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Introduction

• The collection and processing of sensor data involves important
privacy issues.

• The case of Time-Series Classification (TSC).
• The objective is to protect the multivariate data by a combination
of feature clustering and perturbation, and

• To balance the utility and privacy of the protected data.
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Problem description

Figure 1: Problem description. Sensor data, collected from several devices,
undergoes protection at the device level and is transmitted to a centralized
data warehouse for classification, with utility and privacy constraints.
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Problem description

Figure 2: The adversarial model. The attacker has access to observable data,
training data, and all previously collected data.

4 / 19



Problem description

Possible scenario:

• A fleet management company that collects data (vehicle speed,
engine diagnostics, fuel consumption) from sensors in their ve-
hicles.

• Data is sent to a third-party processor (an insurance company).
• Utility objectives:

• categorize the driving behavior, distinguishing between aggressive
and normal driving styles;

• categorize the type of road surfaces used by the vehicles.
• Privacy objective:

• ensure that the data remains protected from potential attackers or
”honest-but-curious” actors (no user identification is possible).
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Proposed approach
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Figure 3: Feature clustering objective.

6 / 19



Proposed approach

• A dual-model, consisting of two competing classifiers, an Utility-
Focused Classifier (UFC) and a Privacy-Breaking Classifier (PBC).

• A protection technique independent of the perturbation type, ap-
plying the perturbation to multivariate time-series data and uti-
lizing feature importance to distribute the noise.

• The classification utility-privacy balance score, BUP .
• Experiments on two well-known driver datasets [1, 2] using the
w-event LDP perturbation method.
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Proposed approach

• Consider the classification models of UPC and PBC:

fp : Rw·d −→ Cu and fu : Rw·d −→ Cp (1)
• Define the classification accuracy on unperturbed data for each
model as:

Au =
1

N · T

N∑
i=1

T∑
t=1

I(Yt
ui = fu(X

t
i)), (2)

Ap =
1

N · T

N∑
i=1

T∑
t=1

I(Yt
pi = fp(X

t
i)) (3)

• Define the classification accuracy on perturbed data:

A′
u(θ) =

1

N · T

N∑
i=1

T∑
t=1

I(Yt
ui = fu(M(Xt

i; θ))), and (4)

A′
p(θ) =

1

N · T

N∑
i=1

T∑
t=1

I(Yt
pi = fp(M(Xt

i; θ))). (5)
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Proposed Approach

• The following conditions bound the data protection objective:

A′
p(θ) ≪ Ap and A′

u(θ) ≈ Au. (6)

• We introduce BUP , the classification utility-privacy balance:

BUP (θ) = 1− A′
u(θ)

Au
·
(
1−

A′
p(θ)

Ap

)
. (7)

• Optimisation objective - find the perturbation parameter set θ∗
such that BUP (θ) is minimum:

θ∗ = argminθ{BUP (θ)|BUP (θ) > 0}. (8)
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Proposed Approach

The proposed method for finding the perturbation parameters con-
sists of the following steps:

1. Compute feature importance for the two classifications (UFC and
PBC);

2. Cluster features based on the computed importance coefficients
(using ρI ):

F = Fu ∪ Fp ∪ Fup (9)

3. Distribute and apply the perturbation (βT ) to the features in Fp

and Fup, using parameters αp and αup;
4. Select the perturbation parameter set θ∗ such that BUP (θ) is min-
imum, with θ = {ρI , βT , αp, αup}.
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Proposed Approach

Proposition: LetM be amechanism composed ofmmechanismsM1,
M2, ...,Mi, ...,Mm, m < d, one for each attribute/feature Fi (Fi ∈ Fp

or Fi ∈ Fup), satisfying ϵi-LDP, such that the privacy budget for each
mechanismMi is defined as follows:

ϵi =


αp·βT

|Fp| , if Fi ∈ Fp,
αup·βT

|Fup| , if Fi ∈ Fup,

where αp + αup = 1, with αp, αup ∈ [0, 1]. If the following condition is
fulfilled:

αp

|Fp|
≤ αup

|Fup|
. (10)

then the perturbation of features in Fp is higher than or equal to the
perturbation applied on features in Fup.
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Experimental Results

Table 1: Classification accuracy for unprotected test data with a FCN-LSTM
model.

Dataset Classification objec-
tive

Achieved ac-
curacy

Benchmark
accuracy [3]

UAH Driveset [2] Driver detection 0.9240 0.8986
Behavior detection 0.8863 NA
Road type detection 0.9998 NA

HCRL [1] Driver detection 0.9120 0.9510
Road type detection 0.9615 NA
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Experimental Results
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Figure 4: Feature clustering based on feature importance coefficients for two
classifications (UFC and PBC), conducted using Random Forest with Gini im-
portance (ρI = 0.01).
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Experimental Results
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Figure 5: Driver-vs-road-type classification accuracy on perturbed data (UAH
dataset).
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Experimental Results
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Figure 6: Driver-vs-behavior classification accuracy on perturbed data (UAH
dataset).
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Experimental Results

Table 2: Classification accuracy for perturbed data using the proposed ap-
proach.

Dataset Classification
scenario

Perturbation ap-
proach

Clustering
parameter
(ρI )

# of features
per cluster (Fp,
Fup, Fu)

Perturbation
parameters (αp,
αup)

min(BUP ) ϵT A′
p(θ) A′

u(θ) MAE

UAH [2] Driver-vs-
road-type

w-event LDP (no
clustering)

- - - 0.3348 15 0.2103 0.8610 1.0170

w-event LDP 0 {15,0,2} {0.3,0.7} 0.3357 60 0.2480 0.9058 0.7424
(feature clustering, {0.1,0.9} 0.3459 100 0.1941 0.8266 1.3350
proposed method) 0.005 {12,3,2} {0.3,0.7} 0.3022 40 0.2227 0.9175 0.6038

{0.1,0.9} 0.2973 100 0.2012 0.8967 0.6921
0.01 {10,5,2} {0.3,0.7} 0.3630 20 0.2564 0.8831 0.8141

{0.1,0.9} 0.3623 40 0.2253 0.8415 1.0194

HCRL [1] Driver-vs-
road-type

w-event LDP (no
clustering)

- - - 0.5683 30 0.4356 0.7941 0.5291

w-event LDP 0 {10,0,5} {0.3,0.7} 0.5765 60 0.4613 0.8235 0.4306
(feature clustering, {0.15,0.85} 0.5629 120 0.4377 0.8076 0.4302
proposed method) 0.01 {9,2,4} {0.3,0.7} 0.5785 60 0.4635 0.8235 0.4304

{0.15,0.85} 0.5749 100 0.3755 0.6945 0.5168
0.015 {7,4,4} {0.3,0.7} 0.5803 40 0.3841 0.6968 0.4946

{0.15,0.85} 0.5707 90 0.4263 0.7750 0.4428

UAH [2] Driver-vs-
behavior

w-event LDP (no
clustering)

- - - 0.4859 30 0.3090 0.6844 0.5077

w-event LDP 0 {9,0,8} {0.3,0.7} 0.4692 50 0.3181 0.7220 0.3651
(feature clustering, {0.15,0.85} 0.4834 100 0.3305 0.7175 0.3655
proposed method) 0.005 {6,6,5} {0.3,0.7} 0.4986 20 0.3759 0.7545 0.4110

{0.15,0.85} 0.5426 20 0.4000 0.7201 0.5002
0.01 {4,8,5} {0.3,0.7} 0.4836 25 0.3714 0.7707 0.3609

{0.15,0.85} 0.4965 20 0.3480 0.7207 0.4458
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Conclusion

• We proposed a novel approach for protecting multivariate time
series data in the context of TSC.

• The problem is defined in the context of two opposing classifiers
(UFC and PBC).

• We introduced the classification utility-privacy balance score,
BUP .

• Themethod achieves a balance between privacy preservation and
data utility.
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Q & A

Balancing Privacy andUtility inMultivariate Time-
Series Classification

Thank you!
Contact: adrian.roman@umfst.ro
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