Graph Perturbation as Noise Graph Addition:

A New Perspective for Graph Anonymization

Vicenç Torra, Julián Salas
Data Privacy Management
Luxembourg, 26 September 2019

Outline

1. Introduction

- Motivations and objectives
- Random graph models

2. Formalizing noise addition for graphs

Motivations

- Several masking methods for graphs:

There is a large number of adhoc methods based on removing/adding edges/nodes.
Most of them are evaluated empirically.

- Noise addition for standard databases:

Is a well-structured approach with a solid mathematical/statistical basis.

Noise addition

For standard databases

- Given a value x for variable V with mean μ and variance σ^{2} Replace x by $x+\varepsilon$ with $\varepsilon \sim N\left(0, \sigma^{2}\right)$.

Privacy models

- K-anonymity: Modify the data so that intruders cannot find a record in the database. Protect record among k indistinguishable records.
- Differential privacy: Given a query, avoid disclosure from the outcome of the query. Add noise into the outcome.
- Protect against reidentification: Modify the data so that intruders cannot find a record in the database. Add noise into the data.

Objective

- Develop a sound approach for graph masking.

Based on the analogy of noise addition for graphs.

We use Random Graphs \& Graph Addition

Random Graphs

Basic models

- Gilbert model: $\mathcal{G}(n, p)$
n nodes and each edge is chosen with probability p.
- Erdös-Renyi: $G(n, e)$

A uniform probability of all graphs with n nodes and e edges.

Both are asymptotically equivalent.

Online social networks

OSN are sparse \& their degrees follow a power-law: $\quad P(k) \sim k^{-\gamma}$

Random Graphs

Different models

- Models based on a given degree sequence. $\mathcal{D}\left(n, d^{n}\right)$
$\mathcal{D}\left(n, d^{n}\right)$ uniform probability of all graphs with n nodes, degree sequence d^{n}.
- Add constraints to graphs:
e.g., the degree sequence, spatial/ temporal constraints on the nodes.

Graph Addition

Formalization

Given two graphs $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ with $V \subseteq V^{\prime}$; we define the addition of G_{1} and G_{2} as the graph $G\left(V^{\prime}, E\right)$ where:

$$
\begin{aligned}
& E=\left\{e: e \in V \wedge e \notin V^{\prime}\right\} \cup\left\{e: e \notin V \wedge e \in V^{\prime}\right\} \\
& G=G_{1} \oplus G_{2}
\end{aligned}
$$

Note that \bigoplus is an exclusive-or of edges, most general definition is based on alignments.

Noise Graph Addition

Methods

For any graph G choose a noise-graph G^{\prime} from \mathcal{G} to add noise to G :

$$
G \oplus G^{\prime}
$$

- Previous methods can be expressed in this way by adding constraints to the family of graphs \mathcal{G}.

Noise Graph Addition

Previous methods: examples

Changing m edges from the original graph.
Define: $\mathcal{G}=\left\{G^{\prime}:\left|E\left(G^{\prime}\right)\right|=m\right\}$

- If we restrict \mathcal{G} to be the family of graphs G such that $/ E\left(G^{\prime}\right) /=2 m$ and $\left|E\left(G^{\prime}\right) \cap E(G)\right|=m$, then we are adding m edges and deleting m other edges.

Noise Graph Addition

Previous methods: examples

Random sparsification (for a probability p):
For each edge do independent Bernoulli trial. Leave the edge in case of success and remove otherwise.

Our method, use:
$\mathcal{G}=\mathcal{G}(n, 1-p) \cap G$

Add $G \oplus G^{\prime}$ for some $G^{\prime} \in \mathcal{G}$

Noise Graph Addition

Previous methods: examples

Degree preserving randomization

Define: $\mathcal{G}=\left\{G^{\prime}: V\left(G^{\prime}\right)=i, j, k, l \subseteq V(G) ; i j, k l \in E\left(G^{\prime}\right)\right.$ and $\left.j k, l i \notin E\left(G^{\prime}\right)\right\}$
\mathcal{G} is the set of alternating 4-circuits of G.

$$
G \bigoplus_{i=1}^{m} G_{i}^{\prime}
$$

Following this procedure for m large enough is equivalent to randomizing G to obtain all the graphs $\mathcal{D}\left(n, d^{n}\right)$.

Noise Graph Addition

New method

Local randomization

Define: $\mathcal{G}=\left\{G_{u}^{t}: V\left(G_{u}^{t}\right)=u, u_{1}, \ldots, u_{t} ; E\left(G_{u}^{t}\right)=u u_{1}, \ldots, u u_{t}\right\}$ Then, $G \oplus G_{u}^{t}$ changes t-random edges incident to vertex $u \in V(G)$.

- So we can apply local t-randomization for all $u \in V(G)$ to obtain the graph $G^{t}=G \bigoplus_{u \in V(G)} G_{u}^{t}$

Local Randomization

Risk properties

Adversary's prior and posterior probabilities to predict whether there is a sensitive link between $i, j \in V(G)$ by exploiting the degree d_{i} and access to G^{t}

$$
\begin{array}{ll}
\mathrm{P}\left(a_{i j}=1\right) \text { equals: } & \frac{d_{i}}{n-1} \\
\mathrm{P}\left(a_{i j}=1 \mid a_{i j}^{t}=1\right) \text { equals: } & \frac{d_{i}\left(\bar{t}^{2}+t^{2}\right)}{d_{i}\left(\bar{t}^{2}+t^{2}\right)+2 \overline{d_{i}}(\bar{t} t)} \\
\mathrm{P}\left(a_{i j}=1 \mid a_{i j}^{t}=0\right) \text { equals: } & \frac{2 \overline{d_{i}}(\bar{t} t)}{d_{i}\left(\bar{t}^{2}+t^{2}\right)+2 \overline{d_{i}}(\bar{t} t)}
\end{array}
$$

The most general noise

From Gilbert model

Let $G_{1}\left(V, E_{1}\right)$ an arbitrary graph with $n_{1}=\left|E_{1}\right|$ and $G_{2}\left(V, E_{2}\right)$ generated from a Gilbert model with $n_{2}=\left|E_{2}\right|$.
Then $G=G_{1} \oplus G_{2}$ will have on average: $\frac{n_{2}\left(t-n_{1}\right)+n_{1}\left(t-n_{2}\right)}{t}$ edges.
Where $t=/ V /(/ V /-1) / 2$.

Summary

Different approaches

Noise addition method	Definition of \mathcal{G}	Additional requirements for $G^{\prime} \in \mathcal{G}$	Properties of $G \oplus \mathcal{G}$
Random perturbation [20]	$\left\|E\left(G^{\prime}\right)\right\|=2 m$	$\left\|E\left(G^{\prime}\right) \cap E(G)\right\|=$ m $\left\|E\left(G^{\prime}\right) \cap E(\bar{G})\right\|=$ m	G^{\prime} adds m edges and removes m edges
Random sparsification [6]	$G^{\prime} \in \mathcal{G}(n ; 1-p) \cap G$	None	The edges of G remain with probability p, no added edges
Local t-randomization	$G^{\prime}=G_{u}^{t}$	Applied to every node in G	Every node has t modified incident edges
Degree preserving randomization [5]	$G^{\prime} \in \mathcal{S}_{G}$	\mathcal{S}_{G} is the set of swaps of G	$G, G \oplus G^{\prime} \in \mathcal{D}\left(n, d^{n}\right)$
Gilbert model	$G^{\prime} \in \mathcal{G}(n ; 1-p)$	None	Every edge is added or removed with probability p

Conclusions

- We defined noise graph addition.

Some existing methods can be seen from this perspective.
Proven some properties.

- This approach permits a more systematic study of graph perturbation.

Thank you
Any questions?

