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Introduction
• Data may contain sensitive information that must be 

safeguarded from disclisure, following GDPR policies.
• Goal is to produce valid data mining results while protecting 

privacy.
• Privacy Models such as k-Anonymity, Differential Privacy
• Alternative: Synthetic Data Generation, preserves global 

properties without revealing individual identities. 
• Mimics the properties of original data, substitutes sensitive data 

with synthetic data. 
• Goal: Evaluate Distribution Learning Capabilities of Synthetic 

Data Generators
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Generation of Synthetic Data- GAN & VAE

3

Learn from random noise as input, and generate 
realistic copies of original data as the training 
progresses. 

Autoencoder is a neural network that converts 
high dimensional input into the latent vector and 
converts the latent vector back to the input with 
the highest possible quality.

Generative Adversarial Network Variational AutoEncoder
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Challenges

GANs and VAEs are 
black-box in nature 

due to complex 
learning 

mechanism

Visualization and 
understanding 

difficult for high-
dimensional 

datasets

How well do GANs 
and VAEs capture 

complex data 
distributions?
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Motivation 
• Assess the effectiveness of GAN & VAE in learning data 

distributions
• Determine whether the manifolds generated using synthetic 

data generators converge to real data manifolds. 
• GANs have demonstrated impressive results on certain 

datasets, but limitations on others, such as ImageNet . The 
intricate distribution of natural images poses challenges for 
GAN. 
• Datasets: Artificially generated datasets (Swish Roll, S-

Curve) and point datasets with discontinuities, MNIST 
dataset. 
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How to handle high-dimensional 
data: Manifold

• A topological space that locally resembles 
Euclidean space.
• Take a geometric object from ℝk and try to 

fit it into ℝ𝑛, > . 𝑛 𝑘
• Eg. of a 1D manifold: Embed a line 

segment in 2D. 
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• Any real-world high-dimensional data lie on low-dimensional manifolds 
embedded within the high-dimensional space. 

• Manifold Learning techniques: UMAP, t-SNE, LLE etc 

Manifold  Hypothesis
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Why do we need a 
manifold?
• More complicated structures are 

expressed and understood in 
simpler spaces.
• Additional structures are often 

defined on manifolds.
• Eg. Differentiable manifolds on 

which one can do calculus, 
Riemannian manifolds on which 
distances and angles can be 
defined, etc. 
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Visualizing Synthetic Generation from S-Curve 
Transformation
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Unrolling the Swish Roll: Exploring Manifold 
Transformation
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Understanding 2D Point Datasets

Concentric Circles Two- Half Circles
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Visualizing Real-World Data
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Visualization with Diverse GAN 
Architectures

DPGAN CTGAN DCGAN VGAN
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Privacy Risk Assessment

(a) 10% additional 
points arranged 
along a straight 
line

(b) VAE accurately 
predicting those 
points

(c) Only 0.01% of 
points are newly 
added and 
strategically placed

(d) VAE did not 
memorize the specific 
data samples but 
learned general 
patterns instead. 
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Summary
• GANs: High instability, requires complex optimization, struggle with 

certain distributions
• VAEs: Better performance in capturing data distribution and 

structure
• VAE demonstrate a superior ability to understand and learn the 

intrinsic structure of our artificial point dataset compared to GAN.
• Enhanced understanding of privacy-preserving methods for data 

generation
• Future Work: Improve GAN training and inverse-transformation of 

manifold techniques
Thank You!
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