Skiplist Timing Attack Vulnerability

Eyal Nussbaum
PhD Student, Communication Systems Engineering
School of Electrical and Computer Engineering

Ben-Gurion University of the Negev
Advisor: Professor Michael Segal

Talk Overview

* Introduction

* Probabilistic Skiplist

« Skiplist structure mapping

* Possible attacks on Skiplists
 Splay List as a proposed defense
e Summary

Introduction

» Database Characteristics:
= Underlying data structure — graphs, trees, lists and so on.

= Data types/formats — text, discrete or continuous numeric values,
coordinates and others.

= Query types and behavior.
* Targets

= |dentify potential weaknesses and attack vectors based on DB
characteristics, and offer defenses.

= Offer computational complexity for attack/defense.

S SSSH—m—S————————————————
Run-time Based Attack

* The underlying architecture of a database may be comprised of a single
or multiple data structures: graphs, trees, stacks, etc...

* The organization of the data may hold information regarding the data
itself (as in the case of a binary search tree).

* Run-time of queries is also dependent on the structure and may leak
information

= Futoransky et al. describe such an attack on SQL databases (insertion
attack).

* We show an example of an attack based on the Skiplist structure.
= Skiplists are a probabilistic alternative to balanced trees.
= Maintain an ordered structure with multiple levels.

> Contains log n levels with % nodes per level .

e
Probabilistic Skiplist - Example

HEAD 1 2 K] 4 5] 3] ¥ a Q 10 11 12 13 14 16 MIL
Figure 1 — 4 level Skiplist with 15 nodes

« Skiplist creation:
= Search for ordered placement of node.
° Insert node at level 1.
= With 0.5 probability, add next level to node.

= Continue to subsequent level with probability 0.5 until either next level was
not added, or max level has been reached.

 Skiplist implementations:
= MemSQL, Redis

.
Skiplist Mapping

* We give an algorithm, SkipListMap, that maps the structure of a given
probabilistic Skiplist using the search function.
= The size of the structure, n, is known.
= The structure holds unique values.
= The range of possible values in the structure is known and is of size O(n).
= The runtime of the search algorithm is consistent.

» Using SkipListMap to discover the structure of the Skiplist allows us to
perform attacks.

* Goal:

(J Restructure the Skiplist to cause worst case performance.
J Create hidden channel between two parties.

.
SkipListMap Algorithm

» Consists of two phases:
= Search time mapping
= Skiplist reconstruction

» Search operation example for Skiplist in figure 2
= Search for “10” — requires 6 comparisons.

EH}E _____ o % _____ o % _____ T FH_ED _____ T % _____ Sy ﬂ

HEAD 1 2 3 4 5 & ¥

Figure 2 — Skiplist search example

R RRRRRERSSSSBEEBEEBwwm
SkipListMap - Search Time Mapping

Algorithm 1 Map Skiplist search times

1: procedure MAPRUNTIME(skiplist,values)
2: runtimes = newArray
for x; in values do
T, < runtime of skiplist.find(x;)
runtimes.append(Ty,)
end for
Toin < min(runtimes) > Minimum over all runtimes
for T, in runtimes do
10: end for
11: return runtimes
12: end procedure

» Search for all possible values, x;, in the Skiplist.

» For each value found, denote its search time 7, ..
Denote the the lowest runtimetobe T, .

e Normalize runtimes basedon T, such that T _, =1.
Normalized T, is the length of the search path to x..

.
Search Time Mapping - Example

HEAD 1 2 3 4 5 & 7 & 9 10 11 12 13 14 Iz NIL

e
SkipListMap - Reconstruction

Algorithm 2 Reconstruct Skiplist by search times

1: procedure RECONSTRUCTSKIPLIST(values, runtimes, Tmin)

2: reconstructedList <— newSkiplist()

3: runtimes <— sortAscending(runtimes) > Sort runtimes from min to max
4: for 7)., in runtimes do

95: t=0 > zero current search time
6: L=1 > initialize insertion level
7 do

8: reconstructedList.insert(z;, L) > Insert z; at level L
9: t « runtime of reconstructedList.find(x;)

10: t= T'rrfin > Normalize runtime
11: L=L+1 > Increase level for next iteration
12: while ¢t # T,
13: end for
14: return reconstructedList

15: end procedure

» Create empty Skiplist with log n levels (in our example, 4)

* Insert nodes in order of increasing values of x;, beginning at level 1
= After each level insertion attempt, search for x..
= Repeat until correct search time is found.

Reconstruction - Example

e Reconstruction of first 4 nodes.

* Note that once a node level is chosen, inserting nodes to the right does
not change search time of previous nodes.

4 T,=4 T,=3) 4 Ty=5 T,=4 T,=2 A
HEAD 1 NIL HEAD 1 NIL HEAD 1 2 NIL HEAD 1 2 NIL HEAD 1 2 NLL
N AN J
(a) Inserting z, into level 2. (b) Inserting x5 into level 3.
/’ T3:5 \ / T4=6 T4=4 Td=3 \
HEAD 1 2 3 NIL HEAD 1 2 3 4 NL HEAD 1 2 3 4 NIL HEAD 1 2 3 4 NL
\. /X J

(c) Inserting x3 into level 1. (d) Inserting x4 into level 3.

R REREEEEEEEE—EEEEES———,
Skiplist Runtime Attack

Runtime Attack requires “write” access
Restructure the Skiplist to cause worst case performance.
Remove all items which exists above level 1.

Re-insert all items that were removed. Approximately 0.75 will be in
level 1.

» Repeat removal/insertion until reducing Skiplist structure to a linked list
with a search time of O(n).

.
Skiplist Hidden Channel Attack

* Hidden Channel Attack requires 2 parties, one with “write” access.
= Transmitter and Receiver
 Original Skiplist database is distributed publicly.
» Each attacker maps the Skiplist structure.
* Transmitter holds private knowledge regarding nodes.
* Transmitter selectively removes and re-inserts nodes, marking them.

= Allows transfer of 1 extra bit of information regarding nodes.
* For example — gender information, placebo/drug differentiation...

= Alternatively, allows n-bit message encoding.
* Transmitter re-distributes Skiplist with structure change only.
* Receiver can decipher hidden channel using SkiplistMap.

e
Splay List: Skiplist Variation

» Suggested defense from SkipListMap attacks — conceal runtime.
* Propose Splay List structure, a variant of Skiplist.

» Based on Splay Tree concept of re-ordering nodes when search is
performed.

 Splay algorithm (after the search has been completed)
= Swap levels between 2 nodes: random and searched.

= Remove connections when lowering level, connecting preceding and
succeeding nodes.

= Add connections when increasing levels, disconnecting preceding and
succeeding nodes.

* Runtime is O(log n)

R REREEEEEEEE—EEEEES———,
Splay List Behavior

» Addition and removal of nodes remains the same as Skiplist.

* Change in the search function:
= Denote the corresponding searched node u,.
= Select a random node u, .
= Swap between the levels of u, and u, using the Splay Node algorithm.
* Slightly increasing the runtime of the search but remaining in O(log n).
= Search for additional node
= Lowering level of node - similar to node removal
= Raising level of node - similar to node addition

e
Splay Node Algorithm

Algorithm 3 Splay Skiplist node: change node level

1: procedure SPLAYNODE(v, new Level, prevNodesArray)
2: max < maxLevel(v) > Find current max level of v

3: if max > newLevel then

4: for [in max + 1...newLvel do

5% v; < newnodeLevel (v) > Create new level in node v
6: vi.next < nextNodesArray|l].next > Connect v to next node in level
7 prevNodesArray|l].next < v > Connect v to previous node in level
8: end for

9: end if

10: if maxr < newLevel then
11: for [in newLevel +1...max do
12: prevNodesArray(l].next < v;.next
13: v.deleteLevel(l) > Remove level [from v
14: end for
15: end if

16: end procedure

e
Figure 3 (Splay List Search)

Search for node in Splay List.

) Eﬂﬁ _____ S % _____ o H}% _____ T H % _____ Sy j

HEAD 1 2 2 4 5 & T 2 Q 10 11 12 13 14 16 MIL

Node 9 found.

’ EH}% _____ o % _____ o H}% _____ H % _____ Sy j

HEAD 1 2 3 4 5 [+ T =] 9 10 11 12 13 14 1B NIL

Node 4 chosen for swap and found in Splay List.

5 EH}% _____ aH o H}% _____ i % _____ Sy % _____ Sy j

HEAD 1 2 3 4 5 & T =} Q 10 11 12 13 14 16 NIL

Top levels swapped between nodes 9 and 4.

Ssummary

Probabilistic Skiplist structure to be vulnerable to a timing attack.
= Allows mapping of the structure.

Possible attacks:

= Runtime attack — performance degradation.

= Hidden Channel attack — undetected transfer of data using structure.
Proposed defense — Splay list.

= Randomize structure after search.

= Retain O(log n) performance.

e Future directions:

= Consider the behavior of multiple releases over time.

= Consider attacks based on other data structures (trees, graphs, etc...)

Thank You!

