawback of such a scheme is that it employs two

steps, so more accesses to the global memory are required.

The speedups achieved by [24] are approximately from 10

to 14 compared to a CPU implementation using MMX and

SSE extensions. They also compare their implementation to

convolution-based implementations and to the row-column

scheme. Their results suggest that the lifting scheme together

with the row-block partitioning is the fastest. The implemen-

tation of [24] is employed in the experimental section below

for comparison purposes.

Other works in the literature implement the DWT in specific

scenarios. [25] employs it in a real-time SPIHT decoding sys-

tem that uses Reed-Solomon codes. The partitioning scheme

used is similar to the row-block but without the sliding

window, which forces the reading of more data from the

global memory. [26] utilizes a block-based scheme for the

compression of hyperspectral images. [27], [28] examines

the convolution approach again, whereas [29] implements a

variation of the DWT.

Regardless of the partitioning scheme employed, all works

in the literature store each partition of the image in the

shared memory and assign a thread block to compute each

one of them. This is the conventional programming style

recommended in the CUDA programming guidelines.

V. PROPOSED METHOD

A. Analysis of the partitioning scheme

As most modern implementations, our method employs the

lifting scheme. Contrarily to previous work, the proposed

approach stores the data of the image partitions in the registers

–rather than in the shared memory. It is clear in the literature

that the row-column scheme is the slowest [23], [24]. Also, the

analysis in [24] indicates that the block-based scheme may not

be effective due to its large need of shared memory. This is the

main reason behind the introduction of the row-block scheme

in [24]. Nonetheless, that analysis is for CUDA architectures

prior to Kepler. So it is necessary to study the differences

between the row-block and the block-based scheme in current

architectures to decide which is adopted in our method. The

following analysis assesses memory accesses, computational

overhead, and task dependencies.

Both the row-block and the block-based schemes permit

data transfers from/to the global memory via coalesced ac-

cesses. The main difference between them is the number of

global memory accesses performed. The row-block requires

the reading and writing of the image (or the LL subband)

5

twice. All data are accessed in a row-by-row fashion in the

first step. After the horizontal filtering, the data are returned to

the global memory. The whole image is accessed again using

vertically stretched blocks to perform the vertical filter. For

images with a large width, it may be more efficient to divide

the rows in slices that are processed independently due to

memory requirements. Data dependencies among the first and

the last samples of the slice have to be handled appropriately.

This may slightly increase the number of accesses to the global

memory, though not seriously so. A similar issue may appear

with images with a large height.

Let m and n respectively be the number of columns and

rows of the image. When the row-block scheme is applied,

the computation of the first level of decomposition requires,

at least, two reads and two writes of all samples to the global

memory, i.e., 4mn accesses. In general, the application of L
levels of wavelet decomposition requires 4M accesses, with

M being

M =
L−1∑

k=0

m · n

4k
. (3)

Contrarily to the row-block, the block-based scheme reuses

the data after applying the horizontal filtering. If it were not for

the data dependencies that exist on the borders of the blocks,

this partitioning scheme would require 2M accesses, half

those of the row-block scheme. To address these dependencies,

the partitioning has to be done so that the blocks include

some rows and columns of the adjacent blocks, the so-called

halo. The size of the halo depends on the lifting iterations

of the wavelet filter bank (i.e., J). Let m̂ and n̂ denote the

number of columns and rows of the block –including the

halo. The application of an iteration of the lifting scheme in a

sample involves dependencies with 2 neighboring coefficients.

For the reversible CDF 5/3 transform (with J = 1), for

instance, these dependencies entail two rows/columns on each

side of the block. The samples in these rows/columns are

needed to compute the remaining samples within the block,

but they must be disregarded in the final result.2 The number

of samples computed without dependency conflicts in each

block is (m̂ − 4J) · (n̂ − 4J). The ratio between the size of

the block with and without halos is determined according to

H =
m̂ · n̂

(m̂− 4J) · (n̂− 4J)
. (4)

Since the halos have to be read but not written to the global

memory, the number of global memory accesses required by

this partitioning scheme is HM +M .

Table I evaluates the number of memory accesses needed

by the row-block and block-based partitioning schemes for

different block sizes and wavelet transforms. The row-block

scheme always requires 4M accesses. For the block-based

scheme, the larger the block size, the fewer the accesses to

the global memory, with the lower bound at 2M . Except for

2Sides of blocks that coincide with the limits of the image do not have
rows/columns with data dependencies. The number of samples corresponding
to this is negligible for images of medium and large size, so it is not considered
in the discussion for simplicity.

TABLE I: Evaluation of the number of accesses to the global

memory required by two partitioning schemes. The row-block

scheme requires the same number of accesses regardless of

the lifting iterations and block size.

block size row-block block-based

(m̂× n̂) CDF 5/3 CDF 9/7

16× 16

4M

2.78M 5M

32× 32 2.31M 2.78M

64× 64 2.14M 2.31M

128× 128 2.07M 2.14M

64× 20 2.33M 2.90M

blocks of 16×16 and the use of the 9/7 transform, the number

of accesses required by the block-based scheme is always

lower than for the row-block scheme. So compared to the row-

block scheme, results of Table I suggest that the block-based

scheme can reduce the execution time devoted to the memory

accesses in a similar proportion. Furthermore, the accesses

corresponding to the halos may be accelerated by means of

the on-chip caches.

The evaluation reported in Table I is theoretical. The follow-

ing test evaluates the real execution time that is devoted to the

memory accesses achieved by the block-based strategy. In this

artificial test none logical or arithmetic operation is performed.

A warp is assigned to read and write the block data from/to

the global memory to/from the registers. Blocks are of 64×20
since this block size fits well our implementation. Results hold

for other block sizes too. The same experiment is carried out

with and without using the aforementioned halos. Evidently,

the writing of data to the global memory is carried out only

for the relevant samples when halos are used. When no halos

are utilized, 2M accesses are performed, whereas the use of

halos performs HM +M accesses as mentioned earlier.

Table II reports the results achieved when using different im-

age sizes, for both the reversible CDF 5/3 (with J = 1) and the

irreversible CDF 9/7 (with J = 2) transform. The theoretical

increase in memory accesses (i.e., (HM+M)/2M) due to the

use of halos for this experiment is 1.17 and 1.45, respectively

for the 5/3 and 9/7 transform. The experimental results suggest

that the theoretical analysis is approximately accurate for the

5/3 transform, especially for images of medium and large size.

Contrarily, the real increase for the 9/7 transform is larger than

the theoretical. This is caused because the writing of samples

is not done in a fully coalesced way. The threads assigned to

the halo hold irrelevant data, so they are idle when writing

the results. In spite that the real increase is higher than the

theoretical, we note that it is always below 2, which is the

point at which the row-block scheme would be more effective

than the block-based.

Another aspect that may be considered when analyzing

these partitioning schemes is the arithmetic operations that

are performed. The row-block applies the lifting scheme to

all image coefficients (or to those in the LL subband) once,

so it performs λM operations, with λ denoting the number

of arithmetic operations needed to apply the lifting scheme

to each coefficient. Samples within the halos in the block-

6

Fig. 4: Illustration of the partitioning scheme and the thread-to-data mapping employed by the proposed method when applying

a CDF 5/3 transform.

TABLE II: Evaluation of the practical and theoretical increase

in computational time due to the inclusion of halos in each

block. Blocks of size 64× 20 are employed. Experiments are

carried out with a Nvidia GTX TITAN Black.

image size exec. time (in µs) real theor.

(m× n) no halos halos inc. inc.

C
D

F
5
/3

1024× 1024 17 23 1.35

1.17
2048× 2048 63 74 1.17

4096× 4096 245 279 1.14

8192× 8192 981 1091 1.11

C
D

F
9
/7

1024× 1024 19 34 1.8

1.45
2048× 2048 67 116 1.73

4096× 4096 255 444 1.74

8192× 8192 1015 1749 1.72

based scheme compel the application of the lifting scheme in

some coefficients more than once. Again, the increase can be

determined through the percentage of samples within the halos

in each block, resulting in λHM . Although the block-based

scheme performs more arithmetic operations, in practice this

becomes inconsequential since the performance of the DWT

implementation is bounded by the memory accesses (see next

section).

The final aspect of this analysis studies the task dependen-

cies of the algorithm. There are two task dependencies that

must be considered. They are the application of the horizontal

and vertical filtering, and the application of the prediction

and update steps. In both cases, the tasks have to be applied

one after the other. The steps dependency can be handled in

both partitioning schemes with local synchronization within

each thread block. The horizontal-vertical filtering dependency

has different constrains in each partitioning scheme. The row-

block needs to synchronize all the thread blocks after each

filter pass. This can only be implemented via two kernels that

are executed sequentially. The block-based scheme does not

require synchronization among different thread blocks since

all data is within the block, so local synchronization can be

employed. This is generally more effective than executing two

sequential kernels.

B. Thread-to-data mapping

The analysis of the previous section indicates that the

block-based partitioning scheme requires fewer global memory

accesses and that it can be implemented employing effective

synchronization mechanisms. The proposed method uses a

scheme similar to the block-based. Besides storing the data

of the image partitions in the registers, another important

difference with respect to previous works is that each partition

is processed by a warp instead of using a thread block. This

strategy does not need shared memory since threads within a

warp can communicate via shuffle instructions. It also avoids

the use of synchronization operations required by inter-lifting

dependencies since the threads in a warp are intrinsically

synchronized and there is no need to communicate data

between warps. The removal of all synchronization operations

elevates the warp-level parallelism.

Fig. 4 illustrates the partitioning strategy employed. The

rectangular divisions of the image represent the samples within

each block that can be computed without dependency conflicts.

The surrounding gray rows/columns of block 5 in the figure

represent the real extension (including the halo) of that block.

For the 5/3 transform, two rows/columns are added to each

side to resolve data dependencies. The real size of all other

blocks in the figure also includes two rows/columns in each

side, though it is not illustrated for clarity.

The size of the block directly affects the overall performance

of the implementation since it has impact on the memory

access pattern, the register usage, the occupancy, and the total

7

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70

e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 m

s
)

block height

9216 x 9216
7168 x 7168
5120 x 5120
3072 x 3072

Fig. 5: Evaluation of the execution time achieved by the

proposed method when employing blocks of different height.

5 decomposition levels of forward CDF 5/3 wavelet transform

are applied to images of different size. Experiments are carried

out with a Nvidia GTX TITAN Black.

number of instructions executed. Key to achieve maximum

efficiency is that the threads in a warp read and write the

rows of the block performing coalesced accesses to the global

memory. To achieve it, the block width must be a multiple of

the threads within a warp, which is 32 in current architectures.

To assign pairs of samples to each thread is highly effective.

The processing of two adjacent samples per thread permits

the application of the lifting scheme first for samples in the

even positions of the array and then for samples in the odd

positions. We note that to assign only one sample per thread

would generate divergence since only half the threads in a

warp could compute the (intermediate) wavelet coefficients.

So the width of the block that we employ is m̂ = 64. This is

illustrated in the right side of Fig. 4.

In our implementation, each thread holds and processes all

pairs of samples of two consecutive columns. With such a

mapping, the application of the vertical filtering does not re-

quire communication, whereas the horizontal filtering requires

collaboration among threads. With this mapping, the threads

collaboratively request n̂ rows from the global memory before

carrying out any arithmetic operation. This generates multiple

on-the-fly requests to the global memory, key to hide the

latency of the global memory since arithmetic operations are

then overlapped with memory accesses.

The height of the block permits some flexibility. Fig. 5

reports the results that are achieved by the proposed method

when employing different block heights. Results are for im-

ages of different size and for the forward CDF 5/3 transform,

though they hold for other wavelet filter banks and for the

reverse application of the transform. The results in this figure

indicate that the lowest execution times are achieved when the

height of the block is between 12 to 26, approximately.

Table III extends the previous test. It reports the registers

employed by each thread, the device occupancy, and the

number of instructions executed when applying the proposed

method to an image of size 7168 × 7168 employing blocks

TABLE III: Evaluation of some GPU metrics when the pro-

posed method is applied to an image of size 7168 × 7168

employing different block heights, for the forward CDF 5/3

transform. Experiments are carried out with a Nvidia GTX

TITAN Black.

block registers device instructions

height used occupancy executed (x103)

10 34 69% 70655

20 57 45% 45153

30 78 33% 39749

40 97 22% 37106

50 121 22% 35599

60 141 16% 34604

70 161 16% 34222

of different heights. We assure that register spilling does not

occur in any of these, and following, tests. The smaller the

block height, the fewer registers used per thread and the

higher the occupancy of the device. Then, more instructions

are executed due to larger halos. As seen in Fig. 5, the tradeoff

between the device occupancy and the number of instructions

executed is maximized with blocks of 64 × 20, approximately.

For this block size, the occupancy of the device is 45% and

the number of instructions executed is much lower than when

using blocks of 64 × 10. These results hold for the CDF 9/7

transform and for images of other sizes. The results of the

next section employ a block size of 64× 20.

C. Algorithm

Algorithm 1 details the CUDA kernel implemented in this

work for the forward application of the wavelet transform.

We recall that a CUDA kernel is executed by all threads in

each warp identically and synchronously. The parameters of

the algorithm are the thread identifier (i.e., T), the first column

and row of the image corresponding to the block processed by

the current warp (i.e., X,Y), and the first column and row of

the wavelet subbands in which the current warp must leave the

resulting coefficients (i.e., XS , YS). The height of the block is

denoted by Ȳ and is a constant.

The first operation of Algorithm 1 reserves the registers

needed by the thread. The registers are denoted by R, whereas

the global memory is denoted by G. From line 2 to 5, the

thread reads from the global memory the two columns that it

will process. The reading of two consecutive columns can be

implemented with coalesced accesses to the global memory.

The reading of all data before carrying out any arithmetic

operation generates the aforementioned on-the-fly memory

accesses.

The horizontal filtering is carried out in lines 6-13 as speci-

fied in Eq. (1) and (2) employing that αj and βj corresponding

to the wavelet filter bank. Since this filtering stage is applied

along each row, the threads must share information among

them. The operation Φ(·) in lines 8,10 is the shuffle instruction

introduced in the CUDA Kepler architecture. This operation

permits thread T to read a register from any other thread in the

warp. The register to be read is specified in the first parameter

8

Algorithm 1 Forward DWT kernel
Parameters:
T thread with T ∈ [0, 31]
X,Y first column and row of the block in the image
XS , YS first column and row of the block in the S subband

1: allocate R[Ȳ][2] in register memory space
2: for y ∈ {0, 1, 2, ..., Ȳ − 1} do
3: R[y][0]← G[Y + y][X + T ∗ 2]
4: R[y][1]← G[Y + y][X + T ∗ 2 + 1]
5: end for
6: for j ∈ {0, 1, 2, ..., J − 1} do
7: for y ∈ {0, 1, 2, ..., Ȳ − 1} do
8: R′ ← Φ(R[y][0], T + 1)
9: R[y][1]← R[y][1]− αj(R[y][0] +R′)

10: R′ ← Φ(R[y][1], T − 1)
11: R[y][0]← R[y][1]− βj(R[y][1] +R′)
12: end for
13: end for
14: for j ∈ {0, 1, 2, ..., J − 1} do
15: for y ∈ {1, 3, 5, ..., Ȳ − 1} do
16: R[y][0]← R[y][0]− αj(R[y − 1][0] +R[y + 1][0])
17: R[y][1]← R[y][1]− αj(R[y − 1][1] +R[y + 1][1])
18: end for
19: for y ∈ {0, 2, 4, ..., Ȳ − 2} do
20: R[y][0]← R[y][0]− βj(R[y − 1][0] +R[y + 1][0])
21: R[y][1]← R[y][1]− βj(R[y − 1][1] +R[y + 1][1])
22: end for
23: end for
24: for y ∈ {2J, 2J + 2, ..., Ȳ − 2J} do
25: G[YLL + y/2][XLL + T]← R[y][0]
26: G[YHL + y/2][XHL + T]← R[y][1]
27: end for
28: for y ∈ {2J + 1, 2J + 3, ..., Ȳ − 2J + 1} do
29: G[YLH + y/2][XLH + T]← R[y][0]
30: G[YHH + y/2][XHH + T]← R[y][1]
31: end for

of this function. The second parameter of Φ(·) is the thread

identifier from which the register is read.

The vertical filtering is applied in the loops of lines 14-23.

In this case, the thread has all data needed to apply it, so

the prediction step is carried out first in the loop of lines 15-

18 followed by the update step. Note that in the horizontal

filtering, the prediction and update steps were carried out

within the same loop since all threads process the same row

simultaneously.

The last two loops in Algorithm 1 (lines 24-31) write the

resulting coefficients in the corresponding wavelet subbands

stored in the global memory. In this case, accesses to the

global memory are not fully coalesced as mentioned earlier.

These loops only transfer the rows that do not belong to the

halos. Our implementation also takes into account that the

threads containing the first and last columns of the block do not

write their coefficients in the global memory since they have

dependency conflicts, though it is not shown in Algorithm 1

for simplicity.

This algorithm details the forward application of the wavelet

transform for one decomposition level. The application of

more decomposition levels carries out the same procedure but

taking the resulting LL subband of the previous decomposition

level as the input image. Also, the reverse operation of the

transform is implemented similarly as the procedure specified

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100

e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 m

s
)

image samples (x2
20

)

9/7 (auxiliary buffer)
9/7 (shuffle inst.)
5/3 (auxiliary buffer)
5/3 (shuffle inst.)

Fig. 6: Evaluation of the execution time achieved by the

proposed method when employing shuffle instructions or an

auxiliary buffer in the shared memory to communicate data

among threads. Five decomposition levels of forward CDF

5/3 or 9/7 wavelet transform are applied to images of different

size. Experiments are carried out with a Nvidia GTX TITAN

Black.

in Algorithm 1.

Although the proposed method has been devised for the

Kepler CUDA architecture and following, Algorithm 1 could

also be employed in previous architectures. Before Kepler, the

data sharing among threads in a warp can be implemented

by using an auxiliary buffer in the shared memory. By only

replacing the shuffle instructions in lines 8,10 by the use of this

auxiliary buffer, our register-based strategy could be employed

in pre-Kepler architectures. This strategy is employed in the

next section to assess the performance achieved with GPUs

of the Fermi architecture. Evidently, the shuffle instruction is

faster than the use of an auxiliary buffer due to the execution of

fewer instructions. See in Fig. 6 the execution time spent by the

proposed method when employing shuffle instructions or the

auxiliary buffer. Shuffle instructions accelerate the execution

of the 9/7 transform in approximately 20%.

On another note, the proposed method can also be employed

to perform strategies of wavelet transformation that involve

three dimensions in images with multiple components, such as

remote sensing hyperspectral images or 3D medical images.

The conventional way to apply such strategies is to reorder

the original samples and apply the DWT afterwards [30].

VI. EXPERIMENTAL RESULTS

A. Overall performance

Except when indicated, the experimental results reported

in this section are carried out with a Nvidia GTX TITAN

Black GPU using the CUDA v5.5 compiler. This GPU has

15 SMs and a peak global memory bandwidth of 336 GB/s.

The proposed algorithm is compiled and executed convention-

ally, without needing any assembly edit. Results have been

collected employing the Nvidia profiler tool nvprof. All the

experiments apply five levels of decomposition to images of

9

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80 90 100

p
e

rf
o

rm
a

n
c
e

 (
in

 s
a

m
p

le
s
/n

s
)

image samples (x2
20

)

proposed (Kepler)
[24] (Kepler)

proposed sh. mem. (Kepler)

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80 90 100

p
e

rf
o

rm
a

n
c
e

 (
in

 s
a

m
p

le
s
/n

s
)

image samples (x2
20

)

proposed (Fermi)
[24] (Fermi)

(b)

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

p
e

rf
o

rm
a

n
c
e

 (
in

 s
a

m
p

le
s
/n

s
)

image samples (x2
20

)

proposed (Kepler)
[24] (Kepler)

proposed sh. mem. (Kepler)

(c)

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

p
e

rf
o

rm
a

n
c
e

 (
in

 s
a

m
p

le
s
/n

s
)

image samples (x2
20

)

proposed (Fermi)
[24] (Fermi)

(d)

Fig. 7: Evaluation of the performance achieved by the proposed method and [24], for (a),(b) the CDF 5/3 transform and (c),(d)

the CDF 9/7 transform. Solid lines indicate the forward application of the transform and dashed lines indicate the reverse.

size ranging from 1024 × 1024 to 10240 × 10240. The data

structures employed to store the image samples are of 16 bits.

Floats of 32 bits are employed to perform all computations of

the CDF 9/7 since they provide enough arithmetic precision

for image coding applications.

The first test evaluates the performance achieved by the

proposed method and compares it to the best implementation

found in the literature [24]. The implementation in [24] is

configured to obtain maximum performance in this GPU using

the maximum shared memory size. Fig. 7(a) and (c) depict

the results achieved for both the reversible CDF 5/3 and the

irreversible CDF 9/7 wavelet transforms. The horizontal axis

of the figures is the size of the image, measured as the number

of image samples, whereas the vertical axis is the performance.

The metric employed to evaluate the performance is the

number of samples processed per unit of time. The plots with

the label “proposed” depict the performance of our method

when the data of the blocks are stored in the registers. To

compare the performance achieved by the use of registers

vs the use of shared memory, these figures also report the

performance achieved with the GTX TITAN Black when our

implementation uses a buffer in the shared memory to hold

all the data.3 To assess the increase in performance achieved

with different Nvidia architectures, Fig. 7(b) and (d) depict the

results achieved with a Tesla M2090 GPU (Fermi architecture).

Data blocks of size 64 × 20 and thread blocks of 128 are em-

ployed for all implementations. In our implementation, thread

blocks of 128 achieve the best results. Thread blocks of 64

may obtain slightly better performance in some applications,

especially when using Maxwell architectures. In our case the

differences between blocks of 128 and 64 are negligible. As

seen in Fig. 7, both the forward and the reverse application of

the wavelet transform achieve similar performance since they

perform practically the same operations in the inverse order.

The experimental results of Fig. 7 indicate that the perfor-

mance speedup between Fermi and Kepler achieved by [24]

is approximately 1.7 for both the CDF 5/3 and 9/7 transform.

The performance speedup achieved by our implementation is

3Such a strategy does not explicitly use the registers, so all data are
kept in the shared memory. It is configured to avoid bank conflicts in the
shared memory and to employ the maximum shared memory size, maximizing
performance.

10

TABLE IV: Evaluation of the total number of instructions executed and global memory accesses performed by the proposed

method and by the implementation in [24] (Kepler architecture). Results are for the forward transform.

instructions executed (x103) mem. accesses (x103)

image size proposed [24] increase prop. (sh. mem.) increase proposed [24] increase
C

D
F

5
/3

1024× 1024 982 3554 3.62 1618 1.64 208 348 1.67

2048× 2048 3804 12350 3.25 6224 1.63 822 1395 1.70

4096× 4096 14926 44541 2.98 24357 1.63 3287 5587 1.70

8192× 8192 59083 167320 2.83 96462 1.63 13230 22360 1.69

C
D

F
9
/7

1024× 1024 2026 5370 2.65 3743 1.84 210 366 1.74

2048× 2048 7847 18921 2.41 14456 1.84 825 1396 1.69

4096× 4096 31200 69266 2.22 57513 1.84 3313 5588 1.69

8192× 8192 123963 262917 2.12 228583 1.84 13458 22514 1.67

2.3 and 3, respectively for the 5/3 and 9/7. This difference

is because our implementation exploits very efficiently the

resources of the Kepler architecture. Furthermore, note that

the performance achieved by our implementation when using

the Tesla M2090 GPU (Fermi architecture) is even higher

(1.4 on average) than that of [24] when using the GTX

TITAN Black (Kepler architecture). When comparing the

results achieved by both implementations with the Kepler

architecture, the results of Fig. 7 show that the proposed

register-based implementation is significantly faster than the

method presented in [24]. Though it depends on the wavelet

transform and the size of the input data, speedups ranging

approximately from 3.5 to almost 5 are achieved. The gain in

performance is caused by the novel programming methodology

based on the use of registers, which results in a lower number

of instructions executed and a lower number of global memory

accesses. This can be seen in Table IV. The columns with the

label “increase” in this table report the increase ratio in the

number of instructions or accesses with respect to the proposed

method. The implementation in [24] executes three times more

instructions and around 70% more memory accesses than ours.

This corresponds with the theoretical analysis of Section V

(Table I).

The results of Fig. 7(a) and (c) also indicate that, in our

implementation, the use of registers speedups the execution

from 3.5 to 9 times with respect to the use of shared memory.

As mentioned previously, the use of shared memory signif-

icantly decreases the performance due to a low occupancy

of the device and the fact that data have to be moved from

the shared memory to the registers to perform arithmetic

operations. The occupancy achieved by “proposed sh. mem.”

is 12%, as opposed to the 45% achieved when using registers.

The low occupancy achieved by the use of shared memory

is constrained by the amount of shared memory assigned

per thread block. Though this occupancy could be increased

by reducing the data block size, the number of instructions

executed is then significantly increased and so the overall

performance is reduced. As seen in Table IV, when the

proposed method employs shared memory instead of registers,

the number of instructions is increased in approximately 60%

and 80% for the 5/3 and 9/7 transform, respectively. This is

due to the operations that move the data from the shared

memory to the registers. The number of memory accesses

performed by the proposed method is the same regardless

of using registers or shared memory, so it is not shown in

the table. We note that these results correspond with [24], in

which it was already indicated that the block-based scheme

employing shared memory is not efficient. The use of the

proposed register-based strategy enhances the performance of

such a scheme greatly.

Another observation that stems from Fig. 7 is that our

method achieves regular performance regardless of the image

size, indicating that it scales well with the size of the input

data. This is seen in the figure as the almost straight plot of

our implementation. Only for small images the performance

decreases due to low experimental occupancy.

B. Analysis of execution bottleneck

The aim of the next test is to identify the execution bottle-

neck. To this end, it separately evaluates the time spent by the

arithmetic operations and the time spent by the global memory

accesses in our register-based implementation. Fig. 8 depicts

the results achieved by the forward application of both the

5/3 and 9/7 transform. Again, the horizontal axis of the figure

is the number of image samples, whereas the vertical axis is

the execution time. The plot with the label “global memory

accesses” reports the time spent by reading and writing all

data from/to the global memory in an implementation in which

all arithmetic operations are removed. The plot with the label

“arithmetic operations” reports the time spent by the arithmetic

operations in an implementation in which all memory accesses

are removed. The plot with the label “total time” is our original

implementation with both memory accesses and arithmetic

operations.

It is worth noting in Fig. 8 that the time spent to perform the

arithmetic operations is less than that spent for the memory

accesses. As it is also observed in the figure, the overlapping of

the arithmetic operations with the memory accesses is carried

out efficiently. If the arithmetic operations were not overlapped

with the memory accesses, the total execution time should be

the sum of both. If the overlapping were realized perfectly, the

execution time should be the maximum of both. These results

indicate that the proposed method is mostly memory bounded,

especially for the 5/3 transform. As previously stated, such

an overlapping is achieved thanks to the large number of

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80 90 100

e
x
e

c
u

ti
o

n
 t

im
e

 (
in

 m
s
)

image samples (x2
20

)

total time
global memory accesses
arithmetic operations

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80 90 100

e
x
e

c
u

ti
o

n
 t

im
e

 (
in

 m
s
)

image samples (x2
20

)

total time
global memory accesses
arithmetic operations

(b)

Fig. 8: Evaluation of the execution time spent to perform only

the arithmetic operations, accesses to the global memory, and

both the arithmetic operations and accesses (total time), for

the forward application of the (a) CDF 5/3 transform and (b)

the CDF 9/7 transform.

on-the-fly requests to the global memory carried out in our

implementation.

As seen in Fig. 8 (and also in Fig. 7), the performance

achieved with the reversible CDF 5/3 transform is approxi-

mately 40% higher than that achieved with the irreversible

CDF 9/7. This difference is caused by two factors. First, the

9/7 has J = 2, so its lifting scheme requires twice the number

of arithmetic operations as that of the 5/3 (see Table IV). The

amount of time required to execute the arithmetic instructions

of the 9/7 is also twice that required by the 5/3 (see Fig. 8).

Thanks to the overlapping of the arithmetic operations with

the memory accesses, the total execution time of the 9/7 is

not doubled. Nonetheless, the overlapping achieved by the 9/7

is not as effective as that achieved by the 5/3. The second

factor behind the lower performance achieved with the 9/7 is

that the blocks in the 9/7 need larger halos than with the 5/3,

requiring more memory accesses. The time spent by the 9/7

transform to carry out the memory accesses is approximately

30% higher than that spent by the 5/3. Even so, in Table IV the

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

b
a
n
d
w

id
th

 (
G

B
/s

)

image samples (x2
20

)

5/3 forward
5/3 reverse
9/7 forward
9/7 reverse

Fig. 9: Evaluation of the global memory bandwidth usage

achieved by the proposed method.

number of memory accesses carried out by both transforms is

the same because the extra memory accesses (corresponding

to the larger halos of the 9/7) are reused in the on-chip cache.

In practice, the 9/7 performs 40% more memory accesses to

the on-chip cache than the 5/3 (data not shown), increasing the

time spent by the memory accesses. We note that large on-chip

caches can hold more data reused for the halos, reducing the

computational time.

The aim of the next test is to appraise whether our

implementation is bounded by the memory bandwidth or

by the memory latency. The results of Fig. 9 depict the

experimentally measured bandwidth. As reported by Nvidia,

100% usage of the peak memory bandwidth is not attainable

in practice. The maximum attainable can be approximated

by that obtained by the Nvidia SDK bandwidth test. In the

GTX TITAN Black, this test achieves an usage of 70%. Our

implementation achieves an average bandwidth of 65% and

50% for the 5/3 and 9/7 transform, respectively. These results

reveal that the implementation applying the 5/3 transform is

bounded by the global memory bandwidth. The 9/7 does not

reach the maximum bandwidth usage and so more parallelism

(by means of more thread- and instruction-level parallelism)

could improve its performance. The reverse application of the

transforms achieves lower bandwidth usage due to the more

scattered access pattern that they use when reading the image

since each warp fetches data from four different subbands.

C. Evaluation in other devices

The last test evaluates the performance of our register-based

implementation in four different GPUs. The features of the

employed devices are shown in Table V. The Tesla M2090

has a Fermi architecture, the GTX 680 and GTX TITAN Black

have a Kepler architecture, and the GTX 750 Ti has the latest

architecture called Maxwell. The four devices have different

memory bandwidth. The experimental bandwidth depicted

in the table is computed with the Nvidia SDK bandwidth

test. The results achieved with these devices can be found

in Table VI and Fig. 10. The table reports the execution

12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

x
 B

/W
 (

G
B

/s
)

image samples (x2
20

)

Tesla M2090
GTX 680
GTX TITAN Black
GTX 750 Ti

Fig. 10: Evaluation of the execution time weighted by the ex-

perimentally measured global memory bandwidth in different

GPUs, for the forward application of the 5/3 transform.

time for both the 5/3 and 9/7 transform, whereas the figure

depicts the execution time multiplied by the global memory

bandwidth of each device, for the forward application of the

5/3 transform. As seen in Table V, the execution time achieved

is mainly related to the memory bandwidth. The GTX TITAN

Black has the highest bandwidth and so the lowest execution

time, followed by the GTX 680, the GTX 750 Ti, and the

Tesla M2090. Despite the differences seen in this table, note

in Fig. 10 that the performance of both the GTX TITAN

Black and the GTX 680 is almost the same considering their

difference in the global memory bandwidth. This figure also

discloses that the GTX 750 Ti, which has the highest compute

capability and the largest on-chip cache, achieves slightly

better performance than the remaining devices considering

its memory bandwidth. The small irregularities achieved by

the GTX 680 in Fig. 10 may be because this GPU has the

smallest on-chip cache and the fewest number of SMs, which

may affect its performance for some image sizes. As seen in

the figure, the Tesla M2090 achieves the lowest performance

because the Fermi architecture has half the register memory

space per SM as that of Kepler and Maxwell architectures,

which reduces the device occupancy. Also, because it does

not employ shuffle instructions.

VII. CONCLUSIONS

This paper introduces an implementation of the DWT

in a GPU through a register-based strategy. This kind of

implementation strategy has recently become feasible in the

latest CUDA architectures due to the expansion of the register

memory space and the introduction of instructions to allow

data sharing in the registers. Despite improvements on other

aspects of the device, it is likely that future generations of

GPUs will maintain or enlarge the register space and enhance

the communication capabilities of registers. The key features

of the proposed method are the use of the register memory

space to perform all operations and an effective block-based

partitioning scheme and thread-to-data mapping that permit the

assignment of warps to process all data of a block. Experimen-

tal evidence indicates that the proposed register-based strategy

obtains better performance than the use of shared memory

since it requires fewer instructions and achieves higher GPU

occupancy.

Experimental analyses suggest that the proposed implemen-

tation is memory bounded. The global memory bandwidth

achieved is close to the experimental maximum and most

of the computation is overlapped with the memory accesses.

Since most of the global memory traffic is unavoidable (i.e.,

employed to read the input image and to write the output data),

we conclude that the execution times achieved by the proposed

implementation are close to the limits attainable in current

architectures. Compared to the state of the art, our register-

based implementation achieves speedups of 4, on average. The

implementation employed in this work is left freely available

in [31].

Conceptually, the application of the DWT can also be

seen as a stencil pattern [32]. Stencils, and other algorithms

with similar data reuse patterns, may also benefit from a

implementation strategy similar to that described in this work.

ACKNOWLEDGMENT

The authors thank A. C. Jalba, W. J. van der Laan and J.

B. T. M. Roerdink for providing the implementation of the

method proposed in [24].

REFERENCES

[1] “CUDA, C Programming guide,” Tech. Rep., Feb. 2014.

[2] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” in Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing, Nov. 2008, pp. 31–42.

[3] V. Volkov, “Better performance at lower occupancy,” in Proceedings of

the GPU Technology Conference, vol. 10, Sep. 2010.

[4] F. N. Iandola, D. Sheffield, M. Anderson, P. M. Phothilimthana, and
K. Keutzer, “Communication-minimizing 2D convolution in GPU reg-
isters,” in Proceedings of the IEEE International Conference on Image

Processing, Sep. 2013, pp. 2116–2120.

[5] A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure,
“FM-index on GPU: a cooperative scheme to reduce memory footprint,”
in Proceedings of the IEEE International Symposium on Parallel and

Distributed Processing with Applications, 2014, in Press.

[6] ——, “Thread-cooperative, bit-parallel computation of Levenshtein dis-
tance on GPU,” in Proceedings of the 28th ACM International Confer-

ence on Supercomputing, Jun. 2014, pp. 103–112.

[7] Information technology - JPEG 2000 image coding system - Part 1:

Core coding system, ISO/IEC Std. 15 444-1, Dec. 2000.

[8] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG2000 still
image compression standard,” IEEE Signal Process. Mag., vol. 18, no. 5,
pp. 36–58, Sep. 2001.

[9] Image Data Compression, Consultative Committee for Space Data
Systems Std. CCSDS 122.0-B-1, Nov. 2005.

[10] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits

Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[11] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[12] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11, pp. 1219–
1235, Nov. 2004.

[13] S. Mallat, “A theory of multiresolution signal decomposition: the wavelet
representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, pp.
674–693, Jul. 1989.

13

TABLE V: Features of the GPUs employed.

Tesla M2090 GTX 680 GTX TITAN Black GTX 750 Ti

compute capability 2.0 3.0 3.5 5.0

clock frequency 1301 MHz 1006 MHz 889 MHz 1020 MHz

SMs 16 8 15 5

number of cores 512 1536 2880 640

register space per SM 128 KB 256 KB 256 KB 256 KB

shared memory per SM 48 KB 48 KB 48 KB 64 KB

size of global memory 6144 MB 2048 MB 6144 MB 2048 MB

memory bandwidth (theoretical) 177.6 GB/s 192.2 GB/s 336 GB/s 86.4 GB/s

memory bandwidth (experimental) 138.11 GB/s 146.4 GB/s 234 GB/s 67.1 GB/s

size of on-chip L2 cache 768 KB 512 KB 1536 KB 2048 KB

peak GFLOPS (single precision) 1331 3090 5121 1306

TABLE VI: Evaluation of the execution time achieved with different GPUs, for the forward application of the 5/3 and 9/7

transform using 5 decomposition levels.

execution time (in µs)

image size Tesla M2090 GTX 680 GTX TITAN Black GTX 750 Ti

C
D

F
5
/3

1024× 1024 100 70 55 125

2048× 2048 278 204 139 370

4096× 4096 983 698 467 1305

8192× 8192 3782 3038 1741 5021

C
D

F
9
/7

1024× 1024 176 97 79 171

2048× 2048 538 282 194 540

4096× 4096 1997 1024 652 1990

8192× 8192 7811 3960 2490 7686

[14] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression

fundamentals, standards and practice. Norwell, Massachusetts 02061
USA: Kluwer Academic Publishers, 2002.

[15] W. Sweldens, “The lifting scheme: A construction of second generation
wavelets,” SIAM Journal on Mathematical Analysis, vol. 29, no. 2, pp.
511–546, Mar. 1998.

[16] M. Hopf and T. Ertl, “Hardware accelerated wavelet transformations,” in
Proceedings of the EG/IEEE TCVG Symposium on Visualization, May
2000, pp. 93–103.

[17] A. Garcia and H.-W. Shen, “GPU-based 3D wavelet reconstruction with
tileboarding,” The Visual Computer, vol. 21, no. 8-10, pp. 755–763, Sep.
2005.

[18] T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang, “Discrete wavelet
transform on consumer-level graphics hardware,” IEEE Trans. Multime-

dia, vol. 9, no. 3, pp. 668–673, Apr. 2007.

[19] C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, and F. Tirado, “Parallel
implementation of the 2D discrete wavelet transform on graphics pro-
cessing units: filter bank versus lifting,” IEEE Trans. Parallel Distrib.

Syst., vol. 19, no. 3, pp. 299–310, Mar. 2008.

[20] J. Franco, G. Bernabé, J. Fernández, and M. E. Acacio, “A parallel im-
plementation of the 2D wavelet transform using CUDA,” in Proceedings

of the 17th Euromicro International Conference on Parallel, Distributed

and Network-based Processing, Feb. 2009, pp. 111–118.

[21] J. Franco, G. Bernabé, J. Fernández, and M. Ujaldón, “Parallel 3D fast
wavelet transform on manycore GPUs and multicore CPUs,” Procedia

Computer Science, vol. 1, no. 1, pp. 1101–1110, May 2010.

[22] Z. Wei, Z. Sun, Y. Xie, and S. Yu, “GPU Acceleration of integer wavelet
transform for TIFF image,” in Proceedings of the Third International

Symposium on Parallel Architectures, Algorithms and Programming

(PAAP), Dec. 2010, pp. 138–143.

[23] J. Matela et al., “GPU-based DWT acceleration for JPEG2000,” in
Annual Doctoral Workshop on Mathematical and Engineering Methods

in Computer Science, Nov. 2009, pp. 136–143.

[24] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink, “Accelerating
wavelet lifting on graphics hardware using CUDA,” IEEE Trans. Parallel

Distrib. Syst., vol. 22, no. 1, pp. 132–146, Jan. 2011.

[25] C. Song, Y. Li, and B. Huang, “A GPU-accelerated wavelet decom-

pression system with SPIHT and Reed-Solomon decoding for satellite
images,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens.,
vol. 4, no. 3, pp. 683–690, Sep. 2011.

[26] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit
implementation of JPEG2000 for hyperspectral image compression,”
Journal of Applied Remote Sensing, vol. 6, no. 1, pp. 061 507–1, Jan.
2012.

[27] V. Galiano, O. López, M. P. Malumbres, and H. Migallón, “Parallel
strategies for 2D discrete wavelet transform in shared memory systems
and GPUs,” The Journal of Supercomputing, vol. 64, no. 1, pp. 4–16,
Apr. 2013.

[28] V. Galiano, O. López-Granado, M. Malumbres, and H. Migallón, “Fast
3D wavelet transform on multicore and many-core computing plat-
forms,” The Journal of Supercomputing, vol. 65, no. 2, pp. 848–865,
Aug. 2013.

[29] J. Chen, Z. Ju, C. Hua, B. Ma, C. Chen, L. Qin, and R. Li, “Accelerated
implementation of adaptive directional lifting-based discrete wavelet
transform on GPU,” Signal Processing: Image Communication, vol. 28,
no. 9, pp. 1202–1211, Oct. 2013.

[30] B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques
for lossy hyperspectral data compression,” IEEE Trans. Geosci. Remote

Sens., vol. 45, no. 5, pp. 1408–1421, May 2007.
[31] P. Enfedaque. (2014, Nov.) Implementation of the DWT in a

GPU through a register-based strategy. [Online]. Available: https:
//github.com/PabloEnfedaque/CUDA DWT RegisterBased

[32] M. Krotkiewski and M. Dabrowski, “Efficient 3D stencil computations
using CUDA,” ELSEVIER Parallel Computing, vol. 39, pp. 533–548,
Oct. 2013.

14

Pablo Enfedaque is a Ph.D student with the Depart-
ment of Information and Communications Engineer-
ing, Universitat Autònoma de Barcelona, Spain. He
received the B.E. degree in computer science and
the M.Sc. degree in high performance computing
and information theory in 2012 and 2013, respec-
tively, from Universitat Autònoma de Barcelona.
His research interests include image coding, high
performance computing and parallel architectures.

Francesc Aulı́-Llinàs (S’06-M’08-SM’14) is a
Ramón y Cajal Fellow with the Department of
Information and Communications Engineering, Uni-
versitat Autònoma de Barcelona, where he received
the B.Sc., B.E. (with honors), M.Sc., and Ph.D. (cum
laude) degrees in computer science in 2000, 2002,
2004, and 2006, respectively. He carried out two
research stages of one year each with D. Taubman,
at the University of New South Wales, and M.
Marcellin, at the University of Arizona. In 2013, he
was awarded with a distinguished R-Letter given by

the IEEE Communications Society for a paper co-authored with M. Marcellin.
In 2014, he was recipient of an Intensification Young Investigator Award
(I3 program) given by the Spanish Government. He is reviewer for various
magazines and symposiums and has authored numerous papers in journals
and conferences. His research interests lie in the area of image and video
coding, computing, and transmission.

Juan C. Moure received his B.Sc. degree in com-
puter science and his Ph.D. degree in computer ar-
chitecture from Universitat Autònoma de Barcelona
(UAB). Since 2008 he is associate professor with
the Computer Architecture and Operating Systems
Department at the UAB, where he teaches com-
puter architecture and parallel programming. He
has participated in several European and Spanish
projects related to high-performance computing. His
current research interest focuses on the usage of
massively parallel architectures and the application

of performance engineering techniques to open research problems in bioin-
formatics, signal processing, and computer vision. He is reviewer for various
magazines and symposiums and has authored numerous papers in journals
and conferences.

