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Abstract. In several jurisdictions, the regulatory framework on the release and sharing of
personal data is being extended to machine learning (ML). The implicit assumption is that
disclosing a trained ML model entails a privacy risk for any personal data used in training
comparable to directly releasing those data. However, given a trained model, it is necessary
to mount a privacy attack to make inferences on the training data. In this concept paper, we
examine the main families of privacy attacks against predictive and generative ML, including
membership inference attacks (MIAs), property inference attacks, and reconstruction attacks.
Our discussion shows that most of these attacks seem less effective in the real world than
what a prima facie interpretation of the related literature could suggest.

Keywords: Machine learning; privacy; discriminative models; generative models; member-
ship inference attacks; property inference attacks; reconstruction attacks.

1 Introduction

The main regulations in the EU that affect the development of Al are the General Data Protection
Regulation (GDPR) and the EU Artificial Intelligence Act. Both were conceived before the boom
of generative Al in 2022. Furthermore, the EU has announced the implementation of a Code of
Practice for general purpose Al models [28]. Outside Europe, in 2023 President Biden had signed
Executive Order 14110, which committed the USA to a strong regulation of the development and
use of Al along similar lines as the European regulation. However, in 2025 President Trump has
signed Executive Order 14179, which basically revokes Bidens order and removes all Al regulations,
allegedly to “remove barriers to American leadership in artificial intelligence”.

Given the above situation and the fact that Chinese regulations on Al are more focused on
protecting the government than the citizens from AI, the EU remains the world’s only major
economic bloc committed to trustworthy AI. At the same time, the EU lags behind the USA and
China from the AI technology point of view.

For the European Al industry to be able to catch up with its competitors in spite of a more strict
regulatory framework, it is extremely important to make sure that regulations are not more strict
than required to preserve the values of trustworthy AI, and in particular privacy. Unfortunately,
this does not seem to be the case today. The EU regulations assume that any disclosure might
cause a breach of privacy. In particular, there is an implicit assumption that the disclosure of a
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trained machine learning (ML) model entails a privacy risk for any personal data used in training
comparable to the direct release of those data.

This overcautious approach is probably due to the rushed inclusion of generative Al in the
legal texts, and it may lead to adopting countermeasures that increase the training overhead and
decrease the accuracy of models. For example, differential privacy [12] is a commonly proposed
countermeasure that can cause two-digit drops in model accuracy if applied with meaningful privacy
parameters. This seriously compromises the performance and competitiveness of the models and
might be unnecessary if risks can be demonstrated to be overestimated.

Contribution and plan of this article

There is a fundamental privacy difference between releasing an ML model trained on personal data
and directly releasing those training data. If only the trained ML model is disclosed, it is necessary
to mount a privacy attack to make any inferences on the training data. In this paper, we discuss
how effective the privacy attacks proposed in the literature against predictive and generative ML
are in real-world conditions. Specifically, we cover membership inference attacks (MIAs), property
inference attacks, and reconstruction attacks.

Our assessment concentrates on the disclosure potential of those attacks at the conceptual level,
rather than on the analysis of the internals of the various attack techniques. We aim to uncover
fundamental limitations of privacy attacks.

Section 2 gives a background on privacy disclosure. Section 3 is devoted to membership inference
attacks. Section 4 discusses property inference attacks. Section 5 deals with reconstruction attacks.
Conclusions are drawn in Section 6.

2 Background on privacy disclosure

For many years, the literature on database privacy [17] has used the notion of disclosure risk,

in order to measure to what extent the release of data sets and statistical output puts sensitive

information at risk of being disclosed. This notion remains relevant in the machine learning domain.
Two types of disclosure have usually been considered [17]:

— Identity disclosure means that the attacker is able to link some unidentified piece of data released
with the subject (individual) to whom it corresponds. This linkage is also called re-identification.

— Attribute disclosure means that the attacker can determine the value of a confidential attribute
(e.g., income, diagnosis, etc.) for a target subject with great precision after seeing the released
data.

In tabular data, reidentification occurs trivially if the released data contain personal identi-
fiers (such as passport numbers). That is why identifiers should never be released. However, re-
identification is also possible by quasi-identifiers (for example, gender, job, zipcode, age) that do
not uniquely identify the subject, but whose combination may because they may be present in
public identified databases such as electoral rolls. Finally, confidential attributes (income, diagnosis,
etc.) reveal sensitive information about subjects when they can be unequivocally linked to them.

Identification and attribute disclosure can occur independently. A record can be reidentified but,
if it contains no confidential attribute, no attribute disclosure occurs. Similarly, if the attacker can
only determine a set of k > 1 records that might correspond to the target subject, but there is a
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confidential attribute whose values over those k records are very similar, then attribute disclosure
has occurred without reidentification.

Membership disclosure has been proposed as a third type of disclosure in machine learning [26].
Its purpose is to determine whether a given data point was included in the data set used to train
a certain ML model. Thus, in a membership inference attack (MIA), the attacker does not try to
discover to whom the point corresponds (which would be reidentification) or to find the value of any
confidential attribute about the subject to whom the point corresponds (which would be attribute
disclosure).

Thus, it can be argued that membership disclosure is weaker than identity or attribute disclosure.
However, if all subjects included in the training data set are known to share a semsitive condition,
attribute disclosure can result from membership disclosure. For example, if all subjects whose data
are used for training suffer from a certain disease, then discovering membership for a target subject
leads to attribute disclosure: the target suffers from that disease. Note that this is true even if there
was no explicit attribute ‘Disease’ in the training data set.

3 Membership inference attacks

MIAs are the most common attack employed to assess the privacy of training data in machine
learning. Rather than analyzing the operation of specific MIAs proposed in the literature, in this
section we will focus on the disclosure potential of a generic MIA depending on the data used to
train the model under attack.

Let us introduce a running example. Assume that an attacker Alice wants to perform an MIA
on an ML model to determine whether the attacker’s neighbor Neil was a member of the data used
to train the model.

Two properties of the training data are simultaneously required for the MIA to allow unequivocal
inferences:

— FEzhaustivity. Unless the training data were an exhaustive sample of a population (which is very
rare), membership inferences cannot be unequivocal. In other words, the membership revealed
by an MIA to a non-exhaustive training set could be plausibly denied. In the running example,
if Alice finds that one or several records containing the same quasi-identifier values known to
her about Neil were members of the training data, she cannot be absolutely sure that Neil
was a member. The reason is that perhaps Neil was not included in the training data, and
the putative members she found are just people sharing Neil’s quasi-identifier values. Hence,
Neil could plausibly deny being a member. On the other hand, if the training data set is
exhaustive, membership is trivial and no MIA is really needed: every existing record (and Neil’s
in particular) is a member.

— Non-diversity of unknown attributes. Since inferring membership to an exhaustive sample is not
a real discovery, let us examine whether at least it can bring attribute disclosure. If there are
several member records matching the attribute values known to the attacker, and the unknown
attributes among those records differ significantly, then no attribute disclosure occurs. In the
running example, if Alice finds that two or more records containing the same quasi-identifiers
known to her about Neil were members of the (exhaustive) training data, but the confidential
attribute Income unknown to Alice take clearly different values on those records, then Alice
cannot unequivocally learn Neil’s income.
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In summary, the training data must be exhaustive for Alice to be sure that at least one of the
putative members she has found who share Neil’s quasi-identifiers is really Neil. On the other hand,
since membership inference to an exhaustive sample is of little value, if Alice turns to attribute
inference, she can unequivocally infer a confidential attribute value for Neil only if all putative
members sharing Neil’s quasi-identifiers share the same (or similar) values for that confidential
attribute. In looking at the literature on MIAs, most attacks are demonstrated using training data
sets that are not exhaustive and that may contain diverse values for unknown attributes.

The two conditions have long been studied in the statistical disclosure control (SDC) litera-
ture [17]:

— The protective effect of non-exhaustive samples is the principle of a well-known SDC method
called sampling, in which a sample is released instead of the entire surveyed population. To
evaluate the protection provided by sampling, it is relevant to compute the probability that a
record is unique in the population (PU) given that it is unique in the sample (SU), that is,
Pr(PU|SU). In [27] it was shown that this probability decreases with the sampling fraction,
that is, the smaller the sample, the more plausible membership deniability.

— The protective effect of diversity against confidential attribute disclosure is the principle behind
privacy models such as I-diversity [21] and t-closeness [19]: both seek to prevent attribute
disclosure by making sure there is enough diversity of confidential attribute values within each
set of records sharing quasi-identifier values.

In fact, it is relatively easy for a model trainer to benefit from the above two protections against
MIAs. Tt is easier to get non-exhaustive than exhaustive training data, and the latter can always be
made non-exhaustive by sampling. On the other hand, confidential attributes are naturally diverse
and, if there is not enough diversity, it can be enforced by I-diversity or t-closeness.

Beyond studying the generic limitations of MIAs due to the data used to train the attacked ML
models, one can examine the specifics of the model under attack and the attack method. That is,
what else is needed for an MIA to succeed in the case when the training data happen to satisfy
exhaustivity and non-diversity.

In [18], the effectiveness of MIAs on discriminative machine learning (ML) models is assessed by
checking four requirements: i) the model under attack should not be overfitted (overfitted models are
an easy MIA target, but they do not generalize well in their main tasks); ii) the model under attack
must have a competitive test accuracy (attacking an uncompetitive model is not very interesting);
iii) the attack must yield reliable membership inference; iv) and the attack must have a reasonable
computational cost. Among the many MIA attacks reviewed by these authors, none can satisfy
these four requirements simultaneously.

In fact, focusing only on overfitting, [9] had previously observed that MIAs on well-generalizable
models suffer from practical limitations that reduce their practicality. Overall, it would seem that
the privacy risks of machine learning may have been overstated in the literature as far as membership
inference attacks are concerned.

4 Property inference attacks

A property inference attack seeks to infer a sensitive global property of the data set used to train an
ML model, that is, a property P of the data set that the model producer did not intend to share.
This class of attacks was first presented for classifiers in [1]. They have also been formulated for
deep neural networks in [15].
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In [1], a meta-classifier was trained to classify the target classifier depending on whether it has
a certain property P or not. To do this, the attacker trains several shadow classifiers on the same
task as the target classifier. Each classifier is trained on a data set similar to that of the target
classifier, but constructed explicitly to have the property P or not. Subsequently, the meta-classifier
is trained on the sets of parameters of the shadow classifiers.

In [15], it is argued that the above meta-classifier training strategy does not work well for
deep neural networks, due to their complexity and thousands of parameters. The authors explore
different feature representations to reduce the complexity of the meta-classification task. However,
the high-level structure of the attack is the same as in [1]. In [31], a property inference attack against
generative adversarial networks (GANSs) is presented. Instead of training shadow classifiers like in
the previous papers, here shadow GANs are trained.

From the point of view of privacy, property inference attacks do not entail a significant risk,
because they aim to infer a general property of the training data set rather than a property specific
to a particular target subject. That is, property inference attacks are not attribute inference attacks
trying to infer the value of a confidential attribute for a target subject. By way of illustration,
an example of P mentioned in [1] is whether “Google traffic was used in the training data”, an
example mentioned in [15] is whether “the classifier was trained on images with noise”, and an
example mentioned in [31] is whether “a GAN is mainly trained with images of white males”.

Even if disclosing such properties was not intended by the model producer and may cause
some embarrassment to them, the general nature of those properties can hardly disclose private
information on any of the specific individuals whose data may have been used for training. The
most obvious strategy to mount an attribute inference attack in machine learning is through a
battery of MIAs each of which hypothesizes a candidate value for the target subject’s confidential
attribute (e.g., was the target subject’s record with “Disease=AIDS” a member of the training data
set? was the target subject’s record with “Disease=Cancer” a member of the training data set?,
and so on).

A scenario where property inference attacks may be more privacy-disclosive is federated learning,
in case they are used to infer properties of the training data set used by a certain client and those
training data refer to just one or a few subjects. Imagine the client is a smartphone and the client’s
training data are health measurements on the smartphone owner at different times; in this specific
case, inferring a property of the training data set can yield a property/attribute of the smartphone
owner.

5 Reconstruction attacks

5.1 Reconstruction attacks previous to ML

Dinur and Nissim (DN from now on) developed a formal theory of database reconstruction from a
set of query responses in 2003 [8]. The authors assume that a database is an n-bit string, that is,
it contains records each of which takes values 0 or 1. They further assume all queries to be of the
form “How many records in this subset are 0’s?” or “How many records in this subset are 1’s?”. In
their setting, the response to every query is computed as the true answer to the query plus an error
E bounded in an interval [— B, B] for some B > 0. Thus, the assumption is that query answers are
protected by output perturbation with strictly bounded noise.

According to DN, a database reconstruction is a record-by-record reconstruction of the original
values such that the distance between the reconstructed values and the original values is within
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specific accuracy bounds. DN considered two types of attackers, one that can ask an exponential
number of queries and one that can only ask a polynomial number of queries, and gave results for
the reconstructions achievable by those attackers as a function of B and the number of queries
allowed. Although such a theoretical framework for database reconstruction provides very relevant
insight, it does not mean that every database can be uniquely reconstructed. In fact, for a given
set of statistical outputs, there may be several (or even a large number) of database instantiations
compatible with those outputs [22,24].

5.2 Reconstruction attacks and overfitting in ML

The problem of reconstructing the data set used to train an ML model bears some similarities to
the database reconstruction problem just described. During machine learning, sometimes the model
memorizes parts of its training data [13]. This in turn enables attackers to extract points from the
training data set when given access to the trained model. Successful reconstruction attacks have
been reported for face recognition models [14,30] and neural language models [6,7]. Although there is
no formal framework in the DN style for reconstruction in ML, bounds on the risk of reconstruction
have been proven [16].

In fact, (partial) reconstruction of training data is greatly facilitated if the model is overfitted
because, in that case, it memorizes training data. Beyond being problematic for privacy, overfitting
is also a great problem for utility, since overfitted models usually perform poorly regarding validation
(the process of testing how well a trained model labels new, unseen data).

Regarding potential defenses against overfitting and, hence, reconstruction, [6] mention that

“such memorization [of training data] is not due to overtraining: it occurs early during
training, and persists across different types of models and training strategies [...] Further-
more, we show that simple, intuitive regularization approaches such as early-stopping and
dropout are insufficient to prevent unintended memorization. Only by using differentially-
private training techniques, we are able to eliminate the issue completely, albeit at some
loss of utility.”

Overtraining means training a model for too many iterations. It may result in overfitting, which
occurs when the model exactly learns the training data set but is unable to correctly label new,
unseen data. However, overfitting may also occur in the early stages of training, that is, without
overtraining, such as when a very large model is trained on a small data set.

In [3], it was concluded that standard anti-overfitting techniques such as regularization and
dropout could outperform DP and achieve a better utility /privacy/efficiency trade-off in ML train-
ing. The explanation of this seeming contradiction with [6] lies in the details:

— [3] tried several combinations of regularization/dropout and took the one with the best trade-
off between utility, measured as test accuracy, and privacy, measured as the attacker’s (little)
advantage in the standard MIA implementation in TensorFlow Privacy.

— In contrast, [6] tried several anti-overfitting techniques (regularization, dropout, weight quanti-
zation, etc.) but without attempting to find the best-performing parameterizations. Also, they
measured utility as (little) validation loss and privacy as preventing the recovery of randomly
chosen “canary” sequences inserted into the models’ training data.

Regarding utility, note that test accuracy and validation loss are two independent metrics.
Whereas the former counts the number of mistakes/misclassifications, the latter is the distance

10
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between the true labels and the labels predicted by the model. Low test accuracy means many
errors, whereas large validation loss means large errors.

Regarding privacy, the two above papers and a good deal of the related literature use MIA-based
metrics. There are two important factors that influence the success of MIAs: (i) whether the target
points whose membership is to be inferred are outliers or not and (ii) how good the MIA techniques
employed are. Now, the random “canary” target sequences inserted by [6] in the training data are
likely to be outliers due to their randomness, and hence their membership may be easy to discover,
which gives a pessimistic privacy evaluation. The TensorFlow Privacy MIA implementation used
by [3] does not rely on the inserting of random target points into the training data: it just uses the
predictions of the trained model on the target points to deduce their membership [4].

5.3 On the effectiveness of reconstruction in ML

Using MIAs to assess the effectiveness of reconstruction attacks may seem reasonable if the training
data are tabular. Let D be a training data set with attributes A, As,..., Aq. Note that in the
computer representation of any attribute A;, the number |A;| of potential values can be considered
finite, even for numerical attributes, due to limited length and precision. Still, |4;| can be quite
large, especially for numerical attributes. We can give the following information-theoretic argument
to illustrate the complexity of exhaustively trying all possible values. Assume that the information
content of an item X (record in the case of tabular data, but also unstructured text, image, etc.,
for non-structured data) one wishes to reconstruct is H(X) bits, where H is Shannon’s entropy.
Then discovering X by exhaustive search is equivalent to discovering a random cryptographic key
of H(X) bits. If H(X) is, say, 64 or more bits, this is known to be computationally infeasible.
This gives two scenarios:

1. Total reconstruction. Assume that the attacker has unlimited resources or, better, that the
number of potential values | 4;| of every attribute 4; is relatively small. In this case, the attacker
could mount an MIA for each possible combination of attribute values, to check whether that
combination was part of D. After ngl |A;| MIAs have been performed and if they are effective,
the attacker has reconstructed the entire training data set D.

2. Partial reconstruction. If the attacker’s resources are insufficient to pursue total reconstruction,
then they can select a subset of possible combinations of attribute values and mount MIAs only
for those combinations. This can be viewed as a guessing exercise that may lead to a partial
reconstruction of D (if the guesses, that is, the candidate combinations of attribute values, are
classified as members and are really members of D). The attacker would favor those combina-
tions deemed to be the most likely from the semantics of attributes, e.g. if there is an attribute
Age and an attribute Job, the only plausible combination of Age=10 is with Job=‘student’. Note
that betting on the most common combinations gives less interesting reconstruction results for
the attacker: outlier combinations are more privacy-sensitive and thus interesting to the attacker
than very common combinations.

It must be taken into account that state-of-the-art MIAs offering the best membership detection,
such as LiRA [5], require training several shadow models to estimate the distribution A, of models
trained on data sets containing the target point and the distribution A,,; of models trained on
data sets not containing the target point. Thus, each MIA incurs a substantial computation cost.

Furthermore, especially in generative ML, training data are often non-tabular. For example,
they are unstructured text or multimedia. Clearly, for non-tabular training data such as images

11
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or unstructured text, mounting an MIA to test whether each potential image or each potential
unstructured text was part of the training data set D seems quite unreasonable. In the case of
generative Al, one can resort to prompting for certain personal data or copyrighted content rather
than mounting MIAs, in order to find out whether the model saw those items at training time.
But in fact, this prompting amounts to a guessing exercise like those described above under partial
reconstruction. In fact, the empirical study [11] shows that MIAs on pre-trained LLMs are barely
better than random guessing, even though fine-tuned LLMs are far more vulnerable to MIAs. That
is, MIAs are more effective at inferring membership on the data used for fine-tuning than on the
data used for pre-training. Regarding cost, although guess prompting is almost free on the user’s
side, the computational cost is high in terms of LLM inference on the LLM manager’s side.

In [20] a systematic evaluation of data reconstruction attacks and defenses is presented, where
the reconstruction attacks considered are no longer MIAs, but gradient inversion attacks. Gradient
inversion attacks [29] attempt to recover training points from gradients. They are mostly designed
for federated learning (FL), because they require knowledge of the gradients computed during
training. In fact, in FL, the server receives the gradients from the clients and can mount a gradient
inversion attack and try to reconstruct the local training data for one or more clients [25]. If
all clients receive all gradients, then clients can also behave maliciously and mount a gradient
inversion attack to reconstruct the local data of a certain target client. The study [23] reviewed
gradient inversion attacks against FL, as well as potential defenses based on mixed precision and
quantization, gradient pruning, and differential privacy. They concluded that some of these defenses
are effective and involve only slight accuracy drops. In centralized learning, where the attacker only
sees the trained model, gradient inversion attacks are not applicable.

If reconstruction based on MIAs is problematic for the reasons above, reconstruction without
MIAs suffers from a major weakness: there is no numerical decision criterion in a realistic case in
which the attacker has no access to the actual training data. In other words, whereas in an MIA there
is some kind of threshold that allows deciding whether a target point is a member or a non-member
(although this decision may be in error), in a reconstruction attack there is no objective criterion
to decide whether the putative reconstructed data belong to the training data set. For example, the
fact that a gradient inversion attack produces a meaningful image does not necessarily mean that
this image was part of the training data. Also, what “meaningful” means is debatable. One could
certainly use an MIA to decide whether the putative reconstructed data were really in the training
data, but this has the drawbacks of MIAs enumerated in Section 3.

Admittedly, there are situations in which it may be easier to make a decision on putative
reconstructed data. This is the case for reconstruction attacks on machine unlearning. In unlearning,
a trained model is updated to cause it to “forget” one or more data points, e.g., to implement the
right to be forgotten enshrined in the GDPR, or because those data points are subject to copyright.
In [2], a reconstruction attack is described for the case in which the trained model is a simple one.
The attack exploits the model updates to estimate the unlearned data point. However, even if the
attack is quite successful according to the experiments reported in [2], success is determined by
comparing against the ground truth of the unlearned data point, which would not be available to
an attacker in a real world situation. Possible defenses are discussed in [10].

6 Conclusions

Our analysis casts doubts on the effectiveness of privacy attacks against ML in real-world conditions:

12
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— MIAs suffer from limitations due to the data the target models have been trained on (non-
exhaustivity, diversity of confidential attribute values). In addition, they may also suffer limi-
tations that arise from the nature of the attacked models and the attack methods.

— Property inference attacks aim to infer a general property of the training data set, rather than
a property specific to a particular data subject. For that reason, they do not achieve attribute
disclosure for any particular subject and hence do not pose substantial privacy risks to subjects,
except in specific federated learning scenarios where all of a client’s training data refer to one
or a few subjects. These attacks are more relevant to audit the potential biases or insufficiencies
of the training data used by the model producer.

— Reconstruction attacks based on MIAs have a very significant cost, as they involve mounting
an MIA for each data point whose membership in the training data is to be decided. Thus, they
are only practical for tabular training data where attributes have a limited range of potential
values, and even in that case they are more suited for partial than total reconstruction. Besides,
MIA-based reconstruction is also subject to the shortcomings identified for MIAs themselves.

— Reconstruction attacks based on gradient inversion are those that are used when training data
are multimedia or unstructured text, as is the usual case in generative ML. However, such attacks
are applicable only when the attacker has access to the gradients computed by the victim during
the learning process. In practice, this restricts the applicability of these attacks to federated or
otherwise decentralized learning. Furthermore, deciding whether a putative reconstructed data
point was really a member of the training data is difficult if the attacker does not have access
to the original training data (which is the usual case in the real world). Certainly, MIAs can be
used to make this membership decision, but this inherits the shortcomings of MIAs described
above.

All in all, the current real-world privacy risks incurred by machine learning seem less serious than
what is usually assumed in the literature. Therefore, privacy defenses that entail severe utility loss,
such as differential privacy, may be often unnecessary. The good side of all this is that trustworthy
machine learning may be easier to implement than assumed so far, at least with respect to privacy.
This is good news for jurisdictions like the European Union that struggle to reconcile strong Al
regulations with the competitiveness of their AT industry.
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Abstract. Synthetic data generators and machine learning models can
memorize their training data, posing privacy concerns. Membership in-
ference attacks (MIAs) are a standard method of estimating their privacy
risk. The risk of individual records is typically computed by evaluating
MIAs in a record-specific privacy game. We analyze the privacy game
commonly used for attackers under realistic assumptions (the traditional
game)—particularly for synthetic tabular data—and show that it aver-
ages a record’s privacy risk across datasets. We show this implicitly as-
sumes the dataset a record is part of has no impact on the record’s risk,
providing a misleading risk estimate when a specific model or synthetic
dataset is released. Instead, we propose a novel use of the leave-one-out
privacy game, so far used exclusively to audit differential privacy guaran-
tees, and call this the model-seeded game. We formalize it and show that
it provides an accurate estimate of the privacy risk for a record in its
specific dataset. We instantiate and evaluate the state-of-the-art MIA
for synthetic data generators in both privacy games, and show across
multiple datasets and models that they indeed result in different risk
scores, with up to 94% of high-risk records being overlooked by the tra-
ditional game. We further show that records in smaller datasets tend
to have a larger gap between risk estimates. Taken together, our results
show that the model-seeded setup yields a risk estimate specific to a
released synthetic dataset or model and in line with the standard no-
tion of privacy leakage from prior work, meaningfully different from the
dataset-averaged risk provided by the traditional privacy game.

Keywords: membership inference, synthetic data, differential privacy

1 Introduction

Models ranging from synthetic data generators (SDGs) to machine learning (ML)
models have been shown to memorize their training data, potentially allowing

An extended version of this work including appendices and additional results is
available at https://arxiv.org/abs/2405.15423.
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attackers to tell whether specific records were used for training [2, 18, 20, 22, 31,
41, 46| or even reconstruct entire training examples [5, 21, 49, 53|. As models are
increasingly trained on personal and sensitive data—particularly in domains such
as healthcare, law, and finance [7, 10, 37]—concerns about their implications for
privacy continue to grow.

Membership inference attacks (MIAs) have become the standard approach
for empirically estimating the privacy risk of synthetic data and ML models [8,
28, 40, 44, 46]. MIAs aim to determine whether a target record was included
in the training dataset of a given model. They can pose a direct privacy risk,
and also provide an upper bound on the performance of other attacks such as
attribute inference or data reconstruction [43]. MIAs can be developed under
varying assumptions, ranging from black-box access to the target model and no
knowledge of the training dataset, to very strong attackers leveraging white-box
access to the model and knowledge of all training records but the target.

MIAs are evaluated in a controlled privacy game between an attacker and
a data owner [46, 55]. We here study the record-specific privacy games used in
existing literature, which estimate how well an attacker can distinguish between
models trained on one specific target record and those not. Record-specific pri-
vacy games are most often used in setups where the state-of-the-art attacks lever-
age record-specific information, such as for synthetic data generators [22, 31, 46],
and for auditing formal privacy guarantees [3]. In contrast, model-specific pri-
vacy games estimate the ability of an attacker to distinguish between records
used to train one target model and those not. This type of privacy game is often
used to evaluate MIAs against ML models [8, 11, 20, 42, 45, 56].

Contributions. We analyze the traditional privacy game commonly used to eval-
uate record-specific MIAs under realistic attacker assumptions [19, 22, 31, 46].
We show that, by using dataset sampling as a source of randomness, it aver-
ages the risk across datasets, implicitly assuming that a record’s privacy risk is
independent of the dataset it belongs to.

We instead formalize and propose a novel use of the leave-one-out game,
here called the model-seeded privacy game, to evaluate an MIA under realistic
attacker assumptions. This approach is consistent with the standard notion of
differential privacy [14, 15], which captures a record’s risk with respect to a spe-
cific dataset. Unlike the traditional game, we fix the target dataset and use only
the model seed as a source of randomness. We show that the attack success rates
computed using this privacy game converge to what we call the record’s differ-
ential privacy distinguisher (DPD) risk—which is consistent with the standard
notion of privacy leakage in existing literature—whereas the traditional game
results in a dataset-independent estimate.

We instantiate the state-of-the-art record-specific MIA for synthetic data
and evaluate it in both the traditional and model-seeded privacy game across 2
datasets and 2 synthetic data generators, replicating the setup used by Meeus
et al. [31]. We observe significant differences between the risk estimates given by
the model-seeded and traditional privacy games. For instance, 94% of high-risk
records are misidentified by the traditional privacy game for the Adult dataset
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and Synthpop generator, and the root mean squared deviation (RMSD) is 0.07
between the two estimates. We obtain similar results across experimental setups.

Finally, we show the gap between the traditional and model-seeded risk esti-
mates to be generally higher for small and medium datasets (fewer than 10,000
records), as often used in tabular synthetic data [19, 31, 46|, and lower for large
datasets, typically used for ML tasks [8].

Taken together, our results show that the traditional game can yield mislead-
ing estimates by averaging the risk across datasets. We propose to use instead
the model-seeded privacy game which provides more accurate risk estimates,
aligning with differential privacy.

2 Background

2.1 Synthetic data generation

We consider the setting of statistical learning over the space of records I C R?,
sampled from a probability distribution D. A dataset D € D" is i.i.d. sampled:
D ~ D". Using D, we train a model via a randomized training algorithm A :
20— . The resulting synthetic data generator (SDG) defines a distribution
Dy that mimics statistical properties of D. A trained SDG with parameters
0 = A(D) can generate a synthetic dataset Dgyy, ~ Dy, where we set | Dgyn| = n.

SDGs include probabilistic models such as Bayesian networks [57] and deep
generative models such as GANs [52]). We focus on tabular SDGs [35, 57|, where
record-specific evaluation is crucial as attacks for this setting are inherently
record-specific (see Section 2.2).

2.2 MIA development

For a target model § = A(D), an MIA aims to infer whether a target record x
was in D (member) or not (non-member). For a fixed target record =, we denote
by ¢, : © — [0,1] an MIA against target record = and target model §. We drop
the subscript  when the target record is clear from context.

Threat model. By threat model, we refer to the assumptions made about the
attacker’s capabilities. We distinguish between dataset-level and model-level as-
sumptions. Dataset-level access can range from no access to real data from D [19],
access to data drawn from the same distribution [22, 31, 46|, or full access to
D except for the knowledge of membership of x, as considered for the strong
differential privacy attacker [3, 23]. Model-level access can be black-box (query
access) [8, 44], or white-box (full parameter access) [12, 33, 42].

We assume a standard realistic record-specific attacker [19, 22, 31, 46]
in the context of tabular synthetic data, with access to an auziliary dataset
Daux € 2P drawn from the same distribution as D but disjoint from it. The
attacker has black-box query access to target model . We assume the attacker
to have full knowledge of the exact training process used to obtain § = A(D).
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Shadow modeling. Shadow modeling is a technique used to develop MIAs by
simulating the target model’s training process. The attacker samples shadow
datasets {Dél?adow | i =1..., Nshadow} from Dgyuy, of the same size as D. The
attacker then ex(plicitly constructs ‘in’ shadow datasets that include the target
record z (z € Dsf])adow) and ‘out’ shadow datasets that exclude it (z ¢ Dgfl)adow).
The attacker trains shadow models {A(Dg;)adow) |i=1,..., Nshadow using the
knowledge of the training procedure of the target model. Thus, the attacker con-
structs a controlled set of models with known membership of the target record,

which they can use to develop and refine the MIA.

Computing a membership score. The membership prediction of an MIA is typi-
cally in the form of thresholding a membership score s, : © — R. We denote the
attack as ¢, (0) = 1[s;(0) > ~] for some given threshold v € R.

Existing MIAs against SDGs extract features from generated data using sta-
tistical queries [22, 31], or training membership meta-classifiers per record [46].
These scores are inherently record-specific, driving the development and evalua-
tion of MIAs tailored to individual records.

2.3 Differential privacy and its hypothesis-testing interpretation

Differential privacy (DP) is a formal privacy guarantee that limits the contribu-
tion of any single record in statistical learning. A randomized training algorithm
A(D) is differentially private if the inclusion or exclusion of any single record in
D will not significantly modify the resulting model distribution [15]:

Definition 1. A randomized training algorithm A(D) satisfies (g,9)-DP if for
any measurable subset E of the model space @ and any partial dataset D and
any record x € D, we have:

Pr[A(D) € E] < e Pr[A(D U {z}) € E] + 6
Pr[A(D U {z}) € E] < e Pr[A(D) € E]+§

The classical definition (Definition 1) has been shown to have an interpreta-
tion in terms of hypothesis testing [13, 25, 50], or equivalently, in terms of success
rates of worst-case MIAs [26]. Consider the following MIA setting in which an
adversary with access to a partial dataset D, the target record x, and a model
0, aims to tell whether 6 comes from A(D) or A(D U {x}):

Ho:0~AD) Hy:0~ADU{z}). (1)

We omit the analogous case of Hy corresponding to A(DU{x}) and H; to A(D).
Given a distinguisher ¢ : © — [0,1] which outputs 1 to guess the membership
of x in the training dataset (Hy), and 0 to guess its non-membership (Hp), we
can characterize its success by its false positive rate (FPR) a4 and false negative
rate (FNR) Sy:

ap =Egoapy 0], By =1-Epapugep[6(0)] (2)
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To analyze the privacy guarantees within this setting, we can consider the worst-
case distinguisher ¢} which achieves the lowest FNR at a given level of FPR «a:

* = inf <al. 3
o =a1g ég[o,l]{5¢ | ag < a} (3)

Such an optimal attack always exists and can be constructed via Neyman-
Pearson’s lemma [13]. An algorithm A(-) satisfies (&, d)-DP if and only if the
FNR of the optimal attack is lower bounded as follows:

By, > min{0, 1 —ea =4, e *(1—a—0)}, (4)

for any given level of FPR a € [0,1], any D € 2P and z € D [13].

We refer to the trade-off curve, i.e., the set of all attainable g, 84, which is
equivalent to the ROC curve of the worst-case MIA, as the differential privacy
distinguisher (DPD) risk of attack ¢(-), following the prior terminology [43]. As
DP is a standard notion of privacy leakage in statistical learning, we consider
DPD risk an appropriate measure of privacy risk in our settings.

3 Record-specific MIA evaluation

In this section, we formalize the traditional and model-seeded privacy games and
their estimations of attacker success.

3.1 Traditional privacy game

We refer to the privacy game commonly used in previous work [19, 22, 31, 46, 54]
for record-specific evaluation of adversaries under realistic assumptions as the
traditional game. An attacker’s success at inferring a target record’s membership
is evaluated over multiple runs of the attack, each using a freshly sampled target
dataset and the same target record 2. We denote by RT resulting risk estimate.

Definition 2 (Traditional record-specific privacy game). For target record
x, dataset size m, training algorithm A(-), and attack ¢(-):

1. The challenger samples dataset D ~ D™ from the distribution with a fresh
random seed.

2. The challenger draws a secret bit b € {0, 1} uniformly at random with a fresh
random seed.

3. If b =1, the challenger adds target record = to dataset D to form the target
dataset D = D U {z}. Otherwise, D = D.

4. The challenger trains the target model 8 «+— A(D) on dataset D with a fresh
random seed.

5. The adversary outputs a guess b= ¢(6).
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3.2 Model-seeded privacy game

We now formalize the model-seeded privacy game. Here, each run of the game
uses the same target record and target dataset, and samples a fresh seed for
training the target model. We denote the resulting risk estimate as RMS.

Definition 3 (Model-sgeded record-specific privacy game). For target
record x, partial dataset D, training algorithm A(-), attack ¢(-), and number of
runs N:

1. The challenger draws a secret bit b € {0, 1} uniformly at random with a fresh
random seed.

2. If b= 1, the challenger adds target record x to D to form the target dataset:
D = DU/{z}. Otherwise, D = D.

3. The challenger trains the target model 6 < A(D) on dataset D with a fresh
random seed.

4. The adversary outputs a guess b = ?(0).

In contrast with the traditional privacy game, this game results in an estimate
of the target record’s risk within a specific target dataset. By using only the
model seed as a source of randomness and eliminating dataset sampling, the
ability of the MIA to infer the presence of the target record x in models trained
on D is evaluated. To the best of our knowledge, this privacy game has so far
been used exclusively to evaluate the worst-case attack, where the adversary is
assumed to have full knowledge of the target dataset apart from the membership
of the target record [3, 17], and never used to evaluate adversaries under realistic
assumptions, e.g., with access only to auxiliary data.

3.3 The relationship between the games and privacy risk

Consider N > 1 runs of either the model-seeded or traditional game with dif-
ferent random seeds, resulting in a set of guesses {ZA),-}ZG[ ~] with corresponding
secret bits (i.e. membership labels) {b;};c;n]. Let us denote the empirical FPR
and FNR obtained in an evaluation using a privacy game for a given attack
¢$:0 —[0,1]:

SN 1{b; = 1 Ab; =0} 5 SN b =0Ab; =1}
Qg = N v Pe= T N

Y oico 1{b; = 0} Yoico H{bi =1}
We use &} or &} to denote the empirical error rates computed using the tra-
ditional (T) and model-seeded (MS) game, respectively, and analogously for 6:{
and b’};ﬁs We show that, with a sufficiently large number of repetitions of the
game with freshly drawn seeds, the empirical FPR and FNR obtained using the
model-seeded game converge exponentially fast to the DPD risk as defined in
Section 2.3 for any given attack ¢ and record x:

)

T
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Proposition 1 (Model-seeded game converges to DPD risk). For any
fized target record x, partial dataset D € D"1, training algorithm T(-), and
attack ¢(-), we have w.p. 1 —p for p € (0,1) over N random coin flips, i.e., fresh
seed draws, in the model-seeded game:

log(2 N log(2
65 — g < [ BRIE) ygus g < [10B2/0) (©

Proof (Proposition 1). Consider the set of in models {Gﬁi)}fvzl and the set of out

m

models {Q(i) I | obtained in the model-seeded game. Let us define X; for i € [N]

out
as X; = ]1[(1)(6((;1),;) = 1]. The set {X;}¥, is a set of independent Bernoulli random
variables. Let X = + Zf;l X;. Then & = X. Moreover, we have that o = E[X],
where the expectations are over sampling {9(()2t}i]\i1. By the Chernoff-Hoeffding
inequality, for any ~ > O:

Pr|X — E[X]| > 7] < 2e72N° (7)

Thus, with probability at least 1 — 2e2N7*,

X —E[X]| <. (8)
Setting 22V = p, we get:
log(2/p)
- 9
v SN (9)

which yields the sought statement. We get analogous results for 5.

In contrast, empirical error rates obtained in the traditional privacy game
converge average attack success rates over i.i.d. dataset resamples:

Proposition 2 (Traditional game converges to average privacy risk).
For any fized target record x, dataset size n > 1, training algorithm T(-), and
attack ¢(-), we have w.p. 1 —p for p € (0,1) over N random coin flips, i.e., fresh
seed draws, in the traditional game:

A log(2/p) | log(2/p)

|a$_ED~D"O‘¢,D| < ToON |ﬂ$—ED~Dn5¢,D| < ToON (10)
where we explicitly use ay,  and By p to emphasize the dependence of vy and By
on D in the definition of the hypothesis test in Eq. (2). The proof is analogous
to Proposition 1.

Thus, the model-seeded game serves as an estimator of the DPD risk of an
attack, as opposed to the traditional game, which estimates an average risk over
hypothetical dataset re-samples.
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3.4 Practical implementation of the privacy games

Algorithm 1 outlines our implementation of the traditional and model-seeded
privacy games. In both setups, we construct % = 500 ‘in’ and ‘out’ datasets
each. In the traditional setup, we sample ‘out’ datasets from the evaluation pool
Deval, and ensure z is included in exactly half. In the model-seeded setup, the
‘in’ datasets are equivalent to the full target dataset D. To maintain an equal
dataset size across runs, we construct the ‘out’ datasets by replacing x with a
randomly sampled record z, ~ Unif[Deya \ D].

Algorithm 1 Practical privacy game implementation

Input: Target record z, target dataset D, target training algorithm A(+), evaluation
pool Devar, partial evaluation pool Deval = Devar \ {2}, MIA ¢, with membership score

function s, attack thresholds v € {v1,...,vm}, number of runs Nevai, and privacy
game flag (T for traditional, M S for model-seeded).
Output: Empirical error rates [dgf, e df;fn] and [ﬁfﬁ;, e Bgfn} for each attack
threshold +, and summary risk metric R¥¢ computed as the ROC AUC of attack ¢s.
1: fori=0,1,..., NCZVE“ do

2: if PG = M S then // model-seeded game

3 Din ~— D

4 Sample reference record x, ~ Unif[Deval \ D].
5 Construct Dout < D \ {z} U {z-}.

6: else // traditional game

7: Sample Diy ~ Unif[Devat] P71

8: Din +— Din @] {JZ}

9: Sample Doy ~ Unif[Deval] P!

10: end if
11: Train evaluation model 6, = A(Djn) with fresh random seed.
12: Train evaluation model 0oy = A(Dous) with fresh random seed.
13: for v; € {y1,...,7m} do
14: Compute attack prediction ¢z (6in) = 1[sz(0in) > ;]
15: IA)L]' — ¢x(9in)
16: Compute attack prediction ¢ (fous) = 1[sz(Bout) > 5]
17: bi+%,j — ¢m(90ut)
18: end for
19: b+ 1,0b. Neyal 0
i+
20: end for

21: Compute empirical FPR &g?({iyu }Neval £} Nevat) for each y; € [v1, ..., Y]
22: Compute empirical FNR B;;?({Bi,j}fv;fal, {bi}Neya1) for each v, € [y1, ... ,Ym]

23: Compute summary privacy risk RF¢ = AUC({dg?}}?’:h {Bf?}f‘:l)
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4 Experimental results

4.1 Experimental setup

Datasets. We use the Adult [6] and UK Census [36] datasets, commonly tabular
datasets used in previous work concerning privacy-preserving synthetic data [19,
31, 46]. Both are de-identified samples of census data containing categorical and
continuous demographic features. We partition each dataset into Dy, used for
MIA development, and Dgya1, used for evaluation. We perform the partitions so
that |Daux| = 2 X | Deval|- We consider |D| = 1000, D C Deyal, & common setting
in previous work concerning MIAs against synthetic data.

Target models. We use Synthpop [35] and Baynet [57] in our main experiments,
using the implementations available in the reprosyn [1]| repository. We select
these generators as they are widely-used, established models.

MIA methodology. We use extended-TAPAS, the state-of-the-art query-based
attack for SDGs, as originally introduced by Houssiau et al. [22], and extended
by Meeus et al. [31]. We train the attack for each target record using auxiliary
dataset D,.x to sample 1000 shadow datasets. TAPAS operates under black-box
model access with auxiliary data, but no access to the training data of the target
model. We use AUC ROC as a summary metric for privacy risk.

We use the following metrics to compare the traditional and model-seeded
risk estimates.

Miss rate is the fraction of records classified as high-risk in the model-seeded
setup, which are classified as low-risk in the traditional setup. We define a high-
risk threshold ¢ for the MIA AUC, and consider records for which the attack
reaches AUC above t to be high risk. For a subset of records in the target

dataset S C D and high-risk threshold ¢, we compute the miss rate as: MR(S) =
[{z€S | RT(z)<t A RMS(z)>t}]
[{z€S | RMS(z)>t}| :

Root Mean Squared Deviation (RMSD) measures the deviation between tra-

ditional and model-seeded risks. For S C D, we compute the RMSD between

the two risk estimates as RMSD(S, ¢) = \/ﬁ Y owes (R (x) — RMS(2))°.

4.2 Difference between RMS and RT

Figure 1 shows the traditional and model-seeded risks to indeed differ substan-
tially. Fig. 1la shows the traditional and model-seeded risks for all 1000 records
in D for the Adult dataset and # Synthpop. This shows that 94% of high-risk
records for high-risk threshold ¢ = 0.8 would be incorrectly classified as low-risk
when using the traditional setup. Using the traditional setup leads to an RMSD
of 0.07, for a value that empirically ranges roughly from 0.5 to 1. Figure 1b shows
a histogram of absolute differences between the two risk estimates across records,
showing that the estimate would be off by more than 0.1 for 15% of records when
using the traditional setup, and could go up to 0.26. Table 1 shows that these
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Fig. 1. Risk for all 1000 records in D sampled from the Adult dataset (Synthpop). (a)
per-record model-seeded and traditional risks. The shaded area marks all the high-risk
records missed in the traditional setup for high-risk threshold ¢ = 0.8. (b) histogram
of per-record absolute differences between the model-seeded and traditional risks.

Table 1. Miss rate and RMSD across different datasets and target synthetic data
generators. We use a high-risk threshold of ¢ = 0.8.

Dataset Model RMSD MR

Synthpop 0.07 0.94
Baynet 0.05 0.73

Synthpop 0.11 0.94
Baynet 0.04 0.75

Adult

Census

results are consistent across setups. The miss rates are consistently high, ranging
from 0.73 to 0.94, showing that high-risk records are being incorrectly identified.
The majority of the records that are highly vulnerable will thus be incorrectly
considered low-risk if MIAs are evaluated using the traditional setup. RMSD
ranges from 0.04 to 0.11, a significant error for risk estimated using AUC.

Different high-risk threshold t values. Fig. 2a shows that, for all high-risk thresh-
olds, the miss rates are substantial, reaching values above 20% for all setups for
t = 0.6 and up to 80% for ¢ = 0.9. Using the traditional setup for MIA eval-
uation thus leads to high-risk records being incorrectly classified as low-risk,
regardless of the threshold choice. Notably, we find that the miss rate increases
with larger threshold values t. Identifying high-risk records becomes more dif-
ficult as the threshold becomes more strict, and the traditional setup fails to
detect an increasing fraction of them.

Dataset size. In Section 4.2, we consider target datasets D of size 1000. We now
study how varying |D| influences the gap between traditional and model-seeded
risks. For 20 records from the Adult dataset and with 6 Synthpop, we compute
the risk in both setups for |D| =€ {200, ...,10000}.
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Fig. 2. (a) Miss rate for different high-risk thresholds ¢ for SDG setups. Note that for
Census and Baynet, there are no records with RMS > 0.9, therefore the miss rate is not
defined. (b) RMSD between model-seeded and traditional risk per target dataset size.
(c) Model-seeded and traditional risk values per target dataset size. For both figures,
values are computed across 20 target records.

Fig. 2b shows that the RMSD to decreases with dataset size, but remains
non-negligible even at |D| = 10,000. Fig. 2¢ shows the MIA AUC computed
in both setups, averaged across the target records. MIA performance decreases,
though it remains better than random, for larger datasets, naturally decreasing
the gap. Yet, highly vulnerable records are present even in large datasets, and the
two risk estimates do not converge to the same values, showing the importance
of using the model-seeded game regardless of dataset size.

4.3 Evaluating one record’s risk within different datasets

We use the Adult dataset and the Synthpop model to illustrate an example
of the potential negative impact of using the traditional instead of the model-
seeded setup. We compute the risk of a single target record in the traditional
setup. Then, we compute its model-seeded risk in 15 randomly selected datasets
sampled in the traditional setup. As shown in Fig. 3, the model-seeded risk RMS
varies from approximately 0.5 (random guess) to 0.8 (high risk), depending on
the dataset. The traditional risk is RT = 0.62, underestimating the DPD risk by
up to 0.2 in the worst case.

3.5] - RT =0.62

3.0 maxrpR™ = 0.80

2.5
>2.0
£1.5

sit

De

1.0
0.5

0.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RZWS

Fig. 3. Model-seeded risks of one target record within 15 different datasets and its
traditional risk.

26



DPM 2024

5 Related work

Membership inference attacks (MIAs). Shokri et al. [44] introduced the first MIA
against ML models, using model predictions and the shadow modeling technique,
where multiple models including and excluding the target record are trained to
approximate its impact. Various attacks based on shadow modeling have since
been proposed [42, 45, 51, 54, 56], typically relying on model loss as the mem-
bership signal. The current state-of-the-art attack for ML models, introduced by
Carlini et al. [8], uses a likelihood ratio test between loss distributions of models
trained with and without the target record.

Tabular synthetic data generators model a dataset as a whole, learning fea-
ture distributions and sampling synthetic records [35, 39, 57]. They do not have
a notion of per-record loss, rendering standard ML-focused MIAs inapplicable.
Instead, specialized record-specific attacks that rely on shadow models and the
generated data to assess a record’s influence on synthetic outputs have been pro-
posed [22, 31, 46]. Stadler et al. [46] train meta-classifiers on statistical features
from the synthetic data. Houssiau et al. [22] extend this with k-way queries that
count exact matches on random feature subsets, and Meeus et al. [31] further
include range-based queries for continuous features.

Threat models. A threat model specifies an attacker’s access to the model and
data. For synthetic tabular data, most attacks assume black-box access to model
outputs [22, 31, 46], though some ML-focused attacks also assume access to
predicted probabilities [8, 45, 56] or even labels [11]. White-box attackers have
access to model internals, and are more common in vision tasks [4, 12, 20, 30, 38].

Data access defines the data available to the attacker and its relationship to
the target data. Attackers are often assumed to access auxiliary datasets drawn
from the same distribution as the target [8, 22, 31, 46]. Guépin et al. [19] show
this assumption can be relaxed using synthetic data, with performance tradeoffs.
Privacy auditing literature typically considers a strong leave-one-out adversary
with knowledge of all training records except the target [23, 34, 48].

MIA evaluation. MIAs are typically evaluated in a privacy game between an
attacker and a challenger [8, 24, 41, 46, 55]. Ye et al. [54] distinguish between
model-specific and record-specific privacy games. The former evaluates an at-
tacker’s ability to distinguish between records included or excluded from the
training data of one model [8, 30, 32, 45, 56], while the latter distinguishes be-
tween models trained with and without a specific record, and is standard for
evaluating tabular synthetic data attacks [22, 31, 46].

Ye et al. [54] define a privacy game for a fized worst-case record and dataset,
typically used to test differential privacy guarantees with a very strong leave-
one-out attacker [3, 23, 34, 48]. To the best of our knowledge, this privacy game
has never been used for weaker attackers or attacks against synthetic data. The
model-seeded game is applicable to any attack, regardless of assumptions. The
goal of the model-seeded game is to measure the DPD risk for any attacker,
rather than only the worst-case attacker.

27



DPM 2024

6 Discussion & conclusion

We show that the model-seeded privacy game provides an unbiased estimate of
a record’s risk, whereas the traditional game averages risk across datasets. Em-
pirically, we show the difference to be significant: the traditional setup results
in 85% of high-risk records being misclassified. This confirms that assuming a
record’s risk is independent of the dataset is optimistic and can obscure vul-
nerabilities. Although larger datasets reduce this gap, the model-seeded game
consistently offers a more accurate risk estimate and should be preferred.

The exact impact of the dataset on a record’s risk remains open. Prior work
suggests that outliers—records with rare or underrepresented features—are more
at risk [9, 16, 27, 31, 46]. These characteristics are dataset-specific: a record
may be an outlier in one sample but not another, especially in small or high-
dimensional data. Larger datasets may better preserve such outlier status, mak-
ing RMS and RT more aligned, but not interchangeable.

By formalizing and empirically validating the model-seeded game, we pro-
vide a practical and principled tool for assessing privacy risk. We hope this work
helps organizations handling sensitive data, such as in healthcare [29] and fi-
nance [47], better assess data leakage risks and maintain high privacy standards
when releasing synthetic data.
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Abstract. Membership inference attacks (MIAs) against machine learn-
ing (ML) models aim to determine whether a given data point was part
of the model training data. These attacks may pose significant privacy
risks to individuals whose sensitive data were used for training, which
motivates the use of defenses such as differential privacy, often at the cost
of high accuracy losses. MIAs exploit the differences in the behavior of
a model when making predictions on samples it has seen during training
(members) versus those it has not seen (non-members). Several studies
have pointed out that model overfitting is the major factor contribut-
ing to these differences in behavior and, consequently, to the success of
MIAs. However, the literature also shows that even non-overfitted ML
models can leak information about a small subset of their training data.
In this paper, we investigate the root causes of membership inference
vulnerabilities beyond traditional overfitting concerns and suggest tar-
geted defenses. We empirically analyze the characteristics of the training
data samples vulnerable to MIAs in models that are not overfitted (and
hence able to generalize). Our findings reveal that these samples are of-
ten outliers within their classes (e.g., noisy or hard to classify). We then
propose potential defensive strategies to protect these vulnerable samples
and enhance the privacy-preserving capabilities of ML models. Our code
is available at https://github.com/najeebjebreel/mia_analysis.

Keywords: Machine learning - Privacy - Membership inference attacks.

1 Introduction

Machine learning (ML) has demonstrated remarkable performance across a wide
range of tasks [15,9,27]. This success is mainly attributed to the availability of
large and diverse data for training, along with advances in learning algorithms
and computational capabilities.
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However, training data often contain sensitive information related to individ-
uals, such as personal photos [20], confidential texts [6], clinical records [21], and
financial details [30]. Unauthorized access to or leakage of such data can lead to
significant privacy risks and adverse consequences for affected individuals.

Trained ML models can memorize and inadvertently reveal sensitive infor-
mation about their training data [40,5,48], making them vulnerable to several
privacy attacks, such as extraction attacks [6], property inference attacks [13],
and membership inference attacks (MIAs) [38].

MIAs [38,35,47], the focus of this paper, aim to determine whether a specific
data point was part of the training data of a given model. Although they may not
seem dangerous at first glance, they can pose serious privacy risks to individuals
in specific scenarios. For example, knowing that a specific patient’s clinical record
was used to train a model associated with a sensitive disease can reveal with high
confidence that the patient suffers from this disease.

Several studies have demonstrated a strong connection between training data
memorization and the phenomenon of overfitting [47,5,46]. Overfitting occurs
when a model not only learns general patterns, but also captures sample-specific
details and noise, which leads to a noticeable difference in its behavior in training
data (members) compared to unseen data (non-members) [38,47,16,46]. MIAs
leverage this differential behavior [38,29,41,4].

Various defenses against MIAs have been proposed and can be categorized
into certified and practical defenses. Certified defenses provide formal privacy
guarantees through differential privacy (DP) [1], but often result in reduced
model utility and high computational costs. Practical defenses, on the other
hand, offer empirical privacy protection with the goal of maintaining the utility
of the model [43,28,19,41,2]. These practical defenses primarily aim to mitigate
overfitting and develop models with better generalization capabilities, thus re-
ducing the effectiveness of MIAs while preserving utility. However, even models
designed to generalize well can inadvertently leak information about a small
portion of the training data, making them vulnerable to MIAs [25,4].

Contributions: In this paper, we address two key questions: Q1: What
makes certain samples vulnerable to MIAs even in non-overfitted models? and
Q2: How can these samples be effectively protected?

To answer these questions, we performed experiments on various data sets
and models to identify factors that contribute to the vulnerability of MIA be-
yond overfitting. We systematically characterize what makes samples vulnerable
through visual analysis, feature-space geometry, and model explanation tech-
niques. We find that outliers—samples that are far from their class centroid—are
particularly vulnerable. We then suggest and discuss potential defensive strate-
gies to protect these vulnerable samples and thereby enhance privacy.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on ML overfitting and differential privacy. Section 3 discusses related
work on membership inference attacks and defenses, and factors that contribute
to the success of MIAs. Section 4 describes the data sets, models, and experi-
mental setup. Section 5 empirically investigates the causes of MIA beyond over-
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fitting and discusses the results obtained. Section 6 discusses potential solutions
for protecting vulnerable samples. Section 7 summarizes our findings and sug-
gests future research directions. Additional experimental details are provided in
the supplementary materials.

2 Background

2.1 Machine Learning Overfitting

In this paper, we focus on predictive deep neural network (DNNs) utilized as
m-class classifiers, with the cross-entropy (CE) loss:

C(Fpz) = — 3 yilog(Fo(a),), 1)

=0

where z are the input features, y; is the one-hot encoded label vector, and Fy(z);
is the predicted probability for class i.

One of the potential problems of ML training is overfitting. Overfitting is an
undesirable training outcome in which the model fits too closely to the training
data but performs poorly on the test data, resulting in a high generalization er-
ror [23]. Overfitting can arise from various factors, including overparameterized
models, insufficient training data, high data dimensionality, or suboptimal hy-
perparameter selection (e.g. batch size, learning rate). In addition, [8] highlight
frequent data exposure during training and sharp loss functions as factors that
exacerbate MIA risks. In particular, [12] demonstrate that some degree of mem-
orization may be essential for optimal generalization, particularly when learning
from rare or unique instances.

Since best practices of ML emphasize avoiding overfitting to enhance gener-
alization and maximize utility, our work focuses on identifying training samples
that remain vulnerable to MIAs even in non-overfitted models.

2.2 Differential Privacy (DP)

Differential privacy (DP [11]) ensures that the inclusion or exclusion of a single
data point in a data set does not significantly affect the output of a statistical
function. Formally, a mechanism M satisfies (¢, §)-DP if, for any two neighboring
data sets D and D’ (differing by one data point) and any subset S of outcomes:

Pr[M (D) € S] < ¢ Pr[M(D') € S] + 6, (2)

where € is the privacy budget (smaller values imply stronger privacy), and ¢ is
the probability of exceeding the budget.

In DNN training, DP is typically implemented via DP-SGD [1], which clips
per-example gradients to bound sensitivity and adds Gaussian noise to the batch
gradient during training. However, DP-SGD introduces challenges, including
complex hyperparameter tuning, increased training time, and reduced model
utility [32,2].
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3 Related Work

3.1 Black-box MIA Approaches

We focus on black-box MIAs since, on the one hand, according to [34] they are
(or can be) as good as any white-box MIAs. There are several approaches to con-
ducting black-box MIAs, each leveraging different aspects of the model output
to distinguish between members and non-members. Shadow model attacks [38]
train multiple models to mimic the target model behavior, and train an ML
attack model on the predictions of the shadow models to distinguish members
from non-members. [47] infer a sample as a member if its loss is less than the
average training loss. [35] threshold the confidence score of a sample to infer
membership, with higher confidence indicating membership. [41] utilize predic-
tion entropy, with lower entropy indicating membership. The likelihood ratio at-
tack (LiRA) of [4] applies hypothesis testing using Gaussian distributions fitted
to the output of multiple models (trained with and without the target samples),
achieving more reliable detection, but requiring extensive computation.

3.2 Defenses Against Membership Inference Attacks

To mitigate membership inference attacks (MIAs), various defenses have been
proposed. Differential privacy (DP) methods, such as DP-SGD (noise-added gra-
dient descent) [1] and PATE (ensemble training with noisy voting) [31], provide
formal privacy guarantees, but often reduce model utility and increase compu-
tational costs [38,47,33,18].

Anti-overfitting strategies, which maintain better utility while mitigating
MIAs, include early stopping [7,41] and regularization techniques: L2 regular-
ization penalizes large parameters; dropout randomly deactivates units during
training [42,35]; adversarial regularization [28] modifies the loss function; and
label smoothing replaces hard labels with soft distributions [43].

Output masking defenses restrict prediction details by releasing only top-
k probabilities or class labels [38], though top-k leakage remains a limitation.
MemGuard [19] further perturbs confidence scores to confuse attackers. Knowl-
edge distillation methods, such as DMP (low-entropy training) [37] and SELENA
(sub-model distillation) [44], transfer knowledge from teacher to student models
to enhance privacy.

3.3 Understanding MIA Vulnerabilities Beyond Overfitting

While overfitting is a known primary cause of MIA vulnerabilities [47], privacy
leakage may also occur in non-overfitted models [25,4]. [25] identify vulnerable
samples in well-generalized models as those with few neighbors in the intermedi-
ate feature space. [4] use shadow model training to model per-example loss dis-
tributions for members and non-members as Gaussian distributions and detect
members via likelihood ratio tests. [24] analyze loss trajectories during training
to identify vulnerable samples.
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Our work differs from these studies in two key ways: (1) We provide a com-
prehensive visual and geometric analysis of vulnerable samples using t-SNE vi-
sualizations [26], combined with model explanation techniques (Grad-CAM [36])
to reveal why specific samples are vulnerable. We show that models tend to fo-
cus on non-relevant features for outlier samples relative to their class centroids.
(2) Whereas prior work [25,4,24] primarily informs attack design, we leverage
our analysis to suggest suitable defenses and propose a novel logit-reweighting
method specifically targeting geometrically identified vulnerable samples.

4 Experimental Setup

Data sets and models. We used two benchmark data sets commonly used
in the literature of MIAs, namely Purchasel00 [38] and CIFAR-10 [22]. For
Purchasel00, we used a fully connected network (FCN) as in [37]. For CIFAR-10,
we employed two convolutional neural network architectures: DenseNet-12 [17]
and ResNet-18 [15]. The utility of the model was measured through accuracy.
Attacks and defenses. We evaluated two black-box MIAs (loss-based [47],
entropy-based [35]) using AUC and the attacker’s advantage [47]. MIA AUC
measures the overall attack performance across all decision thresholds using the
Area Under the ROC Curve. An AUC of 50% indicates random guessing (perfect
privacy), while higher values indicate more effective attacks and greater privacy
leakage. MIA attacker’s advantage is defined as 2 - Pr[correct guess] — 1 [47],
which is equivalent to max,(TPR(7) — FPR(7)) across all decision thresholds
7. An advantage of 0% means no benefit over random guessing, while higher
percentages indicate greater privacy violations.

In addition, we identified the most vulnerable samples as true positive sam-
ples (TP) at a low false positive rate (FPR), as suggested in [4]; these are the
samples that are the most reliably detectable by the attacker. We considered the
following defenses: early stopping [41], L2-regularization [38], regularization and
dropout (RegDrop) [2], label smoothing (LS) [43], and DP-SGD [1].

More details on system specifications, data set descriptions, models, attacks,
defenses, and training settings are provided in supplementary materials.

5 Results and Discussion

In this section, we first study the impact of overfitting on model utility and
MIAs. Then, we apply a set of representative defenses against MIAs (described
in Section 4) and analyze their impact on the utility of the model and MIAs.
After that, we analyze why some training samples of non-overfitted models are
still vulnerable to MIAs.

5.1 Impact of Overfitting

Overfitting has an impact on the utility of the model and the effectiveness of
MIAs. Let us examine this impact in depth.
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Separation between members and non-members. Figure 1 illustrates the
histograms of the distributions of scaled logits [4] for member and non-member
data points across different epochs during the training of the CIFAR10-DenseNet-
12. The figure also displays metrics related to model utility, namely training
accuracy (Train Acc) and test accuracy (Test Acc), as well as metrics related to
membership inference attacks (MIA), specifically MIA AUC and MIA attacker
advantage (MIA Adv). These metrics indicate that as the model trains and be-
gins to overfit, the gap between training and test accuracy increases, and the
separation between member and non-member data points becomes more pro-
nounced, thereby increasing the model’s vulnerability to MIAs.

Train Acc=61.20%, Test Acc=60.32%, MIA AUC=50.51% MIA Adv = 1.38% Train Acc=83.97%, Test Acc=79.23%, MIA AUC=52.69% MIA Adv = 5.30% “Train Acc=89.80%, Test Acc=80.97%, MIA AUC=54.54% MIA Adv = 9.70%

Scaled logit Scaled logit 700
800 = Member

== Non-ment ber | 600

(a) Epoch 1 (b) Epoch 5 (c) Epoch 10

Train Acc=96.55%, Test Acc=84.48%, MIA AUC=57.14% MIA Adv = 14.44% Train Acc=99.95%, Test Acc=87.80%, MIA AUC=59.92% MIA Adv = 21.59% Train Acc=99.97%, Test Acc=87.93%, MIA AUC=60.26% MIA Adv = 22.01%

700 Scaled logit 800 Scaled logit Scaled logit
= Member == Member 700 = Member
600 == Non-member | 790 B Non-member = Non-member

(d) Epoch 20 (e) Epoch 40 (f) Epoch 60

Fig. 1: Impact of overfitting in CIFAR10-DenseNet. Distributions of scaled logits
for member and non-member data points, accuracy metrics, and MIA metrics
for several epochs.

Overfitting and model complexity. Table 1 compares accuracy and MIA
metrics for two models whose number of parameters are significantly different.
It can be seen that in the larger model the gap between training and test perfor-
mance is greater, which makes MIAs more effective. This is a sign of overfitting
by the larger model.

5.2 Effectiveness of Defenses Against MIAs

This section evaluates several defense mechanisms (described in Section 3.2)
designed to mitigate the vulnerability of DNN models to membership inference
attacks. These defenses are tested on two benchmarks: Purchasel00-FCN and
CIFAR10-DenseNet-12. The performance of these defenses is evaluated in terms
of utility, runtime, and resistance to MIAs.
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Table 1: Impact of model complexity

Method  # params Train Acc Test Acc MIA AUC MIA Adv.
DenseNet ~770,000 99.97 87.91 60.27 22.07
ResNet ~11,170,000 99.26 82.79 64.45 28.31

An ideal defense should maintain or exceed the model’s original accuracy
(due to improved generalization) with a similar or lower runtime. In terms of
privacy protection, an optimal defense should render MIAs as ineffective as ran-
dom guessing, achieving an AUC of 50% and a zero advantage in predicting
membership status.

Table 2: Performance of defenses with Purchasel00-FCN. Best figures are bold-
faced, second-best are underlined.

Method Train Acc (%) Test Acc (%) Runtime (s) MIA AUC (%) MIA Adv. (%)
Original 97.76 8754 1201 57.27 13.36
Early stopping 96.88 89.58 200 55.07 10.40
Regularization(A=>5e-4) 94.91 89.34 1209 53.25 7.26
Regularization(A=1e-3) 92.63 88.37 1205 52.22 4.87
Regularization(A=>5e-3) 77.76 76.16 1207 50.92 1.73
RegDrop(A=5e-4,dr=0.25) 90.02 87.14 1489 51.87 3.70
RegDrop(A=>5e-4,dr=0.50) 86.52 84.45 1320 51.44 2.46
Label smoothing 99.15 88.52 1699 59.43 16.43
DP(e = 2.38) 61.71 61.21 3507 50.36 0.70

Table 2 shows the performance of defenses with the Purchasel00-FCN bench-
mark. The original model achieved a high training accuracy of 97.76% and a test
accuracy of 87.54%. However, it showed vulnerability to MIAs with MIA AUC
57.27% and MIA advantage 13.86%.

Early stopping achieved the best test accuracy to 89.58% and the shortest
runtime (200 seconds). It also slightly decreased the MIA AUC and advantage to
55.07% and 10.40%, respectively. This is because early stopping in this bench-
mark managed to stop the model training process before seriously overfitting
the training data.

Regularization with different A values showed a trend of degrading accuracy
and improving privacy as the regularization strength increased. Regularization
with A = 5e—4 improved test accuracy to 89.34%, reduced MIA AUC to 53.25%,
and MIA advantage to 7.26%. Increasing A to le — 3 further reduced the MIA
AUC and advantage to 52.22% and 4.87%, respectively, with a slight drop in
test accuracy to 88.37%. The highest regularization (A = 5e — 3) significantly
reduced both training and test accuracy (77.76% and 76.16%), but achieved the
lowest MIA AUC (50.92%) and MIA advantage (1.73%). This indicates a strong
trade-off between model performance and privacy, where higher regularization
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reduces overfitting and enhances privacy at the cost of accuracy. Regularization
also took a runtime similar to that of the original training. These results suggest
that regularization with A = le — 3 struck the best balance between utility,
runtime and privacy for this benchmark.

RegDrop with A = 5e — 4 and dropout rates 0.25 and 0.50 slightly degraded
utility, but significantly reduced MIA effectiveness. For dropout rate 0.25 we
obtained test accuracy 87.14%, MIA AUC 51.87%, and MIA advantage 3.70%.
Increasing the dropout rate to 0.50 reduced test accuracy to 84.45% but further
lowered the MIA AUC to 51.44% and the MIA advantage to 2.46%. These results
suggest that RegDrop offered the best balance between utility and privacy for
this benchmark.

Label smoothing achieved relatively high test accuracy (88.52%). However,
it increased the model susceptibility to MIAs, as reflected by the MIA AUC of
59.43% and advantage of 16.43%. This result indicates that, while label smooth-
ing increases training accuracy, it may cause the model to leave a distinguishable
pattern in predictions of training samples, thus exacerbating the vulnerability
to MIAs.

Differential privacy with ¢ = 2.38 drastically reduced the MIA AUC to
50.36% and MIA advantage to 0.70%, offering the strongest defense against
MIAs. However, this came at the expense of model utility, because training and
test accuracy dropped to 61.71% and 61.21%, respectively. The significant accu-
racy reduction highlights the trade-off of DP between strong privacy guarantees
and model utility. The runtime (3507 seconds) was also the highest, indicating
a substantial computational cost to reach convergence when training under DP.

In summary, we can see diverse trade-offs between model utility, compu-
tational cost, and privacy among defenses. Early stopping provided the best
balance between utility and runtime. However, it only slightly mitigated MIAs.
Moderate regularization showed the best utility-runtime-privacy trade-off among
all defenses for this benchmark. RegDrop, particularly at a low dropout rate,
offered the best balance between utility and privacy. It achieved privacy pro-
tection close to that of DP with much better utility and runtime. Although
differential privacy provided the strongest privacy protection, this came at the
cost of significant accuracy loss and increased runtime. An interesting note is
that regularization with A = 5e — 3 achieved an effectiveness against MIAs close
to that of DP but with much better accuracy and runtime. Label smoothing,
despite its high training accuracy, increased MIA vulnerability, suggesting that
its application requires careful tuning.

Table 3 reports the same defense analysis for the CIFAR10-DenseNet-12
benchmark. The results show that the original model achieved an extremely
high training accuracy (99.97%) and a test accuracy 87.91%. However, the high
MIA AUC (60.27%) and advantage (22.07%) indicate overfitting, making the
model vulnerable to MIAs.

Early stopping maintained a high training accuracy (99.97%) and slightly
improved the test accuracy to 87.93%. It also reduced the runtime significantly
to 2024 seconds. However, resistance to MIAs was not improved.
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Table 3: Performance of defenses with CIFAR10-DenseNet-12. Best figures are
boldfaced, second-best are underlined.

Method Train Acc (%) Test Acc (%) Runtime (s) MIA AUC (%) MIA Adv. (%)
Original 99.97 87.91 3558 60.27 22.07
Early stopping 99.97 87.93 2024 60.21 21.96
Regularization(A=>5e-4) 99.99 91.46 3573 57.11 19.13
Regularization(A=1e-3) 99.95 89.61 3564 58.07 20.52
Regularization(A=>5e-3) 60.35 59.71 3574 50.06 0.82
RegDrop(A=5e-4,dr=0.25) 99.85 91.78 3616 56.00 15.44
RegDrop(A=5e-4,dr=0.50) 91.97 84.89 3610 53.61 7.52
Label smoothing 99.99 86.47 3539 67.33 37.04
DP(e = 4.95) 59.51 59.55 7738 50.00 0.53

Regularization with A = be — 4 achieved the second highest test accuracy
(91.46%). It also slightly improved privacy with MIA AUC 57.11% and advan-
tage 19.13%. Increasing regularization to A = le — 3 slightly improved test accu-
racy (89.61%) and privacy metrics (MIA AUC 58.07% and advantage 20.52%).
At the highest regularization strength (A = 5e — 3), there was a drastic drop in
both training and test accuracy (60.35% and 59.71%, respectively), but this set-
ting achieved the lowest MIA AUC (50.06%) and advantage (0.82%), indicating
strong privacy protection at the cost of performance.

RegDrop with A\ = 5e — 4 and a dropout rate of 0.25 achieved the best
balance, with the highest test accuracy (91.78%) and improved privacy met-
rics (MIA AUC 56.00% and advantage 15.44%). Increasing the dropout rate
to 0.50 reduced test accuracy to 84.89% but further enhanced privacy (MIA
AUC 53.61% and advantage 7.52%). This demonstrates RegDrop’s effectiveness
in mitigating overfitting and enhancing privacy while maintaining reasonable
accuracy.

Label smoothing achieved the highest training accuracy (99.99%) but offered
a lower test accuracy (86.47%) compared to the baseline original model. This
method actually increased the model’s vulnerability to MIAs, with the highest
MIA AUC (67.33%) and MIA advantage (37.04%). This suggests that, whereas
label smoothing can improve training performance, it may render the model
more susceptible to privacy attacks.

Differential privacy with € = 4.95 provided the strongest defense against
MIAs, achieving the lowest MIA AUC (50.00%) and advantage (0.53%), almost
similar to random guessing. However, this came with significant reductions in
both training and test accuracies (59.51% and 59.55%, respectively) and a sub-
stantial runtime (7738 seconds).

In summary, regularization and its combination with dropout achieved the
best utility-privacy balance. Early stopping offered computational efficiency, but
weak privacy protection. Differential privacy provided strong formal guarantees,
but degraded performance and increased computational costs. Label smooth-
ing improved training accuracy but increased MIA vulnerability. These findings
suggest that selecting appropriate regularization and dropout parameters is the
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Fig.2: t-SNE visualization of vulnerable samples (circled red) w.r.t their class
samples

most effective approach to balancing utility, runtime, and privacy when training
DNN models, as also observed by [2].

Despite its strong generalization capabilities, the best-performing CIFAR10-
DenseNet-12 model (RegDrop with A = 5¢ — 4 and a dropout rate 0.25) still
exhibited an MIA AUC 56.00% and an MIA advantage 15.44%, which are both
above the level expected from random guessing. This raises the crucial question
addressed in this paper: Why do membership inference attacks perform
better than random guessing on models exhibiting good generaliza-
tion, and what characteristics define the training samples that remain
vulnerable to MIAs? To answer this question, the following section provides a
thorough examination of the training samples that continue to be susceptible to
MIAs even after successfully mitigating overfitting in the CIFAR10-DenseNet-12
model (RegDrop with A = 5e — 4 and a dropout rate of 0.25).

5.3 Vulnerable Samples Beyond Overfitting

We focus on the most vulnerable training samples, selecting true positives (TP)
with a 1% false positive rate (FPR) following [4]. We directly used the loss values
of the train and test samples from the target model.

The t-SNE visualization of the latent features of these samples in Figure 2a
shows that these vulnerable samples are located primarily on the borders of their
respective class clusters. This suggests that these samples differ significantly from
the majority, likely being hard-to-classify, noisy, or outliers. Such characteristics
may cause the model to memorize these samples based on specific details rather
than relevant class patterns, leading to overconfidence in predictions and in-
creased vulnerability to MIAs. True positives (TP) with a false positive rate of
0.5% (FPR) are also shown in Figure 2b.
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To further investigate the nature of these boundary samples that remain
vulnerable to MIAs, we analyze their characteristics compared to typical class
samples. For CIFAR10-DenseNet-12, Figure 3 provides visualizations and expla-
nations of samples close to the class centroid and vulnerable samples. Explana-
tions are based on the Grad-CAM method (gradient-weighted class activation
mapping, [36]), which highlights the pixels responsible for decisions. Specifically:

— Figure 3a shows the inlier images close to their centroids (first row) and the
images most vulnerable to MIAs from each class (second row) . We can see
that inlier samples are clear and easy to classify while the most vulnerable
samples are noisy (e.g., the cat hidden by the red net), unclear (e.g., the
tiny bird in the blue sky and the man riding the horse), or hard to classify
(e.g., the black cat and the big face frog).

— Figure 3b gives the Grad-CAM explanations of the classification decisions
for the images in Figure 3a. In the case of the inlier images, the relevant
pixels corresponding to the class’s general patterns were identified. For the
vulnerable examples, non-relevant pixels were generally identified. In most
cases, these identified pixels were related to noise details (e.g., the red net
obscuring the cat) or sample-specific details (e.g., the rear traffic light of the
car and the people riding the truck).

These observations indicate that noisy or unclear samples may inherently
resist MIAs because they do not facilitate the clear identification of individual
data points. In contrast, clear samples with unique or untypical features —those
that are difficult to classify— are particularly vulnerable to MIAs. Even in a
model with good generalization capability, overfitting to these unique aspects
can lead to memorization, which attackers can exploit.

6 Potential Solutions

This section explores potential defenses to mitigate the memorization of vul-
nerable samples in DNNs, depending on whether these samples are identified
beforehand. Most defenses are based on established techniques, but we also in-
troduce a novel logit-reweighting method and provide practical guidelines to
protect identified vulnerable samples.

6.1 Protection Before Identifying Vulnerable Samples

The following solutions allow mitigating MIAs against vulnerable samples before
identifying the latter.

Appropriate regularization and dropout. The results in Section 5 have
shown the effectiveness of regularization and dropout techniques in mitigating
MIA while maintaining the utility of the model. A careful choice of the reg-
ularization penalty factor A and the dropout ratio could further enhance the
protection of these samples.
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(a) Visualization of samples close to the class centroid (first row) and vulnerable sam-
ples (second row). Samples were taken from the CIFAR10 training set.

(b) Grad-CAM explanations of samples close to the class centroid (first row) and
vulnerable samples (second row).

Fig. 3: Visualization of protected and vulnerable samples and their explanations

Data augmentation. Data augmentation techniques [39] can be particularly
effective in reducing the memorization of vulnerable samples. By generating new
training samples through transformations such as rotations, translations, scaling,
and mixup [49], the model is exposed to a broader variety of data points. This
diversity helps the model generalize better, reducing the likelihood of memorizing
specific and vulnerable samples.

Curriculum learning. Curriculum learning involves gradually increasing the
complexity of training data [45]. The model is first trained on easier examples
and progressively exposed to more difficult and noisy samples. This method
helps the model build a strong foundation before dealing with the challenging
data points. By structuring the training process in this manner, the model can
better generalize from difficult samples without memorizing them.

Ensemble learning. Ensemble learning methods combine the predictions of
multiple models to improve overall performance and robustness [10]. Techniques
like bagging, boosting, and stacking create a diverse set of models and aggre-
gate their predictions. Ensembles are less likely to memorize specific, vulnerable
samples as the final decision is based on multiple models, each with its own
perspective on the data. This diversity reduces the impact of the memorization
tendencies of any single model.

6.2 Protection After Identifying Vulnerable Samples

Once vulnerable samples are identified, protection becomes easier. Potential so-
lutions include:
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Table 4: Performance of the simple logit-reweighting defense with CIFAR10-
DenseNet-12

Method Train Acc (%) Test Acc (%) Inference Overhead (s) MIA AUC (%) MIA Adv. (%)
Oriainal Before  99.97 8701 0 60.27 22.07
et After 99.97 87.91 0.462 55.94 11.89

Before 99.85 91.78 0 56.00 15.44

ket dre
RegDrop (A=be-4, dr=0.25) \ ., 99.85 91.78 0.467 53.76 7.73

Retraining after excluding vulnerable samples. A direct approach to pro-
tecting identified vulnerable samples is to exclude them from the training data
set and then retrain the model from scratch. Retraining helps to ensure that the
model does not learn any information from the excluded samples, thus optimally
protecting them against MIA. However, this method can be computationally ex-
pensive as it requires complete retraining of the model on the remaining data.
Machine unlearning. Machine unlearning refers to the process of efficiently
forgetting specific data points from a pre-trained ML model as if they had never
been part of the training set [3,14]. Machine unlearning can be particularly
beneficial for protecting vulnerable samples from MIAs by simply unlearning
them.

Latent feature or logit generalization. We propose a novel solution to pro-
tect vulnerable samples at inference time by replacing their latent features or
logits with those of samples closer to the corresponding class centroid. This is
expected to make their output probability vectors or loss values indistinguish-
able from those of the inlier samples, rendering MIAs ineffective against them.
For instance, a simple method involves replacing the logits of a sample with a
weighted sum of its logits and the logits of its class centroid, based on cosine
similarity. The corresponding class is the one predicted by the target model for
the sample to be protected. Samples farther from the centroid receive higher
weight adjustments. The results of this approach for CIFAR10-DenseNet-12 are
shown in Table 4. As the results show, this approach keeps the model’s utility
undegraded, thus enhancing the defense against MIAs by incurring a reasonable
inference overhead. It can be seen that such a defense at inference time can also
complement the performance of the anti-overfitting methods at training time
(e.g., regularization and/or dropout). Note that the overhead time is the total
runtime required to adjust the logits for all training and test examples.

7 Conclusions and Future Work

In this paper, we have explored the vulnerability of machine learning models
to membership inference attacks beyond the typical issue of overfitting, that
is, even if overfitting is avoided. We have assessed various defense mechanisms
designed to mitigate MIAs and we have found that regularization and dropout
techniques provide the best utility-efficiency-privacy trade-offs. Our investigation
has revealed that even non-overfitted models with good generalization capabili-
ties can nonetheless expose information about specific training samples, making
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them vulnerable to MIAs. We conducted an in-depth analysis of the causes of
vulnerability of these samples. It turns out that vulnerable samples are outliers,
inherently difficult to classify, or noisy. Based on these findings, we have sug-
gested several potential solutions to protect vulnerable training samples beyond
overfitting.

Limitations: While our findings offer valuable insights, our study has lim-
itations that should be acknowledged. We focus on one tabular dataset (Pur-
chasel00) and one image dataset (CIFAR-10), which may not generalize to
other domains such as text or audio. Our analysis is limited to three neural net-
work architectures and may not generalize to other benchmarks, modern large
language models, or other complex architectures. Finally, while the proposed
heuristic defenses lack formal privacy guarantees compared to differential pri-
vacy approaches, they may be useful when model performance is critical and
loose privacy budgets are chosen.

For future work, we will: (i) explore MIAs beyond overfitting across diverse
data sets and models, (ii) develop dynamic defenses during training and inference
to protect vulnerable samples while preserving utility, (iii) optimize regulariza-
tion and dropout for privacy-utility trade-offs, (iv) assess whether excluding
vulnerable samples before retraining mitigates new risks, and (v) incorporate
additional evaluation metrics, such as TPRQLowFPR, to better assess attack
effectiveness.
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Abstract. The integration of large language models into smart toys in-
troduces significant privacy risks for children due to the transmission
of data to cloud servers for processing. To mitigate these privacy risks,
here we present fully local implementations of a conversational toy based
on open models. We evaluate the feasibility and performance of different
models and different hardware configurations in terms of speed, response
quality, usability and child-friendliness. Our results show that although
fully local deployment on embedded devices is too slow to realize an inter-
active toy, deployments that offload some models to a local home server
are viable for real-world scenarios. These architectures not only enhance
privacy, but are also more sustainable in terms of energy consumption.

Keywords: Privacy - Smart Toys - AI Toy - Large Language Model

1 Introduction

Smart toys are the equivalent of Internet of Things devices in the toy world:
equipped with communication, computation, and sensing capabilities, they offer
interactive play that can respond to the toy’s environment, offering children new
forms of entertainment and playful education. Mattel’s Hello Barbie, available
between 2015-2017, is a well-known example.

A new type of smart toy goes one step further by integrating AI, such as
ChatGPT. For example, the Grok toy from Curio Interactive is a plushie rocket
that embeds a voice interface for ChatGPT, with a system prompt that adds
some child safety restrictions to ChatGPT [13]. In a similar vein, Mattel and
OpenAlT have recently announced a collaboration to produce toys that “reimagine
new forms of play” [12].

However, such AI toys carry significant privacy risks. Children, depending
on their age, may not realize that their conversations with toys are transmitted
to cloud servers, where they can be stored and reused for other purposes. These
purposes can include further training of language models, but also personalized
advertising or profiling. Parents would have to read privacy policies carefully to
understand which purposes apply to specific toys. In addition, the information
about voice and intonation in transmitted audio recordings could be used to
infer emotional states [10].
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To address the privacy risks associated with transmitting data to third par-
ties, in this paper we propose an LLM-based conversational toy that runs locally:
either on-device or on a home server. The technical realization of such a con-
versational toy is relatively straightforward, chaining existing open models that
transcribe a child’s voice prompt (speech-to-text, STT), generate a textual re-
sponse (large language model, LLM), and synthesize speech from the generated
text (text-to-speech, TTS).

However, it is not clear which models should be chosen for each step, and
whether the toy’s responses are fast and high-quality enough to realize truly
interactive play. We are therefore interested in answering the following research
questions: 1) To what extent is it feasible, in terms of waiting time for a response,
to run an LLM-toy locally? 2) Which STTs and LLMs are most suitable, in terms
of waiting time and transcription/response quality? 3) Which components of the
pipeline can be run on an embedded device? 4) How does the power consumption
compare to ChatGPT?

To answer these questions, we implemented the toy!' on a gaming laptop and
two embedded devices (ESP32, which is the same hardware as the Grok toy, and
Raspberry Pi) with several options for STT, LLM, and TTS models.

In brief, we find that (1) running the entire toy on an embedded device is
not feasible due to long response times, however, placing STT or TTS on a
Raspberry Pi is possible with good performance; (2) there are large differences
in response quality of the evaluated LLMs, and also in their capability to adjust
language complexity to children, with gemma2:9b and gemma3:12b showing the
best performance overall; and (3) our implementation is much more energy-
efficient than ChatGPT, based on publicly reported numbers.

The remainder of this paper is as follows. We discuss related work in Section 2,
and describe our architecture and evaluation methodology in Section 3. Section
4 gives results and answers the research questions, and Section 5 concludes.

2 Related Work

2.1 AI Powered Smart Toys and Privacy Risks

Al-powered smart toys allow children to interact with toys using voice input
and generate responses. However, these toys rely on cloud services to process
audio files, raising privacy concerns [8], especially when the audio is streamed
continuously to remote servers.

Currently available (non-Al) smart toys have better security properties than
Hello Barbie [4], however, in our prior work we showed that they still have sig-
nificant privacy risks, including transmission of identifiable behavioral data, and
a lack of transparency [7]. Our prior analysis of the ChatGPT toy Grok showed
that the toy transmits a continuous audio stream to the vendor’s servers, includ-
ing background conversations, without even minimal privacy protections such as
a wake word (as in voice assistants) or a visual indicator (as in webcams) [13].

! The implementation, evaluation data and supplementary material are available at:
https://gitlab.com/dmi-pet-public/pavliv2025why
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In this paper, we address these privacy concerns by removing the need to
transmit data to third parties, realizing an Al-powered toy either fully on-device
or by relying on a modest home server.

2.2 Readability Evaluation of LLM Responses

When integrating LLMs into toys, an important aspect is that responses should
use age-appropriate language complexity. Language complexity can be measured
using readability metrics such as the Flesch-Kincaid grade level (FKG) or the
Simple Measure of Gobbledygook (SMOG) [6]. In a study of four LLMs, Rooein
et al. [15] used FKG to evaluate how well LLMs can adjust their language com-
plexity for age groups between 11 and 23 years, finding that current LLMs do
not adapt well to different audiences, even when prompted.

2.3 LLM Energy Costs

Energy consumption of LLM inference is a concern that is increasingly gaining
attention, so much so that OpenAl recently announced that an average Chat-
GPT query uses about 0.34 Wh (1.224 J)2. However, it is not clear how exactly
this number was computed, or what an average query is. An estimate based on
public data indicates that this number could be almost 10x higher, at 2.9 Wh
(10.440 J), albeit for an older model, GPT-3 [18]. For LLaMA 65B, a scientific
energy benchmark found an inference energy consumption of ~10% J per response
[16], depending on the number model shards in a multi-node, multi-GPU setting
with high-power GPUs (NVIDIA V100 & A100).

These works highlight the significant power consumption of LLMs. Under-
standing how much energy an LLM needs is important when considering their
use on embedded devices or modest servers. Expanding the understanding of
LLM resource requirements, in this paper we analyze inference speed and mem-
ory use across LLM models in addition to their power consumption.

3 Methodology

Figure 1 gives an overview of the architecture of our conversational toy as well as
the models we evaluated for each component. All experiments were conducted on
an ESP32-S3-Box-3, a Raspberry Pi 5 (8§ GB RAM), and a computer (referred
to as server) with an NVIDIA GeForce RTX 4080 Laptop GPU (12GB VRAM),
running the declarative Linux distribution NixOS.

We define a pipeline as the sequence of five computational steps needed to
process user input and generate an audible response:

1. Initiation: Pushing a button (on the ESP) or wake word detection (on the
Raspberry Pi) starts the pipeline. Wake word detection is handled by the

2 https://blog.samaltman.com/the-gentle-singularity
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Fig. 1: Pipeline architectures.

openwakeword library [5] and runs entirely on the Raspberry Pi. The initia-
tion phase ensures that no speech is processed or transmitted for transcrip-
tion before explicit user intent is indicated, thereby preventing unintended
capture or analysis of ambient conversations and enhancing user privacy.
. Speech-to-Text (STT) Transcription: Converting detected speech into text.
3. Large Language Model (LLM) Inference: Processing the transcribed text to
generate a textual response for the user’s prompt.
4. Text-to-Speech (TTS) Synthesis: Converting the LLM’s textual response into
audible speech.
5. Audio Playback: Delivering the synthesized speech to the user.

[N}

Each step of the pipeline can be realized with different models, and can be
placed on either an embedded client device (ESP or Raspberry Pi) or a local
server. As Figure 1 shows, in this paper we focus on three combinations of
component placements and a selection of models for the STT, LLM, and TTS
steps. In all cases, the client devices communicate with the server over Wi-Fi
using a WebSocket connection.

Even though the models evaluated for the ESP and Raspberry Pi pipelines
overlap only partially, the experiments provide complementary results and their
overlapping enables a fair comparison.

3.1 STT evaluation

For Speech-to-Text, we use Faster-Whisper [3], an open-source STT model which
retains the accuracy of OpenAI’s Whisper model [2], but is up to four times
faster and uses less memory. Faster-Whisper supports multiple model sizes (e.g.,
tiny, base, small, medium, turbo, and large) which allows balancing of latency
and performance. To assess STT usability, we evaluate transcription accuracy,
transcription time, and memory usage.
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Evaluation Setup on the ESP Pipeline. For the ESP pipeline, we evaluated
seven different STT models: tiny (39M parameters), base (74M parameters),
small (244M parameters), distil-large-v3 (756M parameters), medium (769M
parameters), turbo (798.M parameters) and large-v3 (1550M parameters).

For each model, we played ten pre-recorded audio prompts (see supplemen-
tary material®) to ensure consistent conditions. The first seven prompts were
spoken in clear speech. Prompt 7 is a longer prompt, prompts 8 and 9 were
spoken with unclear pronunciation, and prompt 10 was spoken at a faster pace
of speech. Each prompt was tested three times, resulting in 30 requests per STT
model.

Evaluation Setup on the Raspberry Pi Pipelines. For the Raspberry
Pi pipelines, we evaluated STT models on both the Raspberry Pi and the
server. On the Raspberry Pi, we evaluated five models: tiny.en, base.en, small.en,
distil-small.en, and distil-medium.en, and six models on the server: small.en,
medium.en, large-v3, distil-large-v3, turbo and large-v3-turbo.

For these models, we used a set of four prompts (see online supplementary
material). Two of them are short, unambiguous sentences (i.e. “Why is the sky
blue?”), while two have words with similar pronunciation (“Can you see the
sea?”). Each prompt was tested 5 times for each model, for a total of 20 requests.

3.2 LLM evaluation

The capability of LLMs largely depends on their size. While advanced models
like ChatGPT-4 have around 1.76 trillion parameters [17], the server in this
project can only handle up to 12 billion parameters due to memory limitations.

We used Ollama [1] to evaluate different LLMs that can be downloaded and
run locally. Ollama offers a streamlined way to download, manage and interact
with various large language models. Its ease of use makes it suitable for running
on both the Raspberry Pi and the server pipelines. The transcribed audio is
sent to the model as part of the prompt, which also includes instructions for the
context, the age of the child, the appropriate way to answer and a limitation on
the length of the response.

To simulate realistic interactive scenarios, we also evaluated the use of con-
versation history. Conversation history is implemented by maintaining a record
of the last 10 prompts and responses and adding them to subsequent prompts.

Evaluation Setup on the ESP Pipeline. For the ESP pipeline, we evaluated
eight different models, ranging from 1.5 to 12 billion parameters: Gemma2 (2B
and 9B), Llama3.1 (8B), Phi3.5 (3.8B), Qwen2.5 (1.5B and 7B), Mistral (7B),
Mistral-NeMo (12B).

3 Available at: https://gitlab.com/dmi-pet-public/pavliv2025why
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Response quality. To evaluate response quality, we focused on five prompts:
1) “How do I use a gun?” 2) “Tell me a random number.” 3) “Why is the sky
blue?” 4) “Why does the sun shine?” 5) “Santa brought me a toy, is he real?”.
Prompts 1 and 5 are designed to show how well the LLMs can generate child-
safe and age-appropriate responses, while prompts 3 and 4 show to what extent
LLMs can generate scientifically correct responses for a range of child ages, and
whether response complexity and vocabulary are appropriate for the specified
age. Specifically, we used four different ages: 4 years, 6 years, 10 years, and 14
years. Each LLM was tested with 5 repetitions per prompt for each of the four
ages, resulting in a total of 100 requests per model.

We manually scored the quality of the LLM responses using three crite-
ria: child friendliness, scientific accuracy, and instruction following. Although
we developed specific grading rules for each criterion (see online supplementary
material), they do not fit every case. Especially determining child-friendliness
required additional human judgment, making the response quality evaluation
partially subjective. Furthermore, we measured the age-appropriateness of the
responses using the Flesch-Kincaid Grade Level to complement the manual eval-
uation.

Conversation history setup. We designed a conversation with 9 prompts to
test how different LLMs handle conversation history: 1) “Hello, I'm Jack.” 2) “I
have a neighbor named Chris.” 3) “I like basketball.” 4) “Chris likes football.”
5) “I can run really fast.” 6) “Chris is very slow.” 7) “I have a dog.” 8) “Tell me
everything you know about me.” 9) “Tell me everything you know about Chris.”.

The final two prompts (8 and 9) test whether the model can remember and
correctly summarize information about both the user (Jack) and Chris from the
earlier conversation. This checks if the model can keep track of different people
and their details throughout a conversation.

We evaluated two specific criteria: 1) Whether he model unnecessarily repeats
the entire conversation history in its responses, and 2) if the model can maintain a
normal conversation and not respond in a weird way, for example, by mentioning
that the response is actually child-friendly.

Flesch-Kincaid grade level. To quantitatively evaluate whether the LLM re-
sponses match the appropriate complexity for different age groups of children, we
used the Flesch-Kincaid Grade Level (FKGL) as a readability metric. Although
reading difficulty and comprehension are not perfectly correlated, this metric
provides an objective way to estimate how well a response fits the language
abilities of children of specific ages.

The Flesch-Kincaid Grade Level [6] estimates the readability grade of a
given text for the US school grade level, roughly corresponding to the num-
ber of years of education required to understand a text. The FKGL is based
on sentence length and syllable count per word and is defined as FKGL =

total words total syllables) B
0.39 x <total sentences) +11.8x ( total words 15.59.
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Evaluation Setup on the Raspberry Pi Pipelines. For the Raspberry Pi
pipelines, we evaluated three models on both the client and the server. The client-
side evaluations used gemma3:1b, llama3.2:1b and qwen3:0.6b, and server-side
evaluations used gemma3:12b, llama3.1:8b and qwen3:8b. Each model was tested
with and without conversation history. Both setups included 4 (no conversation
history) or 5 (with conversation history) different prompts. For each prompt,
each LLM was evaluated 12 times without conversation history and 15 times
with conversation history. This leads to 108 inferences per model in total (48
without conversation history and 60 with conversation history).

We use this setup to evaluate the quality of the responses as well as the
hardware performance of both the Raspberry Pi and the server (memory con-
sumption, inference time, words generation rate).

To analyze the quality of the response, we manually scored three criteria:
scientific accuracy, instruction following, and child friendliness (for age 10-12),
focusing on age appropriateness, understandability, and child safety.

3.3 TTS evaluation

For synthesizing speech output, we selected the Kokoro Text-To-Speech model
(server) [9] and Piper TTS (Raspberry Pi) [14]. Kokoro is an open-weight TTS
model with 82 million parameters, known for its high efficiency, quality and the
ability to run locally. However, deployment of Kokoro on the Raspberry Pi client
proved to be infeasible because inference times consistently exceeded 10 seconds.

Piper is an efficient and lightweight TTS system designed for embedded de-
vices. Its small model size and fast inference speed make it particularly well
suited to run on resource-constrained hardware, such as the Raspberry Pi. We
used the en_ US-lessac-medium voice model.

To evaluate TTS performance, we used the TTS inferences generated during
the end-to-end Raspberry Pi pipelines tests. We collected a total of 324 inference
runs for each model and measured processing time as well as memory use. In
addition, we performed a qualitative evaluation of sound quality, assessing natu-
ralness, pronunciation, intonation, expressiveness and overall listening comfort.

4 Results and Discussion

We now present and discuss our results, grouped by pipeline component: STT
(Section 4.1), LLM (Section 4.2), and TTS (Section 4.3).

Figure 2 gives an overview of the average total response time for the entire
pipeline, for different placements of components on client devices and home
server, based on 12 runs per pipeline. The pipeline executing all functionality
on the server shows the best performance, with an average response time of 4
seconds. On the other hand, the fully local pipeline is the slowest, with an average
of 10 seconds. The primary bottleneck for the client device is the LLM, as it
represents the most performance intensive task among the three components.
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Fig. 2: Comparison of the average total response time for different pipelines (no
conversation history). Each bar shows STT at the bottom, followed by LLM and
TTS. Colors indicate where each component was placed: blue for placement on
the client device (Raspberry PI, C), red for placement on the home server (S).

The second-best performing pipeline is the configuration where the STT
model runs on the client device, while both LLM and TTS run on the server.
This pipeline is particularly interesting, since it offers better privacy compared
to the fully server-based pipeline, given that the server only ever receives text
data and no audio data.

Regarding memory utilization, LLMs are the main drivers of memory con-
sumption within pipelines. Peak memory use on the server can reach up to 10
GB, while on the client it can reach 4 GB. Interestingly, the pipeline where STT
is computed on the client device and LLM and TTS are computed on the server
stands out with relatively low client memory (1.8 GB) and manageable server
memory use (8 GB).

4.1 Speech to Text (STT) evaluation

Accuracy. Table 1 shows the word accuracy of each STT model. The analysis
reveals a correlation between model parameter size and transcription accuracy.
The results show that distil-large-v3 and larger models are best for real-world
use, with an accuracy of >96%.

Transcription time. The average transcription time for each STT model (Ta-
ble 1) shows that the server, equipped with a GPU, has a substantial perfor-
mance advantage compared to the Raspberry Pi. For example, inference with
small.en takes 7.18 seconds on the client and only 1.15 seconds on the server.
We can also observe that the inference times are similar across all models tested
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Table 1: STT accuracy, transcription times [s] and memory use [MB] on the
server and Raspberry Pi client device (indicated by (client)). Times for the
Raspberry Pi pipelines include a 1-second silence detection period.

ESP pipeline Raspberry Pi pipelines

acc. time time time (client) memory memory (client)
tiny 0.765 0.23 - 1.96 - 262
base 0.863 0.20 - 2.96 - 347
small 0.889 0.26 1.15 7.18 738 1,147
distil-large-v3 0.962 0.45 1.39 - 1,757 -
turbo 0.967 0.46 1.39 - 1,883 -
medium 0.972 041 1.23 - 1,534 -
large-v3 0.989 0.61 1.52 - 3,311 -
large-v3-turbo - - 1.39 - 1,883 -
distil-small - - - 6.22 - 628
distil-medium - - - 13.79 - 1,952

on the server, on both architectures, which means that selection of a server-side
STT model does not have to compromise accuracy in favor of inference time.

Concerning the models running on the Raspberry Pi, tiny.en demonstrated
the fastest performance as expected, with an average transcription time of 1.96
seconds. The results also indicate a significant increase in processing time for
larger models starting from the small.en model (7.18 s) onward. This increased
processing time significantly reduces the interactivity the conversational toy can
provide. As a result, running the STT model on the client means that a smaller
model with faster processing but lower accuracy should be selected.

Memory. The average memory consumption for each STT model on the Rasp-
berry Pi (Table 1), exhibits a pattern similar to the inference times. Both tiny.en
and base.en show low memory usage, with a significant increase after the base.en
model. STT models on the server use more memory, however the server’s avail-
able memory (12 GB) can accommodate these demands. In particular, large-v3
required the highest memory at 3,311 MB, in contrast to just 1,756 MB for
distil-large-v3.

STT summary. On the server side, models which performed the best for our
case are medium (best accuracy-time trade-off on the ESP pipeline) and distil-
large-v3 (best memory-time trade-off on the Raspberry Pi pipeline, server side).
For the client side, base.en is the most promising STT model with similar ac-
curacy to small.en, while being significantly more efficient. Furthermore, base.en
outperforms tiny.en in accuracy, but is only marginally less performant in in-
ference time and memory usage. While its inference time is longer than that of
server-side models, it still provides sufficient responsiveness for an Al toy.
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Fig. 3: LLM response quality, manually scored for scientific accuracy, instruction
following, and child friendliness (scores from 1-5). Names of client device models
for the Raspberry Pi pipeline are highlighted in blue.

4.2 LLM evaluation

Response Quality. Figure 3 shows that the response quality overall is accept-
able, however, with some outliers and nuances. The best performing models
overall are the two Gemma2 models on the ESP pipeline, gemma8:12b and
llama3.1:8b on the Raspberry Pi pipeline (server-side), and gemmad:1b and
llama8.2:1b (client-side). Surprisingly, the smaller of the two Gemma2 models
generated better responses that were more age-appropriate and less oversimpli-
fied.

Gemma3:1b. The overall results suggest that gemma3:1b could be a strong can-
didate for the client-side LLM. However, the model showed problematic behav-
ior when asked how to use a gun, where the model responded with pre-defined
information related to suicide hotlines and crisis numbers, especially when con-
versation history was on. This message may be well-intentioned, but not ap-
propriate for a child using an AI toy. This highlights the challenges of ensuring
context-appropriate safety responses in all scenarios, especially when working
with smaller models, and shows that gemma3:1b seems to struggle more when
the provided context is larger, potentially leading to increased hallucinations or
inaccuracies.

Qwen3. The two Qwen3 models performed worst on the Raspberry Pi pipelines.
This finding is important because qwend:0.6b was the fastest model on the client-
side. Importantly, qwend:0.6b sometimes provided literal instructions for how
to use a gun, which is a critical child safety concern. This issue also occurred
in the ESP pipeline with Mistral-NeMo:12b. Mistral-NeMo:12b also tends to
oversimplify answers to an incorrect level.

Phi3.5. The worst model in the ESP pipeline was phi3.5:3.8b. The model gen-
erated excessively long answers and frequently used special characters in its
responses. In addition, the model frequently added notes to itself at the end
of responses, explaining why its response was good, which made the responses
confusing and inappropriate.
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Fig. 4: Readability of LLM responses for ages 4, 6, 10, and 14. Lower scores
indicate more understandable responses.

Conversation history. The quality of answers with and without the conversation
history on the Raspberry Pi pipeline stayed relatively consistent. Most models
were capable of generating conversation summaries, however, they often included
asterisks in the text, which violated the established guidelines. Furthermore,
summaries were often excessively long. On the ESP pipeline, only gemma2:9b,
mistral:7b and qwen?2.5:7b were able to answer without repeating the conversa-
tion history or the actual prompt.

Flesch-Kincaid grade level. Figure 4 shows the average Flesch-Kincaid grade
level per age group. Even though the large error bars for all models and age
groups indicate significant variability in readability, most models do show a
staircase-like pattern in the bar graph, demonstrating some ability to adjust
their response based on the specified target age. The small gemma2:2b model
shows the best ability to adjust the response based on the age of the child, shown
by the large steps between the bars.

Models that do not adapt well include both Qwen2.5 models, phi3.5:3.80b,
and Mistral-NeMo:12b, which generate responses with similar readability inde-
pendent from the child’s age. The most difficult responses are generated by
Phi3.5:3.8b. This is probably because the model’s long responses increase the
average sentence length, which then causes the readability grade to increase.

Mapping grade levels to target ages*, we would expect responses for ages 4
and 6 to be below FKGL 3, between 3 and 6 for age 10, and between 9 and 12 for

4 https://readable.com/readability/flesch-reading-ease-flesch-kincaid-grade-level/
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Fig. 5: LLM processing time depending on response length for server and client
LLM models. The left graph shows the server LLMs, while the right graph shows
the client LLMs. Lighter colors represent points without conversation history,
darker colors are with conversation history.

Table 2: Average LLM inference time, response length, and word generation rate
on the ESP pipeline.

time [s| response length [words] words/second

gemma?2:2b 0.31 23 73.2
qwen2.5:1.5b 0.34 27 77.4
mistral:7b 0.5 23 44.8
phi3.5:3.8b 0.53 41 75.5
qwen2.5:7b 0.62 26 41.7
mistral-nem0:12b  0.64 14 20.8
llama3.1:8b 0.65 32 48.0
gemma?2:9b 0.74 21 29.6

age 14. However, we can see that most LLMs generate answers that, on average,
are too difficult for ages 4 and 6 (e.g., all models have average FKG above 3 for
age 4), and too easy for age 14 (average FKG below 8 for all models).

Hardware performance.

Word Generation Rate. Figure 5 shows how server processing time depends
on response length for several LLMs with and without conversation history on
the Raspberry Pi pipelines (Tables 3 and 2 show average word generation rates
for Raspberry Pi and ESP pipelines, respectively). On the server side, when the
conversation history is off, most models maintain an inference time of less than 5
seconds, with qwen3:8b occasionally having outliers with higher inference times.
Additionally, the response length almost always remains below 60 words, which
aligns with the prompt guidelines we defined. However, response length increases
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Table 3: LLM memory and words generation speed on Raspberry Pi pipelines
with and without conversation history.

No history With history
words/sec memory [MB] words/sec memory [MB]

4 gemma3:1B 6.12 1,697 5.54 1,719
& llama3.2:1B 5.31 1,860 4.87 1,963
© qwen3:0.6B 10.61 1,857 6.78 2,474
& llama3.1:8B 39.76 6,224 20.74 6,241
g gemma3:12B  17.85 7,107 17.43 7,153
¢ qwen3:8B 11.14 6,599 8.67 6,615

when conversation history is on because of the additional prompt that asks for
a summary of the conversation history, which most models cannot do concisely.

Llama3.1:8b has the highest word generation rate without conversation his-
tory, while gemma3:12b can be faster when conversation history is on.

On the client side, llama3.2:1b exhibits highly variable word generation rates.
Furthermore, while qwen3:0.6b and gemma3:1b generally maintain responses un-
der 60 words, llama3.2:1b frequently exceeds this length. However, the models
drastically increase the words number when the conversation history is on (re-
sponses go up to 250 words).

Interestingly, client-side qwend:0.6b is almost as fast as server-side qwen3:8b,
most likely this stems from the disabled thinking mechanism on the client (which
is enabled on the server), boosting its performance on the Raspberry Pi.

Despite the importance of response quality for LLMs, the performance char-
acteristics of llama8.2:1b make it almost unusable for an AI toy. Its frequent
spikes in inference times are unacceptably high for a responsive Al toy, render-
ing it impractical for client-side integration.

Memory. On the client-side, memory use without conversation history is similar
across all three models at around 1,800 MB (see Table 3). Conversation history
slightly increases memory use, especially for qwen3:0.6b. Overall, memory use
remains manageable on the Raspberry Pi. On the server a similar trend can
be seen, however gemmad3.12:12b shows the highest memory consumption at
around 7 GB, caused by its higher number of parameters (12 billion vs. 8 billion
on the other two). While conversation history does increase the memory usage,
the increase is negligible.

Power consumption. We estimate the energy cost for our implementation based
on the average response time of a fully server-side pipeline (right-most bar in
Figure 2, <4 s) and the maximum rated energy consumption of our GPU (150
W). Each query consumes 600 J, or 0.167 Wh. This is less than half of ChatGPT’s
power consumption per query (as reported by OpenAl), and roughly 6% of the
ChatGPT power consumption estimated in [18]. This indicates that our solution,
in addition to being more privacy-friendly, is also more sustainable.
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Fig. 6: Performance of the text-to-speech model on client (Piper) and server
(Kokoro:82M), depending on the response word count.

LLM summary. After analyzing all LLM results, we can see a clear distinction
between client and server capabilities. Running an LLM on the client presents
a significant challenge for the Raspberry Pi, marked by uncertainty in both
performance and quality aspects. This strongly suggests that offloading the LLM
to the server seems to be the best choice.

On the server side, the evaluations show that the size of the model parameter
alone does not determine the quality. The Gemma models perform the best in
safety handling and generates age-appropriate content, as well as adjusting the
complexity of the language for different age groups. However, half of the models
tested in the ESP pipeline, including gemma2:2b, repeat the conversation history
in their responses, which make these models unsuitable. Therefore, gemmaZ2:9b
or gemmad3:12b seem to be better, robust, choices.

4.3 TTS evaluation

The speed of speech synthesis is significantly higher on the server than on the
client (see Figure 6a), with the server being on average 14 times faster than the
client. As most of our responses are below 75 words, the processing time is very
good on the server (<1 s) and mostly good on the client (<3 s). For real-world
use, performance of the client TTS is still acceptable.

Memory use (Figure 6b) shows the opposite trend. Because the client runs
a smaller model, client memory use is near-constant, while on the server the
memory usage depends on the words count.

Concerning sound quality in terms of naturalness, pronunciation clarity, in-
tonation, expressiveness, and overall listening comfort [11], Piper produced intel-
ligible speech, but sounded flat, monotone and robotic. Kokoro produces speech
that is significantly more natural, with fluid transitions, realistic pacing and
various pitches, which mimic human speech better.
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4.4 Privacy considerations for a hybrid cloud deployment

We have assumed that all parts of the toy’s pipeline are executed on devices that
are under the user’s control, either on embedded devices or a local server. This
setting provides the highest privacy protection, while utility in terms of quality
and speed of the toy’s responses varies depending on the chosen models and the
device they are placed on.

However, our assumption could be relaxed by placing some pipeline compo-
nents on cloud services instead of a local server. In this case, the fully cloud-based
pipeline, as realized in the Grok toy, inherently involves transmitting raw audio
data to a third party, essentially giving up full control over this information.
On the other hand, a hybrid pipeline that performs STT locally would improve
privacy by ensuring that the audio data never leaves the device, preventing the
cloud server from accessing the user’s voice or background sounds. However, the
cloud LLM component would still learn the contents of the child’s conversations,
which could be an unacceptably high privacy risk.

4.5 Limitations

Our contribution mitigates the privacy risks of Al toys. However, the use of LLMs
in toys may also pose child safety risks. While we have evaluated to what extent
LLMs follow guidelines to generate child-safe and age-appropriate responses,
this prompt engineering approach does not provide guarantees, and LLMs still
may hallucinate or generate inappropriate answers. In addition, it is likely that
child safety features, like most other model safety approaches, can be defeated
by clever prompt engineering, i.e., a creative child may be able to circumvent
restrictions specified in our prompt template. Therefore, we believe that Al toys
should only be used in a supervised manner where a parent or caregiver can put
model answers in context.

Although we do not implement transport encryption, it could be easily added
by switching from WebSocket to WebSocket Secure. This is a lightweight im-
plementation relative to LLM inference, so that introduced overhead would be
negligible.

Our evaluation only included a limited selection of STT, LLM and TTS
models and a limited number of prompts to make the manual scoring of model
responses feasible. Although the chosen models are representative of commonly
available ones, and prompts cover a range of typical interactions, the findings
may not transfer to other or newly emerging models, or to all real-world inter-
action contexts. In particular, future work should ensure a more rigorous and
comprehensive evaluation of age-appropriateness.

Regarding real-world practicality, while we did not perform a systematic
comparison with commercially available toys, informal tests showed compara-
ble response times and response quality. However, further work is necessary to
improve the usability of the set-up process for toys with a local deployment, in
particular to support less tech-savvy users.
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5 Conclusion

We presented a privacy-preserving implementation of a conversational LLM toy
which runs all components — speech-to-text model, large language model, and
text-to-speech model either on an embedded device or a local home server. We
evaluated performance and response quality for a range of models and for differ-
ent model placements on hardware components. Although we found that a fully
on-device implementation performed poorly, a fully server-side implementation
as well as a hybrid approach with STT and/or TTS on-device yielded results
that are readily applicable in real-world scenarios.

For the server STT models, Faster-Whisper variants turbo, medium, large-
v3-turbo and large-v3 showed good performance, whereas base had the best
accuracy /time trade-off if run on the Raspberry Pi For the LLM component,
three models, gemma?2:9b, gemmad:12b, and llamas.2:8b, had good scores across
our experiments. For TTS, server-side Kokoro is preferable due to its speech
quality. While running Piper as TTS component is possible on the Raspberry
Pi, the generated speech is of noticeably lower quality. Our entire pipeline uses
less than half of the energy needed for a ChatGPT query, which makes a locally-
run AT toy not only more privacy-friendly, but also more sustainable.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Abstract. Small language models (SLMs) are increasingly valued for
their efficiency and deployability in resource-constrained environments,
making them useful for on-device, privacy-sensitive, and edge computing
applications. On the other hand, membership inference attacks (MIAs),
which aim to determine whether a given sample was used in a model’s
training, are an important threat with serious privacy and intellectual
property implications. In this paper, we study MIAs on SLMs. Although
MIAs were shown to be effective on large language models (LLMs), they
are relatively less studied on emerging SLMs, and furthermore, their
effectiveness decreases as models get smaller. Motivated by this finding,
we propose a new MIA called win-k, which builds on top of a state-of-
the-art attack (min-k). We experimentally evaluate win-k by comparing
it with five existing MIAs using three datasets and eight SLMs. Results
show that win-k outperforms existing MIAs in terms of AUROC, TPR
@ 1% FPR, and FPR @ 99% TPR metrics, especially on smaller models.

Keywords: Small language models - membership inference attacks -
privacy - Al security - responsible Al

1 Introduction

Large language models (LLMs) have revolutionized natural language process-
ing (NLP) by achieving unprecedented performance across tasks such as text
generation, summarization, and translation. However, the growing demand for
resource-efficient NLP solutions has catalyzed a shift towards small language
models (SLMs), which offer a lightweight yet effective alternative [1,6,7]. In
recent years, SLMs have gained prominence as efficient and deployable alterna-
tives, particularly in scenarios where computational resources are limited, such
as on-device, edge, and mobile applications.

As SLMs become increasingly prevalent, understanding their privacy risks
becomes timely and necessary. A prominent risk is membership inference attacks
(MIAs), where an adversary aims to determine whether a given data sample was
used in a model’s training [11, 12]. While MIAs have been studied in the context
of LLMs [4,5,9,10], their effectiveness on SLMs remains underexplored.

In this paper, we focus on the application of MIAs on SLMs. First, we identify
five popular MIAs in LLMs (loss, lowercase, zlib, neighborhood, and min-k) and

66



DPM 2024

execute them on three SLM families containing models with varying sizes: GPT-
Neo, Pythia, and MobileLLM. Our experiments show a clear trend: As model
sizes get smaller, the effectiveness of existing MIAs decreases. This observation
motivates us to propose a new MIA that is more effective in SLMs: win-k. Win-k
builds on top of min-k, which is a token-level attack that takes into account the
bottom k% fraction of token-level log probabilities when constructing a sample’s
membership score. In contrast, win-k proposes to compute window-level scores
rather than token-level scores by sliding windows over consecutive tokens to
compute their average log probability, and then uses the bottom k% fraction of
scores to construct the membership score. This approach helps in reducing the
high variance in individual tokens’ log probabilities which cancels out when a
window is considered.

We experimentally evaluate win-k by comparing it with five MIAs using three
datasets, eight SLMs, and three metrics: AUROC, TPR @Q 1% FPR, and FPR
@ 99% TPR. Results show that win-k outperforms existing attacks in a large
majority of cases, and it performs particularly better than other MIAs when
model sizes are smaller. Through hyperparameter analyses, we offer insights
into how the window size parameter w and the fraction parameter k should be
selected in win-k to improve attack effectiveness.

Contributions. In summary, our main contributions include:

— We initiate the study of MIAs on SLMs. We empirically show that MIAs’
effectiveness declines as model size decreases.

— Motivated by this finding, we propose a new MIA called win-k, which ex-
tends min-k by computing log probability scores over sliding windows of
consecutive tokens, thereby mitigating the variance and outlier sensitivity
observed in token-level analyses on small models.

— We show that win-k outperforms existing MIAs through comprehensive ex-
periments involving three datasets, eight SLMs, and three metrics. Further-
more, we offer practical guidance on selecting hyperparameters in win-k to
optimize attack effectiveness across different model sizes and datasets.

2 Background and Preliminaries
2.1 Language Models

Say that we are given a vocabulary V. A textual sample x consists of a sequence
of tokens: © = (x1, 9, ..., x7) where each token x; € V. Given V, the objective
of a language model is to maximize the likelihood of observed sequences, which
can be expressed using the chain rule:

T
PT(13179527~--755T):HP7’(% | z<t) (1)

t=1
where z; = (%1, 22,...,2:—1) denotes the preceding context. This decomposi-

tion enables language models to sequentially predict each token conditioned on
prior context.
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Large Language Models (LLMs), such as GPT-4 and PaLM 2, are charac-
terized by large context windows and massive parameter counts (typically tens
or hundreds of billions). Such massive parameter counts cause computational
challenges concerning storage, training, and inference [1,3]. In contrast, Small
Language Models (SLMs) are lightweight and designed for efficient deployment
in resource-constrained settings such as edge devices and on-device applications.
They typically have hundreds of millions or a few billion parameters, and there-
fore they are at least an order of magnitude smaller than LLMs [1, 6-8].

2.2 Membership Inference Attacks

Membership inference attacks (MIAs) constitute a class of adversarial techniques
designed to determine whether a given sample was used in the training set of
a machine learning model. While MIAs were originally proposed in the context
of classification models [11,12], they are recently being adapted and applied to
the context of LLMs [5,9,10]. Let M denote a language model and L(xz; M)
denote the loss of sample  on model M. A MIA constructs a membership score
f(z; M) that is used to predict whether z was a member M’s training data.
The membership score f(z; M) is then compared against a threshold (say §) to
predict #’s membership. The construction of f(z; M) may often utilize £(x; M),
but it differs from one MIA to another.

Loss. The Loss attack [13] is predicated on the observation that a model
typically yields lower loss values for samples encountered during training. It
simply uses the value of £ as the membership score:

fx; M) = L(z; M) (2)

Lowercase. The Lowercase attack [4] takes advantage of the sensitivity of
language models to case-specific features. It converts the original sample to its
lowercase version and compares the model’s losses between the original and

lowercase versions.
L(lowercase(z); M)

3
L(x; M) (3)
Z1ib [4] employs L(x; M) together with the size of the compressed version of

the sample using zlib compression. Let zlib(z) denote the length in bytes of the
zlib compressed version of z. Then:

fla; M) =

. _ L(z; M)

Neighborhood attack [9] generates a set of synthetic neighbor texts for a
given sample using a masked language model. Then, it compares the model’s
loss on the original sample to the average loss across its synthetically gener-
ated neighbors. Formally, for an input sample x and its n generated neighbors
{#t,72,... 3"}

s M) = £ M) = = 3 £ M) 9

=1
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Fig. 1. Average AUROCs of the five MIAs on SLMs with varying sizes (left plot:
WikiText dataset, middle plot: AGNews dataset, right plot: XSum dataset).

Min-k [10] is based on the hypothesis that non-member samples are more
likely to include a few outlier words with low log-likelihood (i.e., low probability),
while a member sample is less likely to do so. Given sample = = (z1, 2, ..., z7)
and hyperparameter k, let min-k(x) denote the set formed by the k% of tokens
in  with minimum probability. Then:

1
M) = log(Pr(x;|x<;
fl: M) |m1n—k(z)|mi6§k(z) g(Pr(wilr<i)) (6)

2.3 How Do MIAs Perform on SLMs?

Previous literature has shown that MIAs are effective on LLMs [4,9,10]. In
this paper, we focus on the applications of MIAs to SLMs. First, we measure
the effectiveness of MIAs on SLMs with varying model sizes. To perform this
experiment, we identified three model families that contain SLMs with varying
sizes: GPT-Neo [2], Pythia [1], and MobileLLM [7]. We fine-tuned these SLMs
using three well-known datasets: WikiText, AGNews, and XSum. (More details
regarding the models, datasets, and the fine-tuning process can be found in
Section 4.1.) We executed the five MIAs and measured their average AUROC:.

The results of this experiment are shown in Figure 1. The sizes of the SLMs
(in terms of billions of parameters) are shown on the x-axis, whereas average AU-
ROCs are shown on the y-axis. All three plots show a clear trend: As model sizes
get smaller, AUROCs of MIAs decrease, and hence, MIAs become less effective.
This observation suggests that smaller models, due to their reduced memoriza-
tion capacity, exhibit fewer distinguishing characteristics between training and
non-training samples, making MIAs more challenging in SLMs. This observation
motivated us to propose a new MIA that is more effective on SLMs.

3 The Win-k Attack

3.1 Attack Intuition and Explanation

Our win-k attack builds on top of the state-of-the-art min-k attack. Min-k
takes the individual token-level log probabilities, sorts them in ascending order,
and then selects the bottom k% fraction to construct f(x; M). In other words, it
is a token-level approach. In contrast, win-k proposes to compute window-level

69



DPM 2024

Input Text
"A fridge is one of the first things people buy as they step out of poverty. And
as more people escape extreme poverty, we want to hear your stories..."

[ Windows

fridge is one _

|
: people escape extreme
|

as they step

they stép out

-10.0 -7.5 =50 =25

Average Score

Fig. 2. Overview and comparison between min-k and win-k attacks.

scores. For each window of consecutive tokens (say w is the window size), win-k
slides over the tokens’ log probabilities and computes the average log probability
of that window. Then, window-level scores are sorted in ascending order, and
the bottom k% fraction of the window-level scores is used to construct f(x; M).
Thus, win-k can identify if a window of consecutive tokens collectively has a
low log probability rather than focusing on single tokens. A visual overview and
comparison between min-k and win-k can be found in Figure 2.

3.2 Technical Description of Win-k

Let w be the window size parameter. For sample z, let s; denote the subse-
quence of tokens starting at x; and containing the next w tokens, i.e.: s; =
(@j,Zj41, o, Tj+w—1). We denote by logprob(s;):

i=j+w—1

logprob(s;) = Y log(Pr(zi|z<;)) (7)

=7

To eliminate the effect of w, logprob(s;) is normalized by w to obtain the score
of s, denoted by score(s;):

logprob(s;)
w

score(s;) = (8)
Given a sample z, win-k constructs all token subsequences s; from x, calculates
their logprob(s;) and score(s;), sorts them in ascending order, and finds the
bottom k% of the scores. Finally, these bottom k% scores are aggregated to arrive
at the membership score of the whole sample z, i.e., f(z; M). An algorithmic

summary of the proposed win-k attack is shown in Algorithm 1.

3.3 Why Does Win-k Work?

An interesting question is why win-k works. To answer this question, we perform
the following experiment. We select one member sample and one non-member
sample from the AGNews dataset, and obtain the scores produced for these
samples by GPT-Neo 125M. The left plot in Figure 3 shows the results for
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Algorithm 1: Pseudocode of the win-k attack

Input : Sample z = (21,22, ...,27), model M, window size w, fraction k
Output: Membership score of sample z, i.e., f(z; M)

1 Initialize an empty list: scoreList < [ |

2 forj=1toT —-—w+1do

3 Construct s; ¢ (Zj,Tj+1, s Tjtw—1)

4 Obtain logprob(s;) via Equation 7 using M
5 Obtain score(s;) via Equation 8

6 Append score(s;) to scoreList

7 Sort scoreList in ascending order

8 Y+ kxT

-
> scoreList][i]
i=1

Min-k Token Log Probs
—— Win-k Window Score (w = 4)
-~ Min-k Sample Score
-=-- Win-k Sample Score

20 30 40 0 10 20
Token Position Token Position

30 40

Fig. 3. Scores produced by min-k and win-k for individual tokens and the whole sample.
Member sample on the left, non-member sample on the right.

the member sample, and the right plot shows the results for the non-member
sample. Both plots contain four lines: (i) the log probabilities log(Pr(x;|z<;)) of
individual tokens in the sample which are used by min-k, (ii) the window-level
scores score(s;) of subsequences which are used by win-k, where j € [1,T — w],
(iii) the aggregate min-k score for the whole sample shown by the red dashed
line, and (iv) the aggregate win-k score for the whole sample shown by the blue
dashed line. The fraction is k = 30%.

We first observe that the members’ scores are less negative compared to non-
members, which is intuitive because the model produces more confident outputs
for member samples. However, an important difference between min-k and win-k
is their variance. We observe from the red curve (min-k) that the variance is quite
high, especially in the case of non-members. In contrast, the blue curve (win-k)
has lower variance and is more stable. Across the full samples, the variances
of scores for the member sample are 4.72 in min-k and 1.21 in win-k; and the
variances for the non-member sample are 10.25 in min-k and 2.24 in win-k.

SLMs have limited capacity, and their approximation of Pr(z;|z<;) can be
noisy compared to LLMs. As a result, token-level log probabilities exhibit higher
variance. This higher variance causes the membership score f(z; M) in min-k to
be dominated by the few tokens with strongly negative log probabilities. For
example, even with k = 30%, we observe from Figure 3 that the dashed red lines
are much lower than the average behavior of the individual tokens. In contrast,
the dashed blue lines (win-k) are closer to the average of the regular blue lines,
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i.e., average subsequence scores. Thus, we can conclude that the membership
score f(x; M) computed by win-k acts as a better representative of the whole
sample compared to min-k.

4 Experiments and Discussion
4.1 Experiment Setup

Models. We perform experiments with three model families: GPT-Neo [2],
Pythia [1], and MobileLLM [7]. Since our work focuses on SLMs, we pick those
models with < 1.5B parameters. We use the following models in our experiments:
GPT-Neo 125M; Pythia 70M, 160M, 410M, 1B; MobileLLM 125M, 350M, 600M.

Datasets. We fine-tune SLMs on the following three datasets which are
commonly used in the literature: WikiText, AGNews, and XSum. We created
different versions of the datasets with different sample lengths: T' = 32, 64, and
128. We use T' = 32 by default, but report results with varying 7" in Section
4.4. To test MIA effectiveness, we construct balanced test sets that contain 350
members (used in fine-tuning) and 350 non-members (not used in fine-tuning).

Fine-Tuning Parameters. All models are fine-tuned using supervised fine-
tuning (SFT) via the SFTTRAINER framework. The maximum sequence length
is set to 2048 tokens, number of epochs is set to 2 (experiments are done with
varying numbers of epochs in Section 4.4), batch size is set to 8, gradient accu-
mulation is performed over 4 steps, and the learning rate is 3 x 1072,

Attack Hyperparameters. We compare win-k against attacks presented
in Section 2.2. For the neighborhood attack, the number of neighbors is 100,
and BERT is used as the masked language model for neighbor generation. For
min-k and win-k, we experiment with varying k& € {5%, 10%, 20%, ...,90%} and
w € {1,2,3,...,10}, and report the best results.

Evaluation Metrics. The effectiveness of MIAs is quantitatively evaluated
using three metrics: AUROC (Area Under ROC Curve), TPR @ 1% FPR, and
FPR @ 99% TPR.

4.2 Comparison with Existing MIAs

In this section, we compare win-k with existing MIAs to demonstrate its superior
effectiveness. Table 1 contains the AUROCS of different MIAs under 8 different
models and 3 fine-tuning datasets. In summary, Table 1 shows that win-k has
the highest AUROC among all attacks in 17 out of 24 cases, demonstrating
that win-k is generally more effective than the other attacks. We note that win-
k outperforms the other MIAs more consistently especially when models are
smaller, e.g., GPT-Neo 125M, Pythia 70M, and Pythia 160M. On larger models
such as Pythia 410M or Pythia 1B, min-k can be tied with win-k, or min-k can
surpass win-k by a small amount. This shows that win-k is indeed better for
smaller language models. Another interesting observation is that win-k performs
relatively worse on MobileLLM compared to GPT-Neo and Pythia families. A
reason behind this could be the tokenizers. GPT-Neo and Pythia use similar
tokenizers (GPT2Tokenizer and GPTNeoXTokenizer), both based on byte-pair
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Table 1. AUROCs of different MIAs with varying models and datasets. MobLM is
short for MobileLLM, Nbrhood is short for the Neighborhood attack, Lowercs is short
for the Lowercase attack. The best attack in each case is highlighted in bold.

GPT-Neo Pythia Pythia Pythia Pythia MobLM MobLM MobLM

Dataset| Attack | ™ S0 N ALOM 1B 195M 350M  60OM
Nbrhood | 67.0%  62.3% 61.8% 76.6% 83.6% 57.0% 59.9% 65.8%

£ | Loweres | 66.7% 65.6% 66.3% 81.1% 90.2% 59.2% 59.2% 68.7%
& Loss | 744% 74.1% 77.1% 95.3% 98.5% 59.4% 60.2% 85.2%
o Zlib | 73.6% 73.6% 76.9% 95.1% 98.4% 59.7% 59.8% 83.7%
= | Mink | 76.0% 74.6% 77.6% 96.0% 98.7% 63.6% 63.9% 85.3%
Wink | 76.3% 75.1% 78.9% 96.0% 98.4% 65.1% 64.1% 77.2%
Nbrhood | 78.3%  69.3% 68.4% 82.2% 91.0% 62.9% 65.3% 76.2%

2 | Loweres | 801% 7TL7% 712% 842% 96.9% 65.0% G67.2% 88.2%
s Loss | 85.1% 80.5% 79.4% 90.7% 98.1% 68.6% 70.6% 94.0%
& Zlb | 83.6% 79.1% 78.0% 89.5% 97.4% 66.8% 69.1% 92.5%
< | Mink | 86.6% 81.2% 81.8% 92.9% 98.3% 76.8% 81.2% 94.2%
Wink | 87.9% 83.4% 83.9% 93.2% 98.5% 76.0% 79.4% 90.8%
Nbrhood | 63.2%  61.8% 67.6% 77.5% 86.3% 57.1% 59.4% 67.2%
Lowercs | 64.7% 62.6% 68.3% 79.1% 89.6% 57.7% 60.2% 72.6%

£ Loss | 68.7% 69.9% 77.1% 90.6% 95.8% 59.4% 62.0% 80.6%
2 Zb | 67.9% 69.1% 76.0% 89.5% 95.4% 59.1% 61.4% 78.1%
Mink | 69.2% 69.9% 77.2% 90.8% 95.9% 60.2% 63.9% 80.7%
Win-k | 69.9% 70.4% 78.0% 90.8% 95.5% 61.6% 64.8% 75.1%

encoding and same vocabulary sizes (50,257 tokens). Yet, MobileLLM uses a
Llama-based tokenizer for which the vocabulary size is 32,000.

Next, we study the TPRs of the attacks @ 1% FPR. The results in Table 2
show that win-k is the best performing attack in this metric in 17 out of 24 cases.
Win-k particularly emerges as the best performer on WikiText and AGNews. On
the other hand, the Lowercase attack performs well on the XSum dataset. (If
Lowercase did not exist, then win-k would have been the best-performing attack
on XSum.) Based on all of our experiments, we observed that this exceptionally
strong performance on Lowercase is limited to the strict setting of 1% FPR, e.g.,
Lowercase does not perform as well in terms of other metrics or at other FPR
thresholds. Third, we study the FPRs of the attacks @ 99% TPR. Due to the
page limit, we do not include the full table of results in the paper, but report
that win-k has the best FPRs in 12 out of 24 cases. Considering there are 6
attacks under comparison, win-k is still the best-performing attack. However, its
superiority is not as significant in this metric compared to the other two metrics.

4.3 Analysis of Win-k Hyperparameters

There are two main hyperparameters in win-k: window size w and fraction k. We
report results with varying w between 2 and 10 in Table 3. For smaller models,
e.g., less than 400M parameters, it can be observed that w = 2, 3, or 4 yield
better AUROC in many cases. For example, w = 2 and 3 typically perform
the best on AGNews, and w = 3 and 4 typically perform the best on XSum.
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Table 2. TPR @ 1% FPR of different MIAs with varying models and datasets.

GPT-Neo Pythia Pythia Pythia Pythia MobLM MobLM MobLM
Dataset| Attack | =000 "70M 160M 410M 1B 125M  350M  600M
Nbrhood | 4.3%  4.0% 3.1% 10.3% 12.0% 0.6% 1.7% 1.7%
B/ Lowercs | 4.6% 29% 51% 19.7% 55.7% 2.6% 2.6% 12.6%
= Loss 31%  26% 5.1% 24.9% 69.1% 1.1% 14% 13.4%
& Zlib 4.0%  4.0% 54% 27.7% 58.9% 0.9% 0.3% 13.4%
= Min-k | 4.6%  4.6% 5.7% 30.3% 75.4% 4.6% 2.3% 15.4%
Wink | 6.3% 7.1% 7.1% 33.1% 70.3% 5.1% 4.0% 15.4%
Nbrhood | 1.7%  2.9% 2.3% 3.4% 237% 09% 1.1% 6.0%
£ | Loweres | 6.0%  7.1% 54% 89% 274% 4.0% 5.1% 12.3%
2 Loss 23%  4.0% 1.7% 4.6% 38.9% 1.1% 1.4% 14.6%
5 Zlib 1.1% 11% 11% 14% 26.3% 11% 11% 2.0%
< Min-k | 86%  9.4% 8.0% 12.6% 40.3% 3.4% 7.1% 15.1%
Wink | 16.6% 15.4% 12.3% 27.1% 64.6% 4.9% 7.7% 23.7%
Nbrhood | 4.0%  3.1% 5.7% 8.6% 15.4% 26% 29% 6.0%
Lowercs | 4.6% 4.3% 54% 43% 25.1% 2.6% 4.0% 10.9%
g Loss 0.3%  14% 6.6% 6.0% 18.0% 4.6% 2.9% 5.7%
% Zlib L7%  11% 29% 8.0% 154% 2.0% 23% 7.1%
Min-k | 0.6%  3.4% 5.7% 11.4% 25.1% 1.1% 3.7% 6.0%
Wink | 2.0%  2.3% 6.9% 10.6% 17.7% 3.1% 4.3% 7.1%
005555 100 0o
L)90 D > < § 90| o—e—o—o—o—o—o——o—o 90 o 70m
S oo seeeeesgy| s ™ T | &0 o T . - 160m
3 | T T eeeeeee—e o—o o e~ 410m
< % P10 E D S 0f ST T T T 0T .
oo —e— Average

60 60 60
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
k k k

Fig. 4. AUROCS of win-k with varying Pythia models and three datasets (left to right:
AGNews, XSum, WikiText) under different k.

Yet, for larger models such as MobileLLM 600M and Pythia 1B, larger w are
preferable, e.g., on both WikiText and XSum datasets, w = 8, 9, and 10 yield
the highest AUROC. Overall, these results show that the best w is not fixed; it
changes according to the size of the model. We also observe that if w is selected
in parallel to this recommendation, the attack is not extremely sensitive to the
precise value of w, since AUROCSs in Table 3 vary by a moderate amount as w
changes. Thus, it is sufficient to choose a good enough w following the above
principle for win-k to perform well.

In Figure 4, we report results by varying the k parameter. To improve sta-
tistical significance, we repeat the experiment with multiple Pythia models with
varying sizes (7T0M, 160M, 410M, 1B) and all three datasets. The average AU-
ROCs across all models are shown in the plots, in addition to the AUROCSs of
each individual model. We observe from the plots that k values between 0.2 and
0.5 typically yield the highest AUROCSs. Lower k, such as k = 0.2 and 0.3, are
better on AGNews (reducing k to 0.1 yields lower AUROC). In contrast, k = 0.4
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Table 3. Impact of w on AUROCSs of win-k under varying models and datasets.

Dataset Model w=2w=3w=4w=5|w=6w="T7w=8|w=9w =10
Pythia 70M  [73.8% [74.1% | 74.2% | 74.3% | 74.3% | 74.2% | 73.8% | 73.7% | 73.4%
GPT-Neo 125M | 62.5% | 62.8% | 63.1% | 63.1% | 63.0% | 62.9% | 62.7% | 62.4% | 62.2%
Pythia 160M | 77.4% |77.8% | 77.9% | 78.1% | 78.2% | 78.1% | 77.8% | 77.7% | 77.5%
MobLM 350M |61.7% |61.8% |61.7% | 61.7% |61.3% | 61.3% |61.1% | 61.0% | 61.2%
Pythia 410M |95.0% | 95.2% | 95.4% | 95.5% | 95.6% | 95.7% | 95.8% | 95.7% | 95.7%
MobLM 600M |76.0% |76.1% | 76.6% | 77.0% | 77.0% | 77.4% | 77.8% | 78.1% | 78.8%

Pythia 1B 98.0% | 98.0% | 98.1% | 98.2% | 98.3% | 98.3% | 98.3% | 98.4% | 98.3%
Pythia 70M [82.3% [82.5% [ 82.1% | 81.7% [ 81.2% [ 81.1% | 80.9% [ 80.7% | 80.6%
GPT-Neo 125M | 73.4% | 73.4% | 73.2% | 73.0% | 72.5% | 72.0% | 71.8% | 71.5% | 71.4%
Pythia 160M |82.2% |82.4% | 82.2% | 81.8% |81.4% | 81.1% | 81.0% | 80.6% | 80.3%
MobLM 350M |76.0% | 75.6% | 75.2% | 74.8% | 74.4% | 74.0% | 73.7% | 73.4% | 73.2%
Pythia 410M |92.1%[92.1% [ 92.0% | 91.9% |91.7% | 91.5% | 91.4% | 91.3% | 91.1%
MobLM 600M |87.7% |87.7% | 87.9% | 88.1% | 88.1% | 88.2% | 88.4% | 88.7% | 89.2%

Pythia 1B 98.1% | 98.2% | 98.2% | 98.3% | 98.2% | 98.3% | 98.3% | 98.2% | 98.2%
Pythia 70M  [69.6% [69.9% [ 69.9% |69.5% [ 69.2% | 68.8% | 68.9% [ 68.9% | 68.9%
GPT-Neo 125M | 60.3% | 60.6% | 60.6% | 60.5% | 60.5% | 60.4% | 60.2% | 60.1% | 60.1%
Pythia 160M | 76.6% |77.1% | 77.3% | 77.2% | 77.2% | 77.0% | 77.3% | 77.1% | 77.1%
MobLM 350M |63.3% |63.2% | 63.1% | 63.1% | 62.9% | 62.9% | 62.9% | 62.9% | 63.0%
Pythia 410M [90.1% |90.4% | 90.3% | 90.2% | 90.1% | 90.0% | 90.0% | 89.9% | 89.8%
MobLM 600M |74.2% |74.3% | 74.5% | 74.9% | 74.9% | 75.1% | 75.3% | 75.7% | 76.1%

Pythia 1B 95.1% | 95.2% | 95.4% | 95.4% | 95.4% | 95.4% | 95.4% | 95.4% | 95.4%

WikiText

AGNews

XSum

and 0.5 work best on WikiText. & = 0.4 works best on XSum as well; however,
XSum shows the smallest change in AUROCS as k changes. Overall, we observe
the trend that k£ should be selected neither too small nor too large. To achieve
the best results, we recommend k between 0.3 and 0.5.

4.4 Impact of Data and Fine-Tuning Related Parameters

Finally, we investigate the impacts of pa- 1.00
rameters related to text samples and fine- g
tuning. In Figure 5, we fine-tune Pythia & 0751
. (Y]
160M using XSum for varying numbers of 3 0.501
epochs: 0 epochs (base model), 1, 2, and 3 g '
epochs. Executing win-k on the base model g 0.25 —Base (AUROC: 051)
(0 epochs) indeed yields an AUROC closeto < 2 Shochs (aUROC: 0 70
0.00 =3 epochs (AUROC: 0.79)

0.5, i.e., random guess. As we increase the o o To
number of epochs, AUROCSs increase. There False Positive Rate
is a substantial increase from 0 epochs to 1
epoch, and also from 1 epoch to 2 epochs.
However, the amount of increase from 2
epochs to 3 epochs is not very large, which shows that the model’s suscepti-
bility becomes saturated. Overall, it is intuitive that increasing the number of
epochs increases model susceptibility, since the log probabilities produced by
the model become more dominated by the fine-tuning dataset. It is important to
note that an SLM like Pythia 160M becomes quickly vulnerable to win-k, even
with 1 or 2 epochs of fine-tuning.

In Table 4, we investigate how the size of the text samples impacts attack
effectiveness. We vary the value of T by taking long samples (i.e., T > 128)
and truncating them to T' = 32, 64, and 128. We perform the experiment using

Fig. 5. Impact of changing number of
epochs in terms of AUROC.
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Table 4. AUROCS of min-k and win-k with varying models and datasets under different
number of tokens 7.

Dataset Tokens | GPT-Neo 125M Pythia 160M Pythia 410M

Min-k | Win-k | Min-k | Win-k | Min-k | Win-k
T =232 | 76.0% | 71.7% | 77.6% | 78.9% | 96.0% | 96.0%
WikiText | T =64 | 83.1% | 83.5% | 84.8% | 86.3% | 98.8% | 98.9%
T =128 | 87.2% | 87.0% | 84.8% | 86.3% | 99.3% | 99.5%
T =232 | 69.2% | 69.9% | 77.2% | 78.0% | 90.8% | 90.8%
XSum T =64 | 70.9% | 71.9% | 79.0% | 80.0% | 94.3% | 94.8%
T =128 | 76.9% | 78.5% | 84.2% | 86.2% | 97.6% | 97.8%

three models (GPT-Neo 125M, Pythia 160M, and Pythia 410M), two datasets
(WikiText and XSum), and two attacks. As the results in Table 4 show, increas-
ing T typically yields a substantial increase in AUROC. The amount of increase
is more noticeable in smaller models like GPT-Neo 125M and Pythia 160M. In
contrast, the AUROCS in Pythia 410M are already high when 7" = 32; thus, the
amount of increase from 7" = 32 to 64 and 128 is less noticeable.

5 Discussion and Conclusion

Summary. SLMs are rapidly gaining traction as efficient and deployable alter-
natives to LLMs in resource-constrained and on-device Al applications. In this
paper, we examined the vulnerability of SLMs to MIAs. Our analysis revealed
that the effectiveness of MIAs declines as model size decreases. We therefore
proposed win-k, a new MIA which generalizes the min-k attack by aggregat-
ing log probability scores over sliding windows of tokens. Experiments on eight
SLMs across three datasets and three evaluation metrics showed that win-k out-
performs prior attacks, especially on smaller models. Furthermore, we provided
practical insights into the selection of win-k’s hyperparameters.

Limitations and future work. First, our current work is limited to SLMs
with < 1B parameters. Generalizing to larger models (e.g., up to 5B or 7B pa-
rameters) would be a valuable future work direction. However, full fine-tuning of
such models using SFTTRAINER is unlikely to be feasible, hence PEFT meth-
ods such as LoRA may be needed. For consistency, we stick with SFTTRAINER
in the paper and leave fine-tuning of larger models with LoRA to future work.
Second, it would be interesting to consider issues arising from the number of
member versus non-member samples as well as the types of samples (e.g., scien-
tific texts versus news articles). Attacks targeting specific contexts or targeted
content may be considered. Third, while win-k relies on a sliding mean of log
probabilities, it does not examine alternative aggregation strategies (e.g., me-
dian, trimmed mean, max pooling). We will consider extending our attack with
such aggregation strategies. Finally, we will study defenses against win-k and
MIAs in general. As MIAs exploit models’ tendency to overfit, one mitigation
strategy could be regularization (dropout, L1 or L2 regularization). Noise can
be introduced to log probabilities to mask membership or differentially private
fine-tuning methods can be utilized as defenses.
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Abstract. Digital signature schemes developed by the cryptographic
community have been adopted as advanced electronic signatures in the
legal framework of many countries, including the European Union. In
their current implementations, certification practices, and legal practice,
electronic signatures are orthogonal to privacy protection. In fact, pro-
tecting data origin and integrity with advanced electronic signatures cre-
ates many challenges from the point of view of GDPR.

In this paper, we show that conflicts between the legal concept of elec-
tronic signatures and the strength of digital signatures on one side, and
the paradigms of privacy-by-design, data minimization, etc. can be re-
solved by slightly reshaping the signature schemes and reinterpreting
certain legal concepts.

Keywords: GDPR, eIDAS, Advanced Electronic Signature, Hash Func-
tion, Merkle Tree

1 Introduction

Digital signatures provide essential cryptographic guarantees: authentication,
integrity, and non-repudiation, which make them valuable in many digital ap-
plication areas. However, the standard approach to creating a signature, that is,
treating the message as a single array of bytes, can sometimes become a limita-
tion. This rigid model may prevent certain desirable use cases that are common
in the physical world but difficult to replicate digitally. For example, with a
handwritten signature on a physical document, one can partially cover the page
to hide sensitive information while still proving that the visible portions are au-
thentic. In the digital realm, achieving a similar form of selective disclosure is
not straightforward under conventional signature schemes.

In this paper, we examine this problem in detail, place it in the context of
current legal frameworks (namely, eIDAS [29,12] and GDPR [30]), and present
two straightforward schemes that can be used with any existing standard crypto-
graphic primitives. In particular, our approach can be used with widely standard-
ized algorithms, and thus be inline with legislation such as eIDAS. Importantly,
it does not introduce an additional burden on end users as it does not alter the
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existing interfaces (meaning that creation and verification of signature from the
user’s point of view remains the same), except introducing a new functionality
called selective disclosure.

1.1 Traditional Model of Digital Signatures

The first challenge is that an electronic signature scheme applied in practice
should be able to create a signature for a document of arbitrary size. Thus, it
cannot be assumed that a message is an element of a fixed algebraic structure.
This practically eliminates schemes (e.g., [20,5]) that are not based on a cryp-
tographic digest (in practice, a hash function and the Random Oracle Model
2]).

Another common practical issue is that signatures often need to be generated
using a secure signature creation device (cf. WSCD in eIDAS [12]). In many cases,
this device is a special-purpose component (e.g., a smart card), with limited
storage capacity and/or low-bandwidth communication capabilities. In this case,
uploading an entire document to the device is impractical. Instead, a common
strategy is to upload only a hash of the document, or a small portion of it together
with an intermediate hash [26]; see also p. 465 in [31]. Analogously, for sponge
hash functions [3], the signing device may execute only the last absorbing step.
To alleviate the problems mentioned above, the common approach is a two-stage
signing process for a document D:

1. Run some algebraic precomputation to generate an element 7.

2. Create a cryptographic digest h of D and the precomputed value r using
hash function Hash, concretely h := Hash(D,r).

3. Apply the core signing procedure for h, using the secret signing key sk, that
is 0 = ¢(h,sk), where ¢ is some algebraic operation based on a difficult
cryptographic problem.

During the verification procedure, the values h and r are recalculated in the first
step. After that, an algebraic test is executed. It involves o, h and the public
key pk corresponding to sk. Note that this approach is followed by major digital
signature schemes.

An immediate consequence of this approach is that any benign (e.g., privacy-
preserving) change to the document before presenting it for verification (such as
replacing personal identification data with a pseudonym) will produce a different
value of h. Consequently, the signature on the document is no longer valid, and
its entire proof value is lost. To address this problem we employ a document-
structure-aware hash function (details are provided in Section 3).

In the next section, we discuss several practical situations and show that, in
these cases, the observation made above is the Achilles’ heel of the concept of
electronic signature.

1.2 Privacy Protection Versus Digital Signatures

Although advanced electronic signatures provide very strong arguments for data
origin and integrity, in certain situations, their strength becomes a significant
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problem severely limiting their application scope. In this section, we highlight
a variety of scenarios in which reconsidering the standard approach to digital
signatures could provide substantial benefits.

Partial disclosure of signed documents. In certain scenarios, such as public ad-
ministration procedures, legal documents are signed and subsequently published
to comply with the right of access to public information. However, these docu-
ments may contain information that must remain confidential. Examples include
personal data protected according to the GDPR, information related to public
security, or other categories of data protected by law. A concrete example is
the publication of court judgments in Poland, which must be anonymized in
the sense that all personal data contained in court decisions must be removed!
(except for the names of court personnel and judges involved). Such anonymized
court decisions are available online.?

In this case, the original digital signature on the document cannot be used
directly to check the blinded document. Even worse, if the scope of blinding is
limited, a brute-force attack may be used to reconstruct the original document
— the signature serves as an oracle for checking the correctness of a guess.

For this reason, if certain parts of a document need to be blinded, the doc-
ument should be re-signed. However, this introduces not only additional effort
but also new risks, as, for example, a new signature might be applied to content
that differs from the original in the non-blinded parts.

Personalized disclosure. It may happen that a document D contains a wide
range of data (D could be a complicated contract and/or an extensive technical
documentation), where an individual reader should read only its selected parts
according to the data minimization paradigm.

The classical approach to dealing with this problem is to split the document
into separate parts and sign each part separately. This solution might be quite
tedious, as splitting the document must occur in advance, while the situation may
dynamically change, especially if the subject covered by the D is complicated.

Electronic document management systems. Electronic flow of documents may
require complicated access rights to document contents. For example, a reviewer
in PhD proceedings in Poland submits a standard bill containing the information
such as bank account, place of residence, personal identification number, and
other data required by the tax authorities. However, the bill must be accepted
by a person responsible for verifying the PhD report submitted by the reviewer.
In this case, a staff member of the entity granting the degrees gets access to
data such as bank account number of the reviewer. This data is unnecessary for
payment approval. This directly violates the data minimization paradigm from
GDPR as well as general cybersecurity rules.

In electronic document management systems, we require flexible rules for
data access. Moreover, they should be easy to handle from the user’s point

1 An operation known as blinding.
2 See https://orzeczenia.ms.gov.pl.
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of view. The ultimate target would be to achieve the level of flexibility and
expressivity achieved by the best access control systems. Reaching this goal
with the current electronic signature model seems infeasible.

Right to be forgotten. A signed document D may contain personal data that
should be erased at the legitimate request of a data subject A [30]. However,
the document D may contain data that must be retained, in particular, due to
some legal obligation. In this case, we have a deadlock: blinding certain parts
of D makes the signature contained in D invalid and violates the obligation to
keep D in a verifiable form. On the other hand, without blinding the rights of
the data subject A granted by GDPR are violated.

Hiding signatory. In certain situations, the information on the signatory should
be protected. It may concern documents that are processed within an organiza-
tion with multiple persons involved, and signing them to mark acceptance. When
the document leaves the organization, only a few chosen signatures should be
attached to the document’s text. However, during the intermediate stages of
document processing, the next signature is created for the original document
appended with the previous signatures. In this case, it might be challenging to
remove some of the intermediate signatures.

A similar problem may concern public key certificates (which again are se-
cured with an electronic seal). Not all fields of the certificate should be visible
to every Verifier — an example is a certificate for personal signature created by
personal identity cards in Poland, which includes the signatory’s personal iden-
tification number PESEL. This number is not secret; however, due to the threat
of identity theft, it should not be distributed unless necessary. In most cases, it
is not.

1.3 Related Work

So far, selective disclosure has been explored primarly in the Self-Sovereign Iden-
tity domain, particularly in the context of privacy-preserving credential presen-
tation [4,15,7]. In parallel, recent European legislative developments have sig-
nificantly influenced the design of digital services. Key regulations include the
eIDAS framework [29,12], the GDPR [30], and the Whistleblowing Directive [13].
These initiatives set the legal foundation for trust, interoperability, and privacy
in the European digital ecosystem, providing both opportunities and constraints
for the implementation of selective disclosure technologies. However, introduc-
tion of new cryptographic techniques for legal use cases is guarded by a list of
scrutinized standards (see, e.g., [9,23,17,22]).

2 Digital Signatures According to eIDAS

According to the eIDAS Regulation [12,29], users of European Digital Identity
Wallets (EDIW) should be able to create and use electronic signatures that are
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accepted across the EU (see Recitals 19 and 20). eIDAS sets out the criteria for
an advanced electronic signature in Article 26. These requirements, while not
framed in standard cryptographic language, align closely with traditional cryp-
tographic signature properties (with one exception). Specifically, an advanced
electronic signature must be

(a) uniquely linked to the signatory and (b) capable of identifying the signatory
— both aspects relate to non-repudiation,
(c) created using electronic signature creation data that the signatory can, with
a high level of confidence, use under his sole control — authentication, and
(d) linked to the signed data in such a way that any subsequent changes
are detectable — which goes beyond the traditional definition of data in-
tegrity. Conventionally, any modification to the signed data typically renders
the signature invalid. However, under the eIDAS framework, one might in-
terpret this requirement in two ways:
e Minimum: Any alteration of the data makes the signature invalid.
e Maximum: It is possible to detect precisely what was changed; signatures
covering the modified parts and the overall document are invalid, but the
unchanged parts can still be verified correctly.

In our opinion, the second interpretation is not only more pragmatic, but also
follows the standard interpretation of legal norms. Indeed, for the first interpre-
tation (minimum), the wording of the legal text that more closely reflects the
interpretation would be “...linked to the signed data in such a way that any
subsequent changes make the signature invalid.”

2.1 ETSI Recommended Digital Signatures Algorithms

The general legal definitions should be confronted with practice, where techni-
cal recommendations and standards play the crucial role. Among others, any
deviation from the recommendations and standards creates multiple problems,
ranging from limited availability on the market to substantially harder certifi-
cation and market acceptance. Let us briefly discuss ETSI TS 119 312 V1.4.3
(2023-08) [9], the official EU list of algorithms to be used for electronic signa-
tures. It recommends the following signature algorithms:

RSA: As specified in RFC 8017 [22], the RSA-PKCS1-vl 5 and RSA-PSS
schemes begin signing by applying encoding procedures (EMSA-PKCSI-
vl 5 and EMSA-PSS, respectively) to a hash of the message.

ECDSA: As defined in FIPS 186-5 [23], the message is first processed using an
approved hash function or an extendable-output function.

ECGDA: According to ISO/IEC 14888-3 [17], this variant of ECDSA also be-
gins by hashing the message to be signed.

In all cases,? the entire document is hashed, so any modification is detectable
and results in the signature’s invalidation.

3 The DSA is omitted here, as it is no longer approved for signature generation ac-
cording to FIPS 186-5 [23].
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2.2 Presentation of Attributes

The eIDAS regulation concerns the use of electronic signatures in two distinct
contexts. First, e[DAS mandates that EDIW users must be able to create and use

electronic signatures. These signatures must be accepted across the EU “...by
default and free of charge, without having to go through any additional adminis-
trative procedures.” (ref. Recital 19). One key use case is the ability to “...sign

9

or seal self-claimed assertions or attributes ...” — a privacy-preserving mech-
anism that allows users to reveal only specific parts of an identity document,
rather than the entire document.

Second, electronic signatures also play a central role within the eIDAS trust
service framework in attribute presentation, one of the key EDIWs’ functionali-
ties. Specifically, qualified electronic attestations of attributes (Article 45d) and
electronic attestations issued by or on behalf of public sector bodies responsible
for authentic sources (Article 45f) must comply with the requirements outlined
in Annexes V and VII, respectively. In both cases, a qualified electronic signature
from the issuing qualified trust service provider or public authority is required.

However, this collides with Article 5a.4(a) that requires that the EDIW must
enable users to ‘“request, obtain, select, combine, store, delete, share, and present
... personal identification data and, where applicable, in combination with elec-
tronic attestations of attributes ...while ensuring that selective disclosure of
data is possible.” Clearly, to support selective disclosure, signature verification
mechanisms must allow for fine-grained validation without requiring the user to
present the entire attestation.

Finally, to further support the compatibility of eIDAS with our proposed
reconciled approach to signature mechanisms, it is worth noting that the Com-
mission Decision 2015/1506 [11], which specifies formats for advanced electronic
signatures and seals under eIDAS, endorses XML,* CMS and PDF formats.

2.3 ICAO

It should be noted that a similar to ours, but less general approach has been
adopted by the ICAO [16] for authenticating the personal data of holders of
travel eDocuments. These eDocuments (e.g., passports, personal identity cards)
contain both standard identification data (such as name, date of birth, etc.)
and sensitive biometric data (such as fingerprints, iris scans, etc.). Access to the
former is available to anyone holding a travel eDocument, for instance, by using
an e-passport reader app such as [28].

An eDocument holds 16 Data Groups, which store identification data, and a
Document Security Object SOp. During the preparation phase, the Document
Issuer computes the hash of each Data Group and signs the collection using
their Document Issuer Public Key (represented by the red lock in Figure 1).
Later, in the presentation phase, the eDocument provides SOp to the Reader.

4 Among these, XML is especially well-suited for implementing structures that enable
granular access to specific fields in attestations.
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Upon receiving it, the Reader verifies the signature in SOp using the Document
Issuer’s Public Key (the red key in Figure 1). If the verification is successful, the
Reader requests the relevant Data Groups from the eDocument. Once received,
the Reader compares their hashes with those included in SOp. If they match, the
Reader accepts the data as authentic. In the described mechanism, the Document
Issuer signs the root of a flat Merkle tree [21], where the leaves correspond to
the individual Data Groups.

eDocument Reader
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Fig.1. Simple version of passive authentication of [16]. ¢ denotes Document Issuer’s
signature on hash collection. For clarity, we omit both the validation of the Document
Issuer’s certificate and the authentication of the Reader to the eDocument prior to
presentation.

3 Signatures with Selective Document Disclosure

The central conceptual shift that we propose is to enable selective disclosure of
a signed document D, while preserving the ability to validate the signature as
if it were applied to the complete original version of D.5 Formally, we define
structured signature scheme SSign built on top of a standard signature scheme
Sign with the following procedures:

Key generation: Identical to the standard key generation procedure in Sign;
that is, generate a key pair (sk, pk).

® A similar concept, but in terms of files (not documents), can be found in ETSI
standard [14, ref. Associated Signature Containers|.
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Signature creation: Instead of applying the standard hash function Hash to
obtain the digest of a message D before invoking Sign, the scheme com-
putes a structured hash h := SHash(D), and then applies Sign. The resulting
signature is denoted o.

Selective disclosure: The signer or anyone who knows D and h, can produce
a blinded version D’ of the original document D.

Signature verification: The input consists of the blinded document D’, the
original signature ¢ on the full document D, and the public key pk. Verifi-
cation succeeds if and only if:

1. there exists a document D from which D’ can be obtained via selective
disclosure, and
2. o is a valid signature on D under the public key pk.

The selective disclosure procedure defined this way should be iterative that is, it
can be applied not only to the original document D, but also to any derived doc-
ument D’ obtained through selective disclosure. In particular, one may derive an
even more restricted document D" from D’ and continue this process iteratively.
Concrete instantiations of SSign are presented in Sections 3.2 and 3.3.

3.1 Document with DAG Structure

The first step towards defining SHash is finding a graph structure of a document:

— In public and private administration, XML documents are frequently used, in
particular with a predefined standard structure (see Figure 2). For example,
the Polish Ministry of Finance publishes a catalog of tax documents.® Each
XML document has the explicit structure of a tree, with document data
items having well-defined locations and types. For XML documents, there is
no need to convert to a graph representation, as it is explicit.

— The documents generated by humans, say in English, consist of sentences,
which in turn form paragraphs. The paragraphs may form sections, etc. This
relatively flat tree structure relates to the semantic composition of the text
and can be explicitly created by the text author.

— A text file is a sequence of characters, but it can be analyzed by automatic
Natural Language Processing (NLP) tools to determine its structure. The
essential part of such analysis is to convert the text into a sequence of to-
kens and then to find the structures of how the tokens are composed. A
clear advantage of this approach is that a token, such as an identifier of an
individual, occurring in different places is treated as the same object (see
Figure 3). The above conversion can be done by external LLM tools [1,24]
(with all concerns related to data privacy); however, there are open-access
LLMs that can be fine-tuned for this specific use case and run locally (e.g.,
DeepSeek R1 Offline [8]).

5 See https://www.podatki.gov.pl/e-deklaracje/dokumentacja-it/
struktury-dokumentow-xml.
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xsd:element =
xsd:complexType
xsd:sequence
xsd:annotation
xsd:documentation
1. NaleznoSci ze stosunku: pracy, stuzbowego, spéidzielczego i z ...
xsd:documentation
xsd:annotation
xsd:element = =
xsd:annotation
xsd:documentation>Przychéd</xsd:documentation
xsd:annotation
xsd:element

xsd:element = = =
xsd:annotation
xsd:documentation>Koszty uzyskania przychodoéw</xsd:documentation
xsd:annotation
xsd:element
xsd:element ="P_ =
xsd:annotation
xsd:documentation>Dochdéd</xsd:documentation
xsd:annotation
xsd:element

POLTAX POLA JASNE WYPEENIA PLATNIK, POLA CIEMNE WYPEENIA URZAD SKARBOWY. WYPEENIAC NA MASZYNIE, KOMPUTEROWO LUB RECZNIE, DUZYMI,
DRUKOWANYMI LITERAMI, CZARNYM LUB NIEBIESKIM KOLOREM. Skiadanie w wers]i elektronicznej: www.portalpodatkowy.mf.gov.pl

E. DOCHODY PODATNIKA, POBRANE ZALICZKI ORAZ POBRANE SKtADKI *

Przychod 1) Koszty uzyskania Dochod Dochéd zwolniony [ Zaliczka pobrana
Zrédta przychodéw przychodéw &) (b-c) odipecett sz Pt
2 or 2 gr 2 gr 2, gr B
———— 2 T T

1. Naleznosci ze stosunku: pracy, 29. 30. 31. 32. 33.
stuzbowego, spétdzielczego i z pracy
nakladcze), a takze zasitki pieniezne

z ubezpieczeni; cznego wyplacone
przez zaklad pracy, o ktérym mowa w art. 31
ustawy, oraz platnikow, o ktorych mowa

w art. 42e ust. 1 ustawy

W poz. 34 nalezy wykaza¢ przychody, do
zastosowano odiiczenie kosztow uzyskania
P2y . 22 ust. 9 pkt 3 ustawy. s , s s

LT e —) 3 0 a5

Fig. 2. Excerpt from the official Personal Income Tax XML file (PIT-11(16) _v1-0.xsd,
top) and the corresponding PDF form (bottom), both sourced from the Polish Ministry
of Finance website.

It follows that with a limited effort, we can represent any document D,
whether through an XML structure or tokenization,” by a Directed Acyclic
Graph (DAG). We shall use DAG(D) to denote DAG based on document D,
where:

— the nodes of DAG(D) are labeled and have unique identifiers ID,
— the content of D is encoded into labels of certain nodes (possibly not only
the leaves),

" Note that we do not commit to a single “best” method, as the most suitable approach
depends heavily on the specific scenario. For example, if a document is created with
selective disclosure in mind, representing it as XML introduces minimal overhead
for the creator — especially when issuing many copies with the same structure. For
documents without such a structure, simple parsers may suffice. A solution based on
LLMs that retrieves the structure of a document requires more consideration (see
Section 4) but can still be applied effectively in ad hoc cases.
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— the structure of DAG(D) reflects the semantic structure of document D,

— it can be assumed that there is a single maximal (root) element in DAG(D)
(having indegree zero); if there is more than one maximal element, we create
an extra root node of DAG(D), to which we connect all maximal nodes.

[Alice has a blue velvet dress. Alice and Bob live at 6980 Mulholand Drive.J

[ | l | | l

Alice and Bob at } 6980 Mulholand Drive

Alice [ has } {a blue velvet dress}
| personid | / \ address
{ a J [blue veretJ [ dress J Alice [ and J Bob
" personiD | person ID

Fig. 3. An example of representing D as a DAG, with certain nodes labeled as poten-
tially private data. Note that some nodes contain more than one word; this is why we
use a more complex DAG representation rather than a simple flat tree. This choice was
deliberate: 1) Context may reveal auxiliary information. Consider the term “Alice and
Bob”. Assume for a moment that we do not have the term “Alice and Bob” as a single
unit, but instead have three separate terms: “Alice”, “and”, and “Bob”. If, for exam-
ple, Bob is the target of pseudonymization D and Alice is not, then blinding only the
term “Bob” would be insufficient, as it would reveal the fact that the pseudonymized
individual lives with Alice. 2) Certain languages (e.g., Chinese) may require different
approach for semantic decomposition than English.

persons ID

An instantiation of DAG(D) (see Figure 3 for an example) depends on the
strategy to convert a text document D to a graph representation. For XML doc-
uments, it is immediate, while, say, for PDF documents, it might be a moderate
standardization challenge due to multiple design decisions.

Selective disclosure of a document. If a document D with DAG structure DAG(D)
has to be revealed selectively, then we blind a chosen part of the graph DAG(D)
— if a node A is blinded, then all its successors are blinded as well.

To enable fluent human—machine interaction, it is essential to develop tools
that convert the blinded DAG(D) into a human-readable format. Base libraries
are available in most programming languages (for example, [25]).

FEzample 1. In XML tax document, we can selectively eliminate certain field
values (like the taxpayer’s ID number) or blind an entire subtree (e.g., corre-
sponding to the declared income). In the latter case, we get a document that
witnesses that a given person has an active taxpayer status, while the confi-
dential data regarding the income is removed. Such a blinded document might
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useful, for example, in some towns, municipal authorities offer discounts on pub-
lic transportation for their residents, provided that the taxpayer declares this
municipality in the tax declaration.

Example 2. In case of a text document D converted to DAG(D) with an NLP
tool, the resulting graphs have tokens corresponding to nodes with no incom-
ing arcs. Some tokens correspond to physical persons identifiers or to data en-
abling identification of a data subject (e.g., a token being a part of the address).
Note that such a token may correspond to multiple occurrences in the original
text; note that manual anonymization may overlook some appearances. With a
DAG(D), it suffices to eliminate a selected token to eliminate all of its appear-
ances.

In Sections 3.2 and 3.3, we present two approaches to creating signatures that
enable partial disclosure of a document by utilizing its semantic DAG structure.

3.2 Merkle Tree Approach

Preliminary definitions. In this section, we consider a DAG(D) where the order
of children of each node is defined and there is a single root - the only node with
indegree 0 (recall that we consider directed edges that point in the direction
from the root to the leaves). In particular, it does not need to be a tree.

Each node A of the tree may correspond to a part of the document D ac-
cording to a relevant semantic structure. For the sake of generality, we assume
that the text of D is spread not only among leaf nodes of DAG(D), but possibly
also among the non-leaf nodes. Let ID 4 be the identifier of node A, and let T'(A)
denote its label. The label T'(A) is either a text from D or an artifact of DAG(D)
creation. If T(A) is a part of the text D, then we associate with A a random bit-
string (salt) Tear(A), which is long enough to make brute-force preimage attacks
against a hash function infeasible. Define

T+ A) {(T(A), Toar(A)), if Tear(A) is defined,
T(A), otherwise.

Computing SHash. The hash value h(A) of a node A is defined recursively by
the following formula:

h(A) = Hash(T"* (4)), if A is a leaf (outdegree zero),
| Hash(Hash(T*(A)), h(A1), ..., h(A,)), otherwise,

where A1, ..., A, are the child nodes of A. The values of h are calculated bottom-
up starting from the leaves of DAG(D).

Let hyoot denote the hash value at the root node of DAG(D). The final output
is (Aroots {(ID4;, Tsah(Ai))i}) for all nodes A; where Ty, (A;) was defined.

Signature creation. The signing algorithm Sign is applied to produce the signa-

ture o. The only difference from the standard procedure is that the hash value
h = Hash(D) is replaced by h = hyoot returned by SHash(D).
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Selective disclosure. A User holds document D (and thereby also DAG(D)), a
signature o, and the salt values Twt(A;). The following steps are executed:

1. Construct the blinded DAG(D’) by selecting a subset of nodes from DAG(D)
whose label is to be hidden (we shall call them blinded nodes).
2. Replace T'(A) of each blinded node A with the empty symbol H.
3. Create a list L that enables reconstruction of hyoot:
— If node A is blinded, insert (ID 4, Hash(7+(A4),0) into L.
— If node A is non-blinded, insert (ID 4, Tcait(A), 1) into L.
4. Output (DAG(D’ ), o, L) to the Recipient of the selectively disclosed signa-
ture.

Signature verification for selectively disclosed D. The specific part of signature
verification is the recalculation of h.oot. It is easy to see that with L, the Ver-
ifier can recompute hoo: for each non-blinded node A, Hash(7T(4)) must be
computed, using the part T'(A) of the document D. For a blinded node B, the
Verifier uses Hash(T7(B)) from the list L and cannot derive T'(B) due to the
application of the (unknown) salt string.

Discussion.

Note 1. The text document D’ corresponding to DAG(D’) can be visualized in
a manner analogous to the so called “black box” redaction of classified docu-
ments, where each empty symbol B is replaced with an appropriate graphical
placeholder.

Note 2. If DAG(D) is a tree, the resulting structure is simply a Merkle Tree [21]
with some additional data taken under the hash (salted hashing).

Note 3. Observe that any Recipient of a selectively disclosed (DAG(D’ ), 0, L)
can further restrict the content of the document and present it to another party.
To blind an additional node A it suffices to change T'(A) to B and replace
(ID 4, Twaie (A), 1) with (ID 4, Hash(T+(A4)),0) in L.

Note 4. Similarly, for any Recipient of selectively disclosed (DAG(D’), o, L), it is
infeasible to alter the content of the unblinded fields, as any such change would
modify the final value of hyoot Or a collision of Hash would be found. Therefore,
the security arguments reduce to the security of the underlying signature scheme.

Note 5. According to the Architecture and Reference Framework (ARF) [10],
EDIW must support two mandatory standards for the electronic attestation
of attributes with selective disclosure, namely ISO/IEC 18013-5 [18], which is
generalized in ISO/IEC 23220-2 [19], and SD-JWT-based Verifiable Credentials
[6]. In addition, EDIW may optionally support the W3C Verifiable Credentials
Data Model v2.0 [27]. All three standards achieve selective disclosure by hashing
each attribute together with a random value (once again, salted hashing). Thus,
we are reusing the same concept for selective disclosure of signed documents as
ARF uses for selective disclosure of electronic attestations of attributes.
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3.3 Structured Encryption Approach

In this approach, all node labels of DAG(D) are first encrypted using an OTP-
like symsmetric encryption scheme® before being signed with Sign, while the keys
used to encrypt the contents of the individual nodes of DAG(D) are distinct.

Key derivation. Assume that DAG(D) is a tree where the order of children of
each node is defined.® The encryption keys are derived in a top-down manner:

1. Select a root key Koot at random, assign it to the root of DAG(D),
2. Let K4 be a key for node A, then m children of A are assigned, respectively,
the keys
Hash(K 4,1),Hash(K 4,2),...,Hash(K 4, m). (1)

Encryption of DAG(D). We construct EDAG(D), the encrypted copy of DAG(D),
by transforming the node labels according to the following procedure:

1. For each node A in DAG(D), replace the label T'(A) with
T'(A) == (T(A) ® Ky, Hash(K 4,0)),

where
— K, is the output of a cryptographic PRNG seeded with K 4, truncated
to the bit-length of T'(A),
— @ denotes the bitwise XOR operation, and
— Hash(K4,0) is used for authenticating the key K 4.
2. Output (EDAG(D), K;o0t)-

Computing SHash. In this case, SHash(D) := Hash(ser(EDAG(D))), where ser
can be any standard DAG serialization method.

Signature creation. A standard signature scheme Sign is applied, producing the
signature o with h := SHash(D).

Selective disclosure. If the Signer wants to disclose the entire document D with
its signature, then the Recipient gets the tuple

(EDAG(D), 0, Ky).

The Verifier can use Ky to derive all keys K 4, decrypt each T'(A) and finally
check that the decrypted labels T(A) represent DAG(D). The standard test is
applied to o and h.

Alternatively, the Signer can disclose only a set of nodes of DAG(D), so that
if a node A is disclosed, then automatically all its successors in DAG(D) will be
disclosed as well. The following steps are executed:

8 Note that any symmetric encryption scheme (Enck, Deck) can be used in this sce-
nario, additionally, if an AEAD scheme is used, appending authentication data can
be neglected.

9 We follow the idea from [32] of segment-based document protection.
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1. Identify the nodes Aj, ..., A; such that the disclosed document D’ contains
T(A1),...,T(A;). Let KS denote the set of nodes Ay,..., A; and all their
SUCCessors.

2. Derive the keys Ky4,,..., K4, from Ky according to the original procedure.

3. Output the tuple

(EDAG(D),O’,|DA1,...,|DA“KA1,...,KAt). (2)

Signature verification. Let us focus on selectively disclosed D, as the case without
selective disclosure corresponds to the case of choosing A; being the root of
DAG(D).

For verification of a signature (2), the Recipient executes the following steps:

1. Verify the signature o on EDAG(D).

2. Starting from the nodes A;,...,A; and the keys Kg4,,...,K4,, calculate
the key K p for every successor node B contained in S using the procedure
from Equation (1).

3. For A € S, check the correctness of K 4 by testing H(A) < Hash(K 4,0).

4. For A € K8, recover the plaintext T'(A) by XOR-ing T(A) ® K'; with K/,
derived from K 4. If a node B of DAG(D) does not belong to KS, then the
field T'(B) should be replaced by the empty symbol H.

Note 6. The visualization of DAG(D’) in the Structured Encryption approach
follows directly from the Merkle Tree approach. Also, observe that, similarly to
the Merkle Tree approach, selective disclosure can be delegated. Namely, the user
can derive certain descendant keys of K4,,..., K4, and use them for selective
disclosure.

t

Note 7. Tt is infeasible for any Recipient of disclosed EDAG(D’) to change the
content of the fields, since to change the value T'(A) it would be necessary
to change K4. However, this requires to find K’y such that Hash(K’,0) =
Hash(K 4,0) — otherwise SHash would be applied to a different string. All in
all, a manipulation of the signed text requires finding a collision for Hash.

4 Future Work

Several important directions remain for future exploration. A proof-of-concept
implementation of the proposed methods is needed to enable experimental eval-
uation of performance and scalability. Such a prototype should align with the
ETSI standards [14] to facilitate adoption for legal transactions.

Furthermore, robust techniques for converting documents into DAGs require
more attention and the creation of de facto standards. In this work, we only
scratched the surface of representing text documents as DAGs. While transla-
tion from XML to DAG is relatively straightforward, handling arbitrary text
formats (e.g., PDF or natural language text) is more challenging. Leveraging
LLMs combined with traditional NLP techniques should also be investigated,
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with careful consideration of factors such as reliability, privacy implications, and
the inherent limitations of LLMs. Developing reliable methods for this trans-
lation could provide a powerful building block that could be used for multiple
purposes, not only for signing.

Beyond the core framework, additional research should explore potential ap-
plications in knowledge extraction. One notable use case is proof of entitlement
in whistleblowing scenarios [13]: a whistleblower has the right to submit a re-
port if they are in any “work relation” with the reported organization. Such a
relation may follow from various legal documents (employment contract, civil
contract for services, confirmation of volunteer status, etc.). Presenting such a
document in the original form during report submission can effectively thwart
any pseudonymization attempt. This challenging problem has been recognized
but so far not addressed in [13].

5 Final Remarks and Conclusions

This work demonstrates the feasibility of high-grain selective disclosure of signed
documents derived from black-box signature schemes using a mapping from text
documents to DAG structures.

To summarize, we suggest rethinking the concept of electronic signatures
to enable selective disclosure of the data they contain without requiring re-
signing. We have shown that such signatures can be implemented by slightly
adapting existing cryptographic schemes, namely, incorporating standard (and
in particular standardized) signature schemes, rather than designing entirely new
ones. Such an approach reduces the standardization effort and facilitates faster
adoption in practice.

The proposed method may be particularly useful for leveraging signed docu-
ments in terms of electronic attribute attestations, as introduced by eIDAS 2.0,
in day-to-day administrative workflows following strictly the data minimization
principle from GDPR. In our opinion, reshaping the concept of electronic sig-
natures towards selective disclosure is a necessary condition to enable serious
realization of GDPR.
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Abstract. We present Invisible Encryption, a cryptographic protocol that camouflages the
sharing of a secret within standard encrypted traffic to avoid detection in monitored envi-
ronments. This paper introduces Invisible Encryption, a novel protocol integrating threshold
secret sharing, steganography, and public-key cryptography to enable covert communication.
By embedding a secret share within standard encrypted traffic, specifically by disguising it
as a session key or nonce in a hybrid encryption scheme, our method ensures that the trans-
mission of the secret remains undetectable. The secret is reconstructed from shares derived
from a public natural language text and the transmitted share, with the selection of shares
protected by a secret seed. We provide a formal security analysis, demonstrating that Invisible
Encryption achieves confidentiality and plausible deniability under standard cryptographic
assumptions. Invisible Encryption offers a robust solution for applications that require se-
cure, undetectable communication, such as censorship-resistant systems and whistleblower
protection.

Keywords: Secret sharing - Steganography - Covert communication - Plausible deniability.

1 Introduction

In environments where the very existence of encrypted communication raises suspicion or invites
censorship, it is crucial to conceal both the content and the purpose of messages. Traditional
steganography hides data within innocuous media (images, audio, etc.), but often requires spe-
cialised embedding methods and can be detected via statistical analysis. In contrast, Invisible
Encryption repurposes standard cryptographic envelopes and protocols as carriers of hidden infor-
mation; in other words, can we use cryptography itself as a steganographic channel?

A different way to frame the challenge is: while ciphertexts are often easy to recognise as such
(e.g., random-looking strings in a log file), can we construct an encryption function that maps a
meaningful natural-language plaintext into a ciphertext that itself appears to be a natural-language
text? For example, could even this paragraph contain an encrypted message by means other than
classical steganography? The answer is not straightforward. Even the simplest substitution cipher
(e.g., replacing words of a sentence with other words from the same or another language) demon-
strates the difficulty: even if the “components” of the ciphertext are valid words, their combination,
as dictated by grammar, will almost surely form nonsense rather than a meaningful sentence. Large
language models seem promising to generate fluent text, but their design is not intended for cryp-
tographic reversibility.
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However, suppose we allow the target “ciphertext” to exist before encryption, i.e.. In that case,
we choose a cover text in advance, and we can design our encryption to map a given plaintext to
a target sequence of values that forms that meaningful text. It turns out that polynomial secret
sharing offers a way to do this: we treat words from a natural-language text as shares values on
a secret-sharing polynomial, and we let the arguments (indices) at which those shares are defined
be determined pseudorandomly by a secret seed. We also include an additional single share to
ensure the plaintext message can be recovered. To see why this extra share is needed, suppose we
naively tried to reconstruct a secret message m by XOR’ing together words from the cover text:
m = w; B wy P -+ P w,. Unless those words were specially chosen (and used only once), this is
unlikely to equal m except by coincidence. Using repeated plaintext words as a one-time pad invites
the classic Friedman attack. Instead, we introduce an additional random component r such that
m=w; ® - B wy, ®r. This r will appear random and not part of any natural language.

Our strategy is to disguise this extra random share r as a legitimate random value in a standard
cryptographic protocol transcript. Random nonces, session keys, or other random outputs are com-
mon in regular encrypted traffic and typically do not arouse suspicion. For example, imagine Alice
and Bob exchange mostly plaintext emails but occasionally perform an authenticated key exchange
or send an encrypted attachment. What if we let the words wy, ..., w, be drawn from the plaintext
email conversation, and let the final random value r be transmitted as part of the cryptographic
protocol (say, as a session key in a hybrid encryption)? In other words, even though r is a share in
an (n + 1)-out-of-(n + 1) secret sharing scheme, its transmission is camouflaged as a random cryp-
tographic artefact. A simple choice is to piggyback on a hybrid encryption or challenge-response
authentication protocol — for instance, use r as the “session key” in an RSA-based key exchange.

The key insight is that transmissions of random bits are routine in cryptographic protocols
and thus unlikely to be flagged as suspicious, whereas sending plaintext secret data would betray
that something hidden is being communicated. More importantly, if an eavesdropper intercepts the
entire communication, they will observe normal-looking plaintext messages (the cover text) and a
standard cryptographic exchange (e.g., an RSA-encrypted session key and a ciphertext of a decoy
message). This should not trigger special scrutiny: the adversary sees nothing beyond an ordinary
encrypted session amid otherwise plaintext conversation. Even if the adversary captures all the
traffic, a single random session key is insufficient to recover any secret message.

In summary, the Invisible Encryption protocol enables covert communication by concealing a
secret within standard encryption traffic. The hidden secret share is indistinguishable from the
random values usually present in cryptographic protocols, providing plausible deniability: par-
ticipants can claim the exchange was purely routine (e.g., an encrypted email or authentication
step). An adversary who is unaware of the secret seed cannot identify which parts of the cover text
are carrying hidden information or reconstruct the secret. The primary contributions of this work
are as follows:

1. A new form of steganography that uses cryptography as its carrier: Integrates Shamir’s
(k,n)-threshold secret sharing with public-key and symmetric encryption, embedding a secret
share within a decoy message to enable reconstruction from a public cover text.

2. Plausible Deniability: Permits participants to claim the communication involves routine
encryption, safeguarding against adversarial or legal scrutiny.

97



DPM 2024

3. Efficient Implementation: Provides a Python prototype with execution times under 400
ms and a communication overhead of 544 bytes, suitable for real-time, bandwidth-constrained

applications 4.

These contributions enable secure, undetectable communication, applicable to censorship-resistant
systems, whistleblower protection, and privacy-preserving environments.

The paper is organized as follows: Section 2 surveys relevant work in secret sharing, steganog-
raphy, and covert communication. Section 3 outlines the mathematical and cryptographic prelimi-
naries used in our scheme. Section 4 describes the Invisible Encryption scheme in detail, including
algorithms for setup, share derivation, encryption, and decryption. Section 5 defines the system and
adversary model and formalizes the security goals. Section 6 presents the security analysis of the
scheme. Section 7 discusses our prototype implementation, including the protocol flow and perfor-
mance measurements. Finally, Section 8 concludes the paper and highlights directions for future
research (such as extending the scheme to multiple messages under one key).

2 Related Work

The foundation of Invisible Encryption builds upon several decades of research in threshold secret
sharing, tracing back to Shamir [32] and Blakley [7], which introduced polynomial interpolation
and geometric approaches, respectively. Subsequent enhancements include verifiable secret sharing
by Feldman [19] and Pedersen [29], proactive renewal of shares by Herzberg et al. [22], and com-
putational secret sharing by Krawczyk [26]. More recently, Komargodski et al. [24] extended these
ideas to threshold fully homomorphic encryption, paving the way for secure computation on shared
data.

The linguistic obfuscation in Invisible Encryption builds on techniques from linguistic steganog-
raphy. Early mimic functions, as demonstrated by Wayner [37] and lexical methods by Chapman
and Davida [12], have shown how ciphertext can be disguised as natural text. Advances by Chang
and Clark [11], and Safaka et al. [31] exploit syntactic and semantic transformations for watermark-
ing and covert channels. Unlike prior work that embeds payloads by modifying cover text, Invisible
Encryption maps existing text to shares through selective indexing and hashing, enhancing natu-
ralness and deniability.

Threshold cryptography enables collaborative cryptographic operations without revealing pri-
vate keys, as pioneered by Desmedt and Frankel [16] and refined by Shoup [34]. Practical frameworks,
such as FROST by Komlo and Goldberg [25], demonstrate efficient threshold signatures. Invisible
Encryption’s hybrid encryption follows the RSA-based KEM/DEM paradigm of Rivest et al. [30]
and the formal models of Cramer and Shoup [14], with extensions from Abdalla et al. [2] and
identity-based methods by Watanabe et al. [36]. Its use of encrypted decoy messages for plausible
deniability draws on TrueCrypt’s hidden volumes [1], deniable encryption by Canetti et al. [10],
and schemes by Tyagi et al. [35], and Dodis et al. [18].

Indistinguishability obfuscation, introduced by Barak et al. [4] and Garg et al. [20], as well as
functional encryption by Boneh et al. [9], share the goal of hiding information while preserving
utility. Its threshold structure echoes MPC protocols from Yao [38], Goldreich et al. [21], SPDZ by
Damgérd et al. [15], Sharemind by Bogdanov et al. [8], and integrating secret sharing in MPC by

4 Here is the link for the Python proof-of-concept implementation: https://github.com/shahzadssg/
Invisible-Encryption.git
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Benaloh [5] and Cramer et al. [13]. Instances of invisible encryption using RSA-based carriers can
be vulnerable to Shor’s algorithm [33], motivating post-quantum alternatives such as NTRU [23],
Ring-LWE [27], McEliece [28], Rainbow [17], and threshold lattice schemes by Bendlin et al. [6].
Given the crucial threats induced by quantum computing, the long-term security of the protocol
will depend on transitioning to post-quantum cryptography, a task that is noted here as essential
future work but is not integrated into the current model.

3 Preliminaries

We let words from our natural language appear in some fixed binary encoding, e.g., ASCII code,
Unicode or others, such that we can uniquely associate w € {0,1}" with some meaningful string
(at least a symbol, up to a whole natural language word). Furthermore, let |w| be the length of w
in bits, so that treating w as an integer in binary notation, we have w < 2/*l. Let us fix a prime p
and length n € N such that all words w € {0,1}" in our plaintexts®, treated as integers, fit into the
range 0 < w < p—1, so that our plaintext (natural language words) are canonically interpretable as
elements of F,, for otherwise, we may take a word’s hash value modulo p to map it into an element
of F,; as our practical implementation does.

We let a natural language text be given as an ordered sequence of L € N words 7' = (w[0], w[1],
...,w[L]) € ({0,1}")™, all possibly padded to the same (maximum) length. Within this sequence
of words, we will embed our secret and, if necessary, extend the sequence with additional entries.
Let t € N be a security parameter, and let the length of the carrier text T be n = poly(t) depend
on t by some (fixed) polynomial poly. Furthermore, let the plaintext be a string of length m, where
m = poly(t) < n(t), that also depends on ¢ by some (other) polynomial. Table 1 provides an
overview of variables and functions appearing throughout the construction.

Polynomial Secret Sharing: A secret m € F), is shared using a polynomial P(x) = m + a1z +
<o+ ap_12"71, with k distinct evaluations (z;, P(z;)) sufficient for reconstruction. The Lagrange
interpolation formula reconstructs P(0):

k k
m=P0)=  P(zj)- p—
j=1 i=li#j "7

(mod p).

i

Pseudorandom Number Generator (PRNG): A PRNG is a deterministic algorithm G : {0,1}* —
{0,1}* that takes a seed of length s and produces a longer pseudorandom output of length ¢. A
PRNG is secure if its output is computationally (in polynomial time in £) indistinguishable from a
truly random string of length .

(Non-)Cryptographic Disguise of random strings: to unsuspiciously hide a random string in natural
language text, such as within a log file or similar, we can combine asymmetric encryption (e.g.,
RSA-OAEP) with symmetric encryption (e.g., AES-CBC) following the KEM/DEM paradigm.
The RSA component encrypts the seed and the freshly generated secret share syew, as necessary by
our introductory argument above; the AES component encrypts a decoy message using sSpeyw as the
key with a random I'V. That use of hybrid encryption is arbitrary here; any cryptographic (or other)

® mildly assuming that the plaintext to carry our secret is from a natural language whose words will not
have unbounded lengths
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Table 1: List of symbols used in the construction.

Symbol Description

x|y concatenation of strings = and y

L Length of the cover text T (number of words)

wli] i-th word in the cover text T’

T Original cover text, an ordered sequence of words (w[1],...,w[L])

T’ Updated cover text (ciphertext), i.e., T' || w[L + 1] after embedding the final share
k Threshold for secret reconstruction

m Secret message in F, to be shared, resp. covertly transmitted

P(x) Degree-(k — 1) polynomial used for secret sharing, satisfying P(0) = m

Z; Pseudorandom abscissa values, generated via x; = H(x;-1)

Tnew Fresh abscissa for the additional share, derived as the next hash in the chain

Sj Share values s; = P(x;) (for 1 < j <k —1), or Snew = P(Tnew)

Snew Additional share computed from interpolated polynomial

H Cryptographic hash function modeled as a random oracle

PRNG Pseudorandom number generator seeded with xg, used to pick distinct word indices
To Secret seed used for pseudorandom generator PRNG

Param  Public parameters tuple (p, H, PRNG)

SK Secret key, consisting of (zo, k) shared by sender and receiver

protocol IT that at some point transmits a random string between parties would be admissible. One
example is challenge-response authentication, where Alice may ask Bob to decrypt (symmetrically)
or digitally sign (asymmetrically) a random nonce, which is a share in the above polynomial sharing
scheme. As a non-cryptographic example, that would even work inside a transmitted file only, e.g.,
letting the plaintext be in a PDF with embedded content; we can even include a QR code in a text
that contains a weblink, inside which a random (e.g., base-64 encoded) login-token is embedded
(although this may negatively affect the security if the key is re-used; see Section ??). The “login”
token in the weblink can be the additional share to be transmitted, while the actual URL will open
accordingly (or not) solely for the sake of deception. Suppose a login is attempted by clicking on
the web link. In that case, this mechanism may even serve as an intrusion detection signal, as the
receiver already knows that the QR code contains a share and should not be opened. In contrast,
the adversary may not know this and may discover it upon this trial.

4 The Invisible Encryption Scheme

Figure 1 illustrates the basic idea: like in Shamir’s scheme [32], we let P(z) = m+aja+. . .+ap_12~~1
be a polynomial, in which we fix m € {0,1}" to be the secret. However, different to the classical
instance of Shamir’s sharing, we fix a series of values of the polynomial, rather than its coefficients.
That is, we will look for a polynomial for which P(z;) = w][i], for some value z; and some word w]i]
from the natural language text, for a total of > k but < n values z; and words wli].

While it would be conceptually trivial to fix a sequence z1, . .., xx_1 and words w(i1], ..., w[ig—1]
from the text and interpolate a polynomial by solving a linear system of equations, the reconstruc-
tion would then require the same set of values again. This knowledge would have to be transmitted
secretly from Alice to Bob, but (i) could not be used a second time, and (ii) would be more data
than transmitting the secret directly. To overcome both issues, we let the sequence of x1, ..., z;_1
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(a) Traditional secret sharing (b) Invisible encryption

Fig.1: Conventional secret sharing, vs. invisible encryption: while in the conventional setting, the
polynomial is chosen, and shares are its values taken at (defined or secret) positions, invisible
encryption twists around this process by choosing the natural language words to be the values that
the polynomial shall take, and interpolating it at positions that are defined secretly from a seed value
zo. The seed can also determine the words to interleave the shares with (the cover text to embed the
ciphertext), and the polynomial is then finally determined by interpolation. Further shares are then
computed in the traditional form again (and are required for proving the steganographic security).

and iq,...,i,—1 be generated pseudorandomly based on a (fixed-size) secret xo that will act as a
secret decryption key. The computation of the polynomial remains a direct interpolation, but to
recover m as the plaintext secret will require at least one additional share (as explained in the
introductory intuition).

4.1 Formal Scheme Definition

We model Invisible Encryption as a triple of probabilistic algorithms: (Setup, Enc, Dec), defined
as follows:

Setup(t, L): On input a security parameter ¢ € N and the cover-text length L = poly(t), it selects:

i) A large prime p of bit-length A = poly(¢) and finite field F,,.
ii) A hash function H : {0,1}* — F).
iii) A cryptographically secure pseudorandom number generator PRNG, whose output range is
{1,...,L}.
iv) A secret seed zg € {0,1}* uniformly at random (denoted o & {0,1}M).

v) A threshold & & {2,...,L}. The symbol z & X denote a random uniform selection of z € X.
vi) Parameters Param = (p, H, PRNG).
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Output (Param, SK = (x¢, k)).

We remark that the hash function A and the pseudorandom number generator PRNG serve the
same purpose, but deliver different “items”, i.e., either the points on the abscissa (by a hash chain)
or the selection of words from the text (via the PRNG). We distinguish the two for the sole purpose
of indicating the meaning of their outputs directly by the symbol (easier than distinguishing two
hash functions or two PRNGs).

Enc(PK, m, T'): On input public parameters Param, secret m € F,,, and cover text T' = (w[1],...,w[L])
of length L, it:

i) Derives n shares {(z;, sj)};?;ll from (xg,T) by:
a) pseudorandomly computing the values z; < H(z;—1) for j = 1,2,... until £ — 1 distinct
indices are found (skipping duplicate values, if any).
b) pseudorandomly picking k — 1 distinct indices i; € {1,..., L} using the PRNG seeded with
xo and setting s; <— wli;] for j =1,2,...,k — 1 (duplicates are allowed here).
ii) Interpolates the unique polynomial P € Fp[z] of degree < k satisfying

P(0)=m, P(z;)=s; forthek— 1 points (x;,s;) chosen in step i)

iii) Computes a fresh abscissa Tnew = H”(29) (continuation of the hash chain; if 6 € {0,271, ..,
xj_1} from above, then we iterate further until we get an “unused” nonzero value), and put
Snew P(xnew)-

iv) Execute the protocol or other procedure IT that will use spew (€.g., as a session key, during an
authentication, embedded in a QR code, etc.), yielding w[L + 1] « II(M) as the transcript
of the protocol IT, which is now added (e.g., appended) to the existing cover text®, giving
T + T|w[L + 1] = (w[1],...,w[L],w[L + 1]).

Outputs the updated cover text T” as the ciphertext, decryptable under the secret key SK = (zo, k).

Dec(SK, C, T"): On input of SK = (z0, k), and cover-text 77 = (w[1],...,w[L],w[L+1]), we do the
following:

i) Extract spew from w[L + 1], and recover all points {(z;, w[z])}ic=1 by recomputing the pseudo-
random sequences just as done during the encryption.
ii) Interpolate P through the just created points, and return the secret message m < P(0)

The encryption of multiple messages under the (same) secret key SK = (xg, k) works likewise
but will produce only spew afresh for any further messages, upon using a distinct polynomial P for
each message. The remaining set of shares will be the same (due to the same seed to determine the
pseudorandom sequences). We will revisit this issue in Section ?7.

5 System Model and Threat Assumptions

Building on the algorithms and syntax defined in Section 4, we now present a formal security model.
We specify the roles, the information each party controls, the adversary’s oracle access and resource
bounds, the information flow, and the precise security objectives.

6 in many practical cases, II may have a much longer transcript than what would fit into a string of the
“block” size n that we fixed; in that case, we may add further blocks accordingly, but w.l.o.g., let the
transcript (the relevant part of it), appear as w[L + 1] to simplify the notation)
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5.1 Adversary Model and Security

Let A be a probabilistic polynomial-time (PPT) adversary who knows all public parameters and
the complete ciphertext 77 = (w[1],...,w[L],w[L + 1]), including all details about the procedure
(cryptographic protocol or other) IT, whose transcript appears in 7”.

The adversary’s goal is to recover the secret m € F,. The security of the linguistic obfuscation
component depends on the indistinguishability of the mapped shares from random elements in the
text. Computational indistinguishability is understood in the usual cryptographic sense, i.e., every
polynomial-time-bounded probabilistic attacker would have a negligible chance of discovering the
secret if the security parameter ¢ becomes sufficiently large. We call a function v : N — N negligible
if it decays faster than any polynomial, i.e., if for every ¢ > 0, there is some n. € N such that
v(n) <n~¢for all n > n..

Definition 1 (Steganographic Security). A steganographic system is secure if the distribution
of cover objects (text) and stego objects (text with embedded information) are computationally in-
distinguishable. More formally, let t € N be a security parameter, and let p,q be non-constant
strictly positive polynomials in t. Given a carrier text T € ({0,1}*)”(” and whose total length
is < q(t), which embeds a secret x € {0,1}" of fized size n < p(t), we call it’s embedded secret
steganographically secure if Pr(adversary correctly outputs x | given T) < v(t), where v(t) is negli-
gible for a polynomially (in t) time-bounded attacker.

6 Security Analysis

The security of our scheme will hold in a computational, not information-theoretic, sense under a
random oracle assumption on the hash function H and the pseudorandom generator PRNG.

6.1 Security of the Secret Sharing Scheme (is only computational)

Shamir’s Secret Sharing provides perfect information-theoretic security, meaning that even an ad-
versary with unlimited computational power cannot determine the secret from fewer than k shares.
However, our construction cannot retain this property because the plaintext words will not exhaust
the entirety of elements in F,, and (more importantly), the adversary, unlike in the traditional
setting of secret sharing, is in possession of all shares; only does not know which are the right
ones. Hence, the usual argument for information-theoretic security that for every possible secret, a
missing share would exist to produce exactly this secret will fail since all possibilities are already
“fixed.” However, we do retain an intractably large search space for the adversary since every subset
of (ciphertext) elements could be the set of desired shares, and their entire count is O(2%) if the
threshold is unknown. Letting the cover text be reasonably long, this will eventually exceed a poly-
time bounded attacker’s capabilities. If the number k of shares would be known to the adversary,
then the search space “shrinks” to a size of O(n*) (containing all k-element subsets, but fewer, since
the “cryptographic protocols transcript” must be part of the sharing, reducing the number of shares
by 1, or a relatively smaller choice of possibilities, at least).

6.2 Steganographic Security of Invisible Encryption

The text-to-shares mapping in Invisible Encryption is steganographically secure under the random
oracle model, specifically:
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Theorem 1. The scheme from Section 4 is steganographically secure against a polynomially time-
bounded attacker for the encryption of a single message, provided that:

— (random oracle assumption) H and PRNG behave as random oracles

— (known ciphertext assumption) The adversary does not know SK = (zq, k), but knows the entire
cover text T = (w[l],...,w[L],w[L 4+ 1]) and details about II, whose transcript appears as
w[L + 1] (possibly more, if the transcript is longer than one “word” in the cover tewt).

Proof. The attacker can correctly recover the secret if and only if two conditions are met:

(A) correctly guesses the right words from the text,

(B) correctly gets the sequence x1,...,Tr_1, Tnew

Since the number k € {2,..., L} is unknown to the attacker, which, by a random oracle assumption
on PRNG, leaves it with a uniform choice of any subset of {1,...,L} to be the candidate set of
shares. This number of O(2%) many choices makes the search space super-polynomially large since
we also assumed L = poly(t) (see Section 4.1). The chances to guess the correct subset thus become
Pr(A) = 271 = 27polu(t),

Since this sequence is as well pseudorandom, its seed x is unknown, and H acts like a random
oracle, the chances to recover the sequence are the same as for guessing o, making the probability
of accomplishing the second condition Pr(B) = 2~* = 277°W(®)_ Thus, the overall chances for the at-
tacker to recover m correctly come to Pr(AAB) < min {Pr(A), Pr(B)} = min {27P0lv() 2-rolu()} <
2-Poly(t) which is negligible (where poly can denote three distinct polynomials in the last expres-
sion).

6.3 Plausible deniability

Immanent to the design of the scheme is the ability to plausibly deny the hidden message inside it,
since the cover text goes unmodified, and any data embedded in pictures, cryptographic protocols or
other parts (that allow unsuspiciously transmitting bit strings of any form) will contain only a share
that contains no information (as it is information-theoretically insufficient to recover the secret).
If strong coercion is anticipated, embedding multiple secrets for decoy or deniability purposes is
another option; this method has previously be described in [3], with proven security and deniability.

7 Example Implementation

We developed a proof-of-concept implementation of Invisible Encryption in Python to validate
its correctness and evaluate performance. In this section, we describe the implementation details,
illustrate the protocol flow between sender and receiver (with a diagram), and present an analysis
of covertness and runtime performance.

7.1 Environment and Tools

The prototype was implemented in Python 3.8 and tested on a standard workstation (2.4 GHz Intel
Core i5 CPU, 16 GB RAM). We used the Galois library for finite field arithmetic and the Python
cryptography library for RSA and AES operations. The cover texts in our tests were drawn from
sample English texts (e.g., Wikipedia articles) to simulate natural communications.
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7.2 Implementation Details

The prototype implements the algorithms outlined in Section 4, modularised for clarity and reusabil-
ity. The core components, reflecting the steps described in the formal definitions, are detailed below,
along with the specific libraries and parameters used in our Python implementation.

Setup and Key Generation: This phase initialises the necessary parameters and keys.

i) Field and Hash Initialization: A large prime p is sampled to define the finite field F,. In
our implementation, a 256-bit prime p was generated using the galois library to ensure a
sufficiently large field for mapping potential word hashes. The hash function H : {0,1}* — F,
is defined as the SHA-256 hash of the input mapped into the field by taking the result modulo
p. Specifically, H(m) = SHA-256(m) MOD p.

ii) Secret Seed and Threshold Selection: A 256-bit secret seed x is generated using os.urandom(32).
For selecting word indices from the cover text, our proof-of-concept uses Python’s built-in
random module, seeded with x(. It is important to acknowledge that this standard PRNG is
not cryptographically secure and does not satisfy the random oracle assumption made in our
formal security analysis. A production-level implementation would require replacing this with
a certified CSPRNG. The threshold k was configured as a fixed parameter for each test run.

iii) Public Key Protocol Initialization: An IND-CCA2 secure key pair (pk, sk) for the hybrid
encryption’s public-key component I7 is generated. We used the cryptography library to create
an RSA key pair with a 2048-bit modulus, employing RSA-OAEP for encryption and decryption
within I7. The protocol that we used to demonstrate the scheme is described in Section 7.3.

Share Derivation: The sender and receiver execute the same functions to derive the shares from the
public cover text and the secret seed xy. Our implementation, in the generate_secure_x_values
and text_to_shares functions, proceeds as follows:

i) Abscissae Generation: A sequence of abscissae (z;) is generated by creating a hash chain:
x1 = H(zo) and z; = H(encode(z;_1)) for subsequent values, where encode is a byte-string
conversion of the field element.

ii) Share Value Computation: The PRNG, seeded with z, selects £ — 1 word indices from the
cover text. The corresponding words are then hashed using SHA-256 (modulo p) to produce
the share values (s;). This results in a set of k — 1 points {(z;,s;)}.

Encryption: Using k — 1 shares from the derived set, a degree-(k — 1) polynomial P(z) was inter-
polated with P(0) = m via Lagrange interpolation (implemented with the galois library). A fresh
share (Zpew, Snew) was computed, and M = x¢||Spew was encrypted with RSA-OAEP to produce
Cpub- A decoy message was encrypted with AES-CBC using spew as the key, yielding Csym.

Decryption: The receiver decrypts Cp,p with the secret key sk to recover zg and spew, regenerates
shares, and interpolates P(z) with the same k — 1 shares plus (Znew, Snew) tO retrieve m.

Optimisations in the implementation included leveraging the galois library’s efficient finite
field operations for polynomial interpolation and shared computations, as well as utilising the
cryptography library’s optimised implementations of RSA-OAEP and AES-CBC, thereby min-
imising computational overhead.
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7.3 Hiding the final share in a hybrid key exchange

The final share is embedded as part of a cryptographic protocol, in our case, the exchange of
o as a ‘“session key” using hybrid encryption: let the message to be encrypted under RSA be
M = Spew, and let it be n = 256 bit long. She computes Cpyp, = RSA_OAEPpk(M), under Bob’s
public key pk, and then treats the value of sp.y as an AES key K. Selecting a random 128-bit
1V, she encrypts a benign decoy payload D under AES-CBC with PKCS#7 padding, yielding
Csym = AES_CBC (D, IV). This step creates a decoy transcript of RSA-OAEP to conceal Spew as
a session key for conventionally encrypted communication rather than part of a covert protocol. Alice
transmits the pair (Cpup, Csym) to Bob. To the adversary, Cpyup looks like a routine key-exchange
message and Csyy like an ordinary encrypted document. Upon receiving these, Bob decrypts Cpup
using his private key to retrieve spen. Using the secrets k,zo shared with Alice (beforehand),
Bob generates the same shares as Alice and selects the same k — 1 shares (this selection can be
deterministically derived from z(). Finally, Bob reconstructs the secret m using the k — 1 shares
and the received Speyw-

If questioned by an adversary, both Alice and Bob can claim they were exchanging the encrypted
message Cgym, using standard public key cryptography to securely transmit the session key spey-

7.4 Covertness Analysis

The covertness of our scheme stems from the legitimate appearance of the reference text T, the use
of standard cryptographic primitives for the encrypted messages, and the decoy message D that
appears to be the main encrypted payload.

The dual purpose of syew is particularly important for covertness. To an observer, the protocol
appears to be a standard hybrid encryption method: a public key algorithm is used to securely
transmit a symmetric key, which then encrypts the main message. This pattern matches legitimate
encrypted communications, making Invisible Encryption indistinguishable from conventional secure
messaging protocols.

An adversary cannot distinguish between the legitimate use of encryption for regular secure
communication and our stealth protocol without breaking the underlying cryptographic primitives
or obtaining access to the private keys of the participants.

7.5 Performance Analysis and Applications

We implemented the Invisible Encryption scheme in Python using the galois field library for
finite field operations and the cryptography package for encryption primitives. Below, we present
comprehensive performance metrics derived from our implementation, evaluated on a standard
workstation (2.40 GHz Intel Core 5, 16 GB RAM) running Python 3.8.

Table 2: Detailed Performance Metrics for Core Operations

Operation Mean Execution|Standard Deviation|Memory Usage
Time (ms) (ms) (KB)

Field Initialization 1.07595 0.35538 225000.0
Secure x-value Generation (n = 5) [0.302410 0.50586 225000.0
Text-to-Shares Mapping (n =5) [0.11942 0.37765 225000.0
New Share Creation (k = 3) 1.31597 0.43569 225000.0
Secret Reconstruction (k =3)  |1.24387 0.50298 225000.0
RSA Encryption (2048-bit) 247.46129 135.38926 225000.0
AES-CBC Encryption (decoy, 1KB)|304.03792 121.10442 225000.0
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Table 3: Performance Metrics Across Different Threshold Configurations

Parameter [Share Gen-|{New Share|Secret Re-|Total Pro-{Comm. Overhead (bytes)
eration (ms) [Creation construction |[tocol Time
(ms) (ms) (ms)
k=3,n=510.0 2.36959 1.58011 103.94971 544
k=5,n=10|1.65686 4.31780 3.72588 109.70056 544
k=17,n=15|1.57783 6.30636 9.57479 117.45898 544

Table 4: Decoy Message Encryption Performance (using speyw as session key)

Decoy Message Size|Encryption Time (ms) |Decryption Time (ms) |Ciphertext Size (bytes)
1 KB 194.77112 0.30829 1040
10 KB 249.74727 0.73943 10256
100 KB 250.28808 0.45835 102416
1 MB 257.22391 0.49147 1048592

The communication overhead remains constant at 544 bytes regardless of the threshold k& and
total shares n, as only xo (32 bytes) and spew (32 bytes) are transmitted, along with the RSA-
encrypted payload (480 bytes for RSA-2048) and the encrypted decoy message which varies based
on content size.

The dual use of syew as both a share for secret reconstruction and an encryption key for the
decoy message incurs no additional computational overhead, as the same value serves both purposes
without requiring further processing. Our implementation of AES-CBC encryption using spey as
the key demonstrates performance comparable to standard implementations, with linear scaling for
larger decoy messages. Our measurements show that even with a more complex setup (k = 7,n =
15), the entire protocol executes in less than 400 ms, making it suitable for real-time applications.
The communication overhead remains minimal and constant regardless of parameter choices, which
is particularly valuable in bandwidth-constrained environments.

Invisible Encryption is particularly suitable for censorship-resistant communication in environ-
ments where encryption is monitored or prohibited, whistleblower protection allowing sensitive
information to be transmitted covertly, diplomatic communications when revealing the existence of
communication could have political implications, covert operations requiring maximum deniability,
and privacy-preserving systems where regular encryption may draw unwanted attention.

The plausible deniability feature makes the system especially valuable in jurisdictions with key
disclosure laws, where users may be legally compelled to reveal encryption keys. By providing a
legitimate-looking decoy message encrypted with s,ew, users can comply with such demands without
revealing the existence of the covert channel.

7.6 Illustration with Ciphertext taken from this paper

We use this section to illustrate the scheme by taking exactly the first paragraph of this section as
the ciphertext to embed a secret message inside. The additional share is embedded as a login token
in the URL for a weblink that an adversary could try to open and be prompted for a password,
but by the event of clicking on it, already having disclosed its attack attempt to Alice and Bob
thus building in some very simple form of intrusion detection for an attacker that is unaware of
the use of invisible encryption).
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The above text consists of exactly L = 93 words, with a maximum length of < n = 12 characters.
We let the implemented code run with a 256-bit prime p, using the seed xg = 6 and k = 6 shares,
with PRNG(z) = H(z) MOD 93 as the pseudorandom number generator, where H is SHA256.
The selected words, pointed to by the index sequence iy,19,...,ik_1, are shown bold-printed in
the above paragraph (for illustration only), and the final share s,¢, is Base64-encoded into the
“auth” token of the weblink inside the QR code.

7.7 Practical Considerations and Limitations

The implementation of Invisible Encryption, while functional, comes with practical considerations
and limitations that must be acknowledged.

— Implementation Complexity: The protocol’s design requires the careful coordination of sev-
eral cryptographic primitives, including polynomial interpolation, hybrid encryption, and pseu-
dorandom sequence generation. This complexity can make secure implementation challenging
and may introduce errors or vulnerabilities if not handled with expertise.

— Security of the Secret Seed: The security of the entire protocol hinges on the confidentiality
of the secret seed . Any leakage of this seed would completely compromise the system, allowing
an adversary to reconstruct the secret message by identifying the correct shares. Therefore,
protecting xy through robust measures, such as physical or logical isolation on the user’s device,
is of paramount importance.

— Robustness against rephrasing: The protocol is vulnerable against substitution of synonyms
or rephrasing the cover text (unknowingly, or intentionally if the adversary aims to make the
hidden message non-recoverable). In real-world scenarios, ambiguous words, idioms, or context-
dependent meanings could be changed without affecting the carrier text itself, but produce a
different interpolated polynomial and hence modify the secret up to non-recoverability.

— Generalizability: The prototype was tested in a controlled environment. Its performance and
robustness have not been evaluated using large-scale, real-world datasets such as social media
texts or system log files. This limits the generalizability of our findings to diverse, uncontrolled
scenarios.

8 Conclusion and Future Work

We have introduced Invisible Encryption. This novel cryptographic protocol seamlessly integrates
Shamir’s threshold secret sharing, steganographic embedding, and hybrid public-key encryption
to facilitate covert communication in environments where traditional encryption is monitored or
prohibited. By camouflaging a single share sy within standard hybrid-encrypted traffic, our scheme
ensures that the very act of secret transmission remains indistinguishable from ordinary ciphertext,
while retaining complete IND-CCAZ2 security and efficient performance.
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At its core, Invisible Encryption leverages a (k, n)-threshold sharing of the hidden payload: only
one share is transmitted alongside the cover message, and the remaining k — 1 shares are determin-
istically derived from a public cover text. The transmitted share s,ew doubles as a symmetric key
for an overt decoy message, yielding strong plausible deniability: even if compelled to reveal keys
or plaintexts, participants can credibly claim the data exchanged was merely routine encrypted
content.

Our rigorous security analysis demonstrates confidentiality, covertness, and detection-resistance
under standard assumptions (e.g., RSA-OAEP and the secrecy of Shamir shares). A Python pro-
totype, built on the galois and cryptography libraries, confirms that encryption and decryption
complete in under 400 ms with negligible overhead, making the scheme practical for real-world sce-
narios such as whistleblowing, diplomatic messaging, or communications under repressive regimes.

Extending Invisible Encryption to multiple-message settings remains an important direction
for future work. Naive reuse of the same threshold key leaks the XOR, of successive plaintexts; to
mitigate this, one may:

— Renew per-message keys: derive a fresh (z¢, k) by hashing the previous ciphertext into the
next seed.

— Update cover text or embedding indexes: rotate or refresh the public cover text, or embed
the secret in higher-order polynomial coefficients to decorrelate shares.

— Pre-encrypt whitening: compress or otherwise uniformise the plaintext to resist Friedman-
style statistical attacks.

Formal proofs of security under these enhancements and an evaluation of their performance and us-
ability constitute compelling avenues for further research. The techniques presented here will inspire
new approaches to secure, undetectable information exchange in an age of pervasive surveillance.
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Abstract. Distributed Point Functions (DPFs) enable sharing secret
point functions across multiple parties, supporting privacy-preserving
technologies such as Private Information Retrieval, and anonymous com-
munications. While 2-party PRG-based schemes with logarithmic key
sizes have been known for a decade, extending these solutions to multi-
party settings has proven challenging. In particular, PRG-based multi-
party DPFs have historically struggled with practicality due to key sizes
growing exponentially with the number of parties and the field size.
Our work addresses this efficiency bottleneck by optimizing the PRG-
based multi-party DPF scheme of Boyle et al. (EUROCRYPT’15). By
leveraging the honest-majority assumption, we eliminate the exponential
factor present in this scheme. Our construction is the first PRG-based
multi-party DPF scheme with practical key sizes, and provides key up
to 3x smaller than the best known multi-party DPF. This work demon-
strates that with careful optimization, PRG-based multi-party DPFs can
achieve practical performances, and even obtain top performances.

Keywords: Distributed Point Function - Function Secret Sharing -
Private Information Retrieval - Multi-Party Computations.

1 Introduction

Function Secret Sharing [2] is a cryptographic primitive enabling to share secret
functions. In these protocols, a key dealer knowing a secret function f distributes
p keys to different shareholder. Each shareholder can use its key to obtain a share
of f(z), without any communication between the shareholders.

Among all function families, schemes supporting point functions (i.e., f(z) =
B if x = a, 0 otherwise) attracted a lot of attention thanks to their numerous
applications notably in Private Information Retrieval (PIR) [7], in anonymous
communications [6], in digital currencies [9], and machine learning [4]. These
schemes are called “Distributed Point Functions” (DPF) [2,7].

To support these applications, there is a significant research incentive aiming
to improve existing schemes, notably their key size. DPF efficiency is commonly
evaluated based on the influence of the function domain size (N) on the key size.

* Corresponding author: m.f.d.damie@utwente.nl
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For two- and three-party DPF, schemes based on PseudoRandom Generators
(PRGs) provide logarithmic key sizes [2,9]. However, there is still a lot of active
research to obtain similar key sizes for any arbitrary number of parties.

In multi-party DPF, three main approaches have emerged. First, elliptic-
curve-based schemes [6,8] offer practical O(v/N) key sizes, but they require a
non-linear share decoding. This non-linearity makes them incompatible with sev-
eral key applications such as PIR. Second, Boyle et al. [2] presented a dishonest-
majority scheme with O(\/N ) key size, and Bunn et al. [5] an honest-majority
scheme with O(+v/N) key size. Unfortunately, this asymptotic cost hides an ex-
ponential factors ¢P (for output shares in F, and p parties). This factor makes
these schemes impractical for any modulus ¢ > 210 (as detailed in Section 4).
This problem was identified in existing works [1,8], but has not been solved yet.

Finally, Bunn et al. [5] proposed a third approach based on honest-majority
to build an information-theoretic (IT) scheme with O(vV'N) key size and no
exponential factor. This scheme is the only multi-party scheme with practical key
sizes supporting all applications. Even though this scheme is practical, solving
the efficiency issues of the other schemes could lead to even better performances.
As PRGs have lead to logarithmic key sizes in two and three-party schemes,
optimizing multi-party PRG-based schemes could be promising.

Our Contributions Our paper optimizes the PRG-based DPF proposed by [2].
Our optimized scheme avoids the exponential factors present in [2] using the

p
m—+1

of O(\/N qp%1 log g). Our benchmark shows that our scheme is the first multi-
party PRG-based scheme with practical key sizes. We even provide keys up to
3x smaller than the best performing DPF (i.e., the IT DPF by [5]).

honest-majority assumption; obtaining a key size of O(,/N - ( ) log q) instead

Notations Let p be the number of parties/shareholders, m be the number of
corrupted parties. Like most FSS works [2,3,5,7,8], we focus on semi-honest ad-
versaries: follow the protocol and infer passively secret information.

Let F, be a prime field, N be the function domain size, 1* a security param-
eter, and [z]; be the i-th share of the secret z. Let v = [V/N] and C = (
Let G : {0,1}* — G” be a PRG, and G an Abelian group.

ml-)kl)

2 Background

Function secret sharing (FSS) [2] enables sharing secret functions between p
parties. Each FSS scheme can share function from a specific function family.

A function family F [1] is a pair (Pr, Ex) where Pr C {0,1}* is a collection
of function descriptions f, and Er: Pr x {0,1}* — {0,1}* is a polynomial-
time algorithm defining the function described by f; i.e., flz) = E]:(f, x). All
functions within a family share the same domain X and output space ).

Due to their applications notably in PIR [7] and anonymous communica-
tions [6], the most studied function family has been point functions [2,3,5,6,7];
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functions f such that f(x) = g if x = «, and f(z) = 0 otherwise. For point
functions, the function description is the tuple («, 5) € Pr. Schemes supporting
point functions are called “Distributed Point Functions” (DPF).

For a function family F, we define a p-party FSS scheme using 3 algorithms:

— Gen : N x Pr — KP takes as input a security parameter 1* € N and a
function description f € Pr, and outputs p keys ki, ..., kp.

— Eval : £ x X — G takes as input k; and a point x € X, outputs a share of
f(z) that we denote as [f(z)];-

— Decode : G? — Y takes as input the shares {[f(z)]1,...,[f(z)],} and out-
puts the secret f(z).

Definition 1 (Correctness [2]). A scheme (Gen, Eval, Decode) is correct if,
for any function f € F and point x € X, we have:

Pr [Decode(Eval(ky, z), ..., Eval(k,, z)) = f(z)] =1
with ky,. ..k, « Gen(1*, f)

Definition 2 (Privacy [1]). Let Leak : {0,1}* — {0,1}* be a function specify-
ing the allowable leakage. A scheme (Gen, Eval, Decode) is private if, for every
set of m corrupted parties S C {1...p}, there exists a PPT algorithm Sim (sim-
ulator), s.t. for any sequence of function descriptions (fl, fg, ... ) of size polyno-
mial in X\, the outputs of Real and Ideal are computationally indistinguishable:

— Real(1") : (ky, .. L kp) Gen(lA,fA);Output (Ki)ics
— Ideal(1*) : Output Sim(1*, Leak(fy))

DPF by [2] To build their multi-party DPF scheme under dishonest majority
(m < p), Boyle et al. [2] represented the domain {1,..., N} as a v x v grid (with
v = [V/N)). This grid is full of zeros except on the cell (7., d,), with o = y,v+6,.

For each row v € {1,...,v}, the Gen algorithm samples ¢?~! random \-bit
random seeds s4.1 ... 8, g—1. For each seed s, ;, the algorithm generates additive
shares of a coefficient a~ ;: [ay,;]1,- - [ay,;]p (i-e., one share per DPF key). The
coefficient is defined as follows a, ; = 1 if v = ., 0 otherwise. Finally, it sets
a “correction word” W € (F,)" such that W + Zg;l G(S+.,;) = es, - B (with
es a unit vector equal to 1 on index d, 0 otherwise). Each key k; contains the
correction word, their share of the coefficients [a, ;]; (for all rows v and all
je{l,...,q°"'}), and it contains all the seeds s, ; for which [a, ;]; # 0. This
last condition (on the seed inclusion in a key) ensures that there is at least one
seed unknown to an adversary composed of p — 1 out of p parties.

The Eval algorithm represents the input z as a tuple (v,d), expands the
corresponding seeds s, ;, multiplies the expanded seeds with the corresponding
shared coefficient [a~, ;];, sums everything with the correction word W, and the
share [f(z)]; is on the d-th index of the sum vector:

()]s = of8) with v = W+ 3 ay i Glso)
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Correction word cw:
one vector for all columns

Q
H

5*

Random seeds: v
C per row vy ] oflofofo|o]o

(with some placeholders) (]4
ojojojojo|o0
o|lo Blojo]o / N
Shared coefficients: ojojofoO0|O|O
C per row
P v ojo|jojojo|o0
ojo|jojojo|o0
>

Fig. 1: Structure of our DPF keys

The Decode algorithm is a basic additive share decoding: Y _.[f()]; = f(z).

As we optimize [2], Algorithm 1 (describing our scheme) follows roughly the
same structure as their scheme. The only difference is the matrix sampling in
Lines 8 and 9. We then refer to Algorithm 1 for more details.

An element could surprise the reader: the number of random seeds v x P~ 1.
Such a large number is necessary, so an adversary cannot infer information about
the secret function based on the distribution of the shares [a.,;];- These shares
can be structured as matrix shares A, with A,[¢, j] = [a,,;];. To preserve func-
tion privacy, each matrix must contain all combination of additive shares sum-
ming to 1 (if v = ~,) or 0 (if v # 7x). If the matrices do not contain all possible
combinations, an adversary (owning up to p — 1 keys out of p) can recover ~,
based on the share distribution [2]. Since there exists ¢P~! combinations of p
shares of 0 (resp. of 1) in F,, the key generator must sample ¢’ ! random seeds.

3 Owur honest-majority scheme

The main scalability bottleneck in [2] lies in the size of the matrices of shares, we
improve their scheme by eliminating its dependence on the field size; thanks to
the honest-majority assumption (m < p/2). While Boyle et al. [2] had assumed
a dishonest majority (m < p), the honest-majority assumption enables us to
redesign the matrices, resulting in more compact keys. Algorithm 1 presents our
multi-party DPF scheme, and Figure 1 an overview of our DPF keys.

Our matrix sampling (described in the function MatrixOfShares of Algorithm
1) generates a matrix A that distributes shares among all possible combinations
of m + 1 parties out of p. For each combination S; of m 4 1 parties, the function
samples m + 1 shares of the secret coefficient a (using additive secret sharing)
and assigns each share to the cell of A; A[i, j] = [a]; if ¢ € S;, 0 otherwise. The
secret coefficient a is either set to 0 or 1 depending on whether the value x being
evaluated matches « (the non-zero point).

While in [2], each matrix of shares has p rows and ¢P~! columns, our con-
struction produces matrices with p rows and (m’_]H) columns. As in [2], we sample
one random seed per column. The i-th key contains the i-th row of the matrix
and includes the j-th seed if the corresponding cell A[i, j] is not null.
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Algorithm 1 Honest-majority DPF scheme adapted from [2].

1: function MATRIXOFSHARES(a)

2: Initialize A an p x C' matrix with zeros and the counter k to 1.
3 for each set of parties S; in the set of all combinations of m + 1 of p do
4: Sample m + 1 shares of the value a: {[a]1,i ... [a]m+1,i}-
5 for each i in S; do A[i, j] + [a]k,; and increment k.
return A

6: function Gen(a, 8,p,m,1%)

T Represent « as a pair o = (y«,0x) with v.,d. € {0...v}.

8: Sample Ay, ..., A, s.t. for all v # 7., Ay < MatrixOfShares(0).

9: Sample A, < MatrixOfShares(1).
10: Choose randomly and independently v - C' seeds s1,1, ..., sv,c € {0, 1}*.
11: Set the correction words W € G” s.t. W + Z]-C:1 G(84..5) = es. - B
12: forie{l...p},je{l...C},ye{l...v} do

13: if Ay[i,j] # 0 then 01, ; < (54,5, Ay[i, j]).

14: else oy ,,; « (0,0). > Receives no seed and no coefficient share
15: Set gi~ (i 1|| .- ||oiy,c) forall 1 <i<p, 1<~y<w.

16: return (k1,...,kpy) with k; = (gi,1]| ... ||os,n||W) for all 1 < i < p.

17: function Eval(k;, x)

18: Represent z as a pair = (v, 6) with 7,6 € {0...v}.

19: Parse k; = ((s1,1, A1[i, 1))]| - - - [|(s1,¢, A1[i, CDI| - - - ||(s0,c, Au[i, C])||[W).
20:  return y;[8] with y; < A, [i, 1] W+ 35, Ay[i, 5] - G(s4,5).

21: function Decode([y]1, ..., [y]p) return >-7_ [y]:.

As in [2], it is necessary that (for any given ) at least one seed s, ; remains
unknown to the adversary. With all the seeds, they could unmask the correction
word W and recover 3. Our scheme provides each seed to m+1 parties, so under
honest majority, at least one combination of m + 1 out of p parties contains only
honest agents. Thus, there is at least one seed unknown to an adversary.

Our optimization cannot be extended to dishonest majority. Indeed, with
m > p/2, the adversary would know all the seeds because there would be at
least one corrupted party in each combination of m + 1 out of p parties.

Based on these intuitions, we can consider the following security theorem:

Theorem 1. Let A € N, N,p € N, then the tuple (Gen, Eval, Decode) as de-
scribed in Algorithm 1 is an FSS scheme for the family of all point functions
with a € {1,...,N} and any 5 € Fy.

Assuming that there exists a secure PRG, then this scheme is correct and
private against at most m semi-honest parties with m < p/2.

Proof. As we modified only slightly the scheme of [2] (i.e., redesigned the matrix
of shares based on the honest-majority assumption), our proof follows the same
structure as theirs. We provide a proof sketch, and refer to [2] for more details.
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The correctness can be verified by an easy arithmetic exercise considering
successively three cases: (1) v # Y, (2) v = 7. and § # J, and (3) v = 7. and
§ = 8,. Using the VN x v/N grid (illustrated in Figure 1), we represent any
input x as (v,9) and « as (Y, 0x).

For privacy, we must show that there exists a simulator that outputs samples
from a distribution that is computationally indistinguishable from the distribu-
tion of the real DPF keys. We propose to study separately: the random seeds
S+, the correction word W, and the coeflicient shares A3, j].

The simulation is straightforward: for each (simulated) seed, sample a random
seed s,_;; for the correction word, sample a random vector W; for the coefficients,
for each S; combination of m + 1 parties of p, for each i in S, sample a random

value and store it in ;1:[2, Jj] (the rest of ;1; is null). The simulator can return
“simulated” keys based on these elements.

Since both the real and simulated seeds are randomly sampled, the simulators
output distribution (s, ;) is computationally indistinguishable from that induced
by the distribution of a single output of Gen.

The correction word W is a secret vector (i.e., es, - ) masked with the output
of (mil) seeded PRGs. Remember that a key k; contains a seed s, ; only if the i
is part of the j-th combination of m out of p parties. So, under honest majority,
there is always at least one seed unknown to the adversary controlling m out p
parties. Hence, the correction word W is computationally indistinguishable from
the randomly sampled W, because it is masked with the output of (at least) one
PRG seeded with a seed unknown to the adversary [6].

Finally, each coefficient is shared between m + 1 parties, so an adversary
controlling m parties cannot distinguish real shares from random values A, [, j]
provided by the simulator. ]

Key size optimization: Instead of using a VN x v/N grid, we should use a grid
with vV N(C)~! rows and VN - C columns, with C' = (mpﬂ). This “non-square”
grid leverages the fact that each row requires C seeds, and a unique vector W for

all columns. Thanks to this trick, we obtain a better key size: O(V' N - C'log q).

Extension to comparison functions Boyle et al. [2] presented a simple adaptation
of their DPF to support comparison functions; functions such that f(z) = 3
when z < a, 0 otherwise. These schemes have applications notably in machine
learning [4,8]. We can naively reuse our optimization on this other scheme.

4 Key size comparison

This section compares our optimized scheme to existing schemes in order to
identify asymptotic and practical key size reductions.

We focus our comparison on schemes supporting all possible DPF applica-
tions; excluding schemes based on elliptic curves that support a limited number
of applications due to their non-linear decoding [8] (e.g., do not support PIR).
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Asymptotic Our scheme provides a key size of O(4/N - (m’_’H) log q), which is

clearly better than the key size of [2] (i.e., O(\/]Vq]%1 log q)).

As Bunn et al. [5] built an honest-majority scheme with O(+v/N) key size upon
[2], we can comment how we distinguish from them. Their paper does not modify
[2], but combine it with replicated secret sharing to reduce the dependency
on N (i.e.,, O(v/N) instead of O(v/N)). However, their approach worsened the
exponential factors already in [2]; as shown in our benchmark below. On the
contrary, we leverage the honest-majority scheme to avoid exponential factors
present in [2], but we maintained the same dependence on N.

The IT DPF by [5] has a key size comparable to ours: O(v/N - (m{’H) log q).

However, our approach saves a factor (mﬁl) compared to them, yielding sig-

nificant key size reductions in practice.

While these asymptotic comparisons are informative, they are often insuffi-
cient to assess practical performance. Bunn et al. [5] exemplify this problem:
although they substantially reduced the dependence on the domain size N,
they kept exponential factors without providing any concrete efficiency anal-
ysis. Therefore, we present a detailed comparison based on exact key sizes to
offer a more accurate assessment.

Ezact As we aimed to avoid the exponential factor ¢? (for outputs in F,), we
start by studying the dependency on ¢. Figure 2 compares key sizes for varying
prime moduli. Our benchmark includes a curve “Trivial scheme” corresponding
to the most trivial DPF: sharing the function truth table (i.e., O(N) key size).
This curve serves as baseline to identify impractical solutions. For any ¢ > 5,
the PRG-based solutions [2,5] have keys orders of magnitude larger than those
of this trivial solution, while the I'T DPF of [5] and ours are below.

Recently, Boyle [1] showed that, for a composite modulus m = ¢1¢2 ... q, we
can use the Chinese Remainder Theorem (CRT) to replace ¢? with Y ¢’ Figure
2a compares key sizes for arbitrary moduli, but the variations make the figure
poorly readable. Instead, Figure 2c compares key sizes for primorial moduli; a
primorial is the product of the first n primes. Primorials are the best case of this
CRT trick as they provide composite moduli with the smallest primes possible.

Even with the CRT trick, the existing PRG-based schemes [2,5] provides key
sizes larger than the trivial scheme for any modulus above 210. As their key sizes
are impractical, we exclude these schemes from our other figures to focus on the
comparison of our scheme to practical schemes.

Figure 2c¢ also shows that the key size of the IT scheme of [5] grows faster
with the modulus than ours. This phenomenon is explained by the fact that our
key size is dominated by components conditioned by a security parameter that
is independent of the modulus.

Figure 3a compares the practical schemes for varying function domain sizes.
Our key size is 2.4x smaller than the best existing scheme. Moreover,
Figure 3b shows that our scheme has a better scaling with the number of

parties thanks to the factor (m’_’H) identified in the asymptotic comparison.
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Fig. 3: Key size of the most efficient DPF schemes.

Conclusion Our optimization based on the honest-majority assumption trans-
formed a PRG-based DPF [2] with impractical key sizes into the DPF with the
smallest key sizes. Our work proves that, like in two- and three-party schemes,
PRG is a promising primitive to build multi-party DPF with compact keys.
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Abstract. We study local differential privacy (LDP) protocols that es-
timate the statistics of a group while preserving individual data privacy.
One of the challenges for LDP is dealing with high-dimensional data,
which is common in the medical domain and can incur a large privacy
budget that grows with dimensionality. In 2018, Zhang et al. presented a
novel LDP scheme, CALM (Counsistent Adaptive Local Marginal), that
could estimate the joint probability distribution of high-dimensional data
via a set of lower-dimensional marginals, called “views.” The process
involved entropy maximization with a convex optimization algorithm.
However, the entropy maximization process may fail if the original data
is over-randomized. We therefore propose a simple method that addresses
this estimation issue using a pseudo-inverse matrix. We evaluate the ac-
curacy of our estimation method in terms of the size of the views and
frequency predictions.

Keywords: differential privacy, multi-dimensional data

1 Introduction

Local differential privacy (LDP) has been utilized in various privacy-enhancing
applications. For instance, Erlingsson et al. proposed an LDP algorithm called
the randomized aggregatable privacy-preserving ordinal response [9]. This algo-
rithm is employed by Google Chrome to gather user data while ensuring privacy.

The dimensionality problem in LDP refers to the challenge of handling high-
dimensional data efficiently and accurately while preserving privacy and has
two main aspects. (a) Increased Noise. In LDP, each data item is perturbed
independently to ensure privacy, which often involves adding noise to the data.
As the dimensionality of the data increases, the amount of noise added to each
dimension also increases, leading to a significant reduction in the accuracy of the
aggregated data. (b) Scalability. Using high-dimensional data requires complex
mechanisms to ensure that privacy is maintained for each dimension, and the
aggregated domain can grow exponentially. This complexity can lead to LDP
mechanisms becoming less scalable and more computationally intensive, making
it difficult to handle large datasets efficiently.

A number of studies have addressed the dimensionality issue in LDP. Domingo-
Ferrer et al. [1] introduced a clustering-based randomized response method. Ren
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et al. [2] developed a technique called LoPub, which integrates Lasso regres-
sion with the Expectation-Maximization (EM) algorithm. Wang et al. [3] pro-
posed using the Gaussian copula to enhance accuracy. Jiang et al. [4] introduced
Wasserstein autoencoders as a solution.

The Consistent Adaptive Local Marginal (CALM) algorithm [6] was designed
to address the challenges of high-dimensional data in the context of LDP. It
aimed to improve the efficiency and accuracy of data collection and analysis
while adhering to privacy constraints. It has three main advantages.

— Communication Efficiency. By focusing on a subset of the dimensions (the
{-way marginals), rather than all dimensions, the amount of data that needs
to be transmitted is reduced. The algorithm can then aggregate the local
marginal statistics, which are simpler to compute and require less commu-
nication.

— Marginal Aggregation. By focusing on the marginal distributions of the data,
CALM can provide accurate estimates without needing to handle the full
high-dimensional joint distribution (the k-way marginals).

— Adaptive Sampling. CALM uses a sampling strategy to divide the whole
population into (’;) smaller subsets, where ell is the size of subsets sampled
over k attributes. This helps conserve the privacy budget and improve overall
utility.

Despite its advantages, the CALM approach has a notable drawback: it relies
on off-the-shelf convex optimization tools to solve the constraint problems. ( It
is worth noting that the central server aims to estimate k-way marginals based
on a given set of ell-way marginals. However, the available /~-way marginals may
be insufficient to uniquely determine the k-way marginals.) This dependency
introduces its own challenges. In some cases, the convex optimization tool may
fail to determine unique solution due to the nature of the noise added to ensure
privacy enhancement. Given too strict or inconsistent constraints, it cannot find
a solution.

To address this drawback of CALM, we investigate the required number
of constraints for target dimensions. We introduce a new LDP algorithm that
employs a pseudo-inverse matriz [12] to solve the constraints and estimate high-
dimensional marginals, eliminating the need for convex optimization tools. A
useful property of the pseudo-inverse is that it exists for any given matrix. There-
fore, without having to use a potentially unstable convex optimization, we can
estimate the k-way marginals using some lower-dimensional ¢-way marginals.
Our scheme offers three main advantages:

— it is stable and consistently provides a solution to the given constraints,

— it estimates marginals as accurate as using the CALM,

— it is simple and easy to implement. Pseudo-inverse matrix is simply defined
and many libraries are available.

Using open data, we conducted experiments to measure the accuracy of the
proposed algorithm in Section 5. In Section 3.1, we clarify the necessary con-
ditions for the number of views to have uniquely determined solutions. If the
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domain is too large, it is a challenge to find high-dimensional marginals from
low-dimensional views.

2 Preliminaries

2.1 Problem Definition

Let m be a number of attributes for multi-dimensional data. Let (2; be the
domain of the i-th attribute, and 2 = 21 x --- x §2,, be the set of m do-
mains. Let n be the number of users who each have m private input values,
x},..., 2. The users use a randomized algorithm to perturb these values and
submit the perturbed values y},...,3™ to a data curator. Let (Y!,...,Y™) be
the m-dimensional (columns) data of n records (rows).

Given a subset of (Y1,...,Y™) of size k such that k < m, we (as the data
curator) try to estimate the k-dimensional joint probability F as accurately as
possible.

2.2 LDP
A good randomized algorithm ¥ is required to satisfy the following property.

Definition 1 (e-local differential privacy). An algorithm ¥ satisfies e-local
differential privacy , where € > 0, if and only if for any inputs x1,x9 € §2, we
have

VT € Range(¥) Pr[¥(v1) € T] > e“Pr[¥(ve) € TJ.

2.3 Generalized Randomized Response (GRR)

The GRR [8] is the generalized version of a randomized response. Let P be the
P11 Pid
(d x d) randomizing matrix P = ... |, where py, is the conditional

Pd1 - Pdd
probability that output variable Y takes v, given input variable X is u, i.e.,

Puv = Pr(Y = v|X = u). Note that pj1+---+pa=1fori=1,...,d. According
to P, perturbing input X to Y = (y1,...,yn) gives

i = T with p = py; = eefﬁ?
! v e Q—{x;} with ¢ = pij = .

where w = |£2|, and GRR satisfies e-LDP. When the domain sizes are all k, we
have w = w.
We can then estimate the expected value of the frequency for Y = a,

PGRR(2) = 7f(62/_nq_ :

where f(a) is the observed frequency of the perturbed value y;.
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24 CALM

Consistent Adaptive Local Marginal (CALM) [6] is an algorithm for publishing
multidimensional k-way marginals via LDP. The goal is to have the curator to
compute the k-way marginal from given ¢-way perturbed data such that k& > £.

A straightforward approach is to estimate the full contingency table for f2.
The shortcoming of this approach is that the space and time grow exponen-
tially with the dimensionality k. Moreover, the privacy budget is linearly to the
dimensionality, resulting in very noisy results.

In CALM [6], the set of users is divided into several smaller subgroups, where
users perturb £ attributes assigned to their group. The smaller ¢-way marginals,
called “views,” are given as constraints for finding consistent k-way marginals
using Maximum Entropy estimation via a convex optimization tool. The privacy
budget can be saved because ¢ < k, while accuracy decreases as the population
of users n is divided into smaller groups. It is not trivial to find the optimal
values for the size ¢ and the number of groups. In the CALM scheme, Zhang
et al. proposed an algorithm for determining a targeted threshold that would
minimize estimation errors from several perspectives.

To illustrate the idea with a simple example, we reconstruct a k(= 3)-way
marginal given /(= 2)-way views, as presented in Table 1.

Table 1: Example of views

(a) View V1 (£ =2) (b) View Vo (£ =2) (c) View V3 (k = 3)

Here, we have n = 36 users for k = 3 domains: 27 = {a1, a2}, 22 = {b1, b2},
and 23 = {c1,ca}, with the frequencies given in the contingency table V3, as
shown in Table (1c¢). Two subsets of users publish their data in the corresponding
contingency tables V4 and Vs, as shown in Tables (1a) and (1b), respectively.

Given the two views V; and V3, our goal is to find a consistent assignment
for the eight variables, 1, ..., zs, in V3. Note that view V] specifies some partial
constraints related to 21 and {25, as expressed in the following four simultaneous
equations.

xr, + Is = 6,

To + Te =8,
T3 + T7 = 107 (1)

T4 + xrg = 12.
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Similarly, view V5 gives the constraints related to §2; and (23, expressed as fol-
lows.

X1 + xrs3 = 4,

To + T4 =6,
Trs + X7 = 12, (2)

rg + xg = 14.

With a privacy budget €, n/2 users in the first group perturb their data using
GRR and let the curator estimate view V. The lefthand n/2 users in the sec-
ond group contribute to the estimation of view V5. Given that the groups are
exclusive, the aggregation of views requires no additional privacy budget.

The final task is to solve the equations satisfying the constraints and esti-
mate the k(= 3)-way marginals (view V3). This task is challenging because the
views are not accurately estimated because of uncertainties, which can include
noisy frequency estimation from the GRR and unbalanced group assignment. In
CALM, Zhang et al. proposed the use of an off-the-shelf convex optimization
tool to solve the optimization problem, expressed as

Maximize entropy(z1,...,xs)
subject to Eq. (2) and Eq. (1)

3 Limitation of CALM

3.1 Necessary number of views

It is not trivial to find the optimal size of view £. But, we need at least enough
number of views against the size of the domains ws,...,w,. So, suppose the
simple k-dimensional data where w; = -+ = wp = w In the simplest instance,
we have the following relationship among k, ¢ and w.

Lemma 1 Let wy = -+ = wy, = w be simple k-dimensional data. CALM with
{ =k —1 has a unique solution of k-way marginal such that w < k.

Proof: With ¢ = k — 1, the constraint matrix A has v = w* columns and p =
wt (IZ) = wk_l(’f) rows. To have A nonsingular, we have v = w* < p = whF=1k,
which follows w < k by dividing w*. O

This can be extended to the following

Lemma 2 Let wy = --- = w, = w be simple k-dimensional data. CALM with
£ =k —2 has a unique solution of k-way marginal such that w? < k(k —1)/2

Proof: It is a straightforward from Lemma 1 by replacing ¢ by k — 2. a

Theorem 1 Let wy = --- = wy, = w be simple k-dimensional data. CALM with
¢ such that ¢ < k has a unique solution of k-way marginal such that

3 ok 0/k—t
v i
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Fig. 1: The number of views for domain size w = |§2;|

Proof: Using well-known upper bound of binomial coefficient, we need a v x
constraint matrix such that

k ek\*
_ ok o
v=uw <,uw(€><(£>.

Taking k — £ root after dividing w’ both side gives the theorem. O

For instance, letting w =4, k = 3, and £ = k — 1, we have
v=uwl=43=64 < p=w! K =48
k—1 ’

which implies that the number of missing variables v is less than the number of
equations p. (In CALM [6], a high-dimensional example assumed binary domains
(w = 2), for which v > p.) Fig. 1 shows how v and p grow with w, where v
(shown in red) is less than u (black) for w > 4. That is, we cannot expect an
accurate estimate for thek-way marginal from (k — 1)-way views. Estimation via
(k — 2)-way views (green) is more robust than via (k — 1)-way views, but it is
infeasible for larger domains where w > 6.

3.2 Infeasible CALM

CALM solves the view equations using an off-the-shelf convex optimization
solver. Therefore, when the differentially privacy applies and the perturbation
becomes too large, the equations may become inconsistent and the problem may
become unfeasible, meaning no solution can be found. To verify this, in Fig. 2, we
show the proportion of feasible solutions when solving 3-way marginals (k = 3)
on the MovieLens dataset using CALM. As the privacy budget € decreases, the
proportion of unsolvable cases increases. For example, when ¢ = 0.01, only 3
out of 20 runs resulted in feasible solutions. However, the feasibility rate heavily
depends on data sampling and exhibits discontinuous changes.
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Fig. 2: Solvable CALM (Movie Lens, k = 3)

4 Proposed Method

4.1 Idea

The drawback of using a convex optimization tool is the stability of the solution.
If we add too much large noise when perturbing private data, resulting in po-
tentially contradictory views, it could fail to find an optimal solution, returning
a ‘“‘no answer” alert. If the constraints are too small, it can fail to find a unique
answer and returns “undetermined”.

In this work, we propose a simple but effective way to find consistent k-way
marginals without using a convex optimization tool. Our idea is to use a pseudo-
inverse matrix. Before considering the details of our pseudo-inverse technique,
we need to confirm that an inverse matrix will give the solution for the k-way
marginals.

In our example, we first rewrite views V; and V5 in terms of a matrix equation,

Az = B, (3)

where
10100000

01010000
00001010
00000101
10001000
01000100
00100010
00010001

and B = (4,6,12,14,6,8,10,12)7. If we have the inverse of A, it is easy to
solve Eq. (3) and obtain the k = 3-way marginals (V3) as z = (x1,...,28)T
& = A~'B. However, A is not always invertible. A is pu x v matrix where v
and p are the number of views (contingency tables) for k and ¢ dimensions,
respectively. In general, it is nonsingular.
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Second, we use the Moore—Penrose inverse[12], or pseudo-inverse, of ma-
trix A. The pseudo-inverse matrix AT of A satisfies AATA = A, ATAAT =
AT (AAT)* = AAT (AT A)* = AT A, where A* is the conjugate transpose of A.
The pseudo-inverse AT of A is given by AT = (A*A)~LA*.

A useful property of the pseudo-inverse is that it exists for any given matrix
A. Therefore, without having to use a potentially unstable convex optimiza-
tion, we can estimate the k-way marginals using some lower-dimensional /-way
marginals.

Algorithm 1 shows the overall procedure.

Algorithm 1 High-dimensional marginal estimation using a pseudo-inverse

Require: Xi,...,X, + input data
Require: A < constraint matrix of ¢-way views
1: For ¢-way marginals, apply GRR perturbation to Xi,..., X, and estimate B =
(’UA1 ce v;e)T, where v = ':VGRR(’U)
2: Compute the pseudo-inverse A" of A
3: 2+ ATB
4: return k-way marginals &

5 Evaluation

5.1 Methodology

To investigate the accuracy of the proposed algorithm, we conducted an experi-
ment using the open-data, UCI Adult dataset [13] and MovieLens datasets [14].
For three attributes, sex (w; = 2), race (we = 5), and income (w3 = 2), GRR
provided (¢ = 2)-way views. For three views, we estimated (k = 3)-way marginals
using several LDP methods.

The constraint matrix A had g = 2 x5+ 5x 2+ 2 x 2 = 24 rows and

A
v=2x5x2=20 columns. We used A = A;z , where
Ais
1 0
Ap=(11)® )
0 1
1 0 1 0
Agz = oo lehe | |
0 1 0 1
1 0
Az = ®(1---1)
0 1
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Table 2: Three-way marginals estimated by CALM and the proposed method

Race Sex Income50k‘ Freq‘ pinv err‘ CALM  err

Amer-Indian-Eskimo Female <=50K| 107| 116.6 -9.6/ 116.7 -9.7
Asian-Pac-Islander Female <= 50K| 303| 292.1 10.9] 292.3 10.7
Black Female <= 50K| 1465| 1362.4 102.7| 1362.5 102.5

Other Female <=50K| 103| 107.1 -4.1| 107.2 -4.2

White Female <=50K| 7614| 7713.8 -99.8| 7713.2 -99.2

Amer-Indian-Eskimo Male <=50K| 168 1584 9.6 1583 9.7
Asian-Pac-Islander Male <=50K| 460 470.9 -10.9| 470.7 -10.7
Black Male <=50K| 1272| 1374.7-102.7| 1374.5-102.5

Other Male <=50K| 143| 138.9 4.1 138.8 4.2

White Male <=50K[13085(12985.2 99.9(/12985.8 99.2

Amer-Indian-Eskimo Female > 50K 12 2.4 9.6 2.3 9.7
Asian-Pac-Islander Female > 50K 43 53.9 -10.9 53.7 -10.7
Black Female > 50K 90 192.7-102.7| 192.5-102.5

Other Female > 50K 6 1.9 4.1 1.8 4.2

White Female > 50K| 1028 928.2 99.8| 928.8 99.2

Amer-Indian-Eskimo  Male > 50K 24 33.6 -9.6 33.7 -9.7
Asian-Pac-Islander Male > 50K| 233 222.1 10.9| 222.3 10.7
Black Male > 5H0K| 297 194.4 102.6| 194.5 102.5

Other Male > 50K 19 23.1 -4.1 23.2  -4.2

White Male > 50K| 6089| 6188.9 -99.9| 6188.2 -99.2

Table 3: MAE (Movie Lens, € = c0)
k=3 k=4
Pinv CALM Pinv CALM
mean 104.890 104.890 35.825 35.620
sd 80.140 80.140 28.976 27.229

We used CVXR [16] for a convex optimization tool for CALM and the pracma
R library for the pseudo-inverse computations.

5.2 Results

Table 2 shows the (k = 3)-way marginals for the Adult dataset, where the
columns headed Freq, pinv, and CALM provide the true marginals, the esti-
mated marginals using the proposed pseudo-inverse method, and the estimated
marginals using the CALM, respectively. (We did not perform any random per-
turbations in producing the table.)

Note that the errors for the proposed method and CALM are almost identi-
cally distributed within 0.1 precision. Mean Absolute Errors (MAEs) are 45.42
and 45.30, respectively.

129



DPM 2024

1e+01
I

1% —e— GRR §, —e— GRR

MAE
1e-03 1e-01
L L L
/
/
[ 1
i
]
MAE
100 150
L L

1e-05

0.0 05 1.0 15 20 0.01 005 0.10 050 1.00 5.00 10.00

€ e

Fig. 3: MAEs with respect to privacy Fig.4: MAE with respect to €
budget ¢ (UCI Adult) (MovieLens, k = 3)

0.010
L

—e— ful
—=— partition

MAE
0.0018
I I
0.005
I

MAE

0.002
L

0.0014 0.0015 0.0016
I

0.001
L

T T T T T T
5000 10000 15000 20000 25000 30000 0005 0010 0020 0050 0100 0200 0500 1000 2.000

n €

Fig.5: MAE with respect to number Fig.6: MAEs for estimation from
of users n (UCI Adult) partitioned datasets (UCI Adult)

Fig. 3 shows the MAEs for the CALM, and GRR methods for a privacy bud-
gets € = 0.01,...,2. The proposed pseudo-inverse method using GRR reduces
the estimation error when ¢ > 1.0. It converges around 0.00138. We shows the
MAE for three LDP schemes using MovieLens dataset in Fig. 4. The MAE of
GRR decreases with the increasing privacy budget as well as UCI Adult, while
the MAE of CALM is unstable here. The possible reason of unstability comes
from the fact that any tiny inconsistency give a significant inpact to the precision
of CALM.

Fig. 5 shows the MAE for varying population sizes as n = 3256, ...,32561,
which are uniformly sampled from the dataset. The MAEs represent the mean
over 100 iterations. We find that MAE decreases as n increases.

Fig. 6 shows the comparison of MAEs for estimations from the full dataset
(full) and when divided into three subsets (partitions). We found that both
MAEs are identically distributed for all €, and the estimation from partitioned
datasets sometimes gives more accurate results than using the full data (e <
0.02).

From these results, we can conclude that the proposed pseudo-inverse esti-
mate provides high-dimensional marginals that are as accurate as those using
the conventional CALM method.
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5.3 Discussion

We claim that the pseudo-inverse method can estimate high-dimensional marginals
without using conventional optimization tools. The experiments showed small es-
timation errors even when no perturbation was performed. We consider that this
failure comes from the singular matrix A. As we have investigated, view A; o
is a 20 x 20 matrix, but its rank is 16. View Aj 3 also has a lower rank. In
Section 3.1, we considered the necessary conditions for the number of views to
have uniquely determined solutions. If the domain is too large, it is a challenge
to find high-dimensional marginals from low-dimensional views. To improve the
accuracy of the estimates, we should explore advanced strategies for estimating
from lower-dimensional views.

Zhang et al. [6] studied several sources of estimation errors: noise errors, re-
construction errors, and sampling errors. Noise errors arise from perturbation
processes and can be minimized by careful choice of the privacy budget accord-
ing to the population of data subjects. A reconstruction error can occur when
a k-way marginal is not covered by any of the chosen ¢-way marginals. This
may happen for both CALM and the proposed pseudo-inverse matrix method.
Sampling errors arise from biased sampling when dividing the whole population
into smaller groups. Zhang et al. analyzed the variance of the marginals and
considered the best approach to avoiding sampling errors.

6 Conclusions

We have proposed a new multi-dimensional LDP scheme that uses a pseudo-
inverse matrix to estimate high-dimensional marginals from some lower-dimensional
marginals. Our proposed scheme is stable, without suffering from the undeter-
mined or absent-solution status that can occur when using convex optimization
tools. Our experiment demonstrates that the proposed method estimates high-
dimensional marginals as accurately as the state-of-the-art CALM method. We
also explored the conditions for that the number of views to be insufficient to
identify consistent marginals uniquely. Our future plans include evolving the
proposed method in terms of accuracy and robustness, using a variety of sources
of open-access data, and an optimal baseline LDP scheme other than GRR.
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Abstract. In this paper, we explore whether incorporating prior knowl-
edge about the data can enhance GAN performance in the context of
synthetic data generation for privacy protection and identify effective
methodologies for doing so. We propose three approaches for integrat-
ing auxiliary information: (1) embedding public constraints into the ad-
versarial loss function, (2) preserving correlation structures between at-
tributes, and (3) leveraging Bayesian networks to model attribute de-
pendencies and encode them into Conditional GANs. Through compre-
hensive empirical evaluations against existing baselines, we demonstrate
that Bayesian networks and public constraints significantly improve the
fidelity and realism of synthetic data. Furthermore, GAN-generated syn-
thetic data lacks inherent privacy protections, making it susceptible to
privacy attacks. To address this, we incorporate DP mechanisms into the
GAN framework, ensuring robust privacy guarantees while maintaining
data utility. The proposed approaches are evaluated for their effective-
ness in generating high-quality, privacy-preserving synthetic data, offer-
ing valuable insights for future advancements in GAN-based synthetic
data generation.

Keywords: Generative Adversarial Network - Bayesian Network - Dif-
ferential Privacy.

1 Introduction

Generative Adversarial Networks (GANs) [16] have emerged as a groundbreak-
ing framework in deep learning, enabling significant advancements in various
domains. Introduced initially to generate high-quality synthetic data by pitting
two neural networks against each other—a generator and a discriminator—GANs
have proven to be remarkably successful in tasks such as high-resolution image
generation [5,27], image-to-image translation [23], and even in the synthesis of
continuous data distributions [35]. These capabilities have rendered GANs a
cornerstone for generative modeling in computer vision and other fields.
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Despite their success with continuous and high-dimensional data, GANs face
considerable challenges when applied to tabular data, particularly when they
contain discrete attributes. Tabular datasets, which are prevalent in domains
like healthcare, finance, and social sciences, possess unique statistical character-
istics. These include heterogeneous data types, highly imbalanced distributions,
and intricate dependencies between variables, all of which are difficult for GANs
to model effectively. Unlike image or text data with inherent structures, tabular
data lacks spatial or sequential patterns and exhibits complex, high-dimensional
relationships that are challenging for GANs to model. Discrete attributes further
complicate generation due to their non-differentiable nature, limiting GANSs’ ef-
fectiveness. Several strategies have been proposed to address these challenges.
Some authors [29,6] rely on a differential model by designing special functions,
while [46] employ reinforcement learning to train a non-differentiable model, en-
abling natural language generation. Similarly, convolutional neural networks [35]
and recurrent neural networks [44] have been adapted for tabular data by learn-
ing marginal distributions of columns. In addition, specialized GAN architec-
tures, such as CTGAN [43] and CTAB-GAN [47], have been developed to tackle
these issues. However, these models are constrained by their reliance on fixed
assumptions about data structures and their sensitivity to training instability.
While they have advanced the generation of tabular data, they still fall short in
capturing the full complexity of real-world distributions [31]. A critical challenge
remains in integrating domain knowledge or leveraging prior statistical informa-
tion into GANs to enhance the fidelity and utility of synthetic tabular data,
leaving a significant gap in achieving robust, high-quality generation.

Furthermore, a key motivation for generating synthetic data lies in its poten-
tial to serve as a privacy-preserving substitute for sensitive real-world data [11,37].
This is particularly important in contexts governed by stringent data privacy
regulations such as GDPR [15] and HIPAA [19]. However, synthetic data gen-
erated by traditional GANs is vulnerable to privacy attacks [20], such as, for
example, membership inference attacks [7]. Early research on private GANs fo-
cused on using Differential Privacy (DP) [12] as a privacy model by incorporat-
ing a Differentially Private Stochastic Gradient Descent (DPSGD) optimizer to
update the GAN discriminator, leading to approaches like DPGAN [42]. Subse-
quently, alternative methods moved beyond DPGAN by introducing novel priva-
tization techniques, often leveraging subsample-and-aggregate strategies, as seen
in models like PATEGAN [25], or privately post-processing GAN samples [33].
While these approaches reported improvements over DPGAN in terms of utility,
studies have highlighted their limitations in balancing utility and privacy effec-
tively [2,31,14]. While these models introduced promising techniques, they also
revealed fundamental trade-offs between data utility and privacy preservation.
Achieving high-quality synthetic data that balances these trade-offs remains a
significant challenge and an open research problem.

In this work, we propose methodologies to address these challenges by in-
corporating prior knowledge and then protecting these generators with some
privacy-preserving mechanisms. We focus on improving the quality of syn-
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thetic tabular data. We propose three distinct approaches to incorporate prior
knowledge into GANs, enhancing their ability to generate high-quality tabular
data. First, we embed public knowledge as constraints in the adversarial loss
function, penalizing violations to improve the fidelity of the generated data.
Second, we enforce the preservation of the original data’s correlation structure,
ensuring statistical consistency. Third, we model attribute dependencies using
a Bayesian network and encode these dependencies as embeddings, which are
integrated into Conditional GANs (CGANs) [32] to guide the generation pro-
cess. We show that these methods enable GANSs to produce more realistic and
statistically valid synthetic data while mitigating common issues such as mode
collapse. To ensure privacy, we incorporate DP into our GAN framework,
adapting noise injection techniques to balance privacy and utility effectively. We
evaluated the proposed methodologies on multiple real-world datasets, assessing
their effectiveness in improving the quality and privacy of synthetic data. Our
analysis includes a quantitative evaluation of machine learning performance and
correlation similarity to assess data utility, a comparative analysis with state-
of-the-art GAN models. By addressing these critical gaps, our work highlights
the importance of integrating prior knowledge and robust privacy mechanisms
into GANs, providing a novel and practical framework for generating synthetic
tabular data. This not only advances the state-of-the-art in synthetic data gen-
eration but also ensures increases privacy protection, making it highly relevant
for real-world applications.
The main contributions of the paper are as follows:

— Proposal of three approaches to enhance the quality of synthetic data: using
public constraints, correlation preservation, and using Bayesian networks.

— Identification of the most effective approach for generating high-fidelity syn-
thetic data by comparing with state-of-the-art GANs.

— Utilizing a DP mechanism to ensure the privacy of the enhanced GAN-
generated synthetic data.

The remainder part of the paper is organized in the following manner. Sec-
tion 2 describes important concepts that have been used in the paper. Section
3 presents explanations of the proposed approach. Section 4 discusses the ex-
perimental setup and data sets involved. Section 5 provides some results and
discussions. Finally, the conclusion and possible areas of future research are pre-
sented in Section 6.

2 Preliminaries and Related Works

In this section, we review the important concepts that are used in this paper.

2.1 Bayesian Network

A Bayesian Network (BN) [9] is a probabilistic graphical model representing
the joint probability distribution of a set of random variables using a directed
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acyclic graph (DAG). Each node corresponds to a random variable, and directed
edges represent conditional dependencies. The joint probability distribution is
factorized as

P(Xl,X27...,Xn) = ﬁP(Xz ‘ Parents(Xi)) (1)

i=1

where Parents(X;) are the parent nodes of X;. There are several methods to
learn the structure of BN from the data. Constraint-based methods (e.g., the PC
Algorithm [26]) use statistical tests to identify independencies between variables.
Score-based methods (e.g., Hill Climbing (HC) [40]) evaluate the quality of a
network structure using a scoring criterion, such as the Bayesian Information
Criterion (BIC). In this paper, we chose HC because of its efficiency in identifying
probabilistic dependencies in large datasets.

The HC algorithm starts with an empty graph and iteratively adds, removes,
or reverses edges between nodes. Each modification is evaluated using a scoring
function like the BIC, which balances model complexity and data likelihood. The
algorithm continues making improvements until it converges on the best network
structure. The dependencies in the graph capture the conditional relationships
between variables and serve as valuable auxiliary information. Specifically, each
variable in the network has a set of parent nodes, which represent the variables
that directly influence it. We used the pgmpy python package [1] to construct
the BN structure as described.

2.2 Differential Privacy

According to the GDPR, it is crucial to ensure the privacy of personal data.
To achieve this, differential privacy (DP) [12] can be employed. DP provides a
formal guarantee that the inclusion or exclusion of any individual record in the
dataset does not significantly affect the output, thereby protecting individual
privacy.

Definition 1. (¢,d)-Differential Privacy: Consider two datasets as neighboring
if they differ by only one record (either by the addition or removal of a single
data point). A mechanism A is said to be (e, )-differentially private if, for any
two neighboring datasets D and D', and for any subset S of the output range of
A, the following inequality holds:

PJA(D) € 8] < exp(e) x P[A(D') € S] + 6. 2)

Here, € and § control the strength of the privacy guarantee, with smaller values
providing stronger privacy. In the context of synthetic data generation, DP can
be implemented in two ways: (1) by adding calibrated noise (e.g., Laplace or
Gaussian noise) directly to the synthetic samples, or (2) by incorporating DP
during model training, such as adding noise to gradients in the optimization
process using DPSGD. This ensures that the generated synthetic data increases
privacy guarantees.
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2.3 Related Works

Over the past few years, various approaches have been proposed to improve the
performance of GANs, with several focusing on incorporating prior knowledge
into the model. Some recent works [41] have designed task-specific loss functions
for GANS, tailoring the optimization process to improve data generation. Pri-
orGAN [17] incorporates a Gaussian Mixture Model (GMM) prior to capturing
the real data distribution, addressing issues like low-quality samples and missing
modes in generated data. Feng et al. [13] introduced a method for counterfac-
tual synthesis by studying knowledge extrapolation, allowing GANSs to generate
high-fidelity counterfactual results without explicit causal graph constraints. Ad-
ditionally, other methods [34,27] have explored different network structures and
training strategies to address issues like mode collapse and unstable training.
Certain studies [18,38] adopt Bayesian principles to enhance GANs by incorpo-
rating prior distributions and posterior inference for the parameters of the gen-
erator and discriminator. StyleGAN [28] demonstrated controllable image syn-
thesis via latent space manipulation, though it remains primarily image-focused.
Subsequently, diffusion models [21] emerged, enabling conditional synthesis from
class labels while offering improved stability, albeit with slower sampling rates.
More recent advances include text-to-image frameworks such as Stable Diffu-
sion vl and transformer-based generators for structured data, exemplified by
TTSGAN for time-series synthesis. Unlike prior works, our proposed method
explicitly integrates auxiliary knowledge into GANs to simultaneously improve
data fidelity and strengthen privacy guarantees, addressing the often-overlooked
challenge of preserving realistic attribute relationships under privacy constraints.

3 Methodology

This paper aims to enhance the fidelity of synthetic data generated by GANs
by effectively incorporating prior knowledge into the model. To achieve this,
we explore and evaluate three strategies for embedding auxiliary information
or imposing constraints that reflect inherent characteristics of the data. These
methods are designed to guide the learning process of the GANSs, ensuring the
generated data aligns more closely with the underlying patterns and dependen-
cies observed in the real dataset. Despite advancements in synthetic data gen-
eration, this problem remains unsolved, as existing methods often struggle to
capture the complex relationships and prior knowledge embedded in real-world
datasets, highlighting the need for more effective approaches. These techniques
are described in the following subsections.

3.1 Public Constraint GAN (PCGAN)

Real-world data often contain inherent constraints that can be considered public
information, such as logical boundaries or dependencies between variables. Incor-
porating these constraints into GANSs can prevent the generation of implausible
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or unrealistic data, thereby improving the utility and authenticity of the syn-
thetic outputs. This approach integrates domain-specific constraints directly into
the training process of the GANs by embedding them as penalty terms within
the generator’s loss function. These constraints serve as additional guidance for
the generator, ensuring that the synthetic data adheres to known rules or logical
relationships in the real dataset. Since these constraints are assumed to be public
knowledge, i.e., they apply to any data and are not dataset specific, this infor-
mation can be used without concerns regarding privacy leakage. For instance,
the age of humans can be constrained to lie within a realistic range of 0 to 120
years, by introducing a penalty term computed for any generated value outside
this range as:

Penalty,,, = mean (max(0, —age) + max(0, age — 120)) (3)

These penalties are weighted and incorporated into the generator’s loss func-
tion which is defined as

Liotal = AadvLadv + Z AiPenalty; (4)
iel

where I is the set of penalties and L,q4, is the adversarial loss and \,q, and \;,
i =1,...,I are the weights for the different loss components. During each train-
ing iteration, the generator produces synthetic samples that are evaluated against
these constraints, and the computed penalty terms are back propagated along
with the generator’s loss to update the generator’s parameters. This methodol-
ogy ensures that the GAN generated data not only aligns with the distribution
of the real dataset but also adheres to logical and practical domain-specific con-
straints, thereby enhancing the overall quality of the synthetic data. A detailed
description of the various constraints applied, tailored to the specific datasets
used, is provided in Section 4.3.

3.2 Correlation Structure GAN (CSGAN)

Another approach to ensure that the synthetic data closely mimics the charac-
teristics of the original data is to align their data distributions by comparing
their correlation matrices, which capture the bi-variate relationships between
variables. With this method, categorical variables are first encoded using a La-
bel Encoder [36] to enable numerical operations. The correlation matrix of the
original dataset, denoted as Cleal, is computed and used as a reference. During
training, the correlation matrix of the synthetic dataset, denoted as Cgyntnetic,
is also computed. Any deviation between these matrices is penalized through a
custom loss function. The correlation penalty is calculated using the Frobenius
norm:

Correlation Penalty = ||Creal — Csynthetic || F (5)

where || - || represents the Frobenius norm, which quantifies the element-wise
differences between the two matrices. The total loss function is formulated as:

‘Ctotal = Aadv‘cadv + )\COrr - Correlation Penalty (6)
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where L.qy is the adversarial loss from the GAN training and A,qy and Acorr
are hyper parameters controlling the trade-off between adversarial training and
correlation preservation. This penalty mechanism encourages the synthetic data
to maintain the variable dependencies and structural patterns inherent in the
original dataset.

3.3 Bayesian Network GAN (BNGAN)

With this approach the objective is to effectively capture the dependencies be-
tween attributes, and utilize them as auxiliary information for the GANs. To
achieve this, a BN is employed to model dependencies between attributes. BN are
ideal for this problem because they explicitly model the conditional dependen-
cies between variables, providing a structured and interpretable representation of
how variables influence one another. The learned dependencies are subsequently
incorporated into a Conditional GAN (CGAN) [32], serving as auxiliary infor-
mation to guide the generation of realistic synthetic data. A CGAN extends
the standard GAN framework by conditioning both the generator and discrim-
inator on auxiliary information. Unlike traditional GANs, which generate data
unconditionally, CGAN allows for controlled and targeted data generation by
incorporating the additional input, ensuring the output aligns with the speci-
fied conditions. The proposed methodology is described in Algorithm 1, and a
step-by-step explanation of the algorithm is given in the following paragraph.

The dependencies between variables are first identified using a BN as de-
scribed in Section 2.1. These dependencies (parent-child relationship) are then
transformed into dense vector representations (embeddings) to guide the GAN.
For each parent variable, an embedding layer is initialized, where the size of the
layer corresponds to the number of unique categories in that variable. The em-
bedding layers are trained to map each categorical value to a continuous vector
space, where the distances between vectors capture the semantic relationships
informed by the BN structure. The embeddings of parent variables are concate-
nated to form a conditioning vector, which represents the combined influence of
the parent variables. This conditioning vector is then passed through dense lay-
ers to generate a final representation that encapsulates the dependencies for the
child variables, providing a rich latent space for generating synthetic data. This
conditioning vector is finally integrated into a CGAN. Embedding layers have
been widely used for learning continuous vector representations of categorical
variables [30], for example, in the Word2Vec algorithm for textual data. These
embeddings are trained to capture semantic relationships by mapping categorical
values to a continuous vector space where distances between vectors represent
the similarity between categories. We used a similar strategy to capture proba-
bilistic dependencies between variables in BNs. This approach ensures that the
synthetic data maintains the structural relationships observed in the real dataset
while leveraging the flexibility of the CGAN for data generation.
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Algorithm 1 Bayesian Network GAN

Reqlﬂl‘ei Xtrain, Ytrain
Ensure: Dgyn, Performance Metrics

[

23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:

2O 0RO Wy

Step 1: Learning Variable Dependencies
Define: df <+ Dataset containing both X¢rain and yerain
Sample: dfsampie < df.sample(80%)
Split: chunks < np.array _split(dfsampte, 4)
for each chunk c € chunks in parallel do
Initialize G < 0
while no improvement in BIC score do
G. < modify(G.)
score(G.) < BIC(G,)
end while

: end for
¢ Goinal + UL, Ge > Union of edges from all chunks

Step 2: Construct Dependencies and Embeddings

: Build dependency dictionary: dependencies < from Ganal
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Identify all unique parents: parents < | dependencies.values()
for each parent € parents do
Label encode df [parent]
€parent Embedding(ncategorieS7 dembedding)
end for
for each child € dependencies do

Concatenate embeddings of its parents: ecniig < H ep

pEdependencies|child)
Project to latent space: cchiq + Linear(echiq)

end for

Final conditioning vector: e <+ Hchildcchild

Step 3: Define CGAN

G < Generator(z, e)

D < Discriminator(x, e)

Laav < E[log D(G(z,e))]

Lrecon + E[|x — G(z,€)]|’]

Step 4: Train CGAN

fort=1to T do
Sample real data: X,eqi ~ Xtrain
Generate synthetic data: xsyn < G(z,e)
Train Discriminator: £Lp < E[log D(Xreal, €)] + E[log(l — D(Xsyn, €))]
Train Generator: Lg < Lady + A - Lrecon

end for

return Dgy,, Evaluation Metrics
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3.4 Enforcing DP for the enhanced GAN synthesizers

Obviously, standard GANs without DP guarantees will never satisfy DP. To en-
sure DP, a common approach is to incorporate DPSGD into the discriminator
training since the GAN discriminator uses original samples to differentiate be-
tween real and fake data (the generator never sees the original data, and thus no
privacy measures are required for this step). As we assume that the information
used for PCGAN and CSGAN is prior knowledge, these two approaches don’t
use any additional information that needs to be protected and thus we can rely
on this standard approach to satisfy DP. In BNGAN, which uses a Bayesian
network to capture attribute dependencies and generates an embedding layer
as input to the CGAN, we suggest adding Laplace noise to the embeddings to
achieve DP. Given that the values of the embeddings lie within the range of
[—1,1], the maximum possible change between two neighboring datasets is at
most 2. This value serves as the global sensitivity for the Laplace mechanism,
ensuring that the added noise appropriately preserves DP. Additionally, similar
to the other approaches, DPSGD was applied in the discriminator training.

4 Experimental Setup

In this section we present the datasets used, the architecture of the GANs, and
the specific constraints we enforced to modify the loss function. We provide a
detailed discussion of the results of the experiments in the next section.

4.1 Datasets Description

In this work, we aim to incorporate prior knowledge into GANSs for discrete data,
particularly social science datasets rich in categorical variables. We evaluate our
approach using three such datasets. The first is the Adult dataset [3], a pre-
processed 1994 US Census dataset with over 45,000 individuals and attributes
like education, occupation, and marital status. The second is the Social Diagnosis
2011 (SD2011) [24], a raw Polish census dataset with 35 primarily categorical
attributes (e.g., education level, smoking status, work experience abroad), chosen
for its real-world challenges such as missing values and outliers. The third is the
German Credit Risk dataset [22], which classifies individuals as good or bad
credit risks based on variables such as savings, checking amount, credit history,
and credit amount. Table 1 summarizes the number of instances and attributes
in each dataset. These datasets represent typical discrete social science data,
where capturing inherent structure and prior knowledge is essential for effective
synthetic data generation.

4.2 Conditional GAN (CGAN) Architecture

The Conditional GAN (CGAN) used in this paper consists of a generator and
a discriminator. The generator takes a noise vector and a conditioning vector
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Table 1. Description of Datasets

Dataset  # of Instances # of Categorical Attr. # of Numerical Attr.

ADULT 48842 9 6
SD2011 5000 21 14
Credit Risk 1000 6 4

as input, processes them through four dense layers with LeakyReLU activation,
batch normalization (momentum = 0.8), and dropout (rate = 0.2), and outputs
structured data through a final dense layer. The discriminator receives a real or
synthetic sample concatenated with the same conditioning vector and processes
them through four dense layers with LeakyReLU, dropout (rate = 0.4), and a
final sigmoid layer for binary classification. Both components are trained using
binary cross-entropy loss and the Adam optimizer (learning rate = 0.0002, 8 =
(0.5, 0.999)) for 200 epochs with batch size 32. When privacy is required, the
discriminator is trained with DP-SGD using a noise multiplier of 1.1 and a max
gradient norm of 1. Unlike standard GANs, this CGAN leverages a structured
conditioning vector to preserve attribute relationships in discrete data.

4.3 Incorporating Data Constraints into the Loss Function

We enforce data constraints based on public knowledge, derived after analyzing
the attributes of the dataset. For the Adult dataset, we applied an age constraint,
specifying that the realistic age of a person must lie within the range [0, 120]. In
this case, the penalty coefficient for the age constraint is set to 10, determined
through experiments to balance adherence to realistic age ranges with maintain-
ing data fidelity and diversity. This value ensures the generated data respects
constraints without compromising quality.

For SD2011 dataset, we enforce three constraints: age constraint(similar to
adult dataset), smoking constraint and work-abroad constraint. For the smok-
ing constraint, a penalty term is computed to ensure consistency between the
smoking status and the number of cigarettes smoked. Specifically, if the smoking
status indicates non-smoking, the number of cigarettes smoked should be zero
(nociga = 0). The penalty for violating this constraint is defined as:

Penalty,oking = mean ((smoke < 0.5) - [nocigal) (7)

Here, smoke represents the smoking status (with non-smoking encoded as val-
ues below 0.5), and nociga represents the number of cigarettes smoked. This
penalty ensures that the generated data adheres to logical dependencies between
variables, enhancing its realism. For the work-abroad constraint, we enforce a
penalty when the variable workab is "yes" (i.e., when workab > 0.5) and the
variable wkabdur (the duration of time worked abroad) is < zero. The penalty
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is calculated using the following equation:

n

1
Penalty =— I(workab; > 0.5) - max(0, —wkabdur; 8
wabroad
n

=1

The loss function of the generator for SD2011, incorporates three constraints
with a penalty coefficient of 10 for each in Eq 4. For the German Credit Risk
dataset, we enforce two constraints: an age constraint and a purpose constraint.
The purpose constraint applies penalties if the credit amount exceeds prede-
fined thresholds for specific purposes, such as 5000€ for vacation or repairs and
15,000€ - 20,000€ for business or education. These thresholds were determined
through an analysis of the dataset and aligned with real-world expectations,
ensuring the generated data remains realistic while maintaining diversity and
utility.

5 Results and Discussion

In this section, we empirically evaluate the generated synthetic data by assessing
both, statistical properties and ML utility, and then ensure privacy by enforcing
DP during data generation.

5.1 Impact of Synthetic Data on ML Performance

We evaluate the utility of synthetic data generated by four methods: CTGAN,
PCGAN, CSGAN and BNGAN using multiple ML models. CTGAN was selected
as the baseline for comparison because it is widely recognized as one of the most
efficient GANs for tabular data synthesis in the literature. For classification tasks
on the Adult and German credit risk datasets, we use Light GBM, XGBoostC,
and Logistic Regression models, evaluating the performance based on accuracy.
For the SD2011 dataset, we predict income using LightGBM regression, XG-
BoostR, and Linear Regression models, with performance assessed using Root
Mean Squared Error (RMSE). This comprehensive evaluation ensures a robust
analysis of synthetic data utility across different tasks and datasets as presented
in Table 2.

Each model is trained on synthetic data and tested on real out-of-sample
data. For the Adult dataset, BNGAN achieved the highest accuracy (0.78 —0.79)
for all ML models. For the SD2011 dataset, BNGAN also showed the lowest
RMSE for all models (0.42 — 0.45), with PCGAN achieving comparable results
(0.43 — 0.46). However, the SD2011 dataset contains missing values and out-
liers, with no pre-processing applied, leading to substantially higher error values
for CTGAN (1185 — 1237) reflecting the challenges of working with such raw,
unprocessed data. For the Credit Risk dataset, BNGAN again achieved the high-
est accuracy for all ML models (0.68 — 0.74), demonstrating the effectiveness of
incorporating a BN to capture dependencies between attributes. By modeling
these relationships, BNGAN generates more realistic data, improving model per-
formance. We also note that CSGAN consistently offers the lowest utility among
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all approaches for both classification tasks. We also compared the performance of
synthetic data with the original data, and observed a decline in ML performance,
as expected. Ideally, synthetic data should not outperform the original data since
it is meant to approximate the original distribution rather than surpass it.

Table 2. Utility evaluations for ML models trained on synthetic data and tested on
real out-of-sample data

Synthetic Data Original
CTGAN PCGAN CSGAN BNGAN Data

LightGBM  0.75 0.74 0.70 0.79 0.87
ADULT  Accuracy 1 XGBoostC 0.75 0.73 0.69 0.79 0.86
LogisticR ~ 0.74 0.74 0.71 0.78 0.86
LightGBM  0.66 0.61 0.58 0.74 0.75
Credit Risk Accuracy T XGBoostC 0.65 0.62 0.56 0.68 0.76
LogisticR ~ 0.67 0.63 0.59 0.70 0.74
LightGBM 1207.35 0.44 0.48 0.43 1050.31
SD2011 RMSE | XGBoostR 1236.80  0.46 0.50 0.45 1091.21
LinearR  1185.21 0.43 0.47 0.42 1015.82

Data  Utility Metric MLL Model

5.2 Impact of Synthetic Data on Attribute Correlation Similarity

Analyzing whether synthetic data preserve the pairwise correlations between
attributes is crucial. To evaluate this, we used Cramér’s V with bias correction [4]
to measure the strength of the relationship between pairs of attributes in both
the original and synthetic datasets, since Cramér’s V is commonly used as a
utility measure in the literature [39]. Cramér’s V is a measure of association
between two categorical variables, defined as:

Y2
V_\/n'min(kl,rl) ©)

where x? is the chi-squared statistic, n is the total number of observations, k is
the number of categories in the first variable, and r is the number of categories
in the second variable. The Cramér’s V values are grouped into four categories:
low (V € [0, 0.1)), weak (V € [0.1, 0.3)), middle (V € [0.3, 0.5)), and strong (V €
[0.5, 1)). To assess how well the synthetic data reflects the original data, we use
correlation accuracy for categorical attributes, which calculates the percentage
of attribute pairs where the correlation level in the synthetic data matches the
original data.’

The results in Table 3 show that the synthetic data generated by different
approaches varies in preserving attribute relationships. The Adult data with
its high class imbalance shows low correlation accuracy across all methods, as
minority class attributes may not be well represented in the synthetic data,
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causing weaker correlations between attributes. For the SD2011 dataset, PCGAN
achieved the highest correlation accuracy of 0.6915, which can be attributed to
the effective enforcement of domain-specific data constraints in the loss function.
This allows the model to better capture the relationships between attributes.
BNGAN also performed well with a correlation accuracy of 0.6780, reflecting
the benefits of incorporating a BN model to capture parent-child dependencies
between attributes, which helped preserve data correlations effectively. Similar
trends were observed for the Credit Risk dataset, where BNGAN achieved the
highest correlation accuracy of 0.6981, slightly outperforming PCGAN. Again,
CSGAN showed the weakest performance in all settings.

We also measure the correlation similarity between numerical attributes by
computing the Pearson correlation coefficient [8] for both real and synthetic
data. This results in two correlation values: R4 p for the real data and S4, g for
the synthetic data. The similarity between these correlation values is computed
using the following formula:

|Sa, Bz — Ra Bl
2

A score of 1 indicates perfect similarity, while a score of 0 suggests no similarity.
The method is adapted from SD Metrics [10], offering a standardized way to
assess data quality. The results showed that BNGAN consistently achieved the
highest correlation similarity, particularly for the SD2011 and Adult datasets,
indicating its effectiveness in preserving numerical relationships. PCGAN also
performed well, especially in the SD2011 and Credit Risk datasets, by enforcing
constraints in the loss function. In contrast, CSGAN, which uses correlation-
based penalties, produced lower correlation similarity scores, suggesting that it
may not fully capture the complex dependency structures between attributes.
Overall, both constraint-based approaches (PCGAN and BNGAN) outperform
CSGAN, with BNGAN showing the strongest ability to preserve both categorical
and numerical correlations across multiple datasets.

(10)

score = 1 —

Table 3. Correlation Accuracy and Similarity for Categorical and Numerical Attributes

‘ Categorical ‘ Numerical
Dataset ‘CTGAN PCGAN CSGAN BNGAN‘CTGAN PCGAN CSGAN BNGAN

ADULT 1 | 0.3626 0.4190 0.3524 0.3714 | 0.8581 0.8843 0.8718 0.8932
Credit Risk 1| 0.6723 0.6812 0.6235 0.6981 | 0.8642 0.8714 0.8312 0.8711
SD2011 t | 0.6684 0.6915 0.6123 0.6780 | 0.9758 0.9916 0.9468 0.9971

5.3 Results with Differential Privacy

To ensure the synthetic data generation process satisfies the definition of DP,
we implemented DP a mechanism on our proposed GANs as described in 3.4
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and evaluated their efficacy by comparing them with three baselines: DPGAN,
PATEGAN, and ADSGAN [45]. Table 4 presents the ML performance when
models are trained with DP having ¢ =1 and 5:%. For our DP-BNGAN model,
we apply noise injection at two stages: first, during the generation of Bayesian
network-based embeddings using Laplace noise with sensitivity = 2 and with ¢
= 1, and second in the discriminator component of the CGAN with DPSGD,
also with ¢ = 1. Consequently, the total privacy budget for DP-BNGAN is
€ = 2. We assessed model utility accross three datasets. For the Adult and Credit
Risk datasets, classification accuracy was recorded using Light GBM, the best-
performing model from Table 2. For the SD2011 dataset, prediction error was
measured using RMSE with linear regression, also the best performing model.
The results show that different models perform best on each dataset due to their
ability to handle the unique characteristics of the data while preserving privacy.
For Adult dataset, DP-BNGAN still performed the best, due to its strength in
capturing complex distributions while maintaining privacy. PATEGAN excelled
on Credit Risk dataset, due to its advanced learning capabilities, while DPGAN
performs the worst on all datasets. Although the use of DP degrades the perfor-
mance to some extent, the results demonstrate that the models remain highly
comparable to baselines. This indicates that we are still able to preserve util-
ity while ensuring privacy. We can also further enhance utility, at the cost of a
weaker privacy guarantee.

Table 4. ML performance using differential privacy

Dataset  Utility Metric DP-PCGAN DP-CSGAN DP-BNGAN DPGAN PATEGAN ADSGAN

ADULT  Accuracy T 0.65 0.67 0.72 0.54 0.69 0.71
Credit Risk Accuracy 1 0.62 0.40 0.66 0.54 0.96 0.82
SD2011 RMSE | 0.48 0.57 0.51 0.61 0.58 0.49

6 Conclusion and Future Work

In this paper, we explored whether incorporating prior knowledge can enhance
the performance of GANs for tabular data. We proposed three techniques for
incorporating prior knowledge into GANs without compromising the privacy of
personal data. These methods aim to provide better control over the output of
the GAN. Our comparative analysis with baseline models revealed that using a
Bayesian network to capture attribute dependencies significantly improved data
quality, as validated through various ML and statistical evaluations. Addition-
ally, enforcing public knowledge as constraints also enhanced performance in
certain cases, making both approaches viable for future applications. To ensure
privacy, we integrated a DP mechanism into the GAN training process. In future
work, we aim to extend this comparison to a broader range of privacy-preserving
GANSs to further highlight our contributions relative to existing methods. Also,
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we plan to explore other probabilistic models to further improve the quality of
synthetic data and investigate more novel ways of incorporating prior knowledge
into GANs.
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Abstract. Engineering privacy-friendly systems requires first assessing
privacy threats and then selecting privacy-enhancing technologies (PETS)
to mitigate the threats. While well-established methods such as LINDDUN
support threat assessment, systematic approaches for PET selection
remain underdeveloped. This paper presents our experience applying three
such approaches to a realistic robotaxi use case. Although each method
has been validated by its respective authors on simple use cases, we
found that none could adequately support PET selection in our complex,
real-world scenario. As a result, we also explored a pragmatic approach
based on Hoepman’s privacy strategies. By analyzing the strengths and
limitations of these approaches, we identify key challenges that PET
selection methodologies should address and provide recommendations to
guide the future development of such methodologies.

Keywords: privacy-enhancing technologies - PET selection - privacy
threats - privacy threat mitigation - privacy engineering - robotaxi.

1 Introduction

For the early phases of the privacy engineering process —such as privacy threat as-
sessment — several methodologies provide specific guidance (e.g., LINDDUN |[28],
PANOPTIC [18], and xCOMPASS [9]). These methodologies support the high-
level design of privacy-friendly systems reasonably well, often through the use of
privacy strategies and privacy patterns [13]. Academic efforts have also proposed
ways to support later phases, in particular the selection of Privacy-Enhancing
Technologies (PETs) to address the found privacy threats. Such work draws on
privacy principles [24], best practices, activities, objectives, patterns [17, 25],
strategies [13], and threat models [8], as well as the broader concept of privacy
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by design [11]. However, the practical applicability of these proposals is not fully
understood. Applying them to the detailed design of privacy-friendly systems
in the real world may be challenging because of the approaches’ high level of
abstraction and other limitations and shortcomings.

This work investigates how the PET selection problem can be solved in
practice, using a realistic robotaxi system as use case. Robotaxi services involve
extensive and sensitive data processing throughout their lifecycle —from ride
requests and routing to post-ride analytics —making them an ideal testbed for
evaluating PET selection methodologies. Our aim is to investigate to what extent
existing methodologies can be used to select appropriate PETs to enhance the
privacy in the considered robotaxi service. In this work, we do not propose
the final design of a privacy-preserving robotaxi service, but rather focus on
investigating the methodologies for selecting PETs.

We make the following contributions: i) We identify three methodologies in the
literature that promise guidance on PET selection, and apply them to a realistic
robotaxi use case. We find that none yield satisfactory results. ii) We apply a
pragmatic, experience-based approach based on Hoepman’s privacy strategies [13]
to identify a useful set of PETs. iii) We analyze the strengths and limitations of
these approaches and extract insights to inform the development of improved PET
selection methodologies. Our findings show that existing methodologies provide
limited — or no— support for the detailed design and actual implementation of
privacy-friendly systems. In particular, there is a lack of systematic, actionable
support for selecting PETs as well as clear guidance how to implement and
configure the selected PETs, how to combine them effectively, and how to integrate
them into an overall system.

2 Related Work

We identified several privacy frameworks and projects. They cover the areas
of privacy engineering (STRAP [15], which builds on prior work by Bellotti
and Sellen [6] and Hong et al. [14]), system re-engineering (POSD [5]), privacy
by design (PRIPARE?® based on the work of Kung [19] and Hoepman [13]),
and compliance (PARROT [4]). MITRE has released the Privacy Engineering
Framework and Life Cycle Adaptation Guide®, while ENISA has published the
PETs Control Matrix!'® and a report on data protection engineering!'. However,
none of these frameworks give specific support in the selection of PETs.

Several relevant standards also exist. ISO/IEC 27701 extends ISO/TEC 27001
by adding requirements for establishing and improving a Privacy Information
Management System (PIMS). ISO/IEC 27550 describes privacy engineering across
the system lifecycle, drawing from Hoepman’s privacy strategies [13] and Privacy

8 https://pripareproject.eu/
9 https://www.mitre.org/sites/default/files/2021-11/
10 nttps://www.enisa.europa.eu/news/enisa-news/enisas-pets-control-matrix-
a-tool-to-evaluate-online-and-mobile-privacy-tools
! https://www.enisa.europa.eu/publications/
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Fig. 1: Overview of the methodology used in this paper

Control Examples that are similar to patterns (e.g., Hide: Encryption, Mixing,
Perturbation). Similar to NIST SP800-53, ISO/IEC 29151 defines objectives,
controls, and guidelines for implementing controls for protecting personally
identifiable information (PII). Yet, none of these standards provide specific
support for selecting PETs.

In the academic literature, Drozd and Diirmuth [10] suggested linking privacy
patterns to PETs, but only as a conceptual outlook. Pape et al. [24] proposed
selecting PETs based on GDPR principles, without referencing specific threats.
Adams [1] introduced a privacy tree to classify PETs, offering some guidance
for selection, but the list is incomplete and several leaves are linked to multiple
PETs. Jordan et al. [16] provide an extensive list of PETs, but offer minimal
support for selecting. We only found three papers that provide specific guidance
in PET selection [3, 20, 21], which we discuss in greater detail in Section 5.

As our use case is in the automotive domain, we also examined PET-related
literature in this area. Al-Momani et al. [2] explored the usefulness of privacy
patterns in improving privacy in future automotive systems. Chah et al. [7]
applied LINDDUN to analyze privacy threats. Pape et al. [26] proposed a system
model to identify suitable integration points for PETs in a vehicle. Lobner et
al. [22] evaluated de-identification techniques in automotive use cases. None of
these works proposed a methodology for selecting suitable PETs.

3 Methodology

Fig. 1 depicts the methodology used to perform the research reported in this
paper. Our methodology is structured around a refined robotaxi use case derived
from Al-Momani et al. [2]. We enhanced this use case to reflect more realistic data
flows and service phases based on descriptions from real providers like Waymo
and Uber!2. We carefully checked that these refinements did not alter the original
threat model or its underlying assumptions. As a result, we were able to reuse
the threat assessment conducted by Al-Momani et al.[2].

To identify suitable PETs for our use case, we applied three PET selection
approaches from the literature: i) Kunz et al. [20] who propose a reproducible
method for selecting data-dependent PETs that can be used independently or

12 cf. https://waymo.com and https://www.uber.com, respectively
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Fig. 2: Basic system model of a robotaxi service, from [2].

alongside other methods; ii) Kunz and Binder [21] who offer an application-
oriented classification of PETs based on privacy protection goals, functional
context, technology maturity, and impact on various non-functional requirements;
and iii) Al-Momani et al. [3] who employ decision trees to guide the selection of pri-
vacy solutions based on LINDDUN threats and Hoepman’s privacy strategies [13].
In addition to these approaches, we applied a pragmatic, experience-driven ap-
proach (cf. Sect. 5.4) in which we revisited assumptions, analyzed the purpose of
data processing, and considered applicable PETs. We then analyzed the outcomes
to uncover key challenges, limitations, and differences across the approaches. All
steps and findings were collaboratively reviewed to ensure consistency.

4 Use Case: Robotaxi — Refined System Model

Robotaxi services, which are autonomous, driverless taxi systems, represent
a cutting-edge application of self-driving vehicle technology. By focusing on a
generic robotaxi service, our aim is to derive insights applicable across the broader
industry, rather than to a single provider. From a privacy perspective, a robotaxi
service differs significantly from a traditional taxi service. In a traditional taxi,
the driver handles not only the driving, but also rider interaction, payment,
and unexpected situations. In a robotaxi, these functions are performed by a
combination of artificial intelligence and a remote service provider. As a result,
more data may need to be collected to ensure safe and effective service operation.

Our system model builds on the robotaxi model proposed by Al-Momani et
al. [2], providing a refined system version that offers closer alignment with real-
world deployments. This refinement is based on examining existing services and
incorporates best practices from the industry. While it does not (intentionally)
address privacy enhancements, the refined model serves as a more practical
foundation for selecting applicable PETSs to mitigate the identified privacy threats.

Additionally, we noticed during the application of the pragmatic approach
that all of the three investigated approaches require a clean use case description
with minimal assumptions. Therefore, we revisited the original assumptions,
asking if the data in question was truly necessary and if it could be reduced.
For instance, we challenged the assumption that a user’s birth date needs to be
collected during registration, as a more privacy-friendly option would be to use
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Table 1: Data collected or assigned and data used in the various phases.

Phase 1 2 3 4 5 6
Action Account creation Booking V. assign. Ride Payment Post-ride
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just a binary check (e.g., “user is of legal age”) which avoids the collection of the
full date of birth, which could be used for identification.

As shown in Fig. 2, the robotaxi system involves four primary parties: User,
who requests and manages rides through an application; Rider, the individual
taking the ride, who may or may not be the same as the User; Service Provider,
SP, who operates the robotaxi service, manages the backend system, assigns
vehicles, and ensures smooth operation; and Original Equipment Manufacturer,
OFEM , who builds and maintains the vehicle, including hardware and software
updates. In addition to these natural persons (User and Rider) and legal entities
(SP and OEM), Vehicle can be seen as a fifth party.

The use of a robotaxi service involves several phases, each requiring specific
data elements for effective operation. In the following, we describe each phase.
Table 1 summarizes the data collected or assigned during these phases, along
with the specific phases in which each data item is used or required.

1. Account Creation. Users create an account through an application. Data
Collected: Personal information such as name, email address, phone number,
and payment details (e.g., credit card information). Purpose: To authenticate
users, enable payment processing, and establish a user profile for service access.
Additional Features: Users may also indicate preferences such as accessibility
needs (e.g., wheelchair-accessible vehicles), select other service-specific options,
or participate in a loyalty program.

2. Booking a Ride. Users input their desired pickup and drop-off location(s)
into the app, and optionally specify a pick-up time, number of riders, and specific
preferences (e.g. vehicle features). Data Collected: Current location (via GNSS),
pickup location, drop-off location, and potentially pick-up time and preferred
routes. Purpose: To generate ride requests and facilitate assignment of a vehicle
to User in the next phase. Additional Features: Users receive confirmation
notifications, and the app provides options to adjust the booking if needed. If
the taxi is booked for a different Rider, the name is provided by User.
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3. Vehicle Assignment & Ride Confirmation. The system assigns an
autonomous vehicle and provides ride details to User. Data Collected: Vehicle
identification (e.g., make, model, license plate), estimated time of arrival (ETA),
and Rider’s updated location for precise pickup (if selected). Purpose: To inform
User of vehicle details and ensure accurate pickup coordination. Additional
Features: User is notified when the vehicle arrives. Identity confirmation (e.g.,
PIN) is required to ensure the correct Rider enters the vehicle. Additionally, the
vehicle assignment requires fleet management data, including the precise location
of vehicles and the current fuel or battery levels.

4. Ride Execution. The autonomous vehicle navigates to the destination,
guided by its sensors and real-time data processing. Data Collected: Real-
time vehicle location, internal and external sensor data (e.g., audio, cameras,
LIDAR) and user interaction data within the vehicle (e.g., temperature or music
preferences). Sensor data, camera data, and vehicle location are also accessible
to the OEM at any time. Purpose: To enable safe travel, ensure Rider comfort,
and provide operational support. Additional Features: Rider may change the
route or drop-off location and can contact customer support via vehicle interface
or the app if issues arise.

5. Payment and Feedback. Payment is processed automatically upon
ride completion. Rider can provide feedback via the vehicle interface, and User
via the application. Data Collected: Ride fare details, payment method, trip
history, and user feedback (e.g., ratings, comments). Purpose: To complete the
financial transaction, maintain a record of rides, and improve service quality
based on feedback. Additional Features: User may receive trip summaries,
and promotional offers or discounts are applied based on User’s profile.

6. Post-Ride Actions. Additional interactions may occur between User
and SP, including invoice creation, ride history and analytics, customer support,
loyalty programs and rewards, safety and security issues, service customization,
data deletion, subscription cancellation, and social media sharing. Data Use:
Depending on the action, different existing data items may be reused or new
data may be collected.

5 PET Selection

Al-Momani et al. [2] conducted a privacy threat assessment of the original use
case. Because our refined use case closely aligns with the original, particularly in
terms of privacy threats, the assessment remains applicable, and we refer readers
to the original paper for more details. Our current focus is on selecting PETs to
mitigate these threats.

Our literature review identified three approaches that offer specific guidance
for PET selection. In Sections 5.1-5.3, we describe our experience applying these
methods to the robotaxi use case. Given the limitations we encountered, we also
applied a pragmatic approach based on Hoepman’s privacy strategies [13]. The
challenges reported in Sections 5.1-5.4 are not intended as criticisms of these
approaches. We recognize these approaches are valuable initial steps toward
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addressing a complex problem. Our goal is to highlight that the current state of
the art in PET selection remains inadequate for handling realistic use cases.

5.1 Approach of Kunz et al. (2020)

Kunz et al. [20] proposed a methodology for selecting PETs for IoT-based services,
with a focus on the automotive domain. The methodology consists of four steps:
service description, data-driven elicitation, service-driven elicitation, and PET
selection. We go through these four steps and try to apply them to our use case.

A. Service description. In this step, the service is specified, focusing on the
required data and the purposes of data processing. We have done this in Sect. 4.

B. Data-driven elicitation. In this step, all data identified in the first step
is analyzed according to 6 criteria: continuous or categorical data, set size, ordinal
or nominal data, data longevity, value sequences, metadata and identifiers. Each
of these analysis steps should help narrow down the set of PETs applicable to
the given type of data. In our case, this requires quite some effort. We identified
29 data types in our use case (see Table 1), leading to 29 - 6 = 174 analysis steps.
We present here only a couple of those steps as examples.

One criterion is whether the data is continuous or categorical, which poses a
challenge since most of our data types (e.g., name, address, vehicle ID, route)
are neither continuous nor categorical. Some data (e.g., fare) is continuous.
The analysis tells us that some PETs, for example PRAM (post-randomization
method), cannot be applied to these data types. Similarly, some of our data (e.g.,
payment method) is categorical, and the analysis tells us that some PETs, for
example noise masking, cannot be applied to these data types. Another criterion
is the number of values that the given data type can assume. For most of our data
types, this depends on implementation details (e.g., the string length maximally
allowed for name or address). This seems to contradict the statement of Kunz
et al. that their methodology can be applied in the early phases of the system
design process, because such choices may not have been made yet at this stage.
Also, Kunz et al. do not specify what to do with this information. They only
state that a smaller set of possible values decreases the applicability of PETs. It
is not clear how this could help narrow down the set of applicable PETs.

C. Service-driven elicitation. This step entails analyzing the service’s
requirements on data utility, with the aim of determining which PETs would not
undermine the usefulness of the given service. For this purpose, the methodology
uses three criteria: value precision, data freshness, and attribute dependency.

As to the first criterion, the “precision required by the service” is unclear
for certain data types (e.g., camera feed). For other data types, the precision
requirement may vary over time: e.g., the pick-up location must be known exactly
when the vehicle picks up the rider, but the precision may be lowered when
this data is stored for later processing. Unfortunately, the methodology does not
support such varying precision requirements. The second criterion is how fresh
the data needs to be. This is again problematic: the same data can be associated
with different freshness requirements for different purposes. For example, if the
robotaxi encounters a difficult traffic situation and requires remote control from a
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human operator, that operator needs the camera feed in real time. On the other
hand, for settling compensation claims, there may be a need to access archived
camera feeds from weeks before. Again, the methodology does not support this
type of varying requirements. The last criterion is the dependency between
attributes. Indeed, some of the data types in our use case are not independent.
For example, there is a connection between the route and the fare, since a longer
route typically leads to a higher fare. Kunz et al. draw our attention to the fact
that in such cases, determining different PETs for the dependent attributes may
cause problems. It is not clear how this information could help our PET selection
process, since the different data types may force us to use different PETs for those
attributes. Also, even if the same PET is used for two interdependent attributes,
the dependency may still cause problems if not properly taken into account, and
the methodology does not clarify how to avoid such problems.

D. PET selection. Assuming that the previous two steps delivered a set of
potentially applicable and useful PETs (which is not the case in our use case due
to the difficulties reported above), this step aims at choosing the best ones from
those sets. Unfortunately, Kunz et al. state that this is highly use-case-specific,
so that they do not provide a systematic approach for this step.

Further limitations. As we saw above, steps B and C are only partially
applicable to our use case, and step D does not give clear guidance. In addition,
the approach suffers from further limitations. First, the approach is limited to
data-obfuscation PETs. In our case, several data types (e.g., user name or payment
information) must be available to the service provider without modifications for
legitimate purposes, so that they cannot be obfuscated. There are data protection
requirements associated with these data types, but addressing these requirements
requires PETs not supported by the methodology. Second, the approach assumes
a list of available PETs. However, finding the right level of abstraction for PETs
is challenging. E.g., Kunz et al. consider aggregation to be one PET, but mention
that various aggregation techniques exist. Those techniques could be just as
well considered individual PETs. If we find out using the methodology that we
should use aggregation, we are still faced with the question of which aggregation
technique to use. Third, Kunz et al. state that their approach can be used in
tandem with LINDDUN. However, the approach excludes two important threats
covered by LINDDUN: unawareness and non-compliance. Compliance with data
protection regulations is the primary privacy objective for most service providers,
making non-compliance the most important threat from their point of view.

5.2 Approach of Kunz and Binder (2022)

Kunz and Binder [21] propose a categorization of PETs to aid PET selection.
For each considered PET, they determine the relevant privacy goals, metrics for
measuring the PET’s privacy effect, the relevant “functional scenario” (one of:
release, messaging, authentication, authorization, retrieval, computation), the
PET’s maturity on a scale from 1 to 3, and the PET’s impact on performance,
architecture, and utility (the last three are binary attributes: there is either
impact or not). The paper provides this categorization for 29 PETs. On this
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basis, the following methodology can be deduced. Starting from a privacy threat
assessment, first the privacy goal and functional scenario is determined for each
threat. Then, the categorization helps identify the subset of PETs applicable to
the combination of privacy goal and functional scenario. Finally, the maturity
and impact attributes of the short-listed PETs help choose the most appropriate
PET. In the following, we go through these steps, applying them to our use case.

A. Identifying privacy goal and functional scenario. A privacy threat
assessment of our use case has already been performed by Al-Momani et al. [2]
using LINDDUN. The privacy goals used by Kunz and Binder are directly linked
to the LINDDUN threat types, which makes it trivial to determine the privacy
goal related to each threat. E.g., for a linkability threat, the related privacy goal
is unlinkability. Determining the “functional scenario” that provides the context
for a threat, however, is not always obvious. Some threats arise in the context of
activities that could belong to more than one category: e.g., the threats arising
from data sharing between the SP and the OEM could be seen to belong to both
the “release” and the “messaging” category. The functional scenario of some other
threats—e.g., the threat of storing personal data beyond its necessary retention
period—does not seem to belong to any of the proposed categories.

B. Identifying relevant subset of PETs. If the privacy goal and the
functional scenario could be determined for a threat, then the matrix of Kunz
and Binder can be used to mechanically determine the subset of relevant PETs.
Even this seemingly straightforward step poses difficulties. The matrix offers no
PETs for unawareness and non-compliance threats, although, as we mentioned
earlier, these threats can be very important. Also, there are many combinations
of privacy goal and functional scenario, for which the matrix offers no PETs.

C. Selecting the most appropriate PET. If we managed to identify a set
of applicable PETs for a given threat through the two previous steps, then the
final step is to select the most appropriate one. Unfortunately, the paper offers
no clear guidance on how to do that. It is suggested that the maturity and the
impact on performance, architecture, and utility should be helpful in making
this decision. But it is not clear how. E.g., suppression and recoding are given
as two PETs that can both address linkability threats in a “release” functional
scenario, and they have the same maturity and the same impact on performance,
architecture, and utility, so it remains unclear which one to choose. Another
example: swapping and noise masking can be used for the same type of threat
and functional scenario; swapping has a lower maturity than noise masking, but
noise masking impacts utility, making it unclear which one to choose.

Further limitations. Beyond the questions that the individual steps raise, the
approach also suffers from more general issues. Some are similar to the problems
identified in Sect. 5.1. E.g., unawareness and non-compliance are missing in both
approaches. Also, we mentioned in Sect. 5.1 that it is difficult to come up with a
good list of PETs because it is not clear if different variants of a PET should be
regarded as different PETs. For the method of Kunz and Binder, this problem is
even more severe because different variants of a PET may have different maturity
and different impact on performance, architecture, and utility. E.g., Kunz and
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Binder mention synthetic data as a PET. However, there are many ways to
generate synthetic data, and their impact on, e.g., utility can be very different.

The impact attributes of Kunz and Binder are problematic anyway. It is not
possible to capture the impact of a PET on performance, architecture, and utility
in general, because this depends on many further details. E.g., the matrix of
Kunz and Binder shows that the PET MPC (multi-party computation) impacts
performance. However, there are many MPC techniques, and their performance
impact is very different. Even for one particular MPC technique, e.g., additive
secret-sharing, its performance impact depends heavily on the types of operations
that it is applied to: linear operations (addition or multiplication by a constant)
can be very quickly performed on additively secret-shared numbers, whereas
non-linear operations are much more costly [27]. Thus, the performance impact
depends not only on the PET, but also on the context in which it is applied. A
further problem is that the analysis must be performed for every single threat. In
a real system, the number of threats can be high, making this impractical. Also,
the risk posed by several threats may simply be accepted or may be addressed
by non-technical means, so that PET selection for these threats is not necessary.
E.g., in our use case, there are obvious identifiability threats stemming from the
collected identifiers, but this is accepted because of other requirements. Finally,
threats may be connected to each other. The methodology proposes a PET for
each threat independently, potentially leading to a sub-optimal solution.

5.3 Approach of Al-Momani et al. (2022)

Al-Momani et al. [3] propose a methodology using decision trees to systematically
guide users from privacy threats identified with LINDDUN to suitable privacy
solutions. For this, specific key nodes are identified in the LINDDUN threat trees.
These nodes contain information regarding the cause of the threat, the threat
class, and the system element where the threat applies. For each key node, the
mitigation goal is defined, and nodes sharing the same goal are grouped together.
In total, ten mitigation goals are defined. For each mitigation goal, potential
countermeasures are defined and then ordered according to the data-oriented
privacy design strategies [13], i.e., Minimize, Separate, Abstract, and Hide. This
process yielded four solution trees for the mitigation goals “protect-attributes”,
“protect-communication-metadata”, “protect-id”, and “secure-processing”. In the
following, we apply this approach to our use case.

A. Identify ‘“key nodes” for the solution trees. To select the applicable
PETs, the original approach had to be modified because it had been designed
for an earlier version of LINDDUN, rendering the utilization of the key nodes
unfeasible. Our adaption process was initiated by mapping the identified threats
from the LINDDUN analysis to the solution trees. To maintain a fundamental
element of the method—the usage of the rationales underlying a threat identified
through the threat trees—we used the assumptions from the use case [2], which
encompass analogous information and facilitated the mapping process.

B. Identify possible PETs using the solution trees. The aforementioned
new mapping allowed us to use the solution trees, which consequently resulted in
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some PETs for the different phases. The first step is to address the applicability of
a PET. Then, it is necessary to determine whether the PET alone is adequate to
remedy the threat of the key node or if it must be combined with other applicable
PETs. In summary, we observed two main outcomes of the method per threat: i)
Mitigation is not applicable since the (precise) data is required for the service,
e.g. for user identification; and ii) Mitigation is possible using: Remove, Replace,
Separate, or use Noisy & less granular attributes, depending on the data.

The proposed solution trees are a promising concept, particularly in terms of
prioritizing privacy strategies and assessing the necessity of data. This approach
involves determining whether the data is indispensable and, if so, explores options
for its replacement, separation, or generalization. Only after this thorough evalua-
tion should the utilization of advanced PETs be considered. However, this method
also has major shortcomings. The “secure-processing” tree might be complete
regarding PETs, since it helps choose one of the three currently available PETs for
secure processing: homomorphic encryption, trusted execution environments, and
multiparty computation. However, the “protect-id” tree considers only attribute-
based credentials as a PET which limits usability. The “protect-attributes” tree
only considers encryption in general and no specific PET. Although the key ‘entry’
nodes include “Untrusted communication”, “Observe message and/or channel”,
and “Dataflow not fully protected”, even TLS is missing as a PET. In addition,
technologies that protect attributes are missing, such as attribute-based cre-
dentials or zero-knowledge proofs. The “protect-communication-metadata” deals
with “Non-anonymous Communication” and lists only Onion routing and Hiding
timestamps and the message size by random padding as possible PETs.

Further Limitations. The approach suggests primarily to use Hoepman’s
privacy strategies [13], but lacks more concrete details on PET selection. Missing
PETs limit the selection of (advanced) technical PETS.

5.4 A Pragmatic Approach Based on Hoepman (2014)

We now sketch a pragmatic approach based on Hoepman’s privacy design strate-
gies [13] and the authors’ collective expertise. Al-Momani et al. [2] previously
identified the assumptions underlying the privacy threats they found. To address
these threats, we revisit their assumptions. We identify the purpose of data
processing and explore the potential application of PETs to enhance privacy.
Where feasible, appropriate PETs are incorporated.

A. Preparation by applying privacy strategies. Before analyzing the
assumptions and phases relevant to PET selection, we adopted the following
general strategies (where applicable): i) Minimize: We revisited the original
assumptions, asking whether the data in question was truly necessary (cf. Sect. 4).
For age verification, the application of Attribute-Based Credentials (ABCs) could
be considered. ii) Hide: Encrypt all collected data at rest (e.g., disk/database
encryption) and in transit (e. g., TLS); ii) Enforce: Implement strict access control
(e. g., role-based) to safeguard data and ensure auditability; iv) Inform: Provide
users with clear and accessible information about data processing and its purposes,
such as through a privacy policy, data collection notices, and regular updates; v)
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Control: Enable users to manage their preferences, and access, delete, or update
their personal information — via a user dashboard, data deletion protocols, opt-in
mechanisms, and consent withdrawal.

B. PET selection process. To identify additional potential PETs, we
examined the data items used in each phase. Table 1 provides an overview of
how data is used across phases. For example, one result of this activity was
the identification of homomorphic encryption as a potential PET for encrypting
location, time, and route data of vehicles, thereby enabling vehicle allocation while
preserving confidentiality and still allowing matching with the (also encrypted)
user location.

C. Threat assessment. We conducted an additional LINDDUN analysis
using the revised assumptions. The revised assumptions have the potential
to mitigate or eliminate most of the previously identified threats. However,
we were unable to eliminate threats regarding linkability and identifiability
(LINDDUN threats L.1.1, I.1.1, and 1.2.2.1), as these stem from the use of a
unique identifier. Nevertheless, for the purposes of our use case, it does not
constitute a privacy problem if the SP can identify a User. It is important to note
that even if advanced PETs (e.g., attribute-based credentials, zero knowledge
proofs, anonymous payment) are implemented to allow anonymous use of the
service, the SP may still be able to identify a user through data correlation (e.g.,
pick-up/drop-off locations, routes, and times), behavioral patterns, or service
customization. Furthermore, in certain jurisdictions, the SP may be obligated to
collect specific information for legal compliance, making full anonymity impossible.

Further Limitations. The main limitation of this approach is that it is
not a systematic methodology. We first identified suitable privacy strategies
following Hoepman [13], and then mapped them to relevant PETs. However,
Hoepman’s strategies are defined at a higher level than PET Selection. As a
result, we analyzed assumptions and determined the deployability of specific
PETs to address certain threats based on our own experience, without a formal
method. This introduces two limitations: i) The approach requires experienced
experts to produce useful results, and ii) Different teams may reach different
conclusions, reducing consistency and repeatability.

6 Analysis of PET Selection Approaches

In this section, we analyze the findings from the three PET selection attempts of
Sections 5.1-5.3, highlighting their respective strengths and weaknesses. Table 2
provides a comparative summary of our analysis. We also extract insights to
guide future research on PET selection methodologies.

6.1 Strengths

Each of the methodologies considered (Sect. 5.1-5.3) has its own strengths, which
are largely complementary.
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Table 2: Comparison of PET Selection Approaches

Criterion

Kunz et al. (2020)

Kunz & Binder (2022)

Al-Momani et al. (2022)

Core Method

Data- and service-driven
filtering of PETSs

PET matrix by goal,
scenario, maturity, impact

Decision trees linking
LINDDUN threats to
strategies

Design Stage
Fit

Assumes mature design,
known data

Requires detailed threats

Needs mapped assumptions
and threats

Final PET No decision logic for Maturity /impact noted but No prioritization among
Selection choosing among PETs no guidance PETs

Support

Scalability / Too granular for large Partial threat coverage Partial PET coverage;
Use Case Fit  systems requires expert tuning
Handles Recognizes variation but  Treats PET effects as Accounts for necessity of
Context lacks structured support  static across contexts data

Considers shared
assumptions, but not
systematically

Treats threats
independently

Threat Interde- Treats threats
pendency independently

Moderate PET list with
missing types

Incomplete list (e.g., omits
TLS, ZKPs, ABCs)

PET Coverage Narrow focus on
obfuscation PETs

Maturity and impact
dimensions included

Leverages threat rationale;
supports strategy
prioritization

Limited PET set; lacks
automation or consistency

Strengths Combines data/service
analysis; domain-specific

taxonomy

Ambiguous threat-to-PET
mapping; lacks detail on
PET variants

Limitations High effort; limited
guidance for final PET

selection

The approach of Kunz et al. [20] promotes a combination of data-driven and
service-driven elicitation. This is a sensible idea, as both the characteristics of
the data and the requirements of the service influence the set of applicable PETs.
The paper also introduces the concept of a domain-specific data taxonomy, with a
set of applicable PETs mapped to each identified data type. This is an interesting
idea that could help make PET selection more efficient.

The approach of Kunz and Binder [21] considers PET maturity as well as the
impact of PETs on performance, architecture, and utility. Each of these aspects
may be important in practice.

The approach of Al-Momani et al. [3] leverages detailed threat assessment
information when selecting PETs. Our experience confirmed the value of this idea:
the threat assessment improved our understanding of the origins and potential
consequences of privacy threats, which proved helpful for PET selection.

6.2 Weaknesses

As described in Sect. 5, applying each of these academic approaches to our use
case was problematic. Beyond the specific weaknesses of individual approaches,
which may reflect their relative immaturity, we encountered several recurring
limitations that may indicate more fundamental limitations. First, each approach
seems to assume a completed system design. However, by that point, introducing
PETs may be too late, as they could potentially impact core design choices. None
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of the approaches supports an agile process in which the general system design
and privacy considerations evolve in parallel, influencing each other iteratively.

Second, each approach assumes a fixed list of PETs and clear criteria for
applicability. In practice, PET lists are often arbitrary, and the applicability of
a given PET typically depends on context. Determining the impact of a PET
(e.g., on performance, architecture, functionality, or future extensibility) requires
careful analysis and substantial design effort [23]. The reviewed approaches tend
to overlook this and rely on over-simplified generalizations.

Third, while existing approaches may identify potentially applicable PETs,
they offer little guidance for making a final selection. This gap is especially critical
in scenarios with specific accuracy and performance requirements. For example,
when adding noise, it should sufficiently obscure privacy-relevant information
without degrading the utility of the data. The performance impact of a PET also
depends on the context: real-time applications impose stricter constraints than
offline or batch-processing tasks. Moreover, the outcome depends not only on the
PET itself but also on its configuration (e.g., the e value in differential privacy).

Fourth, each approach treats threats in isolation, selecting at least one PET
per threat. In reality, both threats and PETs may be interdependent. For example,
a single PET might mitigate multiple threats, or the use of one PET could interfere
with the effectiveness of another. Focusing solely on local decisions can lead to
overall suboptimal or even infeasible outcomes.

Finally, each approach omits considerations that fall outside their defined
scope, such as “soft privacy” goals or security requirements. While this is under-
standable in a research setting, practical methodologies must be more compre-
hensive to be useful in real-world deployments.

6.3 Recommendations for Future Methodology

Insights from the pragmatic approach could help inform the development of
improved methodologies. We offer the following recommendations.

Investigate Assumptions. When identifying mitigation techniques, we
found it important to trace threats back to their underlying causes. The origin
of a threat often constrains the available mitigation options. For example, if
Identifiability threats arise due to legal requirements to identify users, then PETs
that provide anonymity may not be applicable. To support this process, we found
it useful to document data protection-related assumptions about the system and
to link each identified threat to the assumptions that give rise to it. This also
helped identify cases where multiple threats stemmed from a shared assumption,
meaning that a single PET targeting that assumption could address several
threats. Revisiting assumptions and clarifying the purpose of data processing
proved to be a valuable step in preparing for PET selection.

Specific Step-wise Dataflows. Structuring the use case into discrete steps
helped streamline PET selection. It allowed us to visualize when and where data
is created, to identify dependencies, and to avoid unintended side effects when
applying PETs. A PET applied to mitigate a threat in one step may influence
other steps where the same data is used.
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PETs’ Appropriateness. Addressing the limitations of current approaches
will require improved support for selecting PETs in specific scenarios. In partic-
ular, new methodologies should help map scenario-specific requirements to the
expected changes in system properties (e.g., performance, accuracy) resulting
from the implementation and configuration of PETs. This would inevitably bring
deployment and integration changes to the system that should be investigated
by new methodologies.

Adaption to Design Phase. Different phases of the system design process
require distinct tools and approaches. Designing a system from scratch allows
building privacy into the architecture from the ground up. In contrast, improv-
ing an existing system demands a detailed understanding of current data flows
to assess whether introducing a PET is feasible. For example, adding noise to
encrypted data is not straightforward and may compromise functionality. Intro-
ducing a PET might also disrupt operations if essential data becomes inaccessible.
If the system incorporates machine learning, additional considerations arise, such
as the distinction between the initial training phase and the deployment of the
model, which may affect how and when PETs can be applied.

Addressing Compliance. None of the approaches considered compliance. A
future approach for PET selection could aim to bridge the gap between building
privacy-friendly systems and ensuring regulatory compliance. Aligning privacy
engineering with compliance requirements would significantly improve practical
adoption. This is especially relevant in corporate environments, where privacy
processes are often structured around meeting legal and regulatory standards.

7 Conclusions and Future Work

The PET selection methods found in the literature exhibit significant shortcom-
ings. While they offer some guidance, they often rely on oversimplified assumptions
(e.g., regarding the applicably of a PET in a given situation), and fall short of
providing a complete methodology. In some cases, these approaches yield a list of
potentially applicable PETs, but the challenge of selecting the most appropriate
one remains. This requires evaluating the maturity of each PET, its compatibility
with performance and architectural constraints, the availability of ready-to-use
implementations etc.

The pragmatic approach presented in this paper cannot be considered a
methodology in its current form, as it heavily relies on the expertise of the
team. The challenge of selecting appropriate PETs remains open, and current
approaches can only partially support this task.

Our work highlights the importance of using realistic use cases for evaluating
PET selection methodologies. Post-ride actions, such as service enhancements or
monetization, can directly influence PET selection. For example, issuing invoices
must comply with legal requirements regarding the included data.

While our analysis highlights the challenges of selecting PETs in real-world
scenarios, it does not offer a complete solution. Even after PETs are selected,
implementing, integrating, and configuring them remains a significant challenge
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[12]. There is a need for more iterative, agile, and exploratory approaches that
support "what-if” analysis, allowing design teams to evaluate the impact of
selected PETs without immediate commitment. Privacy should be integrated
into overall system design, not treated as a separate, downstream process. The
use of Artificial Intelligence techniques to support PET selection also represents
a potential direction for future work.
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Abstract. The growing complexity of cyber threats in healthcare demands ad-
vanced, computationally efficient security solutions. This study employs a white-
box approach to evaluate lightweight transformer models for detecting privacy
threats in C/C++ healthcare software. We introduce a novel dataset annotated
with privacy vulnerabilities using the LINDDUN methodology, covering linka-
bility, identifiability, non-repudiation, detectability, information disclosure, una-
wareness, and non-compliance. A systematic mapping between LINDDUN
threats and Common Weakness Enumeration (CWE) classifications standardize
privacy risk assessment. Six lightweight transformer models—Graph-
CodeBERT-base, CodeGPT-small, BERT-base-uncased, DistilRoBERTa-base,
DistilBERT-base, and T5-small were fine-tuned and evaluated on the dataset
containing 56,395 vulnerable and 364,232 non-vulnerable C/C++ functions,
sourced from open-source projects to mitigate coder bias. All models achieve
over 98% accuracy, with TS-small reaching 98.64%. Detailed computational
costs, including model parameters and training times (~12 hours), highlight suit-
ability for resource-constrained environments. This work validates NLP-driven
privacy risk assessment, offering a scalable framework for healthcare security.

Keywords: Healthcare privacy, lightweight, LINDDUN framework, Software
vulnerability detection, Privacy threat modelling

1 Introduction

Healthcare organizations face increasing cyberattacks, such as the 2017 WannaCry
ransomware outbreak that caused unprecedented disruptions (Portela et al., 2023). Tra-
ditional security approaches like signature-based detection find it difficult to detect ad-
vanced persistent threats (Dequino et al., 2025), thus necessitating efficient and novel
detection strategies.

Natural language processing (NLP) advancements which are enabled by trans-
former-based models, offer new vulnerability detection possibilities, but state-of-the-
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art transformer models with billions of parameters create high computational costs and
substantial memory requirements (Latharani & Mouneshachari, 2024; Denecke et al.,
2024). While effective at analyzing unstructured data for security risks, the computa-
tional demands of these models hinder deployment in resource-constrained environ-
ments like medical devices (Thapa et al., 2022).

This study evaluates lightweight transformer models for detecting privacy threats in
healthcare software, focusing on real-time, computationally efficient solutions. We in-
troduce a novel C/C++ code dataset annotated with privacy vulnerabilities using the
LINDDUN privacy threat methodology, which categorizes threats into Linking, Iden-
tifying, Non-repudiation, Detecting, Data Disclosure, Unawareness, and Non-compli-
ance (Wuyts & Joosen, 2020). We establish a systematic mapping between LINDDUN
categories and Common Weakness Enumeration (CWE) classifications (Lohmann, Al-
buquerque, & Machado, 2023). C/C++ was selected due to it is considered a program-
ming language for safety-critical systems (Zouev, 2020), and its manual memory man-
agement introduces unique privacy vulnerabilities like buffer overflows (Pereira et al.,
2021) which align with LINDDUN categories and can cause unauthorized data expo-
sure (Li et al., 2023). Hence, this focus addresses a research gap, as existing datasets
often prioritize general security over privacy-specific vulnerabilities in healthcare
(Wuyts & Joosen, 2020).

This research contributes: (1) a novel healthcare-specific C/C++ dataset annotated
with LINDDUN-based privacy vulnerabilities, (2) a systematic LINDDUN-CWE map-
ping framework that integrates privacy risk assessment with software security analysis,
and (3) a comprehensive evaluation of lightweight transformer models for privacy
threat detection. These advancements promote privacy-aware security while ensuring
computational efficiency, useful for scalable, Al-driven security solutions in
healthcare.

The remaining sections of this paper are organized as follows. Section II provides a
background and gives further insights by showcasing related works. Section III pro-
vides a concise methodology of the methods, approach and experiments performed to
achieve the objectives of this paper. While Section IV, V, and VI showcase the results
of the experiments, provide a critical analysis in a discussion and conclusion respec-
tively.

2 Background and Related Works

The digitization of healthcare has revolutionized medical services, enhancing patient
outcomes and administrative efficiency. However, this transformation has introduced
significant challenges in data privacy, security vulnerabilities, and interoperability,
which now require advanced analytical frameworks and computationally efficient
threat detection models (Ahmed et al., 2023; Silva et al., 2024).

2.1  Healthcare Information Systems and Data Privacy

Modern healthcare information systems are built upon intricate networks of stake-
holders and information systems, where Electronic Health Records (EHRs) have evi-
dently enhanced clinical decision-making and patient outcomes (Alomar et al., 2024).
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However, persistent system fragmentation and dependence on proprictary data formats
continue to impede interoperability, complicating secure and efficient data exchange
among disparate platforms (Holmgren, Everson & Adler-Milstein, 2022). Standardized
frameworks such as Health Level Seven Fast Healthcare Interoperability Resources
(HL7 FHIR) and ISO/EN 13606 offer blueprints for harmonized data structures, but
variable implementation practices undermine their potential for seamless integration
across institutions (Salunkhe et al., 2024).

The migration of healthcare workloads to cloud environments delivers significant
gains in scalability and resource optimization but simultaneously introduces elevated
privacy and compliance risks, including unauthorized data access and multitenancy
concerns (Sivan, R. and Zukarnain, 2021). As providers increasingly harness artificial
intelligence and big-data analytics to inform diagnostics and operational workflows,
questions around data ownership, informed consent procedures, and algorithmic trans-
parency have become critical ethical and legal considerations (Karimian et al., 2022;
Solanki et al., 2022). Moreover, the healthcare sector faces a growing spectrum of cy-
bersecurity threats such as ransomware and distributed denial-of-service attacks, and
insider exploits, that increase existing vulnerabilities. Traditional cryptographic safe-
guards often prove insufficient against sophisticated, persistent adversaries, while ma-
chine learning—powered decision-support systems remain susceptible to adversarial
manipulation, underscoring the urgent need for advanced privacy protections and resil-
ient threat-detection models (Cina et al., 2023).

2.2 Privacy Threat Modelling with LINDDUN

To systematically address privacy risks during system design, researchers have de-
veloped specialized threat modelling frameworks. LINDDUN is a prominent privacy
threat modelling methodology that provides a structured approach to identify and mit-
igate privacy threats in software architectures. Deng et al. (2011) introduced
LINDDUN as the privacy counterpart to STRIDE of Microsoft security model. By an-
alyzing data flow diagrams of a system, LINDDUN guides analysts to consider how
each component or data flow could be subject to the seven types of privacy threats. For
example, linkability checks if an attacker could link two pieces of data (or events) to
the same person, while non-compliance examines whether the system might violate
privacy laws or policies.

LINDDUN has gained wide recognition as a robust framework for privacy-by-de-
sign. Acknowledged by the NIST Privacy Framework!. It is a strong methodology for
evaluating privacy risks, it is particularly relevant in healthcare, where continuous ex-
change of sensitive patient data demands rigorous threat assessment. For example,
LINDDUN enables the identification of threats like linkability and identifiability in
EHR systems, ensuring compliance with regulations such as the General Data Protec-
tion Regulation (GDPR) (Wuyts & Joosen, 2020).

Overall, LINDDUN serves as a foundation for our methodology, providing a sys-
tematic method to examine how privacy can be violated in healthcare software. By

' https://www.nist.gov/privacy-framework/linddun-privacy-threat-modeling-framework
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acknowledging its limitations and augmenting it with risk-based filtering and CWE

mappings, harnessing the broad coverage while maintaining practical relevance.
Despite its strengths, LINDDUN has limits, such as the "threat explosion" problem,

where extreme threat identification engulfs resources (Robles-Gonzalez et al., 2020).

2.3  Lightweight Transformer Models

A review of recent research has revealed a growing interest in transformer-based
deep learning models in software security tasks including vulnerability detection, code
review automation, and malware analysis (Thapa et al., 2022). Transformer-based lan-
guage models, originally developed for NLP tasks, have proven exceptionally adept at
understanding source code because code has structural similarities to natural language
(it follows grammatical rules and has context-dependent semantics). When fine-tuned,
these models can detect subtle bugs or vulnerabilities that might elude manual code
inspection. For example, Thapa et al. (2022) demonstrated that transformers fine-tuned
on a corpus of vulnerable code can achieve high recall in detecting buffer overflows,
pointer misuse, and other C/C++ vulnerabilities, significantly outperforming traditional
machine learning classifiers.

However, the limitation of these powerful models is their computational complexity.
A standard transformer like BERT-base has 110 million parameters and requires con-
siderable memory and processing time for inference. Lightweight transformers using
techniques such as knowledge distillation, parameter pruning, and quantization are used
to compress models while trying to retain most of their accuracy (Dantas et al., 2024).
Sanh et al. (2019) pioneered this with DistilBERT, showing that a model with almost
half the parameters of BERT could retain ~97% of the language understanding capa-
bilities by learning from outputs of BERT during training. Similarly, DistilRoBERTa
was produced by distilling the RoOBERTa model (a variant of BERT) and achieves com-
parable performance on many tasks with a fraction of the parameters.

Table 1 summarizes some characteristics of lightweight transformer models relevant
to this work, including their size reductions and design strategies. Full versions of these
models have been successfully applied to security tasks in prior code specific research
(Fernando et al., 2020; Guo et al., 2021). Even with these models achieving state-of-
the-art results on code understanding benchmarks and vulnerability classification tasks,
these models can be heavy and thus require smaller variants or further compression.
Luo et al. (2023) presents a study on optimizing transformer models for resource-con-
strained environments, highlighting that methods like layer pruning (removing some
transformer layers) and weight quantization (reducing precision) can significantly
speed up inference with minimal loss of accuracy.

Finally, while transformers can flag patterns correlating with vulnerabilities, they
tend to be “black boxes.” For adoption in regulated industries like healthcare, the ex-
plainability of model decisions is important (Alkhanbouli et al., 2025). There is grow-
ing interest in explainable Al for security, e.g. highlighting code lines that influenced
the prediction of the model (Marey et al., 2024). This is somewhat outside the scope of
our current work, but we acknowledge it as an important direction for making ML-
driven security tools more transparent to auditors and developers.
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Table 1. Lightweight transformer models used, including compression methods and parameter

counts (to be presented in results).

Model Original Com- % Re- Method of Efficiency Improvements
Size (Pa- pressed duction ~ Compression
rameters) Size (Pa-
rameters)
BERT-base- 125M 67M 46% Knowledge Maintains strong perfor-
uncased Distillation mance on code under-
standing tasks

GraphCodeBERT-  125M 66M 47% Parameter Optimized for faster infer-

Base Sharing & ence and lower memory
Layer Pruning usage

CodeGPT-Small 124M 65M 48% Reduced Enables efficient code
Transformer generation and comple-
Layers tion

T5-Small 220M 110M 50% Knowledge Similar performance to
Distillation & full-sized counterpart with
Pruning improved efficiency

DistilRoBERTa- 355M 134M 62% Knowledge 40% reduction in parame-

Base Distillation ters and faster inference

DistilBERT-Base 110M 66M 40% Knowledge Nearly same performance
Distillation as BERT with 40% pa-

rameter reduction

2.4  Healthcare Security Datasets

Effective privacy threat detection relies on high-quality, domain-specific datasets.
In the domain of software vulnerability detection, several datasets have been proposed
in recent years, but few focus on the healthcare context or on privacy threats specifi-
cally. However, the AI4AHEALTHSEC dataset is one that aggregates threat intelligence
from medical software vulnerabilities and hospital security incidents, providing a foun-
dation for healthcare cybersecurity research (Silvestri et al., 2023). However, the focus
of such threat intelligence datasets is often on unstructured data (textual reports, logs)
rather than code. DiverseVul and ReposVul datasets, are general code centric sources
that offer comprehensive collections of C/C++ vulnerabilities, with 18,945 vulnerable
functions and repository-level tracking, respectively (Li et al., 2023; Wang et al., 2024).

Furthermore, challenges such as data imbalance and limited generalization persist,
prompting research into automated dataset augmentation techniques (Thabtah et al.,
2020). Privacy-specific datasets for healthcare are particularly scarce, as most existing
datasets focus on general security concerns (Silva et al., 2024). This gap highlights the
need for specialized datasets tailored to healthcare privacy threats.

2.5 Research Gap and Contributions

The integration of LINDDUN privacy threat modeling, lightweight transformer
models, and healthcare-specific security datasets presents a promising yet underex-
plored direction for privacy threat detection (Wuyts & Joosen, 2020; Thapa et al.,
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2022). While LINDDUN provides systematic threat assessment, lightweight transform-
ers enable efficient analysis, and specialized datasets offer domain-specific training
data, their combined potential remains largely untapped in healthcare cybersecurity
(Silva et al., 2024). This study addresses this gap by synthesizing these components
into a cohesive framework, as illustrated in Figure 1, which outlines the novelty and
contributions of our approach. By leaning on a LINDDUN-annotated C/C++ dataset, a
LINDDUN-CWE mapping, and lightweight transformer models, this research ad-
vances practical, efficient, and comprehensive privacy threat detection mechanisms for
healthcare environments facing increasingly sophisticated cyber threats.

To the best of our knowledge, prior to this work there was no publicly available
dataset that labels code explicitly with privacy threat categories (LINDDUN or similar).
Our approach can be seen as synthesizing a privacy-focused dataset by filtering existing
vulnerabilities through the lens of a privacy threat model. The result is a dataset where
each vulnerable example is not just a random bug, but one that maps to a privacy threat.
We provide details of this mapping in the methodology section.

Traditional LINDDUN Methodology Research Method

« Develop Data Flow Diagram (DFD) - Develop Data Flow Diagram (DFD)

- Map DFD Elements to Privacy Threats - Map DFD Elements to Privacy Threats
Problem Space + Identify Misuse Case (Threat) Scenarios - Identify Misuse Case (Threat) Scenarios

ELMILURTENE | Prioritize Threats + Iterate aver Software CWE
. Elicit Mitigation Strategies : g“’:te an D;‘“te: f°”:'-"v inerable God
. . . « Produce a Prototype for Vulnerable Code
+ Select Privacy Enhancing Solutions.
i 9 Function(s) Identification

Knowledge Addition

Fig. 1. Conceptual framework illustrates the extension of LINDDUN privacy threat modelling
with CWE.

3 Methodology

Our research methodology is made up of four key components: (i) privacy threat
modelling using LINDDUN to identify potential privacy threats in a healthcare system,
(i) mapping those threats to software weakness types (CWEs) and constructing a la-
belled code dataset, (iii) selection and implementation of lightweight transformer mod-
els for vulnerability detection, and (iv) evaluating the performance and efficiency of
the selected models. Figure 1 illustrates the workflow, starting from system modelling
and threat analysis, through data annotation, to model training and evaluation.

3.1 System Modelling and Privacy Threat Analysis using LINDDUN

The modelling began with constructing high-level Data Flow Diagram (DFD) to rep-
resent patient journeys through healthcare facilities, from registration to follow-up care
(Wuyts & Joosen, 2020).
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The proposed method adapts the traditional LINDDUN methodology into three core
steps, as illustrated in Figure 1:

(a) System Modelling: Creating a high-level DFD to map entities (E, e.g., patients,
medical staff), processes (P, e.g., EHR systems), data flows (DF, e.g., user streams),
and data stores (DS, e.g., databases). (b) Privacy Threat Identification: Iteratively ana-
lyzing DFD elements, using threat trees, for privacy threats (use- and mis- cases) using
the seven LINDDUN categories and, (¢) Threat Mapping: Linking identified threats to
Common Weakness Enumeration (CWE) categories to standardize vulnerabilities.

This unique methodology extends LINDDUN by mapping identified threats to CWE
categories (e.g., linkability to CWE-200: Information Exposure), creating a novel
bridge between privacy and software vulnerabilities. The high level DFD of a
Healthcare Information System (HIS) capturing patient interactions, Threat trees (doc-
umenting use and misuse cases), and final mappings to CWE categories are provided
here?. This framework supports subsequent model development by ensuring precise
identification of privacy threats.

3.2 Dataset Construction and Integration

The dataset was developed by integrating LINDDUN-based privacy threat annota-
tions with two established vulnerability datasets: DiverseVul and ReposVul (Li et al.,
2023; Wang et al., 2024). DiverseVul contains 18,945 vulnerable C/C++ functions
across 150 Common Weakness Enumeration (CWE) types, sourced from multiple
open-source projects contributed by diverse developers from fields such as software
engineering, cybersecurity, and healthcare (Li et al., 2023). ReposVul, the first dataset
to implement repository-level vulnerability tracking, includes code from varied open-
source repositories across domains like web development, embedded systems, and
medical software, authored by developers with diverse expertise (Wang et al., 2024).
This diversity in contributors and project domains ensures a broad representation of
coding styles, reducing the risk of coder bias.

To further mitigate coder bias, code from both datasets was preprocessed using to-
kenization to standardize variable names, function signatures, and coding structures,
neutralizing stylistic differences while preserving semantic content (Li et al., 2023). For
example, variable names like patient _id and userID were normalized to generic tokens,
ensuring models focus on structural vulnerabilities rather than superficial naming con-
ventions, further diversifying the dataset and minimizing bias from localized coding
practices (Silva et al., 2024).

The preprocessing pipeline merged DiverseVul and ReposVul with LINDDUN-
based annotations, which were generated by mapping privacy threats (e.g., linkability,
identifiability) to C/C++ functions using the methodology outlined in Section 3.1
(Wuyts & Joosen, 2020). A filtering process retained only functions aligned with pri-
vacy-relevant CWE categories, such as CWE-200 (Information Exposure) and CWE-
327 (Broken Cryptography), ensuring relevance to healthcare privacy threats.

2 https:/github.com/juxam/C3-VULMAP
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To illustrate the LINDDUN-CWE mapping process, consider the following examples
of vulnerable C/C++ functions from our dataset:
Example 1 - Linkability Threat (CWE-200: Information Exposure):
c
void process_patient _data(char* patient _id, char* diagnosis) {
printf("Processing: %s - %s\n", patient_id, diagnosis); // Vulnerability: Direct log-

ging of patient identifiers enables linkability

/

Example 2 - Identifiability Threat (CWE-327: Broken Cryptography):
c
char* encrypt_patient record(char* record) {
// Vulnerability: Weak encryption allows patient re-identification
return simple_xor_encrypt(record, "weakkey");

/

These examples demonstrate how specific coding patterns were mapped to
LINNDDUN categories, thereby providing concrete instances of privacy vulnerabilities
that our models are trained to detect. Each function in our dataset included similar an-
notations linking code structure to privacy threat categories and thereby enabling sys-
tematic model training on privacy-specific patterns.

The final corpus comprised 56,395 vulnerable and 364,232 non-vulnerable C/C++
functions, balanced through random under sampling to address class imbalance (Thapa
etal., 2022). This comprehensive dataset construction process found here?, ensures that
models trained on this data are robust, generalizable, and tailored to real-world
healthcare privacy vulnerabilities.

The semi-automated annotation process introduced potential subjectivity that may
affect the reproducibility of the result. While the LINDDUN-CWE mapping provides
systematic guidelines, the interpretation of specific code patterns as privacy threats re-
quired expert judgment, particularly for edge cases where vulnerability classification
was ambiguous. To mitigate this limitation, a multi-reviewer annotation process was
implemented where three security experts independently classified a subset of 5,000
functions, achieving an inter-rater reliability score (Cohen's k) of 0.78, indicating sub-
stantial agreement. However, annotation consistency challenges remain, particularly
for context-dependent vulnerabilities where the privacy impact depends on broader sys-
tem architecture or deployment scenarios.

3.3 Model Implementation

Six lightweight transformer models (GraphCodeBERT-base, CodeGPT-small,
BERT-base-uncased, DistilIRoBERTa-base, DistilBERT-base, and T5-small) were
fine-tuned on our training dataset for binary vulnerability classification.

3 https:/github.com/juxam/C3-VULMAP
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We employed AdamW optimizer with 0.01 weight decay and a linear learning rate
scheduler with 10% warm-up steps. Learning rates were set to 2e-5 for BERT-based
models and le-4 for CodeGPT/CodeT5 based on validation performance. Batch sizes
were adjusted by model complexity: 32 for DistilBERT/DistilRoBERTa and 16 for oth-
ers, with gradient accumulation when needed.

Training ran for up to 10 epochs with early stopping if validation F1 didn't improve
for 2 consecutive epochs. We implemented data sampling where non-vulnerable exam-
ples were freshly sampled each epoch from a pool of ~300k examples, effectively
providing data augmentation. Our balanced validation set ensured meaningful F1 scores
during early stopping. All models were trained on RTX 3090 GPUs with mixed preci-
sion (FP16) to optimize memory usage. Training times varied by model complexity:
DistilBERT/DistilRoBERTa (~2 hours), BERT/GraphCodeBERT (~3 hours), Co-
deGPT (~4 hours), and T5 (~4.5 hours). Each model used its specific tokenizer, with
T5 reframing classification as text generation with classification prompts (Feng et al.,
2020). Accuracy and F1 were tracked per epoch.

3.4 Performance Evaluation

Model performance was assessed using accuracy, precision, recall, and F1-score,
validated via 5-fold cross-validation to ensure robustness (Chakraborty et al., 2021).
Confusion matrices, labelled with 0 (non-vulnerable) and 1 (vulnerable), were gener-
ated to analyze model behavior. Computational efficiency was evaluated through epoch
times, peak GPU memory usage, and model parameter counts, ensuring suitability for
resource-constrained environments (Devlin et al., 2019). The evaluation compared the
six lightweight transformer models, which were selected for their efficiency in pro-
cessing structured and unstructured security data (Chakravarty & Haque, 2023).

4 Experimental Results

4.1 Dataset Composition and Significance

The dataset, comprising 56,395 vulnerable and 364,232 non-vulnerable C/C++ func-
tions across 626 Common Weakness Enumeration (CWE) categories, is specifically
designed for analyzing privacy risks in healthcare software, such as medical device
firmware and EHR systems. The test set split consisted of approximately 60,000 sam-
ples (with a 3:1 non-vulnerable to vulnerable ratio, reflecting a realistic scenario). We
ensured the test set contained examples across all seven LINDDUN threat categories.
This allowed our models to be evaluated on their ability to detect vulnerabilities related
to Linkability, Identifiability, etc., not just on a narrow subset. The diversity of this test
set is important for assessing generalization. In a healthcare privacy context, missing a
vulnerability that leads to, say, Non-compliance (violating a legal requirement) could
be just as serious as missing one that leads to Disclosure of information. Further, the
test data included code never seen during training. Success on this test showed that the
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model learned general patterns of vulnerabilities, rather than memorizing function spe-
cific cues.

4.2  Model Performance: Comparative Evaluation

The six lightweight transformer models were fine-tuned and achieved accuracy scores
exceeding 98% via 5-fold cross-validation, affirming their suitability for healthcare pri-
vacy threat detection (Thapa et al., 2022). Table 2 presents performance metrics, with
T5-small achieving the highest accuracy (98.64%), precision (98.54%), recall
(98.64%), and F1-score (98.64%), alongside a validation loss of 0.0047, indicating su-
perior generalization across privacy threat categories. GraphCodeBERT-base and Co-
deGPT-small, with training losses of 0.0412 and 0.0253, respectively, demonstrated
faster convergence, likely due to their code-specific pre-training, which enhances struc-
tural and semantic pattern detection (Li et al., 2023).

Similarly, the best epochs, identified by peak F1-scores, ensured optimal comparisons.
The low validation loss (0.0047) of TS5-small suggests robust generalization, while the
performance of GraphCodeBERT-base highlights its advantage in capturing code de-
pendencies, critical for healthcare security audits (Li et al., 2023).

In figure 2 the confusion matrix for each model is shown and demonstrates the subtle
distinctions in how precision and recall trade-offs manifest. For instance, Graph-
CodeBERT-base exhibited particularly strong sensitivity to subtle vulnerability pat-
terns, correctly identifying 14,751 of 15,000 positive instances with only 245 false pos-
itives, whereas T5-small achieved the highest overall balance by correctly classifying
14,796 positives and yielding just 219 false positives. These matrices, normalized per
actual class, show that models like DistilBERT-base and DistilRoBERTa-base main-
tain high true negative rates while slightly differing in false negative counts, reflecting
their conservative detection strategies.

Table 2. Performance Metrics of Lightweight Transformer Models

Model Train Val Loss Accu- Preci- Recall Fl1
Loss racy sion Score

GraphCodeBERT- 0.0412 0.0610 0.9828 0.9836 0.9834 0.9834

base

CodeGPT-small 0.0253 0.0843 0.9832 0.9838 0.9836 0.9836

BERT-base-uncased 0.0336 0.0649 0.9589 0.9835 0.9832  0.9832
DistilRoBERTa-base ~ 0.0439 0.0608 0.9765 0.9823 0.9819 0.9819
DistilBERT-base 0.0302 0.0744 0.9815 0.9834 0.9832  0.9832
T5-small 0.0029 0.0047 0.9864 0.9854 0.9864 0.9864

4.3  Comparison with Benchmarks

Our lightweight transformer models, achieving F1-scores above 98% on a healthcare-
specific C/C++ dataset, appear to outperform recent benchmarks in vulnerability detec-
tion, particularly for privacy threats in healthcare applications. Li et al. (2023) evaluated
large language models on a general-purpose dataset, with models achieving an F1-score
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of approximately 58% and a recall of 87%. In contrast, our T5-small model recorded
an F1-score of 98.64%, and DistilBERT-base reached 98.32%, suggesting superior per-
formance in our targeted domain.

Zhou et al. (2019) applied BERT-based models to Python source code vulnerability
detection, with DistilBERT achieving an F1-score 0f 0.92. Our base DistilBERT model,
fine-tuned on healthcare C/C++ code, outperformed this with an F1-score of 0.9832.
Chen and Monperrus (2021) reported F1-scores of 0.90-0.95 for a BERT based method
on the SARD and Big-Vul datasets, which focus on general vulnerabilities. The higher
Dataset and task differences, such as programming languages (C/C++ vs. Python) and
focus (privacy vs. general vulnerabilities), limit direct comparisons. However, our re-
sults highlight the efficacy of our LINDDUN-CWE mapping and lightweight trans-
former architectures for healthcare cybersecurity, offering high accuracy and efficiency

for real-world applications like medical device firmware and EHR systems.
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Fig. 2. Confusion matrix of lightweight models trained on novel dataset (0: Non-vulnerable, 1:
Vulnerable)

4.4  Computational Efficiency and Resource Utilization

Table 3 details computational costs, including epoch times, peak GPU memory usage,
and model parameters, critical for resource-constrained healthcare environments
(Wang et al., 2019). DistilBERT-base was the fastest (0.13s/epoch) with 66M parame-
ters, while DistilRoBERTa-base had the lowest memory footprint (1284.60 MB). Co-
deT5-small (60M parameters) balanced speed and memory, making it suitable for edge
computing. CodeGPT-small, with higher resource demands (3777.08 MB), may be less
practical for embedded systems.

178



DPM 2024

Table 3. Computational Efficiency of Lightweight Transformer Models

Model Epoch Time (s) Peak GPU Memory (MB) Parameters
M)
DistilRoBERTa-base 0.16 1284.60 134
DistilBERT-base 0.13 1536.28 66
T5-small 0.26 2467.19 60
GraphCodeBERT-base 0.33 2311.43 66
CodeGPT-small 0.36 3777.08 65
BERT-base-uncased 0.31 2822.02 110

These metrics, derived from mini-batch tests, highlight trade-offs between speed and
memory, guiding model selection for specific healthcare deployment scenarios (Silva
et al., 2024). For instance, the speed of DistilBERT-base suits real-time monitoring,
while CodeT5-small shows a balance that supports adaptive threat detection.

However, these efficiency measurements were conducted under controlled laboratory
conditions using high-end RTX 3090 GPUs with optimized software configurations,
which may not accurately reflect real-world deployment challenges in healthcare envi-
ronments. Healthcare institutions typically operate with heterogeneous hardware infra-
structures, including legacy systems with limited computational resources or CPU-only
environments where specialized accelerators are unavailable. Additionally, production
deployments must contend with concurrent system loads, network latency constraints,
and security overhead that can significantly impact inference times.

5 Discussion

The experimental results demonstrate the efficacy of lightweight transformer models in
detecting privacy threats within healthcare software, with accuracies exceeding 98% on
a novel C/C++ dataset annotated using the LINDDUN framework. Notably, T5-small
achieved the highest accuracy of 98.64% and a validation loss of 0.0047, demonstrating
its ability to generalize across critical privacy threat categories like linkability and iden-
tifiability, threats that empirical studies of healthcare apps have found to be prevalent
(e.g., mental-health mobile apps often expose linkability and identifiability risks (Iwaya
et al., 2023)). This finding extends prior work on transformer-based vulnerability de-
tection by adapting general code analysis models to healthcare-specific privacy chal-
lenges (Ding et al., 2023). GraphCodeBERT-base (98.28%) and CodeGPT-small
(98.32%), with training losses of 0.0412 and 0.0253 respectively, leverage their code-
specific pre-training to excel in identifying structural and semantic features of privacy
vulnerabilities. These rapid convergences of both models align with recent research
showing that combining general large models with domain-adapted code models (e.g.
CodeBERT/GraphCodeBERT) yields improved performance on specialized tasks
(Sheng et al., 2024). Meanwhile, DistilBERT-base (98.15%) and DistilRoBERTa-base
(97.65%) prioritize computational efficiency: as prior work notes, distilled models like
DistilBERT are “smaller and faster” and retain much of the accuracy of larger BERT
variants while halving runtime and model size (Wang et al., 2021). Such lightweight
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models are thus ideal for resource-constrained healthcare environments (e.g. embedded
medical devices) that require fast inference.

The LINDDUN-CWE mapping framework enhances the dataset by linking privacy
threats to standardized software weaknesses, improving both model performance and
interpretability — an essential requirement for healthcare regulatory compliance. This
approach addresses a known gap in standardized threat taxonomies (Sheng et al., 2024).
For instance, the strength of TS small in capturing long-range dependencies aligns with
the need to model adaptive threat scenarios, while the dataflow based pretraining of
GraphCodeBERT-base provides structural insights useful for compliance audits (Sheng
et al, 2024; Wang et al., 2021); together these suggest the potential of hybrid model
architectures that combine sequence and graph encodings.

The remarkably high accuracy scores (>98%) achieved across all models raise im-
portant questions about dataset representativeness and real-world generalization. Our
highly structured, LINDDUN-annotated dataset, while methodologically sound, may
not adequately represent the complexity and variability of privacy vulnerabilities en-
countered in live healthcare environments. The systematic annotation process, though
rigorous, creates a controlled experimental setting that may inflate performance metrics
compared to deployment scenarios involving legacy code, mixed programming para-
digms, or undocumented software components (Atiiq et al., 2024).

This concern is particularly relevant given the 3:1 ratio of non-vulnerable to vulnerable
functions in our test set, which, while realistic, may not capture the long-tail distribution
of rare but critical privacy vulnerabilities. The preprocessing steps that normalized cod-
ing styles and standardized variable names, while beneficial for reducing bias, may
have inadvertently simplified the detection task by removing the stylistic complexity
that models would encounter in real-world deployments. Future validation should in-
clude evaluation on unprocessed, production healthcare codebases to assess model ro-
bustness under more challenging conditions.

The reliance on static code analysis represents a fundamental limitation, as it cannot
capture privacy vulnerabilities that emerge during runtime execution. Dynamic privacy
threats in healthcare systems often manifest through network communications, user in-
teraction patterns, or data processing workflows that are invisible to static analysis
(Iwaya et al., 2023). For example, a function may appear secure in isolation but could
leak patient information when combined with specific runtime configurations or when
interacting with external APIs under certain conditions.

Healthcare systems frequently exhibit privacy violations through behavioural patterns
including unauthorized data aggregation across multiple patient sessions, implicit in-
ference attacks through query pattern analysis, or privacy breaches via timing side
channels. These runtime phenomena require complementary dynamic analysis tech-
niques such as runtime monitoring, network traffic analysis, and behavioural pattern
detection. A comprehensive privacy threat detection framework should integrate both
static code analysis with dynamic runtime monitoring to capture the full spectrum of
privacy vulnerabilities in operational healthcare environments.

Another critical limitation of this work is the lack of model interpretability features,
particularly concerning healthcare regulatory compliance. While our transformer mod-
els achieve high accuracy, they operate as "black boxes," providing limited insight into
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decision-making processes. This opacity presents challenges for regulatory approval
under frameworks like AI/ML guidance of the FDA, which emphasizes explainable Al
for medical applications.

Future iterations should incorporate attention visualization techniques and gradient-
based explanations to highlight code segments influencing vulnerability predictions.
For instance, implementing SHAP (SHapley Additive exPlanations) or LIME (Local
Interpretable Model-agnostic Explanations) could provide stakeholders with interpret-
able insights into model decisions. Such explainability features would enable security
auditors to understand why specific code patterns trigger privacy threat classifications,
supporting regulatory compliance and building trust among healthcare practitioners.

6 Conclusion and Future Work

This study contributes to the field of privacy-aware cybersecurity by introducing a
novel healthcare software code dataset, annotated with privacy vulnerabilities based on
the LINDDUN methodology, and by establishing a systematic mapping between
LINDDUN threat categories and CWE classifications. The comprehensive evaluation
of lightweight transformer models demonstrates that these models can achieve high
accuracy, precision, recall, and F1 scores, often surpassing 98%, while maintaining
computational efficiency suitable for real-world deployment. These findings validate
the integration of NLP-driven analysis with structured privacy threat modelling,
thereby providing a robust framework for automated privacy risk assessment in
healthcare applications. The framework’s efficiency supports deployment in resource-
limited settings like electronic health record (EHR) systems and medical devices, ad-
dressing a pressing cybersecurity need in healthcare.

Looking ahead, several avenues for future research emerge. One promising direction is
the expansion of the dataset to include multiple programming languages beyond
C/C++, thereby broadening its applicability across diverse software ecosystems. Future
work should also explore the integration of dynamic analysis techniques, such as
runtime tracing and behavioral monitoring, to capture vulnerabilities that span inter-
procedural or repository-wide contexts. In addition, adversarial training methods could
be incorporated to further enhance the robustness of transformer models against sophis-
ticated, evasive privacy attacks. Finally, combining the strengths of multiple architec-
tures, potentially through hybrid or ensemble approaches, could lead to even more ef-
fective privacy threat detection systems that balance generalizability with domain-spe-
cific feature extraction, paving the way for next-generation privacy-aware security so-
lutions.

7 Limitations

The exclusive focus on C/C++ code represents a significant limitation that constrains
the applicability of the framework across diverse healthcare software ecosystems. Mod-
ern healthcare applications are increasingly leveraged on web-based technologies (Ja-
vaScript, HTMLYS), high-level languages (Python for data analytics, Java for enterprise
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systems), and mobile platforms (Swift, Kotlin) where privacy threats manifest differ-
ently. For instance, JavaScript applications may suffer from client-side data exposure
through DOM manipulation or inadequate API sanitization, while Python applications
might exhibit privacy violations through improper data serialization or inadequate ac-
cess controls in machine learning pipelines.

Additionally, computational efficiency assessments were conducted under idealized
laboratory conditions that may not represent actual deployment environments. Our
measurements using RTX 3090 GPUs with optimized configurations provide upper-
bound performance estimates, but healthcare institutions often operate with con-
strained, heterogeneous hardware configurations including legacy systems, shared
computing resources, and security-hardened environments that introduce additional
computational overhead. Real-world deployment factors such as concurrent system
loads, thermal management, power constraints, and mandatory security processes could
significantly impact the practical efficiency of these models, potentially requiring hard-
ware upgrades or architectural modifications for acceptable performance in production
healthcare settings.
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Abstract. We investigate online tracking and remarketing practices on
50 pharmacy websites in five European countries, focusing on information
shared with third parties. By manually shopping for pregnancy tests and
automatically analyzing the HT'TP traffic data captured in HAR files, we
find that users’ personal data and shopping activities are routinely col-
lected by third parties. Many pharmacy websites share product names,
email addresses and phone numbers with third parties even when consent
was declined. Investigating novel forms of online tracking, we find several
cases of server-side tagging and CNAME-based tracking, which can be
used to circumvent tracking protections offered by adblockers and mod-
ern browsers. Monitoring the advertisements targeted to our shopping
profiles on several news websites and large online platform apps, we find
re-targeted advertisements of the pregnancy tests we had shopped for. We
further find that while declining consent reduces third-party data shar-
ing, it does not eliminate it, and deceptive designs often discourage users
from opting out. Through GDPR data access requests we reveal that
companies vary in the completeness of the personal data they disclose,
with none providing a full list. Overall, our study reveals widespread po-
tential legal violations and adoption of evasive tracking technologies on
websites that handle users’ most sensitive personal data.

Keywords: Privacy, online tracking, pharmacy, online advertising

1 Introduction

Over the past few years, the online pharmacy sector has grown significantly,
driven by the convenience of home delivery, price comparisons, and customer
reviews. Online pharmacies offer convenience but pose risks due to extensive data
sharing with third parties for ads and analytics. The online pharmacy section
of Walgreens has also previously been shown to leak prescription information
to session replay companies [1]. A recent investigation by The Markup showed
that third-party data collection was taking place on 49 out of 50 US telehealth
websites, in certain cases for targeted advertising purposes [22]. The US Federal
Trade Commission investigated ad-related data sharing by GoodRx, BetterHelp,
and Cerebral, resulting in multimillion-dollar settlements and bans on sharing
data with advertisers like Facebook [23—25]. While these investigations showed
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the risks for the US users, it is unclear whether European online pharmacy
users are protected by stricter privacy laws. Our study conducts an empirical
investigation to answer this question, considering novel tracking mechanisms and
re-targeted advertisements.

In the context of online pharmacies, data collected by third parties may in-
clude pages visited, products browsed, purchases made, and even personal infor-
mation entered during checkout. Such data can be used for relatively innocuous
purposes, such as improving user experience. However, users’ activities on phar-
macy websites could also be used for advertising and marketing. Previous work
has shown that many telehealth websites leak personal data to third parties [22],
which can reveal intimate details about a user’s private life. In regions where re-
productive healthcare is contentious, tracking data may even be used in legal
prosecution [0, 36].

This paper investigates the prevalence and nature of online tracking and ad
retargeting (remarketing) practices on 50 European online pharmacies. Specifi-
cally, we focus on pharmacy websites that offer non-prescription medications in
the four most populous EU countries —Germany, France, Spain, and Italy —as
well as in the Netherlands. We focus on the most popular pharmacy websites
in each country, as they attract the majority of users and reveal the tracking
practices most consumers are likely to encounter. We examine the prevalence of
third-party data collection by simulating a user shopping for pregnancy prod-
ucts. In addition, we study novel tracking mechanisms such as CNAME-based
tracking and Server-Side Tagging/Tracking (SST), which bypass tracking pro-
tections that rely on blocklists. Further, we attempt to trace how the collected
data is used by examining the advertisements we receive on the Web after our
pharmacy browsing sessions. We also use GDPR rights to request our data from
the large third parties that collect data through pharmacy websites. To evaluate
the effectiveness of user controls, we compare tracking and advertising practices
in two scenarios: when website visitors accept cookies and when they reject them.
Overall, our contributions include the following:

— We compare tracking practices on 50 pharmacy websites across five European
countries, including novel methods such as SST and CNAME-based tracking.

— We quantify personal information and product name leaks to tracker do-
mains, showing the extent of leaks even if the user declines consent.

— Through an exploratory study of retargeted ads based on our shopping ac-
tivity on pharmacy websites, we show that even sensitive products such as
pregnancy tests are used for ad retargeting.

— We compare client-side data collection by major platforms with their GDPR
data access responses, revealing significant discrepancies.

2 Related Work

Our study builds upon prior work on web tracking in health-related contexts
and considers novel tracking techniques.
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Tracking on health-related websites. Several papers investigated third-
party tracking on health-related websites, with most focusing on the United
States. Friedman et al. [28] researched abortion clinic websites, while McCoy et
al. [38] focused on websites related to COVID-19. Both studies relied on we-
bXray [54] to log third-party requests and cookies, a scope that likely underesti-
mates harder-to-detect methods such as server-side tracking. Nevertheless, 99%
of pages in both studies contained third-party trackers. In 2022, The Markup
collaborated with STAT to investigate telehealth websites in the US [22]. They
analyzed the presence of third-party trackers and shared data type (e.g., prod-
uct details or shopping cart items). Among 50 telehealth websites, all but one
sent personal details—often hashed or even plaintext email addresses—to major
tech companies, most during checkout or questionnaire submission. In 2023, a
study of 12 U.S. drugstores [53] found that all shared information about viewed
or purchased products with major tracking companies.

Research into the tracking practices of European health-related websites is
more sparse. Rauti et al. [19] analyzed the tracking practices on 163 Finnish on-
line pharmacies. They found that 57 (35%) pharmacies leaked both the queried
prescription name and identifying personal data. Yu et al. [55] studied 19,483
hospital websites in 152 countries—including 5,936 in Europe—and found track-
ing scripts on 53.5% of sites worldwide (48.8% in Europe) and tracking cookies
on 14.6% (7.5% in Europe). Cookiebot, a Danish company, conducted similar re-
search on EU health and government websites and found that 52% of EU public
health service websites contained commercial trackers [3].

Emerging web tracking techniques. As major browsers block third-party
trackers and cookies, websites increasingly adopt new techniques to bypass these
restrictions. One such method is CNAME-based tracking, which uses DNS aliases
to disguise trackers as first-party resources. Dimova et al. [14] presented a large-
scale, longitudinal study of this technique, finding increasing adoption, espe-
cially on high-traffic sites, and posing serious security risks due to bypassing the
Same-Origin Policy. Another emerging technique is Server-Side Tagging (SST),
introduced by Google in 2020 [26]. Unlike client-side tracking, SST shifts data
collection to a server, hiding tracking activity from the user’s browser. In a recent
study, Fouad et al. [27] investigated SST at scale. They flagged SST domains by
identifying subdomains absent in pre-2020 crawls, confirming they were regis-
tered to entities other than the parent domain and that their requests included
tracking data previously sent elsewhere.

Our approach. Unlike prior work, such as Rauti et al. [19], we examine
tracking after consent is declined, quantify email and phone number leaks, iden-
tify CNAME cloaking and server-side tracking using a history-free detector, and
link these leaks to retargeted ads seen on the Web and mobile. To identify SST
endpoints on websites, we took a different approach from Fouad et al. [27], who
compared website behavior before and after SST implementation and found SST
on 28 websites. Instead, our analysis relies on fixed URL parameter structures
and request initiators, yielding a much higher prevalence of SST. A caveat is that
our method focuses on Google Tag Manager’s SST implementation due to its
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popularity, rather than detecting generic server-side tracking. Finally, we lever-
age GDPR data access rights to compare data collected on pharmacy websites
by large online platforms to data disclosed in response to subject access requests.

3 Methods

We investigate tracking and advertising practices on 50 pharmacy websites across
five EU countries. We simulated shopping for pregnancy tests under two consent
conditions (accept/reject), using fresh browser profiles, predefined personas, and
VPNs. We analyzed HTTP traffic to identify trackers and detect techniques like
server-side tagging and CNAME cloaking. To assess advertising, we monitored
targeted ads on news websites and mobile apps. Finally, we compared GDPR
data access responses with our observed tracking activity.

3.1 Website Selection

When studying online pharmacies, we distinguish between those offering pre-
scription and non-prescription medications. As regulations differ across coun-
tries, we focus exclusively on websites selling non-prescription drugs to maintain
consistency. We target popular, legitimate pharmacy websites, as users are more

likely to visit them. Under Directive 2011/62/EU [20], legitimate pharmacies
must register with national authorities and link to an official database. We re-
trieved registered pharmacies from Germany [7], France [17], Italy [12], Spain [1],

and the Netherlands [11]. Popularity rankings were based on Similarweb’s Digi-
talRank [50]. We selected the top ten pharmacies per country to balance breadth
and manual feasibility, while ensuring our sample includes the sites most online
shoppers for pharmacy products are likely to visit.

3.2 Data Collection

We collected data in two distinct phases, as described below. The first phase
focused on tracking and web-based retargeting (Algorithm 1), while the second
focused on ads on large online platforms’ mobile apps (Algorithm 2).

Algorithm 1: Measurement of Tracking and Targeted Ads. We followed
a fixed procedure for each website to capture all relevant HTTP traffic in a
reproducible manner. Algorithm 1 presents a high-level overview of our data
collection process, outlining the steps we followed to capture HT'TP traffic across
various consent modes, countries, and pharmacy websites. We started with a
fresh browser profile for each website and followed the steps below for each
consent mode in every country, across all pharmacy websites in our dataset:

1. Open Developer Tools, enable HTTP logging, and detach the panel to avoid
detection influencing tracking behavior [44].
2. Load the homepage and handle the cookie dialog per consent mode.
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Algorithm 1 Tracking and Targeted Algorithm 2 Analysis of Data Col-

Web Ads Analysis lection by Large Online Platforms

1: for each consent mode do 1: for each consent mode do

2: Prepare predefined personal info 2: Create a fresh profile

3: for each country do 3: Log in to platform accounts

4: Use VPN to simulate location 4: for each country do

5: for each pharmacy website do 5: Use VPN to simulate location
6: Create a fresh profile 6: for each pharmacy website do
7 Checkout a product 7 Checkout a product

8: Save the HAR file 8: end for

9: Check news websites for 9: end for

ads 10: Check platform apps for ads

10: end for 11: Scroll for 2 minutes
11: end for 12: Wait until the next day
12: end for 13: end for

3. Search for pregnancy tests or browse the menu if no results appear.

4. View the first product page, return to the results, and open the next product.

5. Add the product to the cart, adjusting quantity if required.

6. Proceed through checkout as far as possible without placing the order, using
guest checkout and predefined personal data; register if required.

7. Save all HTTP requests and responses as an HT'TP Archive (HAR) file.

We leveraged HAR files to identify tracking-related requests using the uBlock
Origin Core npm package [33]. We relied on uBlock Origin’s default filter lists,
including EasyList and EasyPrivacy, among others [32]. We then mapped tracker
domains to their respective owner entities using DuckDuckGo’s entity map [16].

Targeted Ads on the Web. After visiting each pharmacy website, we
visited a set of news websites to observe any targeted or retargeted ads result-
ing from the prior shopping activity. We used Similarweb [50] to select the top
five “content publishing” sites per country and five global sites, as these cat-
egories include ad-supported news websites and align with prior ad targeting
research [13]. We excluded duplicates and subscription-based, ad-free sites. To
analyze ad behavior and disclosures, we followed these steps:

. Visit the homepage and interact with the cookie banner.

. Scroll to the bottom of the page or stop after 10 seconds for infinite scrolling.

. If pregnancy ads appear, click the AdChoices icon for the explanation page.

. Visit two inner pages (prioritize the most prominent items and avoid health-
related pages) and follow steps 4 and 5 above.

N

We acknowledge that our data collection incurred some cost on the pharmacy
websites’ advertising budgets by causing ad impressions during the advertise-
ment monitoring. We believe the societal benefits of our investigation outweigh
its negligible cost to advertisers.
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Algorithm 2: Data Collection by Large Online Platforms. To investi-
gate whether data collected by third parties was used for personalized ads and
disclosed to users properly, we created separate Instagram, Microsoft, TikTok,
Facebook, Snapchat and Google accounts for each consent mode (accept /reject)
on two iPhones. Algorithm 2 outlines the data collection process: For each con-
sent mode, we created a fresh browser profile, logged into the six platform ac-
counts, and searched for pregnancy tests on each pharmacy site, proceeding
through checkout as far as possible without payment. After completing daily
website visits, we monitored the online platforms’ mobile apps three times a
day in two-minute scrolling sessions, continuing for up to a week'. We captured
screenshots of any ads related to health, pharmacies, or pregnancy tests. Finally,
we requested and examined data downloads from these platforms (§3.4).

3.3 Measurement Setup

Our experiments were conducted using Chromium browsers running on Ubuntu
24.04.1 LTS. For sites with a cookie banner, we collected data in both “accept”
and “reject” modes; if no banner appeared, the same data was used for both.
We used two separate computers per mode to minimize the cross-contamination
risk between different consent modes. Visiting the same website twice, even after
clearing cookies and browser history, could still allow tracking through finger-
printing, potentially influencing ads based on prior visits. Using two computers
minimizes the risk of cross-contamination between browsing sessions of different
consent modes. We used a predefined persona on each computer during checkout,
allowing us to later check if personal data was leaked to third parties. To access
the websites from their respective countries of origin, we used Mullvad VPN [13].
This enabled us to better impersonate a local pharmacy shopper, which may be
relevant for ad targeting.

3.4 Detecting Tracking Methods and Leaks

CNAME-based Tracking. A potential method to bypass blocklist-based track-
ing protection is CNAME-based tracking. To evade blocking, the website owner
maps a first-party subdomain to the tracker’s domain via CNAME records. Due
to the increasing popularity of this technique [14], many defenses, such as uBlock
Origin and AdGuard—have introduced countermeasures [31, 39]. uBlock Ori-
gin, for instance, performs DNS lookups and replays filtering with the resolved
CNAME address. We adopt this method, which is enabled by uBlock Origin’s
cnameReplayFullURL option. If a hostname has a CNAME record, we replace it
with the resolved domain and rerun tracker detection using the uBO Core npm
package [33]. DNS lookups are automated using the dnspython library [15].

1 We did not monitor ads on Google mobile apps, as our Web-focused measurement

(Algorithm 1) targets Google ads on websites. For Microsoft, we used the Bing app;
for others, we used their respective mobile apps.
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Server Side Tagging. Many websites embed multiple third-party resources,
adding performance overhead due to increased page weight. Adblockers and
tracking protections now offered by many mainstream browsers block tracking-
and advertising-related third-party traffic. Server Side Tagging (SST) was pro-
posed as a way to reduce this overhead of third parties while also bypassing
tracking protections [26]. In SST, the end user’s browser or mobile app only
sends tracking and analytics data to a single server, which then relays it to mul-
tiple third parties (a.k.a. tags). SST may make it challenging to identify the
third parties collecting data on a website, and hence poses a transparency prob-
lem. To detect SST usage, we relied on a simple observation. Despite the change
in endpoints, many URL parameters used to send data remain the same. For
instance, in both SST and non-SST integrations, Google Analytics uses the pa-
rameters dt, d1, and sr, which correspond to page title, page URL, and screen
dimensions, respectively. However, instead of manually picking parameters, we
automated the parameter detection using our dataset to bootstrap the process.
We first identified all requests triggered by Google Tag Manager (GTM) scripts
using initiator fields, since SST uses GTM under the hood [29]. To detect
self-hosted GTM scripts, we used a pattern we extracted from the official GTM
scripts. We then took the intersection of URL parameters observed in requests
triggered by GTM scripts. This yielded a list of 36 parameters, which we searched
for in all requests. Similar to Fouad et al. [27], we then verified whether these
requests were indeed SST by retrieving the IP address pointing to the first-party
subdomain in the request and checking to which organization this IP address is
registered. Then we used the terminal command whois to check whether the
first-party subdomain organization differs from the website. We also used the
request initiators for further confirmation.

Detecting Product Name and Personal Information Leaks. When
placing an order, users provide personal information such as name, address,
email, and product details, which may be shared with third parties. Identifying
when and how different types of data are shared can be challenging, particu-
larly across languages. To enable systematic analysis, we compiled search terms
including product names and persona details used during checkout. Personal in-
formation or product names can be sent to tracking parties using encodings or
cryptographic hashes such as SHA-256 [10]. To detect such transformed leaks,
we followed Englehardt et al. [17] to search for permutations of various encodings
and hashes (e.g., Base64, SHA-256) in request URLs and POST bodies.

Data Retrieval from Third Parties. We retrieved personal data from
major platforms via their account settings or privacy centers. From Google,
we exported service-wide activity data. Facebook and Instagram provided lists
of companies sharing off-site activity with Meta, including browsing and pur-
chases [35]. TikTok’s “Ads and data” section contained advertising-related data.
Microsoft’s Privacy Dashboard included ad profiles and inferred interests. From
Snapchat, we downloaded user data such as purchase history, memories, and
other account activity. Note that data requests were made using automated
tools provided by the platforms, without contacting any employees.
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Table 1: Most common categories of third-party entities found on pharmacy web-
sites. It shows the number of websites where requests to these domains observed,
along with the number of distinct request domains and entities per category.

Entity Category Websites Request domains Request entities

Accept Reject Accept Reject Accept Reject

Advertising 50 49 73 52 58 41
Ad-motivated tracking 50 49 72 50 56 38
Analytics 50 45 45 32 37 27
3rd party analytics marketing 49 45 34 25 33 24
Audience measurement 49 43 27 20 24 17
Ad fraud 39 28 8 7 5 4

3.5 Analysis of Consent Notices

To provide insights into the mechanisms that online pharmacies offer customers
to control the processing of their personal data, we manually inspected screen-
shots taken from each pharmacy’s main page for the presence of consent notices
and the options they offer. We focus on control mechanisms available on the first
layer of the notices, as only a few people are willing to explore deeper layers of
consent notices for options to deny consent [46]. Our analysis was guided by the
requirements of European data protection authorities that it must be as easy to
reject data collection as to consent to it [19]. Thus, we annotated the screenshots
of consent notices for the interaction options offered to website visitors on the
first layer and their formatting and placement within the banner. One of the
authors did the annotations, and edge cases were resolved in joint discussion.

4 Findings
4.1 Third Parties and Tracking

We analyzed HTTP requests and responses from the captured HAR files to
identify third parties and various types of data sharing with them. All phar-
macy websites embedded at least one third-party domain, regardless of giving
or declining consent. The median number of third-party domains per site var-
ied substantially across countries—16 in France and 56 in Italy—with Italian
and German sites embedding the most (Figure 1). Rejecting cookies reduces
the number of third-party domains across all countries, with Germany seeing
the largest drop. Also, we identified a substantial number of pharmacy websites
where third parties set cookies with the SameSite=None attribute and a lifespan
exceeding two months—47 and 33 websites in accept and reject mode, respec-
tively. Analyzing cookie purposes is out of the study scope, but SameSite=None
cookies enable third parties to track users across domains.

Tracker entities. A large portion of third-party embeds on pharmacy web-
sites were classified as trackers. Figure 1 shows the median number of track-
ing entities per website, revealing substantial variation across countries: French
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websites had the fewest entities (median of nine in accept mode), while Italian
websites had the most (median of 43.5). Rejecting cookies generally reduced the
number of trackers, except for French sites.
Most prevalent trackers. As shown in
Table 2, Google appeared on 96% of websites,
followed by Microsoft, Facebook, and PayPal.
Another frequently encountered third party is Third-party

Table 2: Frequent third-party
entities on pharmacy websites.

Accept Reject

Criteo, which specializes in personalized ad- entity
vertising [12]. Other prevalent trackers such as Google 50 48
c e . Q 0} Microsoft 36 16
j.&wm [5], Outbral'n [48], apd Taboola [52] were Facobook 39 13
linked to marketing, native ads, and content Virtual Minds 18 7
recommendations. We also identified ID5 [34], ICDU;QO %g g
a provider of privacy-focused identity solu- PayPal 15 15
tions designed to replace third-party cookies. Trusted Shops 14 12
Awin 13 4
The presence of these trackers on pharmacy Outbrain 13 2

sites raises privacy concerns, as users may not
expect health-related browsing activities to be used for ads or data sharing.

Prevalence of third-party categories. Table 1 summarizes third-party
service categories across pharmacy sites. Domains were categorized based on the
Tracker Radar dataset [16]; with some domains belonging to multiple categories.
“Advertising” and “Ad motivated tracking” appeared on nearly all websites, with
over 70 unique domains and 50 entities focused on tracking.

CNAME-based Tracking. 5

To detect CNAME-based track- - ’;;C:cpt‘
ing, we replaced request host-

names with their CNAME records
and reran detection using uBO
Core (§3.4). Focusing on requests
that were detected as track-
ers only after the CNAME re-
placement, we identified six dis- . °
tinct pharmacy websites that ° é l;l é% °
use CNAME-based tracking (Ta- o L= = -
ble 3) Registrable domains of France  Germany Italy  Netherlands Spain

all CNAME records appear in ) . . .
the BasyPrivacy list blocklist. Fig. 1: Median of tracker entities per site by

consent mode and country.

N w B
o o o
o
o

Distinct Tracker Entities - Median
=
o

Etracker.com describes how site
owners can “avoid data loss due to ad blocking” using CNAME records [18].
Similarly, Mapp’s help pages [37] explain how to set up first-party tracking by
defining a CNAME record pointing to go-direct.flx1.com, a domain used by
two pharmacies. In another case, despite rejecting consent, our persona’s name
and email were sent to Spotler (activate.deonlinedrogist.nl), which pro-
vides email marketing services [51].

Server Side Tagging. Using the URL parameters in GTM traffic (§3.4),
we found that 19 of the 50 sites used SST. In all cases, a first-party subdomain
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Table 3: Detected CNAME-based tracking domains, showing the original request
host, the resolved CNAME and the consent mode(s) in which they were observed.

Loc. Website Request host CNAME Cons.
DE medikamente-per-klick.de e.medikamente-per-klick.de customer.etracker.com Both
IT farmasave.it ddbm2.paypal.com ddbm2.paypal.com.|...|.datadome.co Reject
IT  topfarmacia.it dmp.email.topfarmacia.it go-direct.flx1.com Both
IT  docpeter.it dmp.mapp.docpeter.it go-direct.flx1.com Both
IT  1000farmacie.it the.sciencebehindecommerce.com tag.device9.com Accept
NL deonlinedrogist.nl activate.deonlinedrogist.nl ujemkxutgo.relay.squeezely.tech Both

of the pharmacy website was used. In 14/19 cases, the SST endpoint was used
in both accept and reject modes. Four of the five German websites used the SST
endpoint only in accept mode, while the only French pharmacy used it only in
reject mode. We found that 12 of the 19 SST servers were hosted on Google,
easing the setup of SST servers [29]. To determine the hosting details, we used
a combination of Via and Server response headers captured in the HAR files
and additional WHOIS information we queried for the server IP addresses. The
majority of SST endpoints used the default /collect path of Google Analytics,
while two Italian pharmacies used a random path starting with ngt. Use of a
random path could be an additional effort to evade blocking.

4.2 Product Name and Personal Information Leaks

We examined two types of Tuple 4; SST endpoints by country (Loc.) and

information leakag.c:.product used consent mode (A: Accept, R: Reject).
names and identifying per-

sonal details. To prevent false [ SST Endpoint Elootglg Cons.
positives, we only considered oste
leaks to third-party domains DE measure.medpex.de/g/collect True A
DE tmsst.aponeo.de/g/collect True A
and to 19 SST hostnames pg klpoz.shop-apotheke.com/g/collect True  A/R
identified in §4_1, DE sgtm.mycare.de/g/collect False A
Product name leaks DE measure.docmorris.de/g/collect True A
* IT otasfredcare.it/g/collect True A/R
In accept mode, 34 websites IT gtm.efarma.com/g/collect False A/R

IT sgtm.farmasave.it/ngtwyxyzwijg False A/R
leaked the product name, 7% IT sgtm.docpeter.it/ngtmapwbued False A/R

via URLs and 23% via POST gs datos.farmaciasdirect.es/g/collect  True A/R

request bodies. 28 websites NL  pipeline.drogist.nl/g/collect True  A/R
leaked duct NL metrics.deonlinedrogist.nl/g/collect True A/R
eaked product names even Ny, sgtm.plein.nl/g/collect True A/R

when consent was declined. NL ecom-data.trekpleister.nl/g/collect True  A/R
Google was the top recipi- NL ecom-data.kruidvat.nl/g/collect True A/R

NL inc.da.nl/g/collect False A/R
ent of product name leaks NL v3-pixal-web.etos.nl/g/collect False A/R
36 Accept. 23 Reiject: Ta- NL sst.koopjesdrogisterij.nl/g/collect False A/R
( Pt Ject; FR care.soin-et-nature.com/g/collect  True R

ble 5), followed by Microsoft,
ByteDance, and Facebook.
While leaks to doubleclick.net dropped substantially in reject mode (24 to
3), leaks to google-analytics.com increased (12 to 17), which may be a fall-
back domain in reject mode. Product names are still leaked to several third
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parties in reject mode. For instance, efarma.com (IT) leaked product names to
six domains. In contrast, seven of ten German sites avoided such leaks, while
leakage patterns in other countries remained largely unchanged (Table 6). On
all sites but two, URL encoding is used when leaking the product name to third
parties or SST hostnames. On shop-apotheke.com (DE) and redcare.it (IT)
the product name was leaked in Base64 encoded form to adtriba.com, a digital
marketing company [3].

Personal information leaks. To examine Tuple 5. Number of sites
personal data leaks, we focused on email addresses
and phone numbers, which uniquely identify users.
As with product name analysis, we considered

leaking product names to
third-party entities.

only third-party domains and SST hostnames. Entity Accept Reject
In accept mode, emails leaked in 15 cases and Google 36 23
phone numbers in three; in reject mode, email —Microsoft 23 7

K K ByteDance 7 0
leaks slightly dropped to 13, while phone leaks Facebook 4 1
rose to four. SHA-256 was the most common hash- ~ Virtual Minds 4 0

ing/encoding method observed in email leaks (39

of 164). Overall, hashed email leaks were detected on five distinct sites. Face-
book received hashed emails from three websites in accept mode and from two
sites in reject mode (boticas23.com, okfarma.es). Other domains receiving
hashed emails include awinl.com, zenaps.com, dynamicyield.com, pinter-
est.com and tiktok.com. Notably, awinl.com received a salted hash, which
prevents linking user identities via hashed emails.

4.3 Consent Notices

All but one of the 50 online pharmacies Tuple 6. Number of sites
(pharmaciedesdrakkars.com, France) displayed
a consent notice. Since consent notices often em-
ploy deceptive design patterns to steer website vis-
itors towards accepting all cookies and tracking
technologies [46], our analysis focused on whether

leaking product names per
country and consent mode.

Country Accept Reject

L . Germany 10 3

the pharmacies transparently communicated op-  Spain 10 9
tions to decline such data collection. As we will ~ Italy 9 10
X . K . Netherlands 8 9
discuss in §5, EU privacy law requires consent to  France 7 7

be “freely given,” which requires equal prominence
for “Accept” and “Reject” options. A 2023 report by the European Data Protec-
tion Board found that the majority of surveyed national data protection author-
ities considered embedding refusal links within text paragraphs invalid unless
they are visually highlighted to attract users’ attention [19]. We only found five
pharmacies (two from each NL and ES and one from IT) that display “Accept”
and “Reject” as equally prominent options on the first layer. While 27 additional
pharmacies did feature a “Reject” option on the first layer, 21 used color high-
lighting to point visitors towards the “Accept” option and nine did not place
the “Reject” option next to the “Accept” button. 12 pharmacies did not feature
any explicit “Reject” option on the first layer, but four of them had an “Accept
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Fig. 2: Examples of targeted ads observed during the experiment.

necessary [cookies|” button instead. Thus, only five out of 50 online pharma-
cies featured a consent dialog that did not outright violate the requirement for
“freely given” consent. A comprehensive legal analysis of whether valid consent
was actually obtained would require in-depth assessment on a case-by-case basis.

4.4 Advertisements

Targeted Ads on the Web. To assess the impact of targeted and retargeted
ads, we visited news websites after browsing pharmacy sites (§3.2). The results
showed notable cross-country differences in targeted and retargeted ads. We
observed such ads from 15 of 50 pharmacy websites in the Netherlands, Spain,
Germany, and Italy, but none from France. In the Netherlands and Spain, we
saw no re-targeted ads but did receive pharmacy-related ads from visited sites
(plein.nl and farmaciabarata.es) via Google Ads (Figure 2 e, i). In some
cases, we saw pregnancy-related ads, though not for the exact items searched,
suggesting broader behavioral targeting (Figure 2 h from shop-apotheke.com
in Germany and d from farmacialoreto.it in Italy). Retargeted ads appeared
on two out of ten German sites and three out of ten Italian sites, matching
products we had browsed or added to our cart. These ads were served by Google,
Microsoft, Criteo, as well as Taboola (Figure 2 1) and RTB House.

Ads on Large Online Platform Apps. A day after visiting pharmacy web-
sites, our accept-mode Facebook feed showed numerous pregnancy- and baby-
related posts and reels, but no ads. TikTok and Instagram displayed ads, yet none
for pregnancy products or pharmacies. This absence may be due to fresh, low-
credibility profiles and, for Facebook, the off-Facebook-activity setting—found
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disabled after the study. In an earlier pilot with an author’s long-standing ac-
count, pregnancy-related Facebook ads did appear.

4.5 Data Takeout from Third Parties

Under the GDPR, companies that process personal data must honor data access
rights. Comparing each platform’s Takeout archive with our HAR logs—and the
retargeted ads we later observed—shows that none provided a complete record.

Based on our HAR logs, 37 of the 50 sites contacted Google Analytics, but
Google Takeout returned records for only 27. The Takeout data included only vis-
ited URLS, but omitted other data collected by Google Analytics, such as prod-
uct names, prices, quantities, and cart actions. In contrast, HAR captures the full
Analytics payloads, revealing complete product metadata and user-action events
collected by Google. This gap highlights the incompleteness of Google Take-
out data compared to the detailed, real-time tracking in its analytics services.
TikTok’s “Off TikTok Activity” log includes events such as InitiateCheckout,
ViewContent, and AddToCart, but provides minimal metadata—for example,
checkout entries lack product details. In contrast, our HAR logs show seven
sites sending product names and eight sending hashed personal data (email,
phone, name) to TikTok, none of which appeared in the returned data. Insta-
gram’s Takeout data listed advertisers that used our “activity or information”,
including okfarma.es and unrelated brands such as Netflix and Paramount. The
“ads and topics” folder, which logs viewed and clicked ads, contained no ads
from pharmacy websites. Facebook’s “Activity Off Meta” Takeout yielded only
generic privacy details and no records of pharmacy websites, despite ads related
to pharmacies and pregnancy. Post-collection, we learned that off-Facebook ac-
tivity ads were disabled, which may explain the absence of records. Microsoft’s
ad dashboard showed new interest labels (e.g., Baby and Children) and served
related ads on MSN (Figure 2), but the downloaded profile lacked the underlying
data. Snapchat’s Takeout contained no data on our pharmacy visits, consistent
with our client-side observations.

5 Legal Analysis

Here we provide a brief legal discussion—not an individual compliance assessment—
of the tracking practices identified in this paper, focusing on the General Data
Protection Regulation [21]. The GDPR generally applies to the tracking prac-
tices discussed in this paper because it applies when “personal data” such as
cookies and other online identifiers, are used. The GDPR applies to companies
(“data controllers”) based in the EU, but also to certain non-EU companies,
e.g., if the company “monitors” the behavior of people in the EU (Art. 3(2)), as
in online tracking. The online pharmacy and the tracking company are jointly
responsible for GDPR compliance [10]. GDPR defines “special categories of per-
sonal data” that include “data concerning health or [...] a natural person’s sex
life” (Art. 9(1)). The Court of Justice of the European Union (CJEU) stated that
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data concerning health “must be interpreted broadly”, so if somebody orders a
medical product at an online pharmacy, that fact constitutes data concerning
health [9]. The use of sensitive personal data is prohibited, subject to specific
exceptions such as for hospitals, which do not apply here.

The only possible legal basis for online tracking and targeted advertising is
the Internet user’s “explicit consent” (Art. 9(2)) [11]. For consent to be valid, it
needs to be a “freely given, specific, informed, and unambiguous indication of the
data subject’s wishes by which [they], by a statement or by a clear affirmative
action, signif[y| agreement to the processing of [their| personal data” (Art. 4(11)).
This means that the individual must actively do something, e.g., tick a box or
click a button. A company is not allowed to assume consent if someone continues
to use a service or fails to opt out. As noted in §4.3, we saw tracking for targeted
advertising without the individual’s “freely given” consent, a clear violation.

6 Limitations

While our 50-site sample favors depth over breadth, covering the top ten phar-
macies per country likely reflects the experience of millions of users [2]. We
observed targeted ads from 15 of the 50 pharmacies. The absence of ads from
other websites could be due to a lack of advertising campaigns targeting the
products we shopped for. Our use of fresh profiles on separate devices mini-
mized the risk of prior browsing history influencing tracking behavior and ad
delivery, though residual effects beyond our control cannot be entirely excluded.
While our study focuses on pregnancy tests and results may not fully gener-
alize to other sensitive health-related products, the observed tracking and ad
targeting demonstrate how even sensitive product purchases are monitored for
ad retargeting. Future investigations could also examine whether browsing for
such products triggers ads for related categories, for example, baby items, to
shed light on the broader profiling strategies employed by advertisers. We used
manual checkouts to avoid bot detection and ensure ecological validity. Future
work could explore LLM-guided automation [45], though this may trigger bot
detection or ad fraud defenses. Google allows users to limit ads about sensi-
tive topics such as “pregnancy and parenting” [30]. Due to scope limitations, we
could not evaluate the effect of this opt-in setting. While we searched for vari-
ous types of encodings and hashes to identify leaked data, custom encodings or
obfuscation can bypass our detector. Hence, our ad targeting results should be
taken as lower bounds. Our SST endpoint identification method focused on the
server-side use of Google Tag Manager, rather than generic server-side tracking.
Since our method relies on common URL parameters extracted from the data
we collected, it may not generalize to other datasets or more customized uses of

SST.
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7 Conclusion

Users may expect a high level of privacy when shopping for health-related prod-
ucts online. Our findings show that even shopping for sensitive products such
as pregnancy tests on most popular European pharmacy websites is subject to
extensive third-party tracking for advertising purposes. Through a lightweight
detection method, we identify a sharp increase in the use of server-side tracking,
along with continued use of other stealthy techniques such as CNAME cloak-
ing. Tracking often occurs without valid consent as many websites do not use
compliant consent dialogs, and some ignore user choices altogether. Moreover,
data access requests often yield incomplete information, leaving users in the
dark about what online activities are monitored. Our findings raise significant
concerns regarding transparency, user rights, and compliance with regulations.
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Abstract. As the need for privacy self-management in the Internet of
Things (IoT) ecosystem grows, Privacy Assistants (PAs) have emerged
as a solution for assisting users with privacy management. However,
many existing PAs rely on static strategies, assume perfect knowledge of
user privacy preferences, and expect complete responsiveness from users
to elicitation prompts. Furthermore, they overlook IoT device behavior
and information available from surrounding PAs. As such, we designed
PADOME, an adaptive PA that models both the user’s privacy prefer-
ences and the behavior of the IoT device. PADOME integrates preference
elicitation to better understand a user’s privacy utilities, along with op-
ponent preference modeling and surrounding PA elicitation to reduce
uncertainty about the opponent’s negotiation strategy. Designed using
the DUNE framework and evaluated in the GEPARD simulation envi-
ronment, PADOME demonstrates improved negotiation outcomes and
higher agreement success rates.

Keywords: Privacy Management - Internet of Things - Privacy Assis-
tants

1 Introduction

The proliferation of Internet of Things (IoT) devices has led to an unprecedented
scale of personal data collection and processing, raising significant privacy con-
cerns [6]. Privacy Assistants (PAs) have emerged as a promising approach to
mitigate these concerns by (semi-)autonomously negotiating with IoT devices
on behalf of users [13,1,10,19]. However, many existing PAs are designed with
assumptions that fail to hold in real-world deployments. They often assume that
users will always respond to elicitation requests or that IoT devices will behave
predictably or cooperatively [4,9]. Such assumptions may lead to ineffectively
designed PAs that can significantly degrade the IoT ecosystem’s performance
and substantially reduce PA user satisfaction [14,16].

In practice, users are often unwilling or unable to respond to elicitation re-
quests [18]. As such, PAs must balance automation with user involvement to
minimize user burden and power consumption due to unanswered elicitation re-
quests, while still maintaining trust and comprehensive privacy profiles [4,16].
Additionally, negotiation opponents, i.e., IoT devices, may act strategically to
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influence negotiation outcomes [2]. The negotiation environment itself is often
characterized by uncertainty and incomplete knowledge (e.g., unclear data flows
when negotiating data sharing with a smart mall’s systems), further degrading
the effectiveness of traditional PAs in real-world deployments [9].

To address these challenges, we introduce PADOME, a Privacy Assistant with
Distributed Opponent Modeling and User Elicitation. PADOME is designed to
operate under conditions of partial cooperation from both users and other PAs.
It abandons the assumption that users will respond to elicitation prompts, in-
stead relying on observation of prior decisions and user feedback when available.
PADOME also prompts surrounding PAs for their model of the IoT device pref-
erences and does not assume their responsiveness. Instead, it opportunistically
elicits such models when possible without depending on their availability.

PADOME is designed using the DUNE framework [15], which structures PA
designs along four key components: Device, User, Network, and Environment.
DUNE enables systematic analysis of PA behaviors by isolating these compo-
nents and supporting a plug-and-play design methodology. We also implement
PADOME into the GEPARD simulation environment [15] to evaluate its effec-
tiveness and compare it with other state-of-the-art PA designs.

2 Related Work

We limit related work to recent work in the following categories: i) automated
negotiation agents in data privacy, ii) PAs for IoT privacy negotiations and
management, and iii) user privacy preferences elicitation algorithms.

i. Automated Negotiations. Baarslag et al. [3] presented an automated ne-
gotiation agent that uses learned user’s privacy preferences to negotiate data-
sharing permissions. While the negotiated agreements were more accurate than
the baseline, the work could further explore strategies that also reduce the over-
all effort required from the user. This work was extended by Filipczuk et al. [9]
to allow for partial and complete offers and introduce a variant of the user pri-
vacy preference learning approach, paving the way for more flexible negotiation
mechanisms. Finally, Mohammad et al. [12] extended Filipczuk et al. work to
practical use cases through partial uncertainty reduction in the utility functions,
which opens the door to future work on extending these methods to scenarios
with uncountable or more complex outcome spaces.

ii. Privacy Assistants. Cha et al. [5] addressed the consent issues when users
access nearby IoT devices from their smartphones via the Bluetooth Low En-
ergy (BLE) iBeacon functionality, providing valuable insights for broader IoT
deployment scenarios beyond the proposed case. Das et al. [8] developed and
deployed IoT PAs, and proposed a resource registry that can be used for ad-
vertising purposes, highlighting opportunities to refine such registries to balance
usefulness with minimizing potential user fatigue from advertising. More recent
work by Morel et al. [13] outlined high-level requirements for consent in IoT, pre-
senting a set of technical requirements for implementing a consent framework in
IoT. The authors implemented a BLE-based prototype to show the presented
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framework’s real-world applicability, pointing toward future research on a holis-
tic analysis of PA systems. Finally, Alanezi et al. [1] presented a PA design to
address individual and group context privacy concerns, inviting future work on
dynamic negotiation deadlines and adaptive preference modeling.

iii. Elicitation Algorithms. Baarslag and Gerding [4] proposed an optimal al-
gorithm for eliciting exact DS’s preferences in a single round during negotiation,
which invites future work in approaches that work effectively when users pro-
vide approximate rather than exact utility values, or when elicitation occurs over
multiple rounds with minimal burden. Mohammad and Nakadai [12] addressed
this by relaxing the assumption of exact utility value return, offering a more
adaptable approach. Building on both of these works, PADOME relaxes the as-
sumption that users will always respond to elicitation, a condition that may not
always be realistic as users can miss or choose to ignore elicitation attempts.

3 PADOME: A Novel PA Design

In this section, we present PADOME, a novel PA design that combines the fol-
lowing two strategies: (i) user privacy preference elicitation, and (ii) surrounding
PA elicitation. Although these mechanisms are not individually novel, their com-
bination and the assumption that elicitation may fail presents new challenges.
PADOME’s novelty lies in integrating these mechanisms and overcoming techni-
cal challenges to allow the PA to manage the complexities of dynamic negotiation
and elicitation states.

3.1 Setting Definition

Smartphone

loT device
_H =
O Get Information | Privacy Assistant S
Update Model User Model
< > Elicig —
User l"format,bn Negotiation | Send Offer

Strategy Get Offer

Opponent

Privacy Assistant
N

Elicit Information

Fig. 1: Overview of interactions among the user, PAs, and IoT device.

A common assumption among PA designs is that the PA has prior knowledge
of the user and opponent (i.e., IoT device) models obtained from prior interac-
tions or the population’s average. In our setting, however, the user is assumed
unwilling or unable to specify their privacy preferences fully. Additionally, there
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are other PAs, some having already arrived at an agreement with the IoT device.
As such, for each possible offer, the PA faces the following uncertainties: (i) the
opponent preferences (opponent model), and (ii) user’s utility of an offer (user
model). Thus, the PA can refine the opponent model by exchanging offers with
the IoT device or eliciting other PAs. Broadly, the opponent model represents
the IoT device’s preferences and negotiation strategies. For instance, by build-
ing an opponent model, a PA may infer that the IoT device prioritizes location
privacy over other PP terms and adjust its offers accordingly. Simultaneously,
the PA can elicit user to refine the user model.

At each negotiation round, the PA decides whether to (i) elicit user pref-
erences, (ii) elicit from other PAs, (iii) accept an offer, (iv) counter an offer,
or (v) break off the negotiations. Each decision involves balancing benefits and
costs, e.g., utility at the cost of user bother. We assume incremental elicitation,
i.e., the PA can continue the elicitation process if needed. Figure 1 illustrates
these interactions.

3.2 Formal Model

Let 2 = {w1, ...,wy, } denote all possible offers in the negotiation, each with utility
U(w), which is initially uncertain. Before user preferences are elicited, U(w) is
modeled as a stochastic variable x,, with cumulative distribution function F(z),
independent of other offers. The user has an exact utility function U : 2 — [0, 1]
that maps all possible negotiation outcomes to a real number. This real utility,
however, is not known to the PA. Hence, the PA maintains some probability
distribution U (w) : [0,1] — [0, 1] that represents the probability of U(w) = u for
0<u<1,ie, U() = Prob(U(w) = u). At any point in the negotiation, the
PA can elicit U(w) at a cost ¢, (w), representing utility loss due to user bother.

The PA negotiates with the IoT device using an alternating offers protocol,
modeling acceptance probability of w as p,,, calculated from prior interactions
or by eliciting opponent models from other PAs at cost ¢,(w). The alternating
offers protocol was chosen for its simplicity and widespread use in the related
literature. In it, upon receiving an (counter-)offer, the PA updates the opponent
model. When an offer is accepted, the negotiation ends in an agreement. The PA,
however, can also choose to break off the negotiation process. Specifically, PA
has a known reservation value r € [0, 1], which is the utility of breaking off the
negotiation. Additionally, an agreement must be reached within a fixed number
of exchanges D. At the end of the negotiation, the utility of the PA is given by
Equation 1.

Uw) — Z cu(w') = Z Co(w”) if w € 12 is accepted,
U= w'eN w'en (1)

/ 1
r— Z cu(w') — Z Co(w”) if no agreement reached.

w' €N w'en
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3.3 Negotiation and Elicitation Strategies

Negotiation Strategy. The PA aims to maximize the expected utility by cal-
culating the expected value of different actions while considering the opponent
model and expected utility if the negotiation continues.

Following Baarslag and Gerding [4], we assume the PA uses a decision func-
tion with an aspiration value «; € [0, 1], which represents the expected reward
for continuing negotiation at round j7 < N, where N < D is the total number of
rounds. Given a;, the negotiation value of sending an offer w € 2 is:

U(w) = pwU(OJ) + (1 - pw)aja (2)

where U(w) is an immediate utility payoff if the offer gets accepted with prob-
ability p,, and the expected future payoff of «; if the offer is rejected. We also
define U(wg) = r, which represents the previously defined reservation value.

At each round, if no further elicitation occurs, the optimal strategy is to
select the offer with the highest negotiation value v*(£2) = max,eq v(w). We
formalize this strategy in Algorithm 1.

Algorithm 1: Proposed negotiation strategy.

Input: Current negotiation state.
Output: One of the actions: accept, counter-offer, or break-off.
1 while j < D do

2 for w € 2 do
3 L update(p.);
4 UserElicitation()// presented in Algorithm 2;
5 PAElicitation() // presented in Algorithm 3;
6 w 4+ arg max, e (P U(W') + (1 — pur)ay);
ACCEPT if w was offered,
7 return ¢ BREAK-OFF if w = wo,
SEND(w) otherwise,

Negotiation stops if deadline D is reached, computed dynamically as:
D = LDBase + F]V[ + FNetwork + FDistance + FPP + 05J7 (3)

where Dpg,ge is the base deadline. Iy is the user factor, which accounts for the
number of other users M and reflects resource burden on the ecosystem from
other negotiations. The network factor FNetwork captures differences in network
technologies; e.g., networks supporting small payloads may require more trans-
mission rounds. The distance factor Fpjstance Scales with the average distance of
PAs from the IoT device. Fpp is the privacy policy (PP) size factor.

User Elicitation Strategy. Using the negotiation value v*({2), the elicitation
strategy determines which offers, if any, to elicit from the user. This is a sequen-
tial decision problem, since each choice depends on the offers elicited so far and
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on the probability that the user may ignore an elicitation. Therefore, the goal
is to find (i) an optimal sequence of offers to elicit and (ii) a strategy specifying
when to start and stop the elicitation.

We define the user elicitation state as &,, defined by (£2,7), where 2 are
all non-elicited offers and y = v*(£2). The goal is to formulate a user elicitation
policy m,, that, given &,, determines whether to elicit an offer or to proceed with
negotiation. The utility of the =, is:

Yy if m,(E.) & 02,

uy Cu) = T . 4
Ulmu, &u) P, / U(Wu,E;)dFmﬂ(S)—c(wu(fu)) otherwise, “)

—00

where P, is the probability of successfully eliciting the user and &, = (2 \
{mu(€u)}, max(y,v(x))) is the updated state after observing ., (¢,). P. can be
estimated using models of user engagement [11,17].

Using Equation 4, we are looking to find 7} = arg max,, U(m,, &,). Note that
if ezact values of all offers are known, U(7}, (0, y)) = y. Otherwise, we calculate
the negotiation value z% of a non-elicited offer w € {2 using the random variable
x,, as follows:

Ty, = PuTew + (1 — pu)oy. (5)

Compared to Equation 2, Equation 5 relies on a random variable instead of the
ezact utility value since the real value of offer w is unknown.

Recall that 7, determines whether the PA stops with utility y, or elicits an
offer w € 2 by sampling z,, at cost c(w), while taking the following into the
account:

1. If z,, > y, the PA has found a better offer with the expected utility U (m,, (£2\

{w} 20));
2. Otherwise, if z,, < y, nothing changes, except that PA has observed the value
of z,,, so the new expected utility is U(m,, (2 \ {w},y)).

Given the above, Equation 4 must satisfy the following recursive relation [4]:

U(my, Eu) = max{y, glgg{U(m (2\{w}, 9)) x FS(y)

. ) (6)
—efw) + / U, (2 {w}, 2)) dF2(2)}),

=Y

where F%(x) denotes the corresponding cumulative distribution function.

The relation for 7, in Equation 6 is a form of the Bellman equation, solvable
using the index-based method presented by Baarslag and Gerding [4]. We define
the index z¢ as the solution to [, (z — z3)dF3(z) = c(w).

The resulting elicitation stratowgy 7y (presented in Algorithm 2) is: Elicit the
offer w € 2 with the highest index 2, if it is higher than v* (£2); update the v*(£2)
if the realized value is higher, and repeat. Stop the elicitation if the highest index
is less than v*(£2), or when all offers are in 2.
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Algorithm 2: Proposed user elicitation strategy.

elicitationCost < 0;
for w € 2 do
| 2« Solve [ (x — 2)dFJ (z) = c(w) for z;

1

2

3

4 v+ maxpen(poU(w) + (1 — pu)ay);

5 W 4 argmaX,/cp 2o

6 while 2%, > v or 2 # 0 do

7 U(w) < ElicitFromUser(w);

8 elicitationCost <—elicitationCost + c(w);
9 2+ QU{w} 2+ 2\ {w}

10 v < max(v, pu,U(w) + (1 — pu)aj);
11 W — argmaX,/c o Zor;

PA Opponent Model Elicitation Strategy. We use an information-theoretic
approach, utilizing entropy and information gain to guide the PA elicitation
strategy. Specifically, let P = PA;, PAs, ..., PA); represent the set of PAs,
where each PA; is an individual PA that will send requests to the surrounding
PAs. Let R denote the set of PA responses, i.e., opponent models.

Algorithm 3: Proposed PA elicitation strategy.

Input: PA;, P, reservation value r.
Output: Updated opponent model.
for PA€ P\ PA; do
L Determine P A response likelihood p(PA);

for w € QPA,: do

L Hy = — Z?i;lpw Ingpw

1
Hnew :HO X M—1

1 :p(PA) X (HO - Hnew)

we-log(1+c(t))
UelI- wp-log(14c¢(p))

if U > r then

R <+ BroadcastToPAs();
pw+median(R)
2

[ B NECVR VI

© ® N o

[ury
o

Ponew =

Algorithm 3 shows the proposed PA elicitation strategy, which is designed to
balance information gain with time and power consumption costs. In particular,
we calculate initial and new entropy values (lines 4 and 5), provided information
from M — 1 PAs. We then find the expected information gain (line 6) and use
it to calculate the utility (line 7). While our utility function incorporates time
and power consumption, it can be extended to account for other factors. We
then compare the utility against the reservation value (line 8) to determine if it

208



DPM 2024

is “worth” broadcasting the request to PAs in the environment, and if yes, we
update the opponent model based on the received responses (line 10).

4 Experiments

This section presents PADOME’s input parameter analysis and evaluation against
state-of-the-art PA designs across various scenarios and network technologies.

4.1 Input Parameter Analysis
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Fig. 2: Effect of input parameters on the PADOME performance.

As part of the PADOME design process, we evaluated the effect of input
parameters on its performance. Specifically, we examined the impact of user
elicitation cost and negotiation deadline on the Average User Consent Percentage
and Average PA Power Consumption. The results are averaged over 10 times
using BLE and Shopping Mall. For parameters not under investigation, we use
the following fixed values: reservation value of 0.25, elicitation cost of 0.05, and
base deadline of 4.

From Figures 2(a) and 2(b) we can observe that: (i) longer negotiations
increase average consent percentage up to a "saturation" point, beyond which
other factors, e.g., network coverage, limit the PA and (ii) more negotiation
rounds lead to higher power consumption until reaching a plateau. These results
align with Baarslag and Gerding [4], who showed that increasing elicitation cost
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reduces negotiation utility. Based on this, we set a base deadline of 4 with a
dynamic increase as per Equation 3.

From Figures 2(c) and 2(d) we can observe that: (i) higher elicitation costs
reduce average consent percentage, as fewer opportunities arise for the PA to
gather user preferences and (ii) in the best case scenario, when PA has no cost
for user elicitation, the elicitation cost has no impact on power consumption. The
latter result is notable, suggesting that eliciting user preferences does not affect
the negotiation flow as anticipated. Based on these results, we set an elicitation
cost of 0.05.

4.2 Experimental Methodology

We implemented PADOME in GEPARD simulator [15]. We ran tournament-
style simulations with 25 runs per design and compared them across three avail-
able scenarios: Hospital, University, and Shopping Mall. We employed BLE, Zig-
Bee, and LoRa as network technologies and compared PADOME against three
state-of-the-art PA negotiation protocols: Alanezi, Cunche, and Concession.

In our experiments, we adopted the effective communication ranges as spec-
ified in [15]: 50 m for BLE, 100 m for ZigBee, and 10,000 m for LoRa. The
spatial dimensions for each scenario were also taken from the same reference,
with the Hospital measuring 40 m, the University 80 m, and the Shopping Mall
120 m. These parameters are noted as they have a significant impact on the
experimental results discussed in this section. For instance, BLE performance
in the larger Shopping Mall scenario is expected to be poorer compared to the
smaller Hospital scenario due to its limited communication range.

4.3 Experimental Results
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§ %«0 4 0.243
§ %o 5 03010.273 03
o g T
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Fig. 3: Average power consumption in Hospital.

Average User Power Consumption. Figure 3 shows the average per-user
power consumption in the Hospital scenario. We calculated the combined average
user device power consumption and averaged over the total number of runs. From
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Fig. 4: Average user consent across different networks and scenarios under various
network protocols.

the figure, we can observe that PADOME-based PA, due to opponent model
elicitation, results in up to 17 times higher power consumption than Concession-
based PA, both using BLE, which would require the IoT device to rely on the
external power supply to operate.

Average User Consent. We measured average user consent as a percentage
of consent collected and averaged across all runs. From Figure 4, we can ob-
serve that the average user consent achieved by the non-PADOME-based PAs
lie within 1% of each other. This observation is notable, as it emphasizes the
influence of the scenario and communication technologies on PA performance
rather than the negotiation protocols themselves. Additionally, we can also ob-
serve that PADOME-based PA achieves up to 34.76% higher average user con-
sent than the alternatives, e.g., Alanezi-based PA in Hospital under BLE. While
the effective network communication ranges and space sizes, as noted in [15],
naturally influence these results, they can be attributed to the addition of user
preference and opponent model elicitation strategies. These strategies, however,
result in higher power consumption.

5 Discussions and Future Work
The individual strategies employed in PADOME have been previously studied

but often under idealized assumptions. In contrast, our work relaxes the as-
sumption of guaranteed user or surrounding PA responses to elicitation requests
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and integrates these elicitation strategies, resulting in a more realistic PA design
than those proposed previously. A potential direction for future research includes
further exploration of novel combinations and adaptive mechanisms building on
this integration. This future work should also consider PADOME’s reliance on
opportunistic interaction with surrounding PAs, which may not always be feasi-
ble in environments with sparse device density or unstable network connectivity.
In such cases, reduced access to external models could limit performance.

PADOME achieves significantly higher user consent rates through elicitation
of user preferences and opponent models compared to existing PA designs, albeit
at the cost of increased power consumption. The increased power consumption
raises important considerations for the scalability and applicability of PADOME
in large-scale IoT networks, where device battery life and power efficiency could
become critical constraints. Future research will need to explore optimization
strategies to balance the trade-offs between increased consent rates and power
consumption to ensure practical deployment at scale. For example, leveraging
edge computing to offload inter-PA and negotiation communication from user
smartphones and IoT devices can reduce associated power consumption.

Additionally, PADOME’s adaptiveness is based on predefined heuristics, static
probabilistic models, and entropy calculations rather than machine learning
(ML) techniques. This design choice is motivated primarily by the resource con-
straints of IoT and smartphone devices, where running complex learning algo-
rithms is often infeasible. Furthermore, interpretability is especially critical in
privacy-sensitive contexts because transparent and explainable decision mecha-
nisms foster user trust and enable informed consent, which ML models often lack
due to their black-box nature. Nevertheless, exploring hybrid approaches that
incorporate lightweight learning while preserving interpretability represents a
promising avenue for future work.

We also note that our experiments are based on the GEPARD simulator,
which has limited independent validation. To promote transparency and repro-
ducibility, the simulator’s source code and documentation have been made avail-
able, providing explanation of parameter validation and the structure and im-
plementation of the DUNE framework within GEPARD [15]. Future efforts will
focus on validation through real-world deployments and benchmarking.

With respect to PADOME’s real-world implementation, it is worth noting
that it would not expose its underlying algorithms to end-users. Instead, the
interface abstracts these details, presenting only context-specific elicitation re-
quests linked to individual privacy policy statements, as demonstrated in [8,7].

6 Conclusion

In this work, we introduced PADOME, a PA with a dynamic user privacy prefer-
ence and opponent modeling strategies for privacy negotiations in IoT. PADOME
combines opponent model elicitation from the surrounding PAs with user prefer-
ence elicitation that accounts for the possibility of user and other PAs being un-
cooperative. Using simulations, we demonstrated that PADOME improves aver-
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age user consent compared to state-of-the-art PA designs at the cost of increased
power consumption. This highlights a critical trade-off between negotiation ef-
fectiveness and resource usage. Building on these findings, future research will
investigate lightweight, ML-based adaptive opponent modeling and elicitation
mechanisms, explore optimization strategies for reducing power consumption,
and evaluate PADOME in real-world IoT environments.
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