

Vaibhav Gusain, Douglas Leith

Date 19/09/24

Outline

- Introduction
- Related work
- Experiments
- Results
- Discussions

Introduction

Problem Statement:

 How can we sanitize input text data so that it can be used for model training while preserving privacy

Current approaches

- DP-SGD
- Sanitise Input data
 - For textual dataset: The input word is mapped to an embedding vector. Noise is added to the vector and the noisy embedding is then mapped back to the original word.

Sanitizing Input text is difficult.

- Choice of embedding greatly affect the amount of noise added and thus the final privacy
- We can't simply replace the words as the surrounding context can reveal sensitive information
 - "I am diagnosed with cancer. I have to go to St Lukes for chemotherapy and will probably lose my hair".

Our approach

- Instead of focussing on individual words or sentences, we worked on the whole text corpus.
- Use redaction to add "noise" to the text.

Privacy Metric - Renyi Divergence

- We used embeddings from a sentence transformer
- Assuming a "safe" dataset and sensitive dataset, redacting words from the sensitive and safe dataset reduces the divergence between the two datasets.
- Selecting the proper level of redaction to ensure sufficiently small divergence then provides privacy in the sense of indistinguishability between the redacted sensitive and safe dataset.

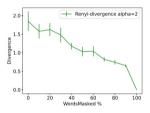


Fig. 1: Measured Renyi vs random redaction level for Medal dataset.

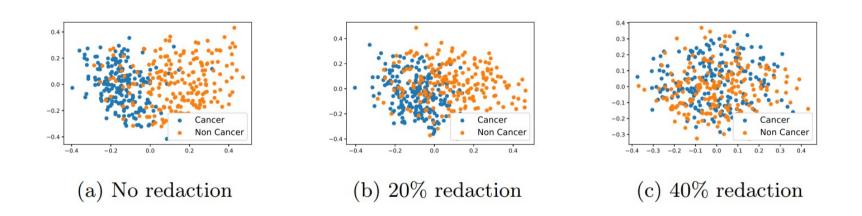


Fig. 2: Illustrating the increasing overlap between the semtence embeddings for cancer and non-cancer text from the Medal dataset as the level of redaction is increased. SentenceBERT embeddings are projected to two dimensions using PCA, random redaction is used.

Threat model

 Attacker has access to the redacted datasets and wants to infer the sensitive traits from them.

Redaction

- Random randomly redact X% of the words from the input sentence
- Smarter redaction Use a logistic regression classifier to weigh important words and mask important words first.

Renyi-Divergence, Zero Concentrated Differential Privacy

Renyi Divergence of order ${\bf \alpha}$ between two probability distributions ${\bf P}_{{\bf 0}}$ and ${\bf P}_{{\bf 1}}$ is

We say that the probability distributions P_0 and P_1 are (ξ, ρ) -zero-concentrated differentially private when : For all $\mathbf{\alpha} \in (1, \infty)$.

Probability distributions P_0 and P_1 are (ξ, ρ) -zero-concentrated differentially private then:

$$D_{\alpha}(P_0||P_1) = \frac{1}{\alpha - 1} \log \int_{Y} P_0(x)^{\alpha} P_1(x)^{1 - \alpha} dx$$

$$D_{\alpha}(P_0||P_1) \le \xi + \rho\alpha$$

$$P_1(x) \le \exp(\epsilon)P_0(x) + \delta$$

Where for every
$$\delta > 0$$
, $\epsilon = \xi + \rho + 2\sqrt{\rho \log \frac{1}{\delta}}$.

*Bun, M., Steinke, T.: Concentrated differential privacy: Sir extensions, and lower bounds (2016)

Divergence to epsilon

- For a given redacted safe and sensitive dataset.
 Calculate renyi divergence for different alphas.
- Plot the curve of divergence v alpha.
- Get a line which is above the plotted curve
 - ο ρ is the slope of the line and ξ is the intercept.
- Using Zero-concentrated-differential privacy calculate the (ε,δ) differential privacy guarantee.

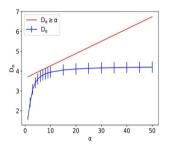


Fig. 3: Divergence vs α for non-redacted cancer and non-cancer text from Medal medical dataset.

Redaction and Attack accuracy

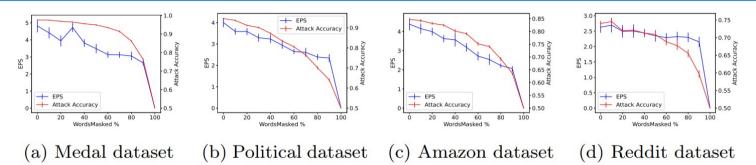


Fig. 4: Measured ϵ between redacted sensitive and safe datasets vs redaction level; random redaction. A lower value indicates better privacy. Also shown is the measured accuracy of a classification attack that tries to label which dataset the redacted sensitive text originated from (lower accuracy therefore equals greater privacy, with a classification accuracy of 50% corresponding to a random classifier).

Redaction and Attack accuracy

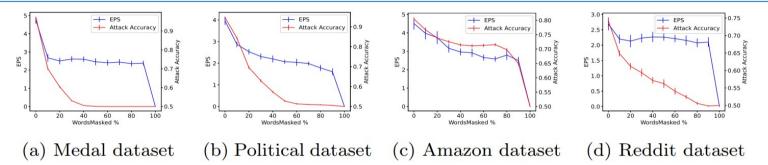


Fig. 5: Measured ϵ between redacted sensitive and safe datasets vs redaction level; more efficient redaction strategy. A lower value indicates better privacy. Also shown is the measured accuracy of a classification attack that tries to label which dataset the redacted sensitive text originated from (lower accuracy therefore equals greater privacy, with a classification accuracy of 50% corresponding to a random classifier).

Comparison against State of the Art

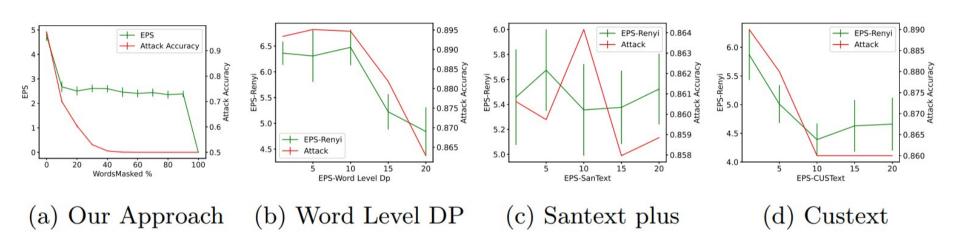


Fig. 6: Comparison against various SOTA approaches.

Discussions

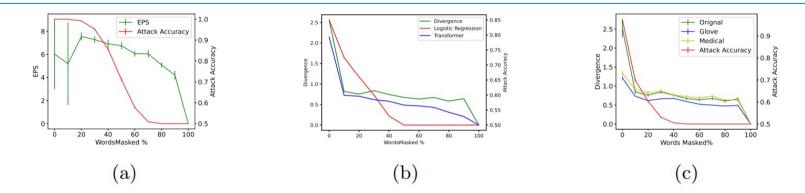


Fig. 8: 8a Measured ϵ and attack accuracy for cancer sentences when compared against IMDB reviews.8b Measured Renyi-divergence ($\alpha = 2$) and attack accuracy for logistic regression and BERT transformer classification attacks as the redaction level is increased. Medal dataset. 8c Measured Renyi-divergence ($\alpha = 2$) with different embeddings: (i) general-purpose sentenceBERT, (ii) fine-tuned medical sentenceBERT, (ii) Glove. Medal dataset.

Thank You

