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1 Overview of Clustering:
* Definition: Clustering 1s an unsupervised machine learning technique used to group
similar data points based on certain features.
* Importance: Fundamental for pattern recognition, data analysis, and segmentation.

1 Collaborative Clustering:
* Definition: Multiple data owners collaborate by sharing data to improve clustering
outcomes.
* Challenge: Ensuring privacy while achieving effective clustering.

(] Purpose of the Study:
* To explore how to select optimal clustering parameters in a privacy-preserving manner.
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U Objective:
* Develop a method for selecting optimal clustering parameters in a privacy-preserving manner.

1 Key Challenge:
* Existing Approaches:
* Many existing works rely on pre-defined clustering algorithms and a fixed number of clusters.
* These methods often apply encryption techniques to protect data privacy.
* Limitations:
* Pre-selecting the number of clusters and the algorithm may not be suitable for all datasets,
leading to suboptimal clustering results.

 Our Contribution:
* We focus on identifying the optimal clustering algorithm and the corresponding hyperparameters
within a privacy-preserving framework.
* QOur approach addresses the gap by allowing flexibility in the choice of clustering parameters,
tailored to the specific data being analyzed, while still ensuring robust privacy protection.
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 K-Means (Partitioning-based):
* Divides data into K non-overlapping clusters.
* Minimizes the sum of distances between data points and their respective cluster centroids.

U Hierarchical Clustering (HC):
* Builds a hierarchy of clusters.
* Can be agglomerative (bottom-up) or divisive (top-down).
» Useful for data with a hierarchical structure.

U Gaussian Mixture Models (GMM, Distribution-based):

* Assumes data is generated from a mixture of Gaussian distributions.
* Flexible with complex cluster structures.

L DBSCAN (Density-based):
 Identifies clusters based on the density of data points.
» Effective in finding arbitrarily shaped clusters.
* Marks points in low-density regions as outliers.
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1 Overview:
* Differential Privacy (DP) 1s a framework to ensure that the output of a computation
does not compromise the privacy of individuals in the dataset.

1 Local Differential Privacy (LDP):
* A stronger form of DP where each data owner perturbs their data before sharing 1it.
* Ensures that even if the perturbed data 1s intercepted, it cannot easily reveal the
original data.

(1 Randomized Response Mechanism:
* FExplanation: Introduces noise into data in a controlled manner, providing plausible
deniability.
* Purpose: To protect individual privacy while allowing aggregate data analysis.
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SYSTEM MODEL

d Roles:
 Data Owners (Researchers): Collaborate in clustering while
maintaining data privacy.
* Semi-Trusted Server: Acts as a third-party intermediary to assist in
identifying the optimal clustering algorithm and hyper-parameters.
d Focus:
* Preliminary Stages: The approach is applied before the actual
clustering to determine optimal conditions.
L Objective:
* Identify the best clustering algorithm and input parameters for
collaborative clustering among multiple data owners.
(1 Data Sharing:
* Data owners share selectively perturbed, differentially private data
with the server.
* The server analyzes the noisy data and recommends the most suitable
clustering algorithm and corresponding hyper-parameters.
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 Server:
* Semi-Honest Behavior: The server might attempt to infer sensitive information but
follows the protocol.
* Risks: Potential privacy violations, including:
* Membership Inference: Inferring whether a specific record is part of a dataset.
* Deanonymization: Linking anonymized data to real identities.
* Attribute Inference: Deducing sensitive attributes from data.
* Mitigation: Only a small, differentially-private portion of the data is shared, significantly
reducing the risk of these attacks.
d Data Owners:
* Honest-but-Curious: Data owners are cooperative but may be interested in learning
about each other’s data.
L Assumption: This is a cooperative environment, focusing on algorithm and parameter
selection, while other literature handles more adversarial scenarios.
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Data owners add noise to
their data using Randomized
Response.

9 They share a portion of this
differentially private data
with the server.

The server analyzes the data
and recommends the best
algorithm and parameters.

o Data owners receive these
recommendations and e
proceed with clustering.

PROPOSED SOLUTION

Perform Collaborative
Clustering

v

\Data Owner 2 (Party 2) >

Noisy Data 1wy

e Partial Data Sharing
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] Datasets Used:

* QObesity Dataset: 2,111 records with 17 features, focusing on diet and physical
condition.

* Extended Iris Dataset. 1,200 rows with 20 features, providing detailed biological
information about the iris flower.

J Evaluation Metrics:

* Adjusted Rand Index (ARI): Measures the similarity between the predicted and
true clusters.

* Silhouette Score: Assesses how similar data points are within their clusters.
* Calinski-Harabasz Index (CH): Evaluates the ratio of between-cluster dispersion
to within-cluster dispersion.

* Classification Accuracy: Although unusual for clustering, used here to assess how
well clusters match known labels
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Table 4: Server Suggestions for Clustering Input Parameters: Recommendations for various
clustering algorithms based on 10% shared noisy data (e — 0.1).

Dataset |Algorithm|Data shared to Server| ¢ |K or Eps Silhouette| CH
GMM 10% 0.1k =8 0.34 301.30

Dataset #1|DBSCAN 10% 0.1k =10, Eps =1 - -
K-Means 10% 0.1k = 8 0.36 318.13
HC 10% 0.1k =8 0.31 237.61
GMM 10% O01lk=3 0.23 46.88

Dataset #2|DBSCAN 10% 0.1k =6,Eps =7 - -
K-Means 10% 0.1k — 0.36 [61.92
HC 10% illl€=8 0.37 51.57

Clustering Performance on Combined dataset using server-suggested parameters for Obesity Clustering Performance on Combined dataset using server-suggested parameters for Extended Iris
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L Impact of Privacy Parameter (¢):

* FExplanation: € controls the level of
noise added; lower € means more noise
and higher privacy.

* Results:
e Server’s recommendations remained
stable across different € values.
* Clustering quality, as measured by
ARI and Silhouette Score, was
largely unaffected by noise.

Table 5: Differential Impact of Privacy Levels on Clustering Algorithms in the dataset #1. This
table explores the performance variations (measured through ARI, Silhouette, and Accuracy)
of four distinct clustering algorithms (K-Means, HC, GMM, DBSCAN) at different privacy
budget levels (e = 0.1, 1, 5) with a consistent data sharing percentage (10%).

Algorithm|Shared| ¢ K | ARI |Silhouette|Accuracy
K-Means 10% [0.1]k =8| 0.75 0.41 0.18
K-Means 10% |1|k=28] 0.75 0.41 0.18
K-Means 10% |5 |k=7[ 1 0.44 0.15
HC 10% (0.1 k = 8 | 0.481 0.39 0.005
HC 10% |1 |k="7]0.482 0.41 0.17
HC 10% |5 |k = 8]0.482 0.41 0.005
GMM 10% (0.1l k =6(0.185| -0.0143 0.201
GMM 10% | 1|k =810.2069| -0.072 0.05
GMM 10% | 5 |k = 60.2008] -0.007 0.14
DBSCAN 10% |[0.1}k = 10/ 0.017 | -0.504 0.005
DBSCAN 10% |1 |k =10]/0.017| -0.504 0.005
DBSCAN 10% | 5 |k = 10]/0.017 | -0.504 0.005
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1 Effect of Data Sharing Volume:

* Experiment. Compared the clustering

Table 7: Impact of Data Sharing Proportions on Clustering Algorithms’ Performance in the

outcomes When 10% 30% and 5 O% Of dataset #1. This table evaluates how different proportions of data shared with the server
’ ’ (10%, 30%, 50%) influence the clustering outcomes (ARI, Silhouette, and Accuracy) for various
the data WEre Shared, algorithms (K-Means, HC, GMM, DBSCAN) at a fixed privacy parameter (e = 0.1).
. . Algorithm|Shared| ¢ K ARI |Silhouette|Accuracy
 Findings: K-Means | 10% [0k =8| 0.75 | 041 0.18
’ . K-Means 30% [0.1lk =8| 0.75 0.41 0.18
 The server’s recommendations were KMeans | 50% 01lk—8| 075 | 041 0.18
. HC 10% (0.1 k = 8 | 0.481 0.39 0.005
consistent regardless of the amount o e ol v b i I N
Of data Shared. HC 50% 0.1 k = 8 ]0.0.481 0.39 0.005
. . GMM 10% |01k — 6] 0.185 | -0.143 0.201
* Clustering results (ARI, Silhouette, GMM 30% (0.1|k =8| 0.175 | -0.111 0.18
. GMM 50% [0.1lk = 5| 0.169 -0.001 0.23
CH Index) were robust to changes in DBSCAN | 10% [0.1[k — 10[ 0.017 | -0.504 | 0.005
. DBSCAN 30% 0.1k = 10| 0.017 -0.504 0.005
the data sharing volume. DBSCAN | 50% |0.1|k = 10| 0.017 | -0.504 | 0.005

 Conclusion: Effective clustering can be
achieved even with minimal data sharing,
enhancing privacy.
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(] Purpose of Randomized
Response:

Add Noise to Data: Introduces noise

to individual data points to enhance .

privacy.

Preserve Data Structure: Despite
noise, the underlying structure and
gaps between clusters are preserved.

 Key Observations:

Maintaining Cluster Gaps: The RR
mechanism effectively maintains the
separation (gaps) between clusters.
Impact of e€: Different levels of the
privacy parameter € affect the
amount of noise, but the
distinctiveness  between  clusters
remains.

Original VS. Noisy data, eps= 1

EFFECT of RANDOMIZED RESPONSE

Original VS. Noisy data, eps=5
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1.0 { HEM Dataset 1
B Dataset 2

 Membership Inference Attack:
* Risk Analysis: As € Increases
(less noise), the risk of
membership inference attacks
also increases.
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1 Summary of Contributions:

* Developed a privacy-preserving framework for optimal parameter selection 1n
collaborative clustering.
* Demonstrated the effectiveness of the proposed method through robust evaluation.

 Future Work:
* Explore other clustering algorithms and privacy mechanisms.

* Investigate further into mitigating risks associated with membership inference attacks.
* Expand the framework to more complex and diverse datasets.
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Contact Maryam Ghasemian with any Questions:

Email: maryam.ghasemian(@case.edu
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