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Background - The Privacy Threats

* Online Analytical Processing (OLAP) faces privacy threats

 External attacks:

* 2022 Uber data breach(What Caused the Uber Data Breach in 2022)
e 2024 AT&T data breach(

AT&T Addresses Recent Data Set Released on the Dark Web)

 Internal leaks:
e 2023 Tesla former employee information leak(
Tesla insider breach exposes thousands of employees)
e 2024 Evolve Bank information leak(

Evolve Bank says ransomware gang stole personal data on millions of customers

)



https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://about.att.com/story/2024/addressing-data-set-released-on-dark-web.html
https://cybernews.com/news/tesla-data-breach-thousands-exposed/
https://techcrunch.com/2024/07/09/evolve-bank-says-ransomware-gang-stole-personal-data-on-millions-of-customers/

Background - Deficiencies in existing
work

* The existing methods cannot meet the requirements of OLAP, or
they have deficiencies in terms of efficiency or security.

* Traditional encryption methods (e.g., AES, RSA) do not support
computation.

* Solutions based on CryptDB support limited computations and may leak
data access patterns.

* Solutions based on TEEs rely on specific hardware and are vulnerable to
side-channel attacks.

* The performance of existing methods based on Fully Homomorphic
Encryption (FHE) is not good.

* Among the mentioned methods, we consider the approach
based on FHE to achieve the highest level of security. Therefore,
we are attempting to enhance the performance of this method.



The Fully Homomorphic Encryption
(FHE)
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The state-of-the-art single-machine FHE-

based
OLAP System - HE3DB

* HE3DB: An Efficient and Elastic Encrypted Database Via

Arithmetic-And-Logic Fully Homomorphic Encryption
(https://dl.acm.org/doi/abs/10.1145/3576915.3616608)

* Secure enough
* But with poor performance...



Reasons for Slowness: The FHE-based
Filtering

* FHE-based filtering:

Utilizing TFHE for homomorphic subtraction on all data entries

Performing homomorphic most significant bit (MSB) extraction

Conducting homomorphic bitwise AND operations

Transforming the results into CKKS format to generate an encrypted 0/1 vector
* Performing homomorphic vector multiplication between the filter and the data

 Performance bottleneck: 99.96% of the overall time
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Key idea

* Can we try using parallel or distributed methods to enhance
performance?

* The first step: Employing the MapReduce parad|gm for
distributed FHE-ba~-—-~ "' "7
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Challenge

* The result of FHE comparison is encrypted randomly,
making it impossible to group the intermediate results

* Cannot directly use MapReduce...

* Can we modify the MapReduce process based on the
characteristics of FHE while ensuring security?



The Pre-Group Operation

 Essentially, it involves partitioning queries in advance using
attribute tables, breaking down a single query into multiple
subqueries.

SELECT SuM(price)

FROM t_sale

WHERE month > '"\x8GE3'
AND type = "\XFH2A'

SELECT SuUM(price) SELECT SuUM(price)

FROM t_sale N FROM t_sale

WHERE month > '"\X8GE3' WHERE month > "\Xx8GE3'

GROUP BY type AND type = "\xU3FO'
Origin Query

SELECT SUM(price)

FROM t_sale

WHERE month > "\X8GE3'
AND type = '\XGIR2'

Subqueries



The Overview of HEDAS
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System Construction

Algorithm 1: System Construction

Input Original plaintext dataset D,
Step ©: En( rypt dataset and generate attributes table
1 pL < GetEncryptionKey(); ek < GenerateEvalKey (pk);
2 Dm < Encrypt (D,;,pk); attr table < GenerateAttrlbuteTable(ng,.pk);
/ Step @: Send encrypted data and attributes table to coordinator
3 Sr'an-::'lInltDaLt::1(Dm attr table, ek);

/ Step ©: Shard encrypted data and distribute to cloud machines
machine num GetMachineNum():
shards array|| < DataSharding (D.,,machine num);

For each cloud machine m;; do
| SendShard(shards _array[m;]);

e [>T BTN




Query
Processing

Algorithm 2: Query Processing
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Input: Plain text query scheme QS with plaintext filtering predicate
parameters P, and GROUP BY attribute G
/ Step @: Encrypt query parameters
pL < GetEncryptionKey (); Fe, < Encrypt (F,;,pk);
Step @: Send qu(‘r\ with encryvpted parameters to coordinator
SendQuery(QS en, G);
// Step @: pre-group operation
a.ttr_table < GetAttributeTable();
sub _queries|] - PreGroup(QS, P.,, G, attr table);
/ Step @: Assign SMap tasks to unrlwr nodes

WhllC SMap not finished; do
L worker + WaitWorker(); S Map task < GetSMapTask(sub queries);

AssignTask(worker, SUGp task);

/ Step ©: Workers process SMap tasks

5 Uap task <— RequestSMapTask();

?m‘ result < DoSMapTask (SMap task); CacheIntResult (int result);
/ Step ®: Assign SReduce tasks

Whlle SReducc not finished; do
worker < WaitWorker (); SReduc e task < GetSReduceTask();

L AssignTask(worker, SReduce task);

/ Step @: Workers process SReduce tasks
SRC duce task <— RequestSReduceTask();
int results < GetIntResults (SReduce task.key);
partial result <— DoSReduceTask (SReduce task, int results);
SendResultToCoordinator (partial result); B
// Step ©: Coordinator collects and returns the final result
result <— CollectAllResults(); ReturnResult (result);




The case studies

* OQur system can integrate traditional CryptDB indexes or a
type of tree-like HashFilter-based indexes (another work of
ours) in scenarios where privacy requirements are not as
stringent.

* Two case study subsystems: HEDAS-CryptDB and HEDAS-
HashFilter.



Evaluation questions

* What is the end-to-end and breakdown performance gain
compared to HE3DB?

» Additional performance improvement for the case study
systems?

* How about the scalability?



The End-to-end Latency
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The Scalability with Increasing Nodes
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Conclusion & Future work

* HEDAS is the first distributed FHE-based OLAP system in the
MapReduce style, enabling secure and efficient OLAP
operations.

* We will continue to explore systematic methods to optimize
FHE-based databases, and HEDAS is just the beginning.

* Qur future work includes:
* Utilizing accelerators (e.g., GPUs) to provide more powerful parallel
computing;
* Designing special cache mechanisms to accelerate FHE filtering;

* Developing more efficient indexing structures for FHE-based
databases.



THANK YOU!
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