

# Balancing Privacy and Utility in Multivariate Time-Series Classification

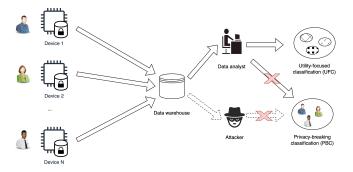
Adrian-Silviu Roman, Béla Genge, and Piroska Haller

George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures Romania

- 1. Introduction
- 2. Problem description
- 3. Proposed approach
- 4. Experimental results
- 5. Conclusion

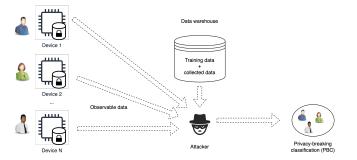
- The collection and processing of sensor data involves important privacy issues.
- The case of Time-Series Classification (TSC).
- The objective is to protect the multivariate data by a combination of feature clustering and perturbation, and
- $\cdot\,$  To balance the utility and privacy of the protected data.

# **Problem description**



**Figure 1:** Problem description. Sensor data, collected from several devices, undergoes protection at the device level and is transmitted to a centralized data warehouse for classification, with utility and privacy constraints.

# **Problem description**



**Figure 2:** The adversarial model. The attacker has access to observable data, training data, and all previously collected data.

#### Possible scenario:

- A fleet management company that collects data (vehicle speed, engine diagnostics, fuel consumption) from sensors in their vehicles.
- Data is sent to a third-party processor (an insurance company).
- Utility objectives:
  - categorize the driving behavior, distinguishing between aggressive and normal driving styles;
  - · categorize the type of road surfaces used by the vehicles.
- Privacy objective:
  - ensure that the data remains protected from potential attackers or "honest-but-curious" actors (no user identification is possible).

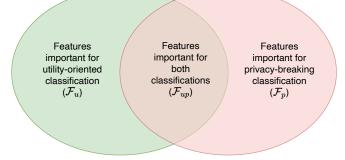


Figure 3: Feature clustering objective.

- A dual-model, consisting of two competing classifiers, an **Utility-Focused Classifier** (UFC) and a **Privacy-Breaking Classifier** (PBC).
- A protection technique independent of the perturbation type, applying the perturbation to multivariate time-series data and utilizing feature importance to distribute the noise.
- The classification utility-privacy balance score,  $\mathcal{B}_{UP}$ .
- Experiments on two well-known driver datasets [1, 2] using the *w*-event LDP perturbation method.

#### Proposed approach

• Consider the classification models of UPC and PBC:

$$f_p : \mathbb{R}^{w \cdot d} \longrightarrow \mathcal{C}_u \text{ and } f_u : \mathbb{R}^{w \cdot d} \longrightarrow \mathcal{C}_p$$
 (1)

• Define the classification accuracy on unperturbed data for each model as:

$$\mathcal{A}_{u} = \frac{1}{N \cdot T} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{I}(\mathbf{Y}_{ui}^{t} = f_{u}(\mathbf{X}_{i}^{t})),$$
(2)

$$\mathcal{A}_p = \frac{1}{N \cdot T} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{I}(\mathbf{Y}_{pi}^t = f_p(\mathbf{X}_i^t))$$
(3)

• Define the classification accuracy on perturbed data:

$$\mathcal{A}'_{u}(\theta) = \frac{1}{N \cdot T} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{I}(\mathbf{Y}^{t}_{ui} = f_{u}(\mathcal{M}(\mathbf{X}^{t}_{i}; \theta))), \text{and}$$
(4)

$$\mathcal{A}_{p}^{\prime}(\theta) = \frac{1}{N \cdot T} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{I}(\mathbf{Y}_{pi}^{t} = f_{p}(\mathcal{M}(\mathbf{X}_{i}^{t};\theta))).$$
(5)

• The following conditions bound the data protection objective:

$$\mathcal{A}'_p(\theta) \ll \mathcal{A}_p \text{ and } \mathcal{A}'_u(\theta) \approx \mathcal{A}_u.$$
 (6)

• We introduce  $\mathcal{B}_{UP}$ , the classification utility-privacy balance:

$$\mathcal{B}_{UP}(\theta) = 1 - \frac{\mathcal{A}'_u(\theta)}{\mathcal{A}_u} \cdot \left(1 - \frac{\mathcal{A}'_p(\theta)}{\mathcal{A}_p}\right).$$
(7)

• Optimisation objective - find the perturbation parameter set  $\theta^*$  such that  $\mathcal{B}_{UP}(\theta)$  is minimum:

$$\theta^* = argmin_{\theta} \{ \mathcal{B}_{UP}(\theta) | \mathcal{B}_{UP}(\theta) > 0 \}.$$
(8)

The proposed method for finding the perturbation parameters consists of the following steps:

- Compute feature importance for the two classifications (UFC and PBC);
- 2. Cluster features based on the computed importance coefficients (using  $\rho_I$ ):

$$\mathcal{F} = \mathcal{F}_u \cup \mathcal{F}_p \cup \mathcal{F}_{up} \tag{9}$$

- 3. Distribute and apply the perturbation ( $\beta_T$ ) to the features in  $\mathcal{F}_p$  and  $\mathcal{F}_{up}$ , using parameters  $\alpha_p$  and  $\alpha_{up}$ ;
- 4. Select the perturbation parameter set  $\theta^*$  such that  $\mathcal{B}_{UP}(\theta)$  is minimum, with  $\theta = \{\rho_I, \beta_T, \alpha_p, \alpha_{up}\}.$

#### **Proposed Approach**

**Proposition**: Let  $\mathcal{M}$  be a mechanism composed of m mechanisms  $\mathcal{M}_1$ ,  $\mathcal{M}_2$ , ...,  $\mathcal{M}_i$ , ...,  $\mathcal{M}_m$ , m < d, one for each attribute/feature  $F_i$  ( $F_i \in \mathcal{F}_p$ or  $F_i \in \mathcal{F}_{up}$ ), satisfying  $\epsilon_i$ -LDP, such that the privacy budget for each mechanism  $\mathcal{M}_i$  is defined as follows:

$$\epsilon_i = \begin{cases} \frac{\alpha_p \cdot \beta_T}{|\mathcal{F}_p|}, & \text{if } F_i \in \mathcal{F}_p, \\ \frac{\alpha_{up} \cdot \beta_T}{|\mathcal{F}_{up}|}, & \text{if } F_i \in \mathcal{F}_{up}, \end{cases}$$

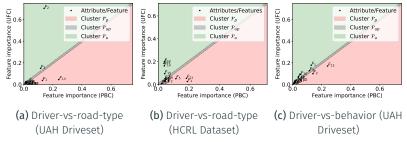
where  $\alpha_p + \alpha_{up} = 1$ , with  $\alpha_p, \alpha_{up} \in [0, 1]$ . If the following condition is fulfilled:

$$\frac{\alpha_p}{|\mathcal{F}_p|} \le \frac{\alpha_{up}}{|\mathcal{F}_{up}|}.$$
(10)

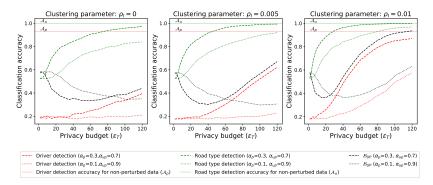
then the perturbation of features in  $\mathcal{F}_p$  is higher than or equal to the perturbation applied on features in  $\mathcal{F}_{up}$ .

 Table 1: Classification accuracy for unprotected test data with a FCN-LSTM model.

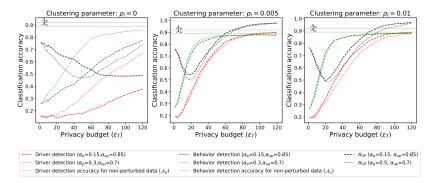
| Dataset          | Classification objec- | Achieved ac- | Benchmark    |  |  |
|------------------|-----------------------|--------------|--------------|--|--|
|                  | tive                  | curacy       | accuracy [3] |  |  |
| UAH Driveset [2] | Driver detection      | 0.9240       | 0.8986       |  |  |
|                  | Behavior detection    | 0.8863       | NA           |  |  |
|                  | Road type detection   | 0.9998       | NA           |  |  |
| HCRL [1]         | Driver detection      | 0.9120       | 0.9510       |  |  |
|                  | Road type detection   | 0.9615       | NA           |  |  |



**Figure 4:** Feature clustering based on feature importance coefficients for two classifications (UFC and PBC), conducted using Random Forest with Gini importance ( $\rho_I = 0.01$ ).



**Figure 5:** Driver-vs-road-type classification accuracy on perturbed data (UAH dataset).



**Figure 6:** Driver-vs-behavior classification accuracy on perturbed data (UAH dataset).

**Table 2:** Classification accuracy for perturbed data using the proposed approach.

| Dataset                         | Classification<br>scenario | Perturbation ap-<br>proach     | Clustering<br>parameter<br>$(\rho_I)$ | # of features<br>per cluster $(\mathcal{F}_p, \mathcal{F}_{up}, \mathcal{F}_u)$ | Perturbation<br>parameters ( $\alpha_p$ ,<br>$\alpha_{up}$ ) | $\min(\mathcal{B}_{UP})$ | $\epsilon_T$ | $\mathcal{A}_p'(\theta)$ | $\mathcal{A}_u'(\theta)$ | MAE    |
|---------------------------------|----------------------------|--------------------------------|---------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|--------------|--------------------------|--------------------------|--------|
| UAH [2] Driver-vs-<br>road-type |                            | w-event LDP (no clustering)    | -                                     | -                                                                               | -                                                            | 0.3348                   | 15           | 0.2103                   | 0.8610                   | 1.0170 |
|                                 |                            | w-event LDP                    | 0                                     | {15,0,2}                                                                        | {0.3,0.7}                                                    | 0.3357                   | 60           | 0.2480                   | 0.9058                   | 0.7424 |
|                                 |                            | (feature clustering,           |                                       |                                                                                 | {0.1,0.9}                                                    | 0.3459                   | 100          | 0.1941                   | 0.8266                   | 1.3350 |
|                                 |                            | proposed method)               | 0.005                                 | {12,3,2}                                                                        | {0.3,0.7}                                                    | 0.3022                   | 40           | 0.2227                   | 0.9175                   | 0.6038 |
|                                 |                            |                                |                                       |                                                                                 | {0.1,0.9}                                                    | 0.2973                   | 100          | 0.2012                   | 0.8967                   | 0.6921 |
|                                 |                            |                                | 0.01                                  | {10,5,2}                                                                        | {0.3,0.7}                                                    | 0.3630                   | 20           | 0.2564                   | 0.8831                   | 0.8141 |
|                                 |                            |                                |                                       |                                                                                 | {0.1,0.9}                                                    | 0.3623                   | 40           | 0.2253                   | 0.8415                   | 1.0194 |
|                                 | Driver-vs-<br>road-type    | w-event LDP (no clustering)    | -                                     | -                                                                               | -                                                            | 0.5683                   | 30           | 0.4356                   | 0.7941                   | 0.5291 |
|                                 |                            | w-event LDP                    | 0                                     | {10,0,5}                                                                        | {0.3,0.7}                                                    | 0.5765                   | 60           | 0.4613                   | 0.8235                   | 0.4306 |
|                                 |                            | (feature clustering,           |                                       |                                                                                 | {0.15,0.85}                                                  | 0.5629                   | 120          | 0.4377                   | 0.8076                   | 0.4302 |
|                                 |                            | proposed method)               | 0.01                                  | {9,2,4}                                                                         | {0.3,0.7}                                                    | 0.5785                   | 60           | 0.4635                   | 0.8235                   | 0.4304 |
|                                 |                            |                                |                                       |                                                                                 | {0.15,0.85}                                                  | 0.5749                   | 100          | 0.3755                   | 0.6945                   | 0.5168 |
|                                 |                            |                                | 0.015                                 | {7,4,4}                                                                         | {0.3,0.7}                                                    | 0.5803                   | 40           | 0.3841                   | 0.6968                   | 0.4946 |
|                                 |                            |                                |                                       |                                                                                 | {0.15,0.85}                                                  | 0.5707                   | 90           | 0.4263                   | 0.7750                   | 0.4428 |
|                                 | Driver-vs-<br>behavior     | w-event LDP (no<br>clustering) | -                                     | -                                                                               | -                                                            | 0.4859                   | 30           | 0.3090                   | 0.6844                   | 0.5077 |
|                                 |                            | w-event LDP                    | 0                                     | {9.0.8}                                                                         | {0.3,0.7}                                                    | 0.4692                   | 50           | 0.3181                   | 0.7220                   | 0.3651 |
|                                 |                            | (feature clustering,           |                                       |                                                                                 | {0.15,0.85}                                                  | 0.4834                   | 100          | 0.3305                   | 0.7175                   | 0.3655 |
|                                 |                            | proposed method)               | 0.005                                 | {6,6,5}                                                                         | {0.3,0.7}                                                    | 0.4986                   | 20           | 0.3759                   | 0.7545                   | 0.4110 |
|                                 |                            |                                |                                       |                                                                                 | {0.15,0.85}                                                  | 0.5426                   | 20           | 0.4000                   | 0.7201                   | 0.5002 |
|                                 |                            |                                | 0.01                                  | {4,8,5}                                                                         | {0.3,0.7}                                                    | 0.4836                   | 25           | 0.3714                   | 0.7707                   | 0.3609 |
|                                 |                            |                                |                                       |                                                                                 | {0.15,0.85}                                                  | 0.4965                   | 20           | 0.3480                   | 0.7207                   | 0.4458 |

- We proposed a novel approach for protecting multivariate time series data in the context of TSC.
- The problem is defined in the context of two opposing classifiers (UFC and PBC).
- We introduced the classification utility-privacy balance score,  $\mathcal{B}_{\mathit{UP}}.$
- The method achieves a balance between privacy preservation and data utility.

# Balancing Privacy and Utility in Multivariate Time-Series Classification

Thank you!

Contact: adrian.roman@umfst.ro

Byung Il Kwak, Jiyoung Woo, and Huy Kang Kim.
 Know your master: Driver profiling-based anti-theft method.
 In PST 2016, 2016.

Eduardo Romera, Luis M Bergasa, and Roberto Arroyo.
Need data for driver behaviour analysis? presenting the public uah-driveset.

In 2016 IEEE 19th international conference on intelligent transportation systems (ITSC), pages 387–392. IEEE, 2016.

Abdellah El Mekki, Afaf Bouhoute, and Ismail Berrada. Improving driver identification for the next-generation of invehicle software systems.

IEEE Transactions on Vehicular Technology, 68(8):7406–7415, 2019.