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- The collection and processing of sensor data involves important
privacy issues.

- The case of Time-Series Classification (TSC).

- The objective is to protect the multivariate data by a combination
of feature clustering and perturbation, and

- To balance the utility and privacy of the protected data.
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Figure 1: Problem description. Sensor data, collected from several devices,

undergoes protection at the device level and is transmitted to a centralized
data warehouse for classification, with utility and privacy constraints.
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Figure 2: The adversarial model. The attacker has access to observable data,
training data, and all previously collected data.
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Possible scenario:

- A fleet management company that collects data (vehicle speed,

engine diagnostics, fuel consumption) from sensors in their ve-
hicles.

- Data is sent to a third-party processor (an insurance company).
- Utility objectives:
- categorize the driving behavior, distinguishing between aggressive
and normal driving styles;
- categorize the type of road surfaces used by the vehicles.
- Privacy objective:
- ensure that the data remains protected from potential attackers or
"honest-but-curious” actors (no user identification is possible).
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Figure 3: Feature clustering objective.
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- A dual-model, consisting of two competing classifiers, an Utility-
Focused Classifier (UFC) and a Privacy-Breaking Classifier (PBC).

- A protection technique independent of the perturbation type, ap-
plying the perturbation to multivariate time-series data and uti-
lizing feature importance to distribute the noise.

- The classification utility-privacy balance score, By p.

- Experiments on two well-known driver datasets [1, 2] using the
w-event LDP perturbation method.
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- Consider the classification models of UPC and PBC:

fp: R4 — ¢, and f,: RY — C, (1)
- Define the classification accuracy on unperturbed data for each
model as:
1 N T
t t

N T

A» = N T Zzlﬂ X)) )
=11

- Define the classification accuracy on perturbed data:

A 0) = S OSTIYL = fu (MK 0)),and ()
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- The following conditions bound the data protection objective:
A (0) < Ay and A, (0) = A, (6)

- We introduce By p, the classification utility-privacy balance:

Bup(0) =1— A:f) . <1 - Ajff)) . 7)

- Optimisation objective - find the perturbation parameter set 6*
such that By p(#) is minimum:

0" = argming{BUp(0)|BUp(0) > 0}. (8)
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The proposed method for finding the perturbation parameters con-
sists of the following steps:

1. Compute feature importance for the two classifications (UFC and
PBC);
2. Cluster features based on the computed importance coefficients
(using pr):
F=F,UF,UFy, (9)
3. Distribute and apply the perturbation (37) to the features in 7,
and F,;, using parameters a, and auy;

4. Select the perturbation parameter set 8* such that By p(6) is min-
imum, with 8 = {pr, Br, ap, avyp -

10/19



Proposition: Let M be a mechanism composed of m mechanisms My,
Ma, .., M, ..., My, m < d, one for each attribute/feature F; (F; € F,
or F; € Fup), satisfying €;-LDP, such that the privacy budget for each
mechanism M; is defined as follows:

a, B .
G_-p‘T, IfFi S ]:p,

upB 1
()];upr’ |fFl G.Fup,

€; =

where a, + ayp = 1, With oy, ayy € [0, 1]. If the following condition is
fulfilled:

Qp Qup

< . (10)
[Fpl = [ Fupl

then the perturbation of features in F,, is higher than or equal to the
perturbation applied on features in F,.
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Table 1: Classification accuracy for unprotected test data with a FCN-LSTM

model.
Dataset Classification objec- Achieved ac- Benchmark
tive curacy accuracy [3]
UAH Driveset [2] Driver detection 0.9240 0.8986
Behavior detection 0.8863 NA
Road type detection 0.9998 NA
HCRL [1] Driver detection 0.9120 0.9510

Road type detection 0.9615 NA
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Figure 4: Feature clustering based on feature importance coefficients for two
classifications (UFC and PBC), conducted using Random Forest with Gini im-

portance (p; = 0.01).
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Figure 5: Driver-vs-road-type classification accuracy on perturbed data (UAH

dataset).
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Figure 6: Driver-vs-behavior classification accuracy on perturbed data (UAH
dataset).
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Table 2: Classification accuracy for perturbed data using the proposed ap-
proach.
Dataset Classification ~ Perturbation ap- Clustering # of features Perturbation min(Byp) er AL(0)  AL(0)  MAE
scenario proach parameter per cluster (]-‘p, parameters (w,,,
(pr) Fups Fu) up)
UAH[2]  Driver-vs- w-event LDP (no - - - 0.3348 15 02103 08610 1.0170
road-type clustering)
w-event LDP 0 {150,2} 03,07} 0.3357 60 02480 09058 0.7424
(feature clustering, {0.1,0.9} 0.3459 100 0.1941 0.8266 1.3350
proposed method)  0.005 {12,3,2} 03,07} 0.3022 40 02227 09175 06038
{0.1,0.9} 0.2973 100 02012 0.8967 0.6921
0.01 {10,5,2} 03,07} 0.3630 20 02564 0.8831 08141
{0.2,0.9} 0.3623 40 02253 08415 1.0194
HCRL([1]  Driver-vs- w-event LDP (no - - 0.5683 30 04356 07941 0.5291
road-type clustering)
w-event LDP 0 {10,0,5} {0.3,0.7} 0.5765 60 0.4613 0.8235 0.4306
(feature clustering, {0.15,0.85} 0.5629 120 04377 08076 0.4302
proposed method)  0.01 {9,2,4} {0.3,0.7} 0.5785 60 0.4635 0.8235 0.4304
{0.15,0.85} 0.5749 100 03755 0.6945 0.5168
0.015 {7,4,4} {0.3,0.7} 0.5803 40 03841 0.6968 0.4946
{0.15,0.85} 0.5707 90 04263 07750 0.4428
UAH [2]  Driver-vs- w-event LDP (no - - - 0.4859 30 03090 0.6844 0.5077
behavior clustering)
w-event LDP 0 (9,08} {0.3,0.7} 0.4692 50 03181 07220 03651
(feature clustering, {0.15,0.85} 0.4834 100 03305 0.7175 0.3655
proposed method)  0.005 {6,6,5} {0.3,0.7} 0.4986 20 03759 0.7545 0.4110
{0.15,0.85} 0.5426 20 04000 07201 0.5002
0.01 {4,8,5} {0.3,0.7} 0.4836 25 03714 0.7707 0.3609
{0.15,0.85} 0.4965 20 03480 07207 0.4458
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- We proposed a novel approach for protecting multivariate time
series data in the context of TSC.

- The problem is defined in the context of two opposing classifiers
(UFC and PBC).

- We introduced the classification utility-privacy balance score,
BUP-

- The method achieves a balance between privacy preservation and
data utility.
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Balancing Privacy and Utility in Multivariate Time-
Series Classification

Thank you!

Contact: adrian.roman@umfst.ro
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