

Computer and Data Sciences

Privacy-Preserving Optimal Parameter Selection for Collaborative Clustering

Authors: Maryam Ghasemian, Erman Ayday Presenter on be half of the authors: Alexander Nemecek

International Workshop on Data Privacy Management (DPM 2024), September 19, 2024

INTRODUCTION

Overview of Clustering:

- *Definition:* Clustering is an unsupervised machine learning technique used to group similar data points based on certain features.
- Importance: Fundamental for pattern recognition, data analysis, and segmentation.

Collaborative Clustering:

- *Definition:* Multiple data owners collaborate by sharing data to improve clustering outcomes.
- *Challenge:* Ensuring privacy while achieving effective clustering.

Purpose of the Study:

• To explore how to select optimal clustering parameters in a privacy-preserving manner.

PROBLEM STATEMENT

Objective:

• Develop a method for selecting optimal clustering parameters in a privacy-preserving manner.

□ Key Challenge:

- Existing Approaches:
 - Many existing works rely on pre-defined clustering algorithms and a fixed number of clusters.
 - These methods often apply encryption techniques to protect data privacy.

• Limitations:

• Pre-selecting the number of clusters and the algorithm may not be suitable for all datasets, leading to suboptimal clustering results.

Our Contribution:

- We focus on identifying the optimal clustering algorithm and the corresponding hyperparameters within a privacy-preserving framework.
- Our approach addresses the gap by allowing flexibility in the choice of clustering parameters, tailored to the specific data being analyzed, while still ensuring robust privacy protection.

CLUSTERING ALGOLITHMS

K-Means (Partitioning-based):

- Divides data into K non-overlapping clusters.
- Minimizes the sum of distances between data points and their respective cluster centroids.

Hierarchical Clustering (HC):

- Builds a hierarchy of clusters.
- Can be agglomerative (bottom-up) or divisive (top-down).
- Useful for data with a hierarchical structure.

Gaussian Mixture Models (GMM, Distribution-based):

- Assumes data is generated from a mixture of Gaussian distributions.
- Flexible with complex cluster structures.

DBSCAN (Density-based):

- Identifies clusters based on the density of data points.
- Effective in finding arbitrarily shaped clusters.
- Marks points in low-density regions as outliers.

DIFFERENTIAL PRIVACY

Overview:

• Differential Privacy (DP) is a framework to ensure that the output of a computation does not compromise the privacy of individuals in the dataset.

Local Differential Privacy (LDP):

- A stronger form of DP where each data owner perturbs their data before sharing it.
- Ensures that even if the perturbed data is intercepted, it cannot easily reveal the original data.

Randomized Response Mechanism:

- *Explanation*: Introduces noise into data in a controlled manner, providing plausible deniability.
- *Purpose*: To protect individual privacy while allowing aggregate data analysis.

SYSTEM MODEL

Roles:

- **Data Owners (Researchers)**: Collaborate in clustering while maintaining data privacy.
- Semi-Trusted Server: Acts as a third-party intermediary to assist in identifying the optimal clustering algorithm and hyper-parameters.

Given Content Focus:

• **Preliminary Stages**: The approach is applied before the actual clustering to determine optimal conditions.

Objective:

• Identify the best clustering algorithm and input parameters for collaborative clustering among multiple data owners.

Data Sharing:

- Data owners share selectively perturbed, *differentially private* data with the server.
- The server analyzes the noisy data and recommends the most suitable clustering algorithm and corresponding hyper-parameters.

THREAT MODEL

Server:

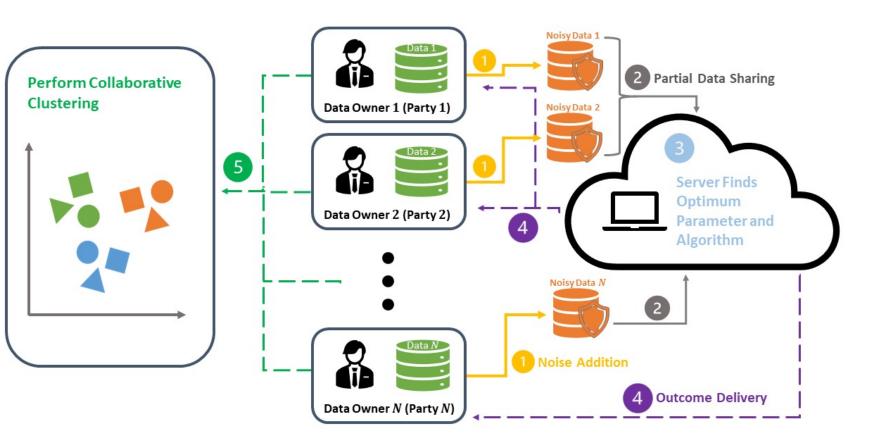
- Semi-Honest Behavior: The server might attempt to infer sensitive information but follows the protocol.
- **Risks**: Potential privacy violations, including:
 - *Membership Inference*: Inferring whether a specific record is part of a dataset.
 - **Deanonymization**: Linking anonymized data to real identities.
 - Attribute Inference: Deducing sensitive attributes from data.
- **Mitigation**: Only a small, differentially-private portion of the data is shared, significantly reducing the risk of these attacks.

Data Owners:

- Honest-but-Curious: Data owners are cooperative but may be interested in learning about each other's data.
- □ Assumption: This is a cooperative environment, focusing on algorithm and parameter selection, while other literature handles more adversarial scenarios.

PROPOSED SOLUTION

- Data owners add noise to their data using Randomized Response.
- 2 They share a portion of this differentially private data with the server.
- 3 The server analyzes the data and recommends the best algorithm and parameters.
- 4 Data owners receive these recommendations and 5 proceed with clustering.



EVALUATION SETUP

Datasets Used:

- *Obesity Dataset*: 2,111 records with 17 features, focusing on diet and physical condition.
- *Extended Iris Dataset*: 1,200 rows with 20 features, providing detailed biological information about the iris flower.

Evaluation Metrics:

- *Adjusted Rand Index (ARI)*: Measures the similarity between the predicted and true clusters.
- Silhouette Score: Assesses how similar data points are within their clusters.
- *Calinski-Harabasz Index (CH)*: Evaluates the ratio of between-cluster dispersion to within-cluster dispersion.
- *Classification Accuracy:* Although unusual for clustering, used here to assess how well clusters match known labels

SERVER RECOMENDATION

Table 4: Server Suggestions for Clustering Input Parameters: Recommendations for various clustering algorithms based on 10% shared noisy data ($\epsilon = 0.1$).

Dataset	Algorithm	Data shared to Server	e	K or Eps	Silhouette	CH
	GMM	10%	0.1	k = 8	0.34	301.30
Dataset $#1$	DBSCAN	10%	0.1	$ \mathrm{k}=10,\mathrm{Eps}=1 $	-	-
	K-Means	10%	0.1	$\mathbf{k} = 8$	0.36	318.13
	\mathbf{HC}	10%	0.1	k = 8	0.31	237.61
	GMM	10%	0.1	k = 3	0.23	46.88
Dataset $#2$	DBSCAN	10%	0.1	$\mathrm{k}=6,\mathrm{Eps}=7$	-	-
	K-Means	10%	0.1	$\mathbf{k} = 3$	0.36	61.92
	HC	10%	0.1	$\mathrm{k}=3$	0.37	51.57

1.0

0.8

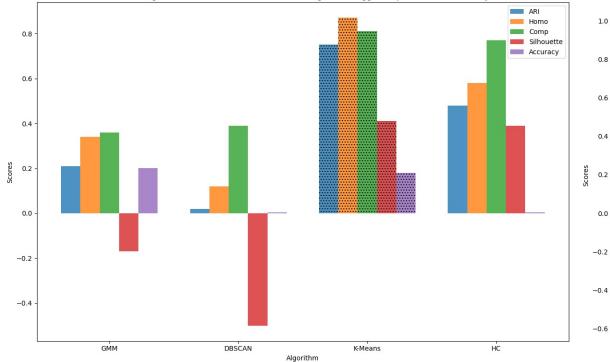
0.6

0.4

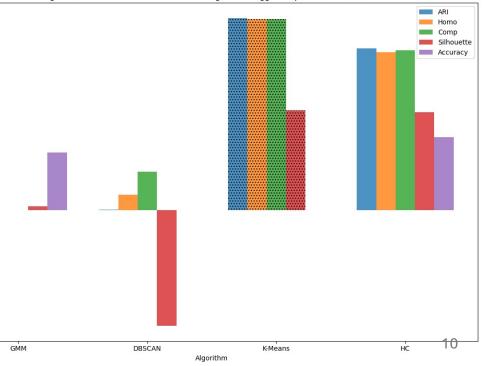
0.2

0.0

Clustering Performance on Combined dataset using server-suggested parameters for Obesity



Clustering Performance on Combined dataset using server-suggested parameters for Extended Iris



RESULTS-CLUSTERING QUALITY

\Box Impact of Privacy Parameter (ϵ):

- *Explanation*: ∈ controls the level of noise added; lower ∈ means more noise and higher privacy.
- *Results*:
 - Server's recommendations remained stable across different ∈ values.
 - Clustering quality, as measured by ARI and Silhouette Score, was largely unaffected by noise.

Table 5: Differential Impact of Privacy Levels on Clustering Algorithms in the dataset #1. This table explores the performance variations (measured through ARI, Silhouette, and Accuracy) of four distinct clustering algorithms (K-Means, HC, GMM, DBSCAN) at different privacy budget levels ($\epsilon = 0.1, 1, 5$) with a consistent data sharing percentage (10%).

Algorithm	Shared	ϵ	K	ARI	Silhouette	Accuracy
K-Means	10%	0.1	k = 8	0.75	0.41	0.18
K-Means	10%	1	k = 8	0.75	0.41	0.18
K-Means	10%	5	k = 7	1	0.44	0.15
HC	10%	0.1	k = 8	0.481	0.39	0.005
HC	10%	1	k = 7	0.482	0.41	0.17
HC	10%	5	$\mathbf{k} = 8$	0.482	0.41	0.005
GMM	10%	0.1	k = 6	0.185	-0.0143	0.201
GMM	10%	1	k = 8	0.2069	-0.072	0.05
GMM	10%	5	k = 6	0.2008	-0.007	0.14
DBSCAN	10%	0.1	k = 10	0.017	-0.504	0.005
DBSCAN	10%	1	k = 10	0.017	-0.504	0.005
DBSCAN	10%	5	k = 10	0.017	-0.504	0.005

RESULTS-DATA SHARING

Effect of Data Sharing Volume:

- <u>Experiment</u>: Compared the clustering outcomes when 10%, 30%, and 50% of the data were shared.
- <u>Findings:</u>
 - The server's recommendations were consistent regardless of the amount of data shared.
 - Clustering results (ARI, Silhouette, CH Index) were robust to changes in the data sharing volume.
- □ Conclusion: Effective clustering can be achieved even with minimal data sharing, enhancing privacy.

Table 7: Impact of Data Sharing Proportions on Clustering Algorithms' Performance in the dataset #1. This table evaluates how different proportions of data shared with the server (10%, 30%, 50%) influence the clustering outcomes (ARI, Silhouette, and Accuracy) for various algorithms (K-Means, HC, GMM, DBSCAN) at a fixed privacy parameter ($\epsilon = 0.1$).

, ,						
Algorithm	Shared	e	K	ARI	Silhouette	Accuracy
K-Means	10%	0.1	k = 8	0.75	0.41	0.18
K-Means	30%	0.1	k = 8	0.75	0.41	0.18
K-Means	50%	0.1	$\mathbf{k} = 8$	0.75	0.41	0.18
HC	10%	0.1	k = 8	0.481	0.39	0.005
HC	30%	0.1	$\mathbf{k} = 8$	0.481	0.39	0.005
HC	50%	0.1	$\mathbf{k} = 8$	0.0.481	0.39	0.005
GMM	10%	0.1	k = 6	0.185	-0.143	0.201
GMM	30%	0.1	$\mathbf{k} = 8$	0.175	-0.111	0.18
GMM	50%	0.1	k = 5	0.169	-0.001	0.23
DBSCAN	10%	0.1	k = 10	0.017	-0.504	0.005
DBSCAN	30%	0.1	k = 10	0.017	-0.504	0.005
DBSCAN	50%	0.1	k = 10	0.017	-0.504	0.005

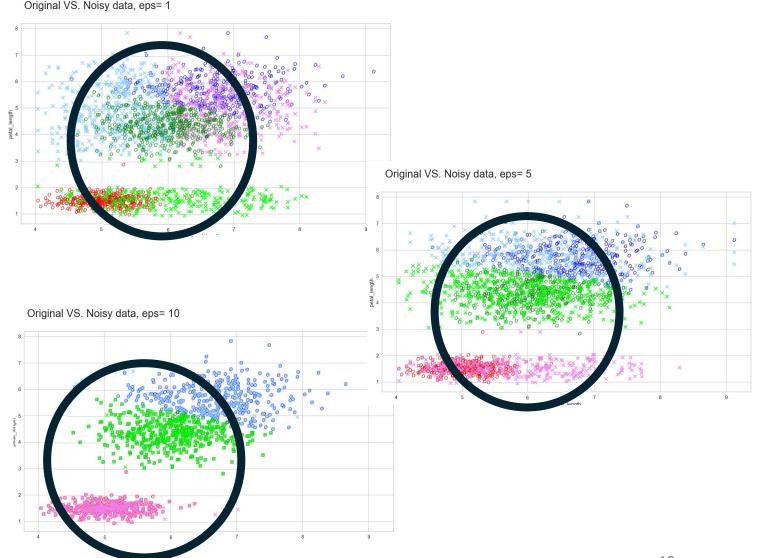
EFFECT of RANDOMIZED RESPONSE

Purpose of Randomized Response:

- *Add Noise to Data*: Introduces noise to individual data points to enhance privacy.
- *Preserve Data Structure*: Despite noise, the underlying structure and gaps between clusters are preserved.

Given Wey Observations:

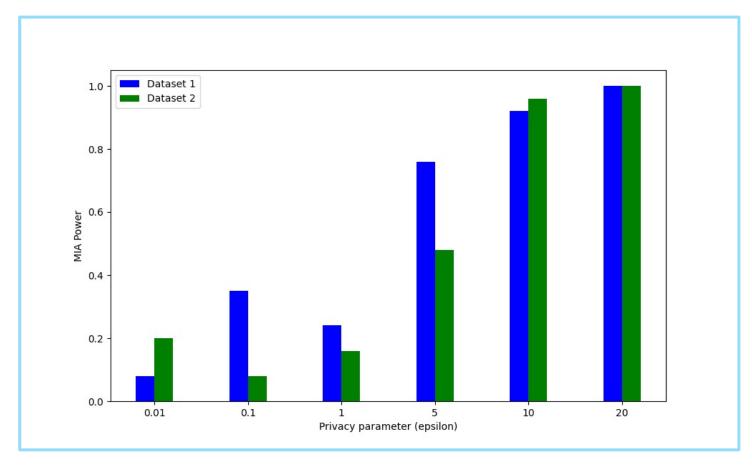
- *Maintaining Cluster Gaps*: The RR mechanism effectively maintains the separation (gaps) between clusters.
- Impact of ϵ : Different levels of the privacy parameter ϵ affect the amount of noise, but the distinctiveness between clusters remains.



PRIVACY ANALYSIS

□ Membership Inference Attack:

Risk Analysis: As ∈ increases (less noise), the risk of membership inference attacks also increases.



CONCLUSION

Summary of Contributions:

- Developed a privacy-preserving framework for optimal parameter selection in collaborative clustering.
- Demonstrated the effectiveness of the proposed method through robust evaluation.

Given Setup: Future Work:

- Explore other clustering algorithms and privacy mechanisms.
- Investigate further into mitigating risks associated with membership inference attacks.
- Expand the framework to more complex and diverse datasets.

Contact Maryam Ghasemian with any Questions:

Email: <u>maryam.ghasemian@case.edu</u>