

Mathematisch-Naturwissenschaftliche Fakultät

_

- Medical Data Privacy and Privacy Preserving Machine Learning
- Institute for Bioinformatics and Medical Informatics

Dynamic k-anonymity: A Topological Framework

Arjhun Swaminathan, Mete Akgün

International Workshop on Data Privacy Management (DPM 2024), September 19, 2024

Outline

- k-anonymity
- Topology informed k-anonymity
 - Čech Complexes
 - Persistence Barcodes
 - Weighted Persistence Barcodes
- Dynamic k-anonymity using Persistence Homology
 - \circ Addition
 - Deletions
 - \circ Updates

Introduction

The goal of k-anonymity is to protect data prior to publishing.

Name	Admission Date	Age	Blood Pressure	Diagnosis	
Maria	02.10.2022	23	$121\mathrm{mm}\mathrm{Hg}$	Anxiety	
Priya	05.10.2022	44	$97\mathrm{mm}~\mathrm{Hg}$	\mathbf{UTI}	
Ahmed	03.01.2023	21	$95\mathrm{mm}\mathrm{Hg}$	_	
Aiden	05.02.2023	41	$100 \mathrm{mm} \mathrm{Hg}$	Asthma	
Identifiers	Quasi-identifiers			Sensitive Data	

Table 1: Table illustrating the classification of data attributes into identifiers (to be de-identified prior to publication), quasi-identifiers, and sensitive data.

Problem: Quasi-identifier data can collectively identify an individual.

k-anonymity

How do we solve the problem?

Make k-individuals look alike.

T		
02.10.2022	23	121
05.10.2022	44	97
03.01.2023	21	95
05.02.2023	41	100

$ar{T}$				
2022	20 - 50	95 - 125		
2022	20 - 50	95 - 125		
2023	*1	70 - 100		
2023	*1	70 - 100		

$ar{T}^*$				
*	*	**	**	* * *
*	*	**	**	**
*	*	**	**	**
*	*	**	**	***

Data privacy vs. Data Utility.

œ

Pro: Can compute multiple generalizations for varied k-anonymity requirements in a single computation.

Con: Is restricted to static data. Needs complete recomputation for any changes to data - expensive.

1. Make a point cloud

- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

Arthur Jaffe, "VR Polygons: Non-Euclidean Virtual Reality," stat.berkeley.edu.

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex

3. Compute the Persistence Barcode

4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

2-anonymity

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

- 1. Make a point cloud
- 2. Build a Čech complex
- 3. Compute the Persistence Barcode
- 4. Build Weighted Persistence Barcode

Pro: Can compute multiple generalizations for varied k-anonymity requirements in a single computation.

Con: Is restricted to static data. Needs complete recomputation for any changes to data - expensive.

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

We do this using a breadth-first search (BFS).

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

EBERHARD KARLS UNIVERSITAT TÜBINGEN - Medical Data Privacy Preserving Machine Learning - Institute for Bioinformatics and Medical Informatics

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

Not a lot of changes occur when data is added. They are primarily local.

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT – Medical Data Privacy and Privacy Preserving Machine Learning – Institute for Bioinformatics and Medical Informatics

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

We introduce filtration trimming - where we find the radii where the changes occur, and only compute homology there.

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

We introduce filtration trimming - where we find the radii where the changes occur, and only compute homology there.

Data	Added	Filtration	Trimmed
Points	Points	Length	Length
10	1	231	19
10	2	298	20
10	5	575	45
20	1	1561	347
20	5	2625	386
20	10	4525	1115
50	1	22151	3301
50	5	27775	3792
50	10	36050	3374
100	1	171801	15379
100	5	193025	17263
100	10	221925	18760
100	25	325625	19242

Table 3: Filtration Lengths and Trimmed Filtration Lengths for Simulated Data with 2 Quasiidentifiers.

Fig. 5: Comparison of methods when data points are increased by 10% of the original dataset at each step. The time required to compute persistent homology on full and trimmed filtration lengths is plotted.

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

Persistence information is stable - minor changes in the data doesn't affect persistence information much.

- 1. Introduce Hole-Weighted Persistence Barcodes
- 2. Data Removal
- 3. Data Addition
- 4. Data Updates

If current anonymized table already meets k-anonymity requirement, just edit the hole-weighted persistence barcode appropriately.

Else, use the removal and addition algorithms.

	Previous work [1]	Our method
Persistence information	$\mathcal{O}(\sum_{i}^{M}(^{N}C_{i})^{3})$	$\mathcal{O}(\sum_{i}^{M} ({}^{N}C_{i})^{3})$
Hole-weighted persistence barcode computation	-	$\mathcal{O}(\sum_{i}^{M} (^{N}C_{i})^{3})$
'K' removals	$\mathcal{O}(\sum_{J=N-K}^{N}\sum_{i}^{M}({}^{J}C_{i})^{3})$	$\mathcal{O}(2\sum_{i}^{M}(^{N}C_{i})^{3}+KN)$
Additions	$\mathcal{O}(\sum_{i}^{M} (^{N}C_{i})^{3})$	$\mathcal{O}\left({}^{ar{T}} C_{ar{T}/2}(t/2) ight)$

*for N samples with M quasi-identifiers

*here, T represents the number of local t-dimensional simplices around the added point

œ

Future Work

- Extending to categorical data
- Incorporating more robust privacy requirements

References

[1] Speranzon, A., Bopardikar, S.D.: An algebraic topological perspective to privacy. In: 2016 American Control Conference (ACC). pp. 2086–2091. IEEE (2016)

[2] Saul Nunes, "A Nerve Playground," sauln.github.io.

[3] LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: 22nd International conference on data engineering (ICDE'06). pp. 25–25. IEEE (2006)

Thanks for listening!

