
Eyal Nussbaum

PhD Student, Communication Systems Engineering

School of Electrical and Computer Engineering

Ben-Gurion University of the Negev

Advisor: Professor Michael Segal

Skiplist Timing Attack Vulnerability



• Introduction

• Probabilistic Skiplist

• Skiplist structure mapping

• Possible attacks on Skiplists

• Splay List as a proposed defense

• Summary

Talk Overview



• Database Characteristics:
▫ Underlying data structure – graphs, trees, lists and so on.

▫ Data types/formats – text, discrete or continuous numeric values, 
coordinates and others.

▫ Query types and behavior.

• Targets
▫ Identify potential weaknesses and attack vectors based on DB 

characteristics, and offer defenses.

▫ Offer computational complexity for attack/defense.

Introduction



• The underlying architecture of a database may be comprised of a single 
or multiple data structures: graphs, trees, stacks, etc…

• The organization of the data may hold information regarding the data 
itself (as in the case of a binary search tree).

• Run-time of queries is also dependent on the structure and may leak 
information
▫ Futoransky et al. describe such an attack on SQL databases (insertion 

attack).

• We show an example of an attack based on the Skiplist structure.
▫ Skiplists are a probabilistic alternative to balanced trees.
▫ Maintain an ordered structure with multiple levels.

▫ Contains log n levels with 
𝑛

2𝑙−1
nodes per level 𝑙.

Run-time Based Attack



• Skiplist creation:
▫ Search for ordered placement of node.

▫ Insert node at level 1.

▫ With 0.5 probability, add next level to node.

▫ Continue to subsequent level with probability 0.5 until either next level was 
not added, or max level has been reached.

• Skiplist implementations:
▫ MemSQL, Redis

Probabilistic Skiplist - Example

Figure 1 – 4 level Skiplist with 15 nodes



• We give an algorithm, SkipListMap, that maps the structure of a given 
probabilistic Skiplist using the search function.
▫ The size of the structure, n, is known.

▫ The structure holds unique values.

▫ The range of possible values in the structure is known and is of size O(n).

▫ The runtime of the search algorithm is consistent.

• Using SkipListMap to discover the structure of the Skiplist allows us to 
perform attacks.

• Goal: 
 Restructure the Skiplist to cause worst case performance.

 Create hidden channel between two parties.

Skiplist Mapping



• Consists of two phases:
▫ Search time mapping

▫ Skiplist reconstruction

• Search operation example for Skiplist in figure 2 
▫ Search for “10” – requires 6 comparisons.

SkipListMap Algorithm

Figure 2 – Skiplist search example



• Search for all possible values, xi, in the Skiplist.

• For each value found, denote its search time Txi
.

• Denote the the lowest runtime to be Tmin.

• Normalize runtimes based on Tmin such that Tmin = 1.

• Normalized Txi
is the length of the search path to xi.

SkipListMap - Search Time Mapping



• For our example:
▫ T1 = 3, T2 = 2, T3 = 5, T4 = 3, 

T5 = 6, T6 = 5, T7 = 1, T8 = 5, 
T9 = 4, T10 = 6, T11 = 7, T12 = 2, 
T13 = 6, T14 = 7, T15 = 5.

Search Time Mapping - Example



• Create empty Skiplist with log n levels (in our example, 4)

• Insert nodes in order of increasing values of xi, beginning at level 1
▫ After each level insertion attempt, search for xi.

▫ Repeat until correct search time is found.

SkipListMap - Reconstruction



Reconstruction - Example
• Reconstruction of first 4 nodes.

• Note that once a node level is chosen, inserting nodes to the right does 
not change search time of previous nodes.



• Runtime Attack requires “write” access

• Restructure the Skiplist to cause worst case performance.

• Remove all items which exists above level 1.

• Re-insert all items that were removed. Approximately 0.75 will be in 
level 1.

• Repeat removal/insertion until reducing Skiplist structure to a linked list 
with a search time of O(n).

Skiplist Runtime Attack



• Hidden Channel Attack requires 2 parties, one with “write” access.
▫ Transmitter and Receiver

• Original Skiplist database is distributed publicly.

• Each attacker maps the Skiplist structure.

• Transmitter holds private knowledge regarding nodes.

• Transmitter selectively removes and re-inserts nodes, marking them.
▫ Allows transfer of 1 extra bit of information regarding nodes.

 For example – gender information, placebo/drug differentiation…

▫ Alternatively, allows n-bit message encoding.

• Transmitter re-distributes Skiplist with structure change only.

• Receiver can decipher hidden channel using SkiplistMap.

Skiplist Hidden Channel Attack



• Suggested defense from SkipListMap attacks – conceal runtime.

• Propose Splay List structure, a variant of Skiplist.

• Based on Splay Tree concept of re-ordering nodes when search is 
performed.

• Splay algorithm (after the search has been completed)
▫ Swap levels between 2 nodes: random and searched.

▫ Remove connections when lowering level, connecting preceding and 
succeeding nodes.

▫ Add connections when increasing levels, disconnecting preceding and 
succeeding nodes. 

• Runtime is O(log n)

Splay List: Skiplist Variation



• Addition and removal of nodes remains the same as Skiplist.

• Change in the search function:
▫ Denote the corresponding searched node ux.

▫ Select a random node ur .

▫ Swap between the levels of ux and ur using the Splay Node algorithm.

• Slightly increasing the runtime of the search but remaining in O(log n).
▫ Search for additional node

▫ Lowering level of node - similar to node removal

▫ Raising level of node - similar to node addition

Splay List Behavior



Splay Node Algorithm



Figure 3 (Splay List Search)
Search for node in Splay List.

Node 9 found.

Node 4 chosen for swap and found in Splay List. 

Top levels swapped between nodes 9 and 4.



• Probabilistic Skiplist structure to be vulnerable to a timing attack. 
▫ Allows mapping of the structure.

• Possible attacks:
▫ Runtime attack – performance degradation.

▫ Hidden Channel attack – undetected transfer of data using structure.

• Proposed defense – Splay list.
▫ Randomize structure after search.

▫ Retain O(log n) performance.

• Future directions:
▫ Consider the behavior of multiple releases over time.

▫ Consider attacks based on other data structures (trees, graphs, etc…)

Summary



Thank You!


