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Spatial Data and Privacy

U

= Large volumes of spatial data are nowadays available for
collection and analysis
= Smartphones
= Connected cars
= Social networks
= Location-based services

Following You: Cycling Apps May
Collect Your Sensitive L. ocation
Data

How location tracking is raising the stakes on privacy
protection i
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,,“;’;; DP and LDP

@ In recent years, Differential Privacy (DP) and Local
Differential Privacy (LDP) have become two popular
standards for privacy-preserving data analysis
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e Due to its popularity, there is rising interest and recent
work towards applying LDP to spatial data analysis
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@ Grid-based decompositions
have been a common
building block when
applying DP and LDP to
spatial data

Step 4: Server learns the Markov chain M’

Markov Chain M’ [ o] Step 1: Allocate budget and send it to clients
—

Step 3: Send M, to server

0 0 -0 0

Step 2: Each client encodes and perturbs his/her sequence S, to obtain M,

Guner et al. (ESORICS 2023) Learning
Markov Chain Models from Sequential Data
under LDP

Grids in LDP

Uniform & adaptive grids first proposed by
Qardaji et al. (ICDE 2013) for DP.

Later used in many other works:
- Heetal. (VLDB 2015)
- Gursoy et al. (CCS 2018)
- Wang et al. (Usenix Security 2023)
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Du et al. (VLDB 2023) LDPTrace: Locally
Differentially Private Trajectory Synthesis
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Users' Exact (Continuous) Users' Discrete
Locations Locations
Discretize
I, =(lat,, | 0
lon —Cce
g,) 1 2 .
% o e
Discretize
" — ®
—_— |2—>ce||4 . —_—
i, o _,
long,) |3—>CG||9 .
Algorithm 1 Collecting location data with LDP using a grid
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Input: Users U, grid G, privacy budget ¢
Output: Densities of each cell in G

> User-side discretization and perturbation
for each user u; € f do
for each cell C; € G do
if I; falls inside C; then
Set user’s true cell as: C; + C;
break
Execute the user-side OLH protocol with true value = C;, domain D = G, and
privacy budget = ¢
Send the resulting tuple (H,,z}) to the server

12:

13:
14:
15:
16:
17:

18:

> Server-side estimation

Server receives <Hu,’.EL> from all w; € U

for each cell C; € G do
Compute Sup(C;) as the number of tuples for which z, = H.(C};)
Compute estimate &(C}) using Equation [3|

return ¢(C1), ¢(Ca), ... for all C; € G

Perturb
(LDP)

— (H,x,)

Uniform Grid

Aggregation Estimation
b d(c,) | o(c,) | d(c,)
i —_—
(o) A | ¢(c.) |o(c))|oco)
(HyX.) o(c,) | 9(cy) | d(c,)

Each user discretizes his/her
location into a grid cell
Perturb and send using an
LDP protocol, e.g., OLH
protocol

Server receives perturbed
responses from all users
Perform estimation to
recover density estimates of
each cell
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First Phase Estimated Cell Second Phase Adaptive Gfid

Densities
b(c)= | d(cy)= | d(cy)=
49 43 18 g1 =
Adapt

0(c,)= | (c,)= | d(cy)= | —
1017 | 774 | 21 | —»

g5 \/2(1 D(Cr)-(es —1)- \/1_0
b(Cg)= | d(cy)=
998 69

Algorithm 2 Algorithmic summary of the PrivAG approach

: Input: Users 4, parameters « and o, privacy budget ¢ PY H

Output: Densities of each cell in adaptive grid G, In the fIrSt phase’ CO”eCt
data using a uniform grid to

> First phase of PrivAG 5 , ans

Server computes g1 according to Equation[4] estimate Ce”S denS|t|eS

Server divides U into two groups U1 and Uz such that |[Ui| = o x |U]

7: Server lays g1 X g; uniform grid G; on 2

8: Call Algorithm [1]with 2y, G; and  to obtain &(C,), $(Cs), ... for all Oy € G, ® |nthe second phase, adapt
9: . -

10: > Second phase of PrivAG the g”d accordlng to

1: for cach ccll o € G1 do densities obtained in the first
12: Compute g5 according to Equation

13: Divide C into g5 x g5 cells of equal size phase

14: Let G,, denote the resulting grid after the above divisions
15: Call Algorithm with Uz, G,y and ¢ to obtain @¢(C4), (C2), ... for all cells in G,y




& Advanced Adaptive Grid (AAG)

/lll\\
PrivAG
Shortcomings of Yang et al. (2022)’s
adaptive grid PrivAG: s
e Number of cells is too similar to
that of the initial grid 2000 Koo
¢ \When dividing, does not take
neighbouring cells into account 50.000
Dataset Grid e=05| =1 e =3 =25 AAG
Initial G, 36 81 324 900
Gowalla PrivAG 42 96 440 1358 {0 aas
AAG 276 267 2451 8745 ———
Initial G; 25 49 225 625 2 x
Porto PrivAG 31 63 256 745 000 5y 1000
AAG 188 390 | 1567 | 4503 ers sers
Initial G, 16 36 121 361 )
Foursquare | PrivAG 19 45 162 455 i
AAG | 107 | 235 | 957 | 2794 e
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Key components of our AAG:
e Division of the current cell is done by 10.000
also taking into account neighboring

cells’ densities

e Use of different
parameters in g, and gk

e Handling edge and
corner cells

o(CY)
o(CY) +2(CP)

vsplit = X (height of Cy)

. d(CH) . :
hsplit = X (width of Cy)
o(Cy) + D(CfF)

"% Advanced Adaptive Grid (AAG)

AAG

users

5y
2.000 4.000
users users

30.000
users

Algorithm 3 Algorithmic summary of the AAG approach
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Input: Users I{, parameters o and o, privacy budget
Output: Densities of each cell in adaptive grid G,.q

> First phase of AAG
The first phase of AAG is the same as PrivAG

> Second phase of AAG

for each cell C € G, do
Compute gé”' according to Equation
Compute hsplit for Cr according to Equation [
Compute wvsplit for Cy according to Equation [7]
Divide (' into four subcells using hsplit and vsplit
if g5 > 2 then

5’2

Uniformly divide each subecell into plE‘CG‘S horizontally and vertically

Let G,oy denote the resulting grid after the ’1b0\e divisions
Call Algorit-hmwith Uz, Gaug and £ to obtain &(C4), P(Cy), .. for all cells in G4y
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Experiment Setup

e All implementations were done in Python

e Three datasets: Porto, Gowalla, Foursquare

o Porto: From ECML-PKDD Taxi Service Prediction competition,
used locations which are inside the city of Porto

o Gowalla: Location based social networking site, used check-ins
made in the United States

o Foursquare: Check-ins of social media users in Tokyo

/

oy
: 1 GriSy: — Wis,,
@Error metric: AQE = — % lans, ai

9 mazx{ans,,,b}

—1

y =500, number of random queries
b = 2% x (number of users), to mitigate dominating
effect of extremely selective queries
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= Experiments - Privacy Budget
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Foursquare dataset Porto dataset
Dataset | Method | = = 0.5 £ = £=3 £E=29
UG 0.0070 0.0066 | 0.0064 | 0.0056
Gowalla PrivAG 0.0075 0.0077 | 0.0072 | 0.0062
AAG 0.0047 | 0.0051 | 0.0049 | 0.0041
UG 0.0048 0.0045 | 0.0045 | 0.0045
Porto PrivAG 0.0058 0.0056 | 0.0059 | 0.0060
AAG 0.0048 | 0.0045 | 0.0049 | 0.0049
UG 0.0055 0.0054 | 0.0051 | 0.0048
Foursquare | PrivAG 0.0060 0.0062 | 0.0061 | 0.0069
AAG 0.0044 | 0.0043 | 0.0040 | 0.0047

—6— Uniform

5

15 20 25 30
N

Gowalla dataset

10

Query size
(p) Is fixed
to 0.01%



N2

S|

Uy

Experiments - Varying p

Dataset | Method | p = 0.005% | p=0.01% | p = 0.05% | p = 0.1% | p = 0.5%
UG 0.0034 0.0067 0.0279 0.0485 0.120
Gowalla | PrivAG 0.0039 0.0077 0.0374 0.0728 0.305
AAG 0.0023 0.0051 0.0236 0.0460 0.185
UG 0.0028 0.0045 0.0180 0.0321 0.082
Porto PrivAG 0.0034 0.0056 0.0283 0.0540 0.205
AAG 0.0025 0.0045 0.0247 0.0501 0.195
UG 0.0032 0.0054 0.0243 0.0416 0.126
Foursquare| PrivAG 0.0036 0.0062 0.0291 0.0547 0.203
AAG 0.0025 0.0043 0.0234 0.0450 0.177
Dataset | Method | p=2% | p=4% | p=6% | p=8% | p=10%
UG 0.20 0.21 0.24 0.22 0.21
Gowalla PrivAG 0.83 1.15 1.32 1.29 1.25
AAG 0.52 0.71 0.73 0.73 0.72
UG 0.12 0.12 0.11 0.12 0.09
Porto PrivAG 0.54 0.76 0.85 0.91 0.91
AAG 0.38 0.49 0.60 0.61 0.65
UG 0.17 0.20 0.19 0.22 0.21
Foursquare | PrivAG 0.48 0.63 0.68 0.70 0.71
AAG 0.40 0.56 0.64 0.70 0.71

In both tables, € is fixed to 1




,é Conclusions

@ We studied three grid-based decomposition approaches under LDP:
Uniform Grid (UG), PrivAG, and AAG

@ Our proposed AAG approach advances the state-of-the-art adaptive
grid approach (PrivAG) by performing cell divisions by taking into
account the neighboring cells’ densities

@ We experimentally compared UG, PrivAG, and AAG using three
datasets and multiple parameter values (¢ and p)
OAAG always beats PrivAG, and it also beats UG when p is small
OWhen p is large, UG with a near-optimal choice of grid size
becomes better than AAG

@ Future Work:
OWe will investigate methods to improve PrivAG and AAG’s utility
especially in high € regimes
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