
1

Context-adaptive Binary Arithmetic Coding

with Fixed-length Codewords

Francesc Aulı́-Llinàs, Senior Member, IEEE

Abstract—Context-adaptive binary arithmetic coding is a
widespread technique in the field of image and video coding. Most
state-of-the-art arithmetic coders produce a (long) codeword of a
priori unknown length. Its generation requires a renormalization
procedure to permit progressive processing. This paper intro-
duces two arithmetic coders that produce multiple codewords of
fixed length. Contrarily to the traditional approach, the genera-
tion of fixed-length codewords does not require renormalization
since the whole interval arithmetic is stored in the coder’s internal
registers. The proposed coders employ a new context-adaptive
mechanism based on variable-size sliding window that estimates
with high precision the probability of the symbols coded. Their
integration in coding systems is straightforward as demonstrated
within the framework of JPEG2000. Experimental tests indicate
that the proposed coders are computationally simpler than the
MQ coder of JPEG2000 and the M coder of HEVC while
achieving superior coding efficiency.

Index Terms—Context-adaptive binary arithmetic coding,
fixed-length arithmetic codes.

I. INTRODUCTION

A
RITHMETIC coding is among the most popular entropy

coding techniques employed nowadays. The codeword

generated by the arithmetic coder is a number within an

interval arithmetic that represents the coded symbols. Briefly

described, the coder begins by segmenting the interval of real

numbers [0, 1) in as many subintervals as there are symbols in

the alphabet. The size of the subintervals is commonly selected

according to the probabilities of the symbols, more precisely,

as [0, F (x = α)), [F (x = α), F (x = β)), . . . with {α, β, ...}
representing the alphabet of symbols and F (x) being the

cumulative mass function of x. The first symbol of the message

is coded by selecting its corresponding subinterval. Then,

this procedure is repeated within the selected subintervals

for the following symbols. The transmission of any number

within the range of the final subinterval (i.e., the codeword),

guarantees that the reverse procedure decodes the original

message losslessly.

The computational complexity of context-adaptive binary

arithmetic coders has always been a concern since they are

intensively used in image and video codecs. The first ideas

to reduce their complexity aimed at multiplication-free imple-

mentations that perform the interval division using bit shifts

and adds [1]. Subsequently, the Q coder [2] approached the

interval division by means of lookup tables (LUTs). Some

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Dr. Francesc Aulı́-Llinàs is with the Department of Information and Com-
munications Engineering, Universitat Autònoma de Barcelona, Spain (phone:
+34 935811861; fax: +34 935813443; e-mail: fauli@deic.uab.cat). This work
has been partially supported by the Spanish Government (MINECO), by
FEDER, and by the Catalan Government, under Grants RYC-2010-05671,
TIN2012-38102-C03-03, and 2014SGR-691.

of the descendants of the Q coder were introduced in the

JPEG, JBIG2, and JPEG2000 standards. Standards of video

coding such as H.264/AVC and HEVC employ variants of the

M coder [3], which was introduced in the 2000s employing

a reduced range of possible subinterval sizes together with

LUTs. Among others, enhancements to the M coder have been

proposed in [4].

Most arithmetic coders employed for image and video

coding produce variable-to-variable length codewords. This is,

a variable number of input symbols are coded with a codeword

of a priori unknown length. Practical realizations of arithmetic

coders operate with hardware registers of at most 64 bits,

so the generation of a single –and commonly very long–

codeword is carried out progressively. The main idea to do

so is the following. Let [L,U) denote the current interval of

the coder, with L and U being the fractional part of the lower

and upper bound of the interval stored in hardware registers.

Assume that the leftmost bits of the binary representation of

L and U are not equal in the current interval. When a new

symbol is coded, this interval is further reduced to [L′, U ′).
If the leftmost bits of L′ and U ′ are then equal, all following

segmentations of the interval will also start with those same

bit(s) since L ≤ L′ ≤ . . . ≤ U ′ ≤ U . This permits to dispatch

the leftmost bits of L′ and U ′ that are identical and to shift

the remaining bits of the registers to the left. This procedure

is called renormalization. It represents a non-negligible part

of the coder’s workload since these operations are executed

intensively.

The operations carried out by the renormalization procedure

can be avoided if, instead of producing a single codeword, the

coder produces short codewords of fixed length. To this end,

the coder uses an integer interval of range [0, 2W−1], withW
denoting the length of the codewords. The coding of symbols

is carried out by segmenting this interval as it is previously

described. When the size of the last selected subinterval is

1, the number that it contains (which represents the fixed-

length codeword) is dispatched and the interval is reset. We

note that the codewords produced by such a method can not

be regarded as portions of a single codeword generated by

a variable-to-variable arithmetic coder since each fixed-length

codeword holds the complete representation of some symbols

of the message.

Arithmetic coding with fixed-length codewords was first

proposed in the nineties [5], [6] with the aim to address

some of the disadvantages of conventional arithmetic coding

such as poor recovery from channel errors or lack of random

access and partial decoding. Such technique has also been

used in [7] to limit error propagation, and in [8] to compress

machine instructions. In the field of image coding, only [9]

utilizes arithmetic coding with codewords of fixed length for

the compression of bilevel images.

2

This work introduces two arithmetic coders employing

fixed-length codewords that are devised for image/video cod-

ing systems. The first coder aims at low computational com-

plexity. It utilizes one integer interval that is reset when

exhausted. The second coder aims at high coding efficiency.

It utilizes two integer intervals in which the symbols are

selectively coded depending on their probabilities. A novel

variable-size sliding window mechanism that estimates the

probabilities of the symbols is included in both coders. The

main difference between the proposed method and previous

fixed-length arithmetic coders [5]–[9] (not including the MQ

or the M coder) is the use of a binary alphabet, adaptive

mechanisms for probability estimation, low-complexity in-

structions for the interval division, and a selective interval

coding technique to enhance efficiency. Experimental results

indicate that the proposed coders achieve superior performance

to that achieved by the MQ coder of JPEG2000 and by the

M coder of HEVC –both in terms of coding efficiency and

computational throughput. They are introduced in a JPEG2000

codec to illustrate their performance and ease of integration.

Section II of this paper describes the proposed coders. Their

performance is evaluated in Section III through experimental

results. The last section provides concluding remarks.

II. PROPOSED CODERS

A. Low-complexity coding

The proposed coder codes binary symbols using codewords

ofW bits. With some abuse of notation, let the lower bound of

the interval be denoted by L. The size of the interval minus one

is denoted by S. Both L and S are stored in integer registers.

Initially, L = 0 and S = 2W − 1. The operation to partition

the interval uses integer arithmetic since the latency of integer

multiplications in modern processors is (almost) one clock

cycle [10]. When the coded bit is 0 (i.e., x = 0), the size

of the interval is reduced to

S ← (S · P)≫ B , (1)

and L is left unmodified. ≫ denotes a bit shift to the right.

P denotes the probability of the symbol to be 0, expressed

in the range [0, 2B − 1]. More precisely, P = ⌊f(x = 0) ·
2B⌋, with f(x) denoting the probability mass function of x

and ⌊·⌋ denoting the floor operation. B is the number of bits

employed to express the symbol’s probability. The result of

the multiplication in (1) must not cause arithmetic overflow,

so W + B ≤ 64. In our implementation B = 15, whereas W
ranges from 8 to 48 (see below).

When x = 1, the interval is reduced according to

S ← S − ((S · P)≫ B)− 1 ,

L← L+ ((S · P)≫ B) + 1 .
(2)

In this case, four more additions (or three in the algorithm

below) than those necessary in (1) are required. The execution

of (2) can be minimized by performing a conditional exchange

between symbols 0 and 1 when f(x = 1) > f(x = 0) so that

Fig. 1: Illustration of the variable-size sliding window mech-

anism employed to estimate the probabilities of the symbols.

the most probable symbol is always coded as 0. The interval

is exhausted when S = 0. Then, L (which represents the

codeword) is dispatched and the registers are reset to L ← 0
and S ← 2W − 1.

In general, f(x) is not known during coding, so it is esti-

mated considering the distribution of the last symbols coded.

The estimation of f(x) is commonly carried out by context-

adaptive mechanisms and probability models. Our coder uses

a variable-size sliding window [4] that utilizes between T
and 2T − 1 symbols except at the beginning of coding.

This technique has been devised to minimize computational

costs without affecting coding efficiency. More precisely, it

has low memory requirements since it does not hold the

symbols coded, reduces the times that some variables are

updated, and computes the probability estimate only once

every V symbols coded. Fig. 1 illustrates the variable-size

sliding window employed. The thick horizontal line represents

the symbols coded. The probability estimate, denoted by P ′,

is updated every V symbols according to

P ′ ← min

(

Z ≪ B

M
, 2B − 1

)

, (3)

with M being the number of symbols within the variable-size

window and Z being the number of zeroes coded within the

window, this is, during the last M symbols. ≪ denotes a bit

shift to the left. The min(·) operation is employed to make sure

that P ′ ∈ [0, 2B−1] even when Z = M . The division in (3) is

carried out in the integer domain. As depicted in Fig. 1, when

M = 2T − 1 the window is reduced to T symbols and the

number of zeroes within the window is updated according to

M ← T ,

Z ← Z − Z ′ ,

Z ′ ← Z ,

(4)

with Z ′ being the number of zeroes coded during the first T
symbols of the window.

To simplify the conditional that checks if the window size

and the probability estimate have to be updated, 2T −1 and V
are forced to be of the form 2T −1 = 2E−1 and V = 2E

′

−1,

so that a bit-wise AND operation between two integer registers

can be used instead of a modulo operation (i.e., M & V = V is

used instead of M % V = 0, with & and % denoting the AND

and the modulo operation, respectively). Obviously, E ≥ E ′.
The result of the bit shift in (3) must not cause arithmetic

3

Algorithm 1 FLW encode (x bit to encode, c context)

Initialization: L← 0, S ← 2W − 1, Z ′[c]← −1 ∀ c

1: if M [c] & V = V then

2: P ′[c]← min
(

(Z[c]≪ B)/M [c], 2B − 1
)

3: if M [c] & (T − 1) = (T − 1) then
4: if Z′[c] ≥ 0 then
5: M [c]← T
6: Z[c]← Z[c]− Z′[c]
7: end if
8: Z′[c]← Z[c]
9: end if

10: end if
11: if x = 0 then
12: S ← (S · P ′[c])≫ B
13: Z[c]← Z[c] + 1
14: else
15: k ← ((S · P ′[c])≫ B) + 1
16: L← L+ k
17: S ← S − k
18: end if
19: M [c]←M [c] + 1
20: if S = 0 then
21: dispatchCodeword(L)
22: L← 0
23: S ← 2W − 1
24: end if

overflow, so E + B ≤ 64. We note that other mechanisms of

probability estimation such as [4], that avoids the use of an

integer division, might also be employed. Empirical evidence

indicates that (3) increases only slightly the complexity of the

coder.

Algorithm 1 details the encoding procedure of the proposed

arithmetic coder with fixed-length codewords (FLW). The

notation is that employed in the previous discussion except

for the variables of probability estimation, which are arrays

accessed via the context c for which they are computed [11].

The probability estimation is carried out in lines 1-10. Z ′ is

initialized to −1 so that the size of the window is extended

to 2T − 1 at the beginning of the coding. We note that after

this point, the actual number of symbols within the window is

M − 1, though it is not considered in line 2 since it does not

affect coding efficiency. The interval division is performed in

lines 11-18, whereas the dispatching of the codeword is carried

out in lines 20-24. The decoder has a structure similar to that

of the encoder (not shown due to page constraints). As well as

most context adaptive coders, the bitstream generated by this

(and the following) algorithm does not have error recovery

properties. If needed, they could be included by using segment

markers.

B. Improving coding efficiency

The main drawback behind the use of codewords of fixed-

length is that the coding efficiency is penalized when the size

of the interval is small. Let us illustrate this point with an

example. Assume that the size of the current interval is 2 and

that the next symbol to code has a high probability estimate,

say 90%. Although the coding of the most probable symbol

should spend a fraction of a bit, its actual coding spends a full

bit because the interval can only be divided in two subintervals

of equal size. So, in practice, it is like if the coding of this

symbol had employed a probability estimate of 50%.

The proposed arithmetic coder with two fixed-length code-

words (FL2W) addresses this drawback by using two inter-

vals. They are stored in the integer registers L[0], S[0] and

L[1], S[1]. All symbols are coded employing the first interval

while its size is greater than a predefined threshold, i.e., while

S[0] > Q. When S[0] ≤ Q, then the symbol’s probability

estimate P ′[c] is tested to check whether it fits well in the

first interval or not. The closest probability to P ′[c] that can

be employed in this interval is

P ′′ ←
(((S[0] · P ′[c])≫ B) + 1)≪ B

S[0] + 1
, (5)

with the division carried out in the integer domain. P ′′

is expressed in the same range employed for P ′[c], i.e.,

P ′′ ∈ [0, 2B−1]. The absolute difference between P ′′ and the

probability estimate (i.e., |P ′[c]−P ′′|) determines whether the

symbol is coded in the first interval or not. If the difference is

smaller than a predefined threshold, say R, then the symbol is

coded in the first interval. Otherwise it is coded in the second.

When the first interval is exhausted, its codeword is dispatched

and replaced by that of the second interval, which is reset.

This selective interval coding increases the efficiency of the

coder since it avoids coding symbols in intervals in which the

probability estimates do not fit well. We found that Q = 16
and R = ⌊0.05 · 2B⌋ are good choices for a large variety of

sources.

Evidently, the procedure described before can only be

performed if the size of the second interval is S[1] > Q. If not,

both intervals may not have an appropriate size to code the

symbol without loss in coding efficiency. When both S[0] and

S[1] are ≤ Q, the interval with a closest P ′′ to the probability

estimate is chosen. The implementation of FL2W must also

take into account that if the second interval is exhausted (i.e.,

S[1] = 0), then all symbols are coded in the first until it is

exhausted too. This happens rarely in practice.

To use the immediately next codeword to alleviate the

impact in coding efficiency is also employed in [6], [7], though

these methods only code the last symbol employing bits of

two consecutive codewords. Limited to pages, the algorithm of

FL2W is not detailed herein. It can be found together with the

implementation of all coders employed in this paper in [12].

III. EXPERIMENTAL RESULTS

A. Simulations

The first set of experimental tests assess the coding effi-

ciency and computational throughput when coding artificially

generated symbols. The symbols are generated assuming that

they are independent and identically distributed. A generalized

Gaussian distribution (GGD) with parameter σ = 0.2 and

support in the range (0, 1) is employed to generate the proba-

bilities of the symbols. Through this method, the probabilities

of the symbols are from almost 0 to almost 1, though most

symbols have a probability close to µ. The experiments below

report the performance achieved with µ = 0.55 and µ = 0.85

4

 0.865

 0.87

 0.875

 0.88

 0.885

 0.89

 0.895

 0.9

 0.905

 0.91

 5 10 15 20 25 30 35 40 45

c
o
d
in

g
 r

a
te

 (
in

 b
p
s
)

codeword length (in bits)

entropy
MQ (JP2)
M (HEVC)

FLW
FL2W

(a)

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 5 10 15 20 25 30 35 40 45

c
o
d
in

g
 r

a
te

 (
in

 b
p
s
)

codeword length (in bits)

entropy
MQ (JP2)
M (HEVC)

FLW
FL2W

(b)

 0.87

 0.88

 0.89

 0.9

 0.91

 5 10 15 20 25 30 35 40 45

c
o
d
in

g
 r

a
te

 (
in

 b
p
s
)

codeword length (in bits)

entropy
MQ (JP2)
M (HEVC)

FLW
FL2W

(c)

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 5 10 15 20 25 30 35 40 45

c
o
d
in

g
 r

a
te

 (
in

 b
p
s
)

codeword length (in bits)

entropy
MQ (JP2)
M (HEVC)

FLW
FL2W

(d)

Fig. 2: Evaluation of coding efficiency. (a) and (c) report results for a GGD with µ = 0.55, and (b) and (d) with µ = 0.85.

(a) and (b) do not use context-adaptive mechanisms to estimate the probability in any of the coders.

separately to appraise the coders in different conditions. The

sequences employed in the tests have 5 · 105 and 108 symbols

to evaluate coding efficiency and computational throughput,

respectively. All coders are programmed in Java. All tests are

performed with an Intel Core i7-3770 @ 3.40 GHz using a

Java Virtual Machine v1.7.

Fig. 2 evaluates the coding efficiency achieved by the

proposed coders when using codewords of different length.

The figure also reports the entropy of the source and the

performance achieved by the MQ coder of JPEG2000 and the

M coder of HEVC. The vertical axis of the figures is the

coding rate, expressed in bits per sample (bps), whereas the

horizontal axis is the codeword length (i.e., W). Fig. 2(a) and

(b) report results when the real probability of the symbol is

fed directly to the coder, i.e., when f(x) is used instead of

probability estimates. Fig. 2(c) and (d) report results when the

probabilities of the symbols are estimated through the context-

adaptive mechanisms described before. The experiments that

employ context-adaptive mechanisms utilize eight contexts.

The probability of a symbol is always in the range (0, 1). This

range is divided into eight uniform intervals and each one is

assigned to a context. All symbols whose probabilities fall

within an interval are coded with the corresponding context.

FLW and FL2W use 2T − 1 = 255 and V = 7 (see below).

The results of Fig. 2 indicate that the longer the codeword

employed by FLW/FL2W, the higher the coding efficiency

achieved. This is because the longer the codeword, the less

often the interval is reset. When f(x) is utilized, the coding

rate achieved by FL2W for codewords of 32 bits or longer

is almost that of the source’s entropy. For long codewords,

FLW (FL2W) achieves a coding efficiency 1% (1.4%) higher

than that of the MQ coder when µ = 0.55 and almost equal

when µ = 0.85. Compared to the M coder, FLW and FL2W

achieve virtually the same coding efficiency. These results

suggest that arithmetic coders can be implemented without the

renormalization procedure while achieving high efficiency.

With regard to the efficiency of the context-adaptive mech-

anisms, the results of Fig. 2 indicate that the variable-size

sliding window employed by FLW/FL2W is competitive. For

long codewords, FLW (FL2W) achieves a coding efficiency

3.3% (3.6%) higher than that of the MQ coder when µ = 0.55,

and 2.2% (3.1%) higher when µ = 0.85. Compared to the

M coder, the performance of FLW and FL2W is 0.8% and

1.6% higher, respectively. Another observation of Fig. 2 is

that the selective interval coding employed by FL2W works

well. The coding efficiency achieved by FL2W when using

two codewords of length W is higher than that achieved by

FLW when using a codeword of length 2W .

Fig. 3 evaluates the computational throughput. The vertical

axis of the figure is the execution time, whereas each column

5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
s
)

MQ

M
FLW-

8 16 32 48

FL2W-8

16
32 48

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

e
x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
s
)

MQ M
FLW-

8 16 32 48

FL2W-8

16
32 48

(b)

Fig. 3: Evaluation of execution time, for the encoder. (a) reports results for a GGD with µ = 0.55, and (b) µ = 0.85.

reports the results for one coder. In this test, the coders employ

the context-adaptive mechanisms for probability estimation.

The results indicate that the FLW coder always achieves a

higher computational throughput than that of the MQ coder.

Compared to the M coder, the computational throughput of

FLW is, in general, slightly superior. As seen in the figure,

the longer the codeword employed by FLW, the lower the

execution time. A similar behavior is obtained when context-

adaptive mechanisms are not employed, though the execution

time of all coders is slightly lower (not shown in the figure).

Though it depends on the probability distribution of the source,

approximately 20% of the total time spent by the proposed

coders is devoted to probability estimation. Similar results are

obtained for the decoder (not shown due to page constraints).

The results achieved by FL2W in Fig. 3 indicate that the

computational complexity of FL2W is higher than that of

the MQ and M coders. The use of long codewords helps

to improve the throughput of FL2W slightly. Clearly, the

competitive coding efficiency achieved by FL2W comes at the

expense of high computational costs.

B. Image Coding with JPEG2000

The next set of tests appraises the performance achieved by

the proposed coders when they are integrated in a JPEG2000

codec. Evidently, the resulting codestream is not compliant

with the standard, though it keeps all its features. All images

of the ISO12640-1 corpus are employed. They are grayscale, 8

bps, and of size 2560×2048. The codeword lengths employed

by the FLW and FL2W coder are 48 and 32, respectively,

whereas 2T − 1 = 255 and V = 7. These parameters

work well for a large variety of images. Smaller window

sizes than 255 achieve the same coding performance, whereas

larger penalize the coding performance in 0.1 dB or more. To

update the probability for every symbol (i.e., V = 1) enhances

coding performance in less than 0.05 dB. JPEG2000 coding

parameters are: lossy mode, 64×64 codeblocks, no precincts,

and single quality layer codestreams.

Fig. 4 reports the coding efficiency. Results are reported

as the peak signal to noise ratio (PSNR) difference between

FLW and MQ. Each image is coded at 50 rates uniformly

distributed between 0.01 to 5 bps. The straight horizontal line

in the figure is the performance achieved by the JPEG2000

implementation that uses the MQ coder. The results indicate

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
P

S
N

R
 d

if
fe

re
n

c
e

 (
in

 d
B

)

rate (in bps)

MQ
Portait
Cafeteria

Fruit
Wine
Bicycle

Orchid
Musicians
Candle

Fig. 4: Evaluation of the coding efficiency achieved by

a JPEG2000 implementation employing different arithmetic

coders. Results are the difference between FLW and MQ.

that the FLW coder achieves a higher coding performance than

that of the MQ. In terms of rate, FLW generates a codestream

that is approximately 1.5%, 1.75%, 2%, and 2.1% shorter

than that produced by the MQ coder at 1, 2, 3, and 4 bps,

respectively, on average for all images. These percentages are

computed as the difference between the codestream length

generated by the MQ coder at the reported rate and that

generated by the FLW coder to reach the same image quality.

The progressive coding gain achieved by the proposed coder

as the rate increases is partially caused by the context-adaptive

mechanisms of the MQ coder, which are less effective in low

bitplanes than at high bitplanes [13]. FL2W achieves a coding

performance very similar to that of the FLW (not shown).

Table I reports the performance for the lossless mode of

JPEG2000 when codewords of different length are employed.

Both FLW and FL2W achieve a coding rate approximately

0.1 bps (or 2%) lower than that of the MQ coder, on average.

Differences between the use of different codeword lengths are

in the order of 0.01 bps.

The evaluation of the computational throughput considers

the speedup achieved in the tier-1 coding stage of a conven-

tional JPEG2000 codec. The tier-1 implements the bitplane

coding engine and the entropy coder. It spends 60∼70% of

the total execution time. The widest columns of Fig. 5 report

the speedup achieved by FLW/FL2W with respect to MQ.

The speedup is computed as the execution time spent by the

MQ coder divided by that of the FLW/FL2W coder. The FLW

coder achieves speedups around 1.2 for the encoder and around

1.05 for the decoder. For encoding, FL2W spends a similar

6

TABLE I: Evaluation of the lossless coding performance

achieved by JPEG2000 when using different arithmetic coders.

Results are reported in bps.

FLW- FL2W-

image MQ 16 32 48 16 32

“Portrait” 4.38 4.31 4.30 4.30 4.30 4.30

“Cafeteria” 5.28 5.18 5.17 5.16 5.17 5.16

“Fruit” 4.29 4.22 4.21 4.20 4.21 4.20

“Wine” 4.57 4.50 4.49 4.48 4.49 4.48

“Bicycle” 4.37 4.33 4.31 4.31 4.31 4.31

“Orchid” 3.58 3.54 3.53 3.52 3.53 3.52

“Musicians” 5.56 5.44 5.42 5.41 5.42 5.41

“Candle” 5.65 5.55 5.53 5.52 5.53 5.52

average 4.71 4.63 4.62 4.61 4.62 4.61

1

1.1

1.2

1.3

1.4

s
p

e
e

d
u

p

image

Portrait Cafeteria Fruit Wine Bicycle Orchid Musicians Candle

FLW-48 FL2W-32

(a)

0.9

1

1.1

1.2

s
p

e
e

d
u

p

image

Portrait Cafeteria Fruit Wine Bicycle Orchid Musicians Candle

FLW-48 FL2W-32

(b)

Fig. 5: Evaluation of the computational throughput achieved

by FLW/FL2W when using the context-adaptive mechanisms

(widest columns) and a static model of probabilities (thinnest

columns). (a) and (b) report results for the encoder and the

decoder, respectively.

computation time as that of the MQ, with slight variations

depending on the image. For decoding, FL2W slows down the

decoding process by approximately 10%. These results slightly

differ from those obtained with artificially generated symbols

due to the different probability distribution of the source.

The previous test employs context-adaptive mechanisms

to estimate the probabilities of the symbols. Recently, a

probability model that avoids the use of adaptive mechanisms

has been introduced in [14], [15]. Its main idea is that the

probability of the symbols can be estimated depending on

the bitplane and the context in which they are emitted. The

thinnest columns of Fig. 5 report the speedup achieved when

FLW/FL2W is combined with such a stationary probability

model. The throughput is significantly improved for all images.

The coding performance achieved with such model is similar

to that of JPEG2000 (not shown in the figure).

IV. CONCLUSIONS

Context-adaptive binary arithmetic coders employed in

image codecs are commonly implemented with variable-to-

variable length codes. This paper introduces two context-

adaptive binary arithmetic coders that employ codewords of

fixed length. They are referred to as FLW and FL2W. FLW

employs one interval arithmetic, whereas FL2W employs two

to enhance coding efficiency. The proposed coders avoid

renormalization, which simplifies their implementation and

reduces their computational complexity. An important point

disclosed in the experimental results is that the renormalization

procedure of arithmetic coders can be removed without affect-

ing their coding efficiency. The context-adaptive mechanism

integrated in these coders employs a low-complexity technique

based on a variable-size sliding window.

ACKNOWLEDGMENT

The author thanks the associate editor and the anonymous

reviewers for their comments.

REFERENCES

[1] D. Chevion, E. D. Karnin, and E. Walach, “High efficiency, multipli-
cation free approximation of arithmetic coding,” in Proc. IEEE Data

Compression Conference, Apr. 1991, pp. 43–52.
[2] M. Slattery and J. Mitchell, “The Qx-coder,” IBM Journal of Research

and Development, vol. 42, no. 6, pp. 767–784, Nov. 1998.
[3] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary

arithmetic coding in the H.264/AVC video compression standard,” IEEE

Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636, Jul.
2003.

[4] E. Belyaev, A. Turlikov, K. Egiazarian, and M. Gabbouj, “An efficient
adaptive binary arithmetic coder with low memory requirement,” IEEE

J. Sel. Topics Signal Process., vol. 7, no. 6, pp. 1053–1061, Dec. 2013.
[5] C. G. Boncelet, “Block arithmetic coding for source compression,” IEEE

Trans. Inf. Theory, vol. 39, no. 5, pp. 1546–1554, Sep. 1993.
[6] J. Teuhola and T. Raita, “Arithmetic coding into fixed-length code-

words,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 219–223, Jan. 1994.
[7] D.-Y. Chan, J.-F. Yang, and S.-Y. Chen, “Efficient connected-index

finite-length arithmetic codes,” IEEE Trans. Circuits Syst. Video Tech-

nol., vol. 11, no. 5, pp. 581–593, May 2001.
[8] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression using variable-

to-fixed coding based on arithmetic coding,” in Proc. IEEE Data

Compression Conference, Mar. 2003, pp. 382–391.
[9] M. D. Reavy and C. G. Boncelet, “An algorithm for compression of

bilevel images,” IEEE Trans. Image Process., vol. 10, no. 5, pp. 669–
676, May 2001.

[10] Intel, “Intel 64 and IA-32 architectures optimization reference manual,”
Tech. Rep. Order Number: 248966-030, Sep. 2014. [Online]. Available:
http://www.intel.com/products/processor/manuals/

[11] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for
bitplane image coding,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1920–1933, Apr. 2012.

[12] F. Auli-Llinas. (2014, Dec.) Context-adaptive binary arithmetic coding
with fixed-length codewords. [Online]. Available: http://www.deic.uab.
cat/∼francesc/research/ac flw

[13] ——, “Stationary probability model for bitplane image coding through
local average of wavelet coefficients,” IEEE Trans. Image Process.,
vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[14] F. Auli-Llinas, M. W. Marcellin, J. Serra-Sagrista, and J. Bartrina-
Rapesta, “Lossy-to-lossless 3D image coding through prior coefficient
lookup tables,” ELSEVIER Information Sciences, vol. 239, no. 1, pp.
266–282, Aug. 2013.

[15] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for
microscopic parallelism in JPEG2000,” IEEE Trans. Multimedia, vol. 16,
no. 4, pp. 960–970, Jun. 2014.

