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Introduction

® Problem Statement:
©  How can we sanitize input text data so that it can be used for model training while preserving

privacy
® Current approaches
©  DP-SGD

O Sanitise Input data
B  For textual dataset : The input word is mapped to an embedding vector. Noise is added to
the vector and the noisy embedding is then mapped back to the original word.
e Sanitizing Input text is difficult.
©  Choice of embedding greatly affect the amount of noise added and thus the final privacy
©  We can't simply replace the words as the surrounding context can reveal sensitive information
B “| am diagnosed with cancer. | have to go to St Lukes for chemotherapy and will probably
lose my hair”.
®  Our approach
o Instead of focussing on individual words or sentences, we worked on the whole text corpus.
O Use redaction to add “noise” to the text.
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Plausible Deniability of Redacted Text

Privacy Metric - Renyi Divergence

©  We used embeddings from a
sentence transformer

©  Assuming a “safe” dataset and
sensitive dataset, redacting words
from the sensitive and safe dataset
reduces the divergence between
the two datasets.

O  Selecting the proper level of
redaction to ensure sufficiently
small divergence then provides
privacy in the sense of
indistinguishability between the
redacted sensitive and safe dataset.
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Fig. 1: Measured Renyi vs random redaction level for Medal dataset.
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Plausible Deniability of Redacted Text
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Fig. 2: Illustrating the increasing overlap between the semtence embeddings for
cancer and non-cancer text from the Medal dataset as the level of redaction
is increased. SentenceBERT embeddings are projected to two dimensions using
PCA, random redaction is used.
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Plausible Deniability of Redacted Text

® Threat model
O  Attacker has access to the redacted datasets and wants to infer the sensitive
traits from them.
® Redaction
©  Random - randomly redact X% of the words from the input sentence
©  Smarter redaction - Use a logistic regression classifier to weigh important words
and mask important words first.
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Renyi-Divergence, Zero Concentrated Differential Privacy

Renyi Divergence of order a between two probability Da(POHPl) . 1 log/ PO(JJ)aPl (33)1—@(1$
Y

distributions P, and P, is a—1
We say that the probability distributions P, and P, are

(§,p)-zero-concentrated differentially private when :
For all a € (1,20).

Do (Fo||P1) €€+ pa

Probability distributions P, and P, are (&,p)-zero- Py (x) < exp(e)Py(x) + 0
concentrated differentially private then: o

Where for every® >0, € = £ + p + 2y/plog 1.

*Bun, M., Steinke, T.: Concentrated differential privacy: Sir
extensions, and lower bounds (2016)
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Divergence to epsilon

® For a given redacted safe and sensitive dataset.
Calculate renyi divergence for different alphas.

® Plot the curve of divergence v alpha.

® Get aline which is above the plotted curve

O pistheslope of the line and § is the I R T TR TR
intercept. ’
® Using Zero-concentrated-differential privacy Fig. 3: Divergence vs o for non-redacted cancer and non-cancer text from Medal
calculate the (g,5) differential privacy guarantee. ~ medical dataset.
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Plausible Deniability of Redacted Text

Redaction and Attack accuracy
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Fig.4: Measured e between redacted sensitive and safe datasets vs redaction
level; random redaction. A lower value indicates better privacy. Also shown is the
measured accuracy of a classification attack that tries to label which dataset the
redacted sensitive text originated from (lower accuracy therefore equals greater
privacy, with a classification accuracy of 50% corresponding to a random classi-
fier).
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Plausible Deniability of Redacted Text

Redaction and Attack accuracy
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Fig. 5: Measured e between redacted sensitive and safe datasets vs redaction level;
more efficient redaction strategy. A lower value indicates better privacy. Also
shown is the measured accuracy of a classification attack that tries to label which
dataset the redacted sensitive text originated from (lower accuracy therefore
equals greater privacy, with a classification accuracy of 50% corresponding to a
random classifier).
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Plausible Deniability of Redacted Text

Comparison against State of the Art
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Fig. 6: Comparison against various SOTA approaches.
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Discussions
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Fig. 8: 8a Measured e and attack accuracy for cancer sentences when compared
against IMDB reviews.8b Measured Renyi-divergence (o = 2) and attack ac-
curacy for logistic regression and BERT transformer classification attacks as
the redaction level is increased. Medal dataset. 8c Measured Renyi-divergence
(a = 2) with different embeddings: (i) general-purpose sentenceBERT, (ii) fine-

tuned medical sentenceBERT, (ii) Glove. Medal dataset.
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