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q Overview of Clustering:
• Definition: Clustering is an unsupervised machine learning technique used to group

similar data points based on certain features.
• Importance: Fundamental for pattern recognition, data analysis, and segmentation.

q Collaborative Clustering:
• Definition: Multiple data owners collaborate by sharing data to improve clustering

outcomes.
• Challenge: Ensuring privacy while achieving effective clustering.

q Purpose of the Study:
• To explore how to select optimal clustering parameters in a privacy-preserving manner.

INTRODUCTION
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PROBLEM STATEMENT

q Objective:
• Develop a method for selecting optimal clustering parameters in a privacy-preserving manner.

q Key Challenge:
• Existing Approaches:

• Many existing works rely on pre-defined clustering algorithms and a fixed number of clusters.
• These methods often apply encryption techniques to protect data privacy.

• Limitations:
• Pre-selecting the number of clusters and the algorithm may not be suitable for all datasets,
leading to suboptimal clustering results.

q Our Contribution:
• We focus on identifying the optimal clustering algorithm and the corresponding hyperparameters
within a privacy-preserving framework.

• Our approach addresses the gap by allowing flexibility in the choice of clustering parameters,
tailored to the specific data being analyzed, while still ensuring robust privacy protection.
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CLUSTERING ALGOLITHMS

q K-Means (Partitioning-based):
• Divides data into K non-overlapping clusters.
• Minimizes the sum of distances between data points and their respective cluster centroids.

q Hierarchical Clustering (HC):
• Builds a hierarchy of clusters.
• Can be agglomerative (bottom-up) or divisive (top-down).
• Useful for data with a hierarchical structure.

q Gaussian Mixture Models (GMM, Distribution-based):
• Assumes data is generated from a mixture of Gaussian distributions.
• Flexible with complex cluster structures.

q DBSCAN (Density-based):
• Identifies clusters based on the density of data points.
• Effective in finding arbitrarily shaped clusters.
• Marks points in low-density regions as outliers.
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DIFFERENTIAL  PRIVACY

q Overview:
• Differential Privacy (DP) is a framework to ensure that the output of a computation

does not compromise the privacy of individuals in the dataset.

q Local Differential Privacy (LDP):
• A stronger form of DP where each data owner perturbs their data before sharing it.
• Ensures that even if the perturbed data is intercepted, it cannot easily reveal the

original data.

q Randomized Response Mechanism:
• Explanation: Introduces noise into data in a controlled manner, providing plausible

deniability.
• Purpose: To protect individual privacy while allowing aggregate data analysis.
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SYSTEM MODEL

qRoles:
• Data Owners (Researchers): Collaborate in clustering while
maintaining data privacy.

• Semi-Trusted Server: Acts as a third-party intermediary to assist in
identifying the optimal clustering algorithm and hyper-parameters.

qFocus:
• Preliminary Stages: The approach is applied before the actual
clustering to determine optimal conditions.

qObjective:
• Identify the best clustering algorithm and input parameters for
collaborative clustering among multiple data owners.

qData Sharing:
• Data owners share selectively perturbed, differentially private data
with the server.

• The server analyzes the noisy data and recommends the most suitable
clustering algorithm and corresponding hyper-parameters.
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THREAT MODEL

qServer:
• Semi-Honest Behavior: The server might attempt to infer sensitive information but
follows the protocol.

• Risks: Potential privacy violations, including:
• Membership Inference: Inferring whether a specific record is part of a dataset.
• Deanonymization: Linking anonymized data to real identities.
• Attribute Inference: Deducing sensitive attributes from data.

• Mitigation: Only a small, differentially-private portion of the data is shared, significantly
reducing the risk of these attacks.

qData Owners:
• Honest-but-Curious: Data owners are cooperative but may be interested in learning
about each other’s data.

qAssumption: This is a cooperative environment, focusing on algorithm and parameter
selection, while other literature handles more adversarial scenarios.
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PROPOSED SOLUTION

Data owners add noise to 
their data using Randomized 
Response.

They share a portion of this 
differentially private data 
with the server.

The server analyzes the data 
and recommends the best 
algorithm and parameters.

Data owners receive these 
recommendations and  
proceed with clustering. 
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EVALUATION SETUP

q Datasets Used:
• Obesity Dataset: 2,111 records with 17 features, focusing on diet and physical

condition.
• Extended Iris Dataset: 1,200 rows with 20 features, providing detailed biological

information about the iris flower.

q Evaluation Metrics:
• Adjusted Rand Index (ARI): Measures the similarity between the predicted and

true clusters.
• Silhouette Score: Assesses how similar data points are within their clusters.
• Calinski-Harabasz Index (CH): Evaluates the ratio of between-cluster dispersion

to within-cluster dispersion.
• Classification Accuracy: Although unusual for clustering, used here to assess how

well clusters match known labels
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SERVER RECOMENDATION
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RESULTS-CLUSTERING QUALITY

q Impact of Privacy Parameter (ϵ):

• Explanation: ϵ controls the level of
noise added; lower ϵ means more noise
and higher privacy.

• Results:
• Server’s recommendations remained
stable across different ϵ values.

• Clustering quality, as measured by
ARI and Silhouette Score, was
largely unaffected by noise.
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RESULTS-DATA SHARING

q Effect of Data Sharing Volume:

• Experiment: Compared the clustering
outcomes when 10%, 30%, and 50% of
the data were shared.

• Findings:
• The server’s recommendations were

consistent regardless of the amount
of data shared.

• Clustering results (ARI, Silhouette,
CH Index) were robust to changes in
the data sharing volume.

q Conclusion: Effective clustering can be
achieved even with minimal data sharing,
enhancing privacy.
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EFFECT of RANDOMIZED RESPONSE

q Purpose of Randomized 
Response:
• Add Noise to Data: Introduces noise

to individual data points to enhance
privacy.

• Preserve Data Structure: Despite
noise, the underlying structure and
gaps between clusters are preserved.

q Key Observations:
• Maintaining Cluster Gaps: The RR

mechanism effectively maintains the
separation (gaps) between clusters.

• Impact of ϵ: Different levels of the
privacy parameter ϵ affect the
amount of noise, but the
distinctiveness between clusters
remains. 13



PRIVACY ANALYSIS

q Membership Inference Attack:
• Risk Analysis: As ϵ increases 

(less noise), the risk of 
membership inference attacks 
also increases.
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CONCLUSION

q Summary of Contributions:

• Developed a privacy-preserving framework for optimal parameter selection in
collaborative clustering.

• Demonstrated the effectiveness of the proposed method through robust evaluation.

q Future Work:

• Explore other clustering algorithms and privacy mechanisms.
• Investigate further into mitigating risks associated with membership inference attacks.
• Expand the framework to more complex and diverse datasets.
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Contact Maryam Ghasemian with any Questions:

Email: maryam.ghasemian@case.edu
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