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Graph Perturbation as 
Noise Graph Addition:
A New Perspective for Graph Anonymization



1. Introduction

• Motivations and objectives

• Random graph models 

2. Formalizing noise addition for graphs

Outline



Motivations

• Several masking methods for graphs:

There is a large number of adhoc methods based on removing/adding 
edges/nodes.

Most of them are evaluated empirically.

• Noise addition for standard databases:

Is a well-structured approach with a solid mathematical/statistical basis.



Noise addition
For standard databases

       
 
  

 
 

   

   

   

   

   

       

 

   

         

  

    
    
    
     

       
       
       
       

• Given a value x for variable V  with mean μ and variance σ2

Replace x  by x + ε with ε∼N(0, σ2 ).



Privacy models

• K-anonymity: Modify the data so that intruders cannot find a record

in the database. Protect record among k indistinguishable records.

• Differential privacy: Given a query, avoid disclosure from the outcome

of the query. Add noise into the outcome.

• Protect against reidentification: Modify the data so that intruders cannot 
find a record in the database. Add noise into the data.



Objective

• Develop a sound approach for graph masking.

Based on the analogy of noise addition for graphs.

We use Random Graphs & Graph Addition



Random Graphs
Basic models

• Gilbert model: 𝒢(n,p)

n nodes and each edge is chosen with probability p.

• Erdös-Renyi: G(n,e)

A uniform probability of all graphs with n nodes and e edges.

Both are asymptotically equivalent.



OSN are sparse & their degrees follow a power-law: 𝑃 𝑘 ~𝑘−𝛾

Online social networks



Random Graphs
Different models

• Models based on a given degree sequence. 𝒟(n, 𝑑𝑛)

𝒟(n, 𝑑𝑛) uniform probability of all graphs with n nodes, degree sequence 
𝑑𝑛.

• Add constraints to graphs:

e.g., the degree sequence, spatial/ temporal constraints on the nodes.



Graph Addition
Formalization

Given two graphs G1(V, 𝐸1) and G2(V’, 𝐸2) with V⊆V’ ; we define the 
addition of G1 and G2 as the graph G(V’, 𝐸)  where: 

E = {e : e ∈ V ∧ e ∉ V’ } ∪ {e : e ∉ V ∧ e ∈ V’ }

G = G1⨁G2

Note that ⨁ is an exclusive-or of edges, most general definition is based on alignments.



Noise Graph Addition
Methods

For any graphG choose a noise-graph G’  from 𝒢 to add noise to G:

G ⨁G’

• Previous methods can be expressed in this way by adding constraints to
the family of graphs 𝒢.



Noise Graph Addition
Previous methods: examples

Changing m edges from the original graph.

Define: 𝒢= {G’ : |E(G’)|=m}

• If we restrict 𝒢 to be the family of graphs 𝐺 such that |E(G’)| = 2m

and |E(G’) ∩ E(G)| = m, then we are adding m edges and deleting

m other edges.



Noise Graph Addition
Previous methods: examples

Random sparsification (for a probability p):

For each edge do independent Bernoulli trial. Leave the edge in case of 
success and remove otherwise.

Our method, use:

𝒢= 𝒢(n, 1 − p) ∩ G

Add G ⨁G’  for some G’ ∈ 𝒢



Noise Graph Addition
Previous methods: examples

Degree preserving randomization

Define: 𝒢= {G’ : V(G’) = i, j, k, l  ⊆V(G); ij, kl ∈ E(G’ ) and jk, li ∉ E(G’ )}

𝒢 is the set of alternating 4-circuits of G.

G ⨁𝑖=1
𝑚 G ′𝑖

Following this procedure for m large enough is equivalent to randomizing G  
to obtain all the graphs 𝒟(n, 𝑑𝑛) .



Noise Graph Addition
New method

Local randomization

Define: 𝒢= {G 𝑢
𝑡 : V(G 𝑢

𝑡 ) =u, u 1, … , u 𝑡; E(G 𝑢
𝑡 )= uu 1, … , uu 𝑡}

Then,G ⨁G 𝑢
𝑡 changes t-random edges incident to vertex u ∈ V(G).

• So we can apply local t-randomization for all u ∈ V(G) to obtain

the graph 𝐺𝑡= 𝐺⨁u ∈ V(G)G 𝑢
𝑡



Local Randomization
Risk properties

Adversary’s prior and posterior probabilities to predict whether there is a sensitive 

link between i, j ∈ V(G) by exploiting the degree d 𝑖 and access to 𝐺𝑡

P(𝑎ij = 1) equals: 
d 𝑖

𝑛−1

P(𝑎ij = 1|𝑎𝑖𝑗
𝑡 = 1) equals: 

d 𝑖( ҧ𝑡2+ 𝑡2)

d 𝑖 ҧ𝑡2+ 𝑡2 +2d 𝑖( ҧ𝑡𝑡)

P(𝑎ij = 1|𝑎𝑖𝑗
𝑡 = 0) equals: 

2d 𝑖( ҧ𝑡𝑡)

d 𝑖 ҧ𝑡2+ 𝑡2 +2d 𝑖( ҧ𝑡𝑡)



The most general noise
From Gilbert model

Let G1(V, 𝐸1) an arbitrary graph with n1 = 𝐸1 and G2(V, 𝐸2) generated 
from a Gilbert model with n2 = 𝐸2 .

Then G= G1⨁G2 will have on average: 
n2 𝑡−n1 +n1 𝑡−n2

𝑡
edges.

Where t =|V|(|V|-1)/2.



Summary
Different approaches



Conclusions

• We defined noise graph addition.

Some existing methods can be seen from this perspective.

Proven some properties.

• This approach permits a more systematic study of graph perturbation.



Thank you
Any questions?


