Graph Perturbation as Noise Graph Addition:

A New Perspective for Graph Anonymization

Cryptography and Information Security for Open Networks

Vicenç Torra, Julián Salas Data Privacy Management Luxembourg, 26 September 2019

Outline

- 1. Introduction
 - Motivations and objectives
 - Random graph models
- 2. Formalizing noise addition for graphs

Motivations

• Several masking methods for graphs:

There is a large number of adhoc methods based on removing/adding edges/nodes.

Most of them are evaluated empirically.

• Noise addition for standard databases:

Is a well-structured approach with a solid mathematical/statistical basis.

For standard databases

• Given a value x for variable V with mean μ and variance σ^2 Replace x by $x + \varepsilon$ with $\varepsilon \sim N(0, \sigma^2)$.

Privacy models

- *K-anonymity:* Modify the data so that intruders cannot find a record in the database. Protect record among k indistinguishable records.
- *Differential privacy:* Given a query, avoid disclosure from the outcome of the query. Add noise into the outcome.
- *Protect against reidentification:* Modify the data so that intruders cannot find a record in the database. Add noise into the data.

Objective

• *Develop a sound approach for graph masking.* Based on the analogy of noise addition for graphs.

We use Random Graphs & Graph Addition

Basic models

• Gilbert model: G(n,p)

n nodes and each edge is chosen with probability p.

• Erdös-Renyi: *G(n,e)*

A uniform probability of all graphs with *n* nodes and *e* edges.

Both are asymptotically equivalent.

Online social networks

OSN are sparse & their degrees follow a power-law: $P(k) \sim k^{-\gamma}$

Different models

• Models based on a given degree sequence. $\mathcal{D}(n, d^n)$ $\mathcal{D}(n, d^n)$ uniform probability of all graphs with *n* nodes, degree sequence d^n .

- Add constraints to graphs:
- e.g., the degree sequence, spatial/ temporal constraints on the nodes.

Given two graphs $G_1(V, E_1)$ and $G_2(V, E_2)$ with $V \subseteq V'$; we define the addition of G_1 and G_2 as the graph G(V, E) where:

$$E = \{e : e \in V \land e \notin V'\} \cup \{e : e \notin V \land e \in V'\}$$
$$G = G_1 \oplus G_2$$

Note that \oplus is an *exclusive-or* of edges, most general definition is based on alignments.

For any graph G choose a noise-graph G' from G to add noise to G: $G \oplus G'$

• Previous methods can be expressed in this way by adding constraints to the family of graphs *G*.

Noise Graph Addition

Previous methods: examples

Changing m edges from the original graph. Define: $G = \{G' : |E(G')| = m\}$

• If we restrict G to be the family of graphs G such that |E(G')| = 2mand $|E(G') \cap E(G)| = m$, then we are adding m edges and deleting m other edges.

Noise Graph Addition

Previous methods: examples

Random sparsification (for a probability p):

For each edge do independent Bernoulli trial. Leave the edge in case of success and remove otherwise.

Our method, use:

 $G = G(n, 1-p) \cap G$

Add $G \oplus G'$ for some $G' \in G$

Noise Graph Addition

Previous methods: examples

Degree preserving randomization

Define: $G = \{G' : V(G') = i, j, k, l \subseteq V(G); ij, kl \in E(G') \text{ and } jk, li \notin E(G')\}$ G is the set of alternating 4-circuits of G.

$$G \oplus_{i=1}^m G'_i$$

Following this procedure for *m* large enough is equivalent to randomizing *G* to obtain all the graphs $\mathcal{D}(n, d^n)$.

Noise Graph Addition

New method

Local randomization

Define: $G = \{G_u^t : V(G_u^t) = u, u_1, ..., u_t; E(G_u^t) = uu_1, ..., uu_t\}$ Then, $G \oplus G_u^t$ changes *t*-random edges incident to vertex $u \in V(G)$.

• So we can apply local *t*-randomization for all $u \in V(G)$ to obtain the graph $G^t = G \bigoplus_{u \in V(G)} G_u^t$

Adversary's prior and posterior probabilities to predict whether there is a sensitive link between $i, j \in V(G)$ by exploiting the degree d_i and access to G^t

$P(a_{ij} = 1)$ equals:	$\frac{d_i}{n-1}$
$P(a_{ij} = 1 a_{ij}^t = 1)$ equals:	$\frac{d_i(\bar{t}^2+t^2)}{d_i(\bar{t}^2+t^2)+2\overline{d_i}(\bar{t}t)}$
$P(a_{ij} = 1 a_{ij}^t = 0)$ equals:	$\frac{2\overline{d_i}(\bar{t}t)}{d_i(\bar{t}^2+t^2)+2\overline{d_i}(\bar{t}t)}$

The most general noise

From Gilbert model

Let $G_1(V, E_1)$ an arbitrary graph with $n_1 = |E_1|$ and $G_2(V, E_2)$ generated from a Gilbert model with $n_2 = |E_2|$. Then $G = G_1 \oplus G_2$ will have on average: $\frac{n_2(t-n_1)+n_1(t-n_2)}{t}$ edges. Where t = |V|(|V|-1)/2.

Noise addition method	Definition of \mathcal{G}	Additional requirements for $G' \in \mathcal{G}$	Properties of $G \oplus \mathcal{G}$
Random perturbation [20]	E(G') = 2m	$ E(G') \cap E(G) = m$ $ E(G') \cap E(\overline{G}) = m$	G' adds m edges and removes m edges
Random sparsification [6]	$G' \in \mathcal{G}(n; 1-p) \cap G$	None	The edges of G remain with probability p , no added edges
$\begin{array}{c} \text{Local} \\ t\text{-randomization} \end{array}$	$G' = G_u^t$	Applied to every node in G	Every node has t modified incident edges
Degree preserving randomization [5]	$G' \in \mathcal{S}_G$	\mathcal{S}_G is the set of swaps of G	$G, G \oplus G' \in \mathcal{D}(n, d^n)$
Gilbert model	$G' \in \mathcal{G}(n; 1-p)$	None	Every edge is added or removed with probability p

Conclusions

• We defined noise graph addition.

Some existing methods can be seen from this perspective. Proven some properties.

• This approach permits a more systematic study of graph perturbation.

