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Preface

This document comprises the pre-proceedings fo the DPM 2024 (19th International Workshop on
Data Privacy Management), and CBT 2024 (8th International Workshop on Cryptocurrencies
and Blockchain Technology) to be held in September 19th, 2024 in Bydgoszcz (Poland). The
workshops are part of ESORICS 2024 (29th European Symposium on Research in Computer
Security).

These pre-proceedings include preprints of the papers to be presented in the workshops and
a posterior post-proceedings book will be published in Springer LNCS series with the revised
papers presented in the workshops. These preprints are intended to be used by the workshop
participants during the workshops and we encourage readers to refer the post-proceedings edition
for citation.

Ken Barker
Sergi Delgado-Segura
Joaquin Garcia-Alfaro

Guillermo Navarro-Arribas
Cristina Perez-Sola

(DPM 2024, and CBT 2024 PC Chairs)
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Privacy-Preserving Optimal Parameter Selection

for Collaborative Clustering

Maryam Ghasemian1 and Erman Ayday1

Case Western Reserve University, Cleveland, OH, USA
{maryam.ghasemian, erman.ayday}@case.edu

Abstract. This study investigates the optimal selection of parameters
for collaborative clustering while ensuring data privacy. We focus on key
clustering algorithms within a collaborative framework, where multiple
data owners combine their data. A semi-trusted server assists in recom-
mending the most suitable clustering algorithm and its parameters. Our
findings indicate that the privacy parameter (ϵ) minimally impacts the
server’s recommendations, but an increase in ϵ raises the risk of member-
ship inference attacks, where sensitive information might be inferred. To
mitigate these risks, we implement differential privacy techniques, partic-
ularly the Randomized Response mechanism, to add noise and protect
data privacy. Our approach demonstrates that high-quality clustering
can be achieved while maintaining data confidentiality, as evidenced by
metrics such as the Adjusted Rand Index and Silhouette Score. This
study contributes to privacy-aware data sharing, optimal algorithm and
parameter selection, and effective communication between data owners
and the server.

Keywords: Clustering · Privacy · Differential Privacy · Membership
Inference Attack · Data Mining · Machine Learning.

1 Introduction
Clustering, a fundamental technique in unsupervised machine learning, involves
identifying patterns in unlabeled data. This process includes feature selection,
measuring data similarity, and evaluating algorithms [21, 35]. There are several
types of clustering algorithms: partitioning based [34, 25], distribution based [19,
22], density based [6, 3, 31], and hierarchical [24, 11]. Our study concentrates on
selecting the optimal hyperparameters for key representative clustering algo-
rithms from each category, within a privacy-preserving collaborative framework.
Specifically, we explore K-Means (partitioning-based), Hierarchical Clustering
(HC, hierarchical), Gaussian Mixture Models (GMM, distribution-based), and
DBSCAN (density-based).Choosing the right parameters is crucial as it directly
impacts the accuracy and effectiveness of the clustering results, thereby influ-
encing the insights derived from the data while maintaining privacy.

Motivated by the fact that clustering algorithm perform better with larger
amount of data and that datasets are typically distributed across different par-
ties, cooperative clustering and collaborative clustering [7] techniques have been
popular. In cooperative clustering, each party generates its own clustering re-
sults, and a final clustering is performed via a post-processing step once individ-
ual processes are completed. In contrast, collaborative clustering aims to leverage

DPM & CBT 2024
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2 M. Ghasemian and E. Ayday

the contributions of multiple parties by exchanging information about local data,
current hypothesized clustering, or algorithm parameters to benefit each other’s
computations. Due to privacy concerns of the parties, privacy-preserving algo-
rithms have been proposed during collaborative clustering, which aim to protect
the sensitive information in each parties’ local dataset. However, depending on
the type of clustering (partitioning-based, distribution-based, density-based, or
hierarchical clustering), parties need to decide on some common input parame-
ters. Selection of such parameters significantly effect the accuracy of the cluster-
ing algorithm and existing privacy-preserving collaborative clustering techniques
assume such parameters are pre-selected. On the other hand, such parameters
typically depend on the distribution of the federated dataset of the parties and
they should be determined in a privacy-preserving way before the collaborative
clustering. In addition, parties also need to decide the type of the clustering
algorithm depending on their federated dataset as different types of algorithms
perform differently in particular datasets. To fill this gap, we focus on a server-
assisted scenario for collaborative clustering, aiming to evaluate server-provided
input parameters and clustering algorithms. We experiment with K-Means, Hi-
erarchical Clustering, Gaussian Mixture Models, and DBSCAN using a labeled
numeric dataset, assessing results with metrics like Adjusted Rand Index (ARI)
and Silhouette Score.

Using a semi-trusted server enhances privacy and helps select optimal cluster-
ing algorithms and parameters without burdening data owners with large compu-
tational resources. Differential privacy techniques safeguard data throughout the
process. Our findings show that this approach effectively maintains data privacy
while delivering high-quality clustering, evidenced by ARI and Silhouette Scores.
The Randomized Response mechanism efficiently preserves data structure while
protecting privacy.

In this work, we make the following contributions to the context of collabo-
rative clustering with hyper parameter recommendation:

1. Privacy-Preserving and Efficient Communication: We introduce a novel
privacy-preserving step in the collaborative clustering process, where data own-
ers share parts of their datasets with the server after applying the randomized
response (RR) mechanism to add noise to their respective datasets. This step
enhances privacy protection by concealing sensitive information while still allow-
ing for meaningful analysis. Additionally, we establish a seamless communication
framework between the data owners and the server, ensuring privacy-preserving
data sharing. Unlike previous works that primarily rely on pre-selected clustering
parameters and then apply encryption techniques in distributed or collaborative
clustering, our approach goes beyond by addressing the challenge of parame-
ter selection by determining the optimal clustering algorithm along with the
respective hyper-parameters and incorporating the randomized response (RR)
mechanism to introduce noise and safeguard sensitive information during data
sharing.

2. Optimal Algorithm Selection: The server plays a crucial role in identify-
ing the optimal clustering algorithm and its corresponding hyper-parameters.
By employing various methods, the server evaluates different algorithms and
provides data owners with recommendations for achieving the best clustering
results. This step helps alleviate the burden of algorithm selection and parame-
ter tuning for data owners.

DPM & CBT 2024
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Privacy-Preserving Optimal Parameter Selection for Collaborative Clustering 3

3. Server-Data Owner Interaction: The server communicates chosen algo-
rithms and parameters back to the data owners, ensuring that all parties are
aligned with the recommended strategies. This facilitates a coordinated effort
that enhances both accuracy and efficiency.

In summary, our study contributes to privacy-aware data sharing, optimal
algorithm and hyper-parameter selection, and effective communication between
data owners and the server. The results revealed that the amount of noisy data
shared and the privacy budget (ϵ) did not significantly affect the server’s al-
gorithm and parameter recommendations. However, an increase in the privacy
budget was found to elevate the risk of membership inference attacks, suggesting
a trade-off between privacy protection and attack vulnerability.

2 Related Work

Our study reviews privacy-preserving approaches in distributed and collabora-
tive clustering, categorized by algorithm types, introduced in Section 1. Existing
methods typically use predefined algorithms and hyperparameters, while our
contribution dynamically identifies optimal clustering algorithms and hyperpa-
rameters to enhance collaborative clustering performance in a privacy-aware
manner.

Bi et al.’s PriKPM scheme [5] introduces a privacy-preserving k-prototype
clustering method using additive secret sharing to handle mixed data types in
cloud environments, addressing privacy concerns. This framework ensures clus-
tering privacy through secure processing by dual servers, validated by experi-
ments demonstrating computational efficiency and accuracy.

Wang et al. [33] propose a privacy-preserving k-means clustering model for
IoT, using multi-key fully homomorphic encryption for secure cloud-edge compu-
tations. The model optimizes resource use and ensures data privacy through se-
cure communication protocols, demonstrating the feasibility of privacy-sensitive
cloud-edge collaborations with minimal overhead.

Further contributions include Jagannathan and Wright’s [20], as well as
Baby et al.’s [4], protocols for privacy-preserving distributed K-Means clus-
tering, designed for data partitioned arbitrarily. These protocols maintain data
confidentiality while following the K-Means algorithm’s iterative nature, allow-
ing secure computation of cluster centers and distances without data exposure.

Additionally, Lin et al. [22] present an expectation maximization-based strat-
egy for private clustering across distributed sites, utilizing secure summation to
protect horizontally partitioned data. Liu et al. [23] offer privacy-preserving
DBSCAN techniques for data distributed in various ways, employing a Multipli-
cation protocol based on additive homomorphic encryption for secure clustering.

Meng et al. [24] introduce privacy-preserving hierarchical clustering algo-
rithms, emphasizing a two-party model that employs homomorphic encryption
and garbled circuits. Their approach provides a dendrogram depicting the clus-
tering process, enriched with detailed merge metadata.

These diverse approaches share a common goal of enhancing privacy in collab-
orative clustering, yet they employ fixed algorithms and parameters. Our study
seeks to advance this domain by focusing on adaptive parameter selection to
achieve optimal clustering results, reflecting a significant leap toward balancing
privacy preservation and analytical utility in collaborative settings. To provide a
clearer comparison of the various approaches, Table 1 summarizes the adversary
models and system models considered in the related works discussed above.

DPM & CBT 2024
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4 M. Ghasemian and E. Ayday

Table 1: Overview of Adversary and System Models in Related Works
Reference Clustering

Algorithm
System Model Adversary

Model
Privacy Technique

Bi et al. [5] k-Prototype Cloud-based with
dual servers

Semi-honest ad-
versary

Additive Secret Shar-
ing

Wang et al. [33] k-Means IoT ecosystem
with cloud-edge
collaboration

Semi-honest ad-
versary

Multi-Key Fully Ho-
momorphic Encryp-
tion

Jagannathan [20],
Baby et al. [4]

k-Means Arbitrarily parti-
tioned data, dis-
tributed

Honest-but-
curious adversary

Secure Multiparty
Computation (SMC)

Lin et al. [22] Expectation
Maximization

Distributed sites
with horizontally
partitioned data

Honest-but-
curious adversary

Secure Summation

Liu et al. [23] DBSCAN Distributed with
various data par-
titions

Honest-but-
curious adversary

Additive Homomor-
phic Encryption

Meng et al. [24] Hierarchical
Clustering

Two-party model Semi-honest ad-
versary

Homomorphic En-
cryption and Garbled
Circuits

Our Work Multiple
(K-Means,
HC, GMM,
DBSCAN)

Semi-trusted
server in collabo-
rative clustering

Semi-honest
server, honest-
but-curious data
owners

Local Differential
Privacy, Randomized
Response

3 Background

In this section we review some background and definitions of different cluster-
ing algorithms and clustering evaluation metrics as well as the local differential
privacy.

3.1 Clustering Algorithms

This study explores four clustering algorithms: partitioning-based, distribution-
based, density-based, and hierarchical [34, 25, 6, 24, 19, 22, 3, 11]. K-Means, a widely
used unsupervised algorithm, partitions data into K non-overlapping clusters
by minimizing distances between data points and centroids [34, 25]. Gaussian
Mixture Models (GMM) handle clusters with varying sizes and correlations by
assuming data is generated from a mixture of Gaussian distributions [19, 22].
DBSCAN identifies clusters of arbitrary shapes based on data density and auto-
matically detects outliers, without needing to predefine the number of clusters,
though it is sensitive to its parameters: neighborhood size (Eps) and minimum
points (minpoint)[6, 3]. Hierarchical clustering creates a tree of clusters without
a pre-specified number, using either a bottom-up or top-down approach. It is
useful for hierarchical data but is computationally intensive and varies with the
linkage criterion used[24, 36, 15, 14, 17].

3.2 Evaluation Metrics for Clustering Algorithms

This section outlines the evaluation metrics used to assess the effectiveness of
the proposed privacy-preserving collaborative clustering approach. To measure
the performance of our approach, we use the following metrics, each selected
for its capability to capture various dimensions of clustering quality and privacy
preservation:

DPM & CBT 2024
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Privacy-Preserving Optimal Parameter Selection for Collaborative Clustering 5

Table 2: Table of symbols and notations.
Symbol Description
Di Dataset of each data owner i
NDi Noisy data of each data owner i produced as a result of RR
fNDi Portion of the noisy data, NDi, shared with server from each data owner i
RR Randomized Response mechanism
ϵ , eps epsilon, Privacy Parameter
Eps Epsilon, Maximum distance between clusters in DBSCAN
k Number of clusters
ARI Adjusted Rand Index
CH Calinski-Harabasz Index
Homo Homogeneity of the clusters
Comp Completeness

Adjusted Rand Index (ARI): Measures the similarity between two clusterings,
with scores ranging from -1 (independent clusterings) to 1 (perfect agreement).
Higher ARI values indicate better clustering performance.

Silhouette Coefficient Score: Evaluates cluster cohesion and separation, with
scores ranging from -1 to 1. Higher values indicate better-defined clusters.

Calinski-Harabasz Index (CH): Measures clustering quality based on the ra-
tio of between-cluster dispersion to within-cluster dispersion. Higher CH values
indicate better separation between clusters.

Classification Accuracy: We also added classification accuracy to our evalu-
ation framework, a metric that measures the proportion of correct predictions.
Although unusual in unsupervised learning tasks like clustering, it helps eval-
uate how well cluster assignments match predefined labels when known. This
metric is key in scenarios with known data classifications, allowing for direct
comparison between our privacy-preserving clusters and actual categories.

Table 2 contains a list of symbols and notations used throughout this paper.

3.3 Local Differential Privacy and Randomized Response
Mechanism

Local Differential Privacy (LDP) [8, 10] is a more restricted form of traditional
differential privacy [9]. Unlike traditional differential privacy, LDP does not rely
on a trusted third party and provides a higher level of data protection for users.
In LDP, each user modifies their own data before sharing them with a data
aggregator. The aggregator only sees the perturbed data, ensuring privacy. An
algorithm A satisfies ϵ-local differential privacy (ϵ-LDP) if, for any input values
v1 and v2: Pr[A(v1) = y] ≤ eϵPr[A(v2) = y], This condition holds true for
all possible outputs of the algorithm A. The randomized response mechanism
is commonly used to achieve ϵ − LDP [12]. In this mechanism, an individual
reports the true value of a single bit of information with probability p and flips
the true value with probability 1−p, following the (ln p

1−p
)−LDP property. Al-

though initially defined for binary inputs (e.g., yes/no), the randomized response
mechanism can be generalized. To achieve ϵ-LDP, the generalized randomized
response mechanism [18] shares the correct value with probability p = eϵ

(eϵ+m−1)

where m is the number of possible states. Each incorrect value is shared with
the probability. q = 1

(eϵ+m−1) . A data aggregator collects the perturbed values
from individuals and aims to calculate the frequency of values in the population
while preserving privacy.

DPM & CBT 2024
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6 M. Ghasemian and E. Ayday

4 System and Threat Models

In this section, we provide an explanation of the system and threat model for
privacy-preserving hyper-parameter identification for collaborative clustering.

4.1 System Model

In the proposed system model, the party who aims to collaborate in clustering
with other data owners is referred to as the “data owner” (or researcher), while
the server represents a third party that assists the data owners in identifying the
optimal clustering algorithm and hyper-parameters. Our approach focuses on the
preliminary stages before actual clustering occurs in a collaborative environment.
Our objective is to identify the optimal algorithm and input parameters for
collaborative clustering among multiple data owners who wish to maintain data
privacy. As discussed, different types of clustering algorithms perform differently
depending on the type and distribution of the datasets, and hence it is crucial
to identify the optimal clustering algorithm type beforehand.

Once these optimal conditions are determined, clustering can then be ex-
ecuted using one of the existing algorithms mentioned in Section 3.1. In this
context, data owners selectively share differentially private data with a semi-
trusted server. This server plays a crucial intermediary role, analyzing the noisy
data to recommend the most suitable clustering algorithm and corresponding
hyper-parameters for the data received from data owners.

4.2 Threat Model

In this section, we outline the considered threats in our proposed scheme, which
involve both the server and the data owners.

Server: In this study, the server is considered semi-honest, indicating it might
engage in malicious activities, such as extracting sensitive information from the
datasets of the individual parties (data owners), but it honestly follows the pro-
tocol execution. The server’s role is pivotal, yet poses a risk of privacy violations.
Privacy attacks like membership inference [29, 30, 28], deanonymization [29, 26,
27], and attribute inference [29, 13] are concerns. Membership inference attacks
aim to determine whether a specific record is in the dataset. Deanonymization
attacks link anonymized data to actual identities using external information.
Attribute inference attacks deduce sensitive attributes from observed data. In
our setting, the most relevant is membership inference, where the server tries to
determine if a specific record is part of one of the data owners’ datasets, leading
to privacy breaches. Our proposed scheme prevents this by sharing only a small,
differentially-private portion of the dataset (fNDi), which makes deanonymiza-
tion more complex and significantly reduces the threat of membership inference.

Data Owners : In our system model, we assume that the parties involved
in the collaborative clustering are honest but curious. This means that while
they trust each other and do not engage in malicious behavior, they may still
be interested in learning about each other’s data. This assumption is based on
the fact that other literature (such as those in Section 2) has already addressed
the challenges posed by malicious or semi-honest data owners in collaborative
clustering using privacy-enhancing techniques like homomorphic encryption. In
our work, we specifically focus on the task of selecting the optimal algorithm and
hyper-parameters for the clustering process. By concentrating on this aspect, we
aim to improve the efficiency and effectiveness of collaborative clustering while
assuming a cooperative environment among the data owners.

DPM & CBT 2024
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Fig. 1: Comprehensive five-step process, highlighting the interaction between multiple
data owners and the server. We show how data are shared, processed for noise addition
(to achieve differential privacy), and then utilized in a collaborative clustering algo-
rithm, all while maintaining strict privacy protocols. In step (1), data owners add noise
to part of their datasets using randomized response (RR). Data owners send a portion
of their noisy data to the server in step (2). In step (3), the server applies various meth-
ods to find the optimum algorithm with its corresponding hyper parameter(s), and the
server provides its outcome (algorithm and parameter) to the data owners in step (4).
Finally, the data owners perform collaborative clustering based on server suggestions
in step (5).

5 Proposed Solution and Framework

Our proposed system model and framework, as shown in Figure 1, encompass
five fundamental steps:

Step 1-Noise Addition to Datasets: Data owners (DO1→N ) add noise
to their datasets (to achieve differential privacy) through randomized response
(RR) ({D1, D2, ..., DN} → {ND1, ND2, ..., NDN}). In this process, we utilize a
generalized version of the RR mechanism as mentioned in Section 3.3, allowing
data owners to use perturbed data directly without encoding. The number of
possible states for each feature (attribute) can vary according to the specific
domain.

Step 2-Data Sharing with the Server: Data owners transmit a portion of
their noisy data (fNDi) to the server. During this step, data owners share their
perturbed data with the server, enabling it to analyze the data and provide
recommendations for the clustering process.

Step 3-Server-Based Algorithm and Parameter Selection : The server
selects the best clustering algorithm and its hyperparameters using collaborative
clustering, where multiple data owners keep their data private with the Gener-
alized Randomized Response (RR) mechanism. Each owner sends noisy data to
a semi-trusted server, which combines the datasets and uses methods like the
elbow method and silhouette method [37] to determine optimal parameters for
algorithms such as K-Means, hierarchical clustering, Gaussian mixture models.
For DBSCAN, it sets the Eps value using the k-Nearest Neighbors algorithm and

DPM & CBT 2024
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8 M. Ghasemian and E. Ayday

adjusts the minpoint parameter based on data dimensionality, following different
recommendations from prior research [14, 32].

One of the challenges the server faces is the absence of ground truth data.
To address this, the server uses internal performance evaluation metrics that do
not require ground truth, such as the Silhouette Coefficient and the Calinski-
Harabasz (CH) index. These metrics objectively measure the effectiveness of
different algorithms, guiding the server in its selection process.

Here is the selection mechanism that server adapts to select the optimum
clustering algorithm and its corresponding parameters for the data it received
from data owners: The input to the selection algorithm includes a combined
dataset from all data owners (data), a list of candidate clustering algorithms
(algorithms), and a threshold parameter set to 0.1 (α). The output is the op-
timal clustering algorithm (best_algorithm) and its corresponding parameters
(best_parameters). The procedure begins by initializing max_silhouette to −∞,
best_algorithm to None, best_parameters to None, and best_ch_index to −∞.
It evaluates all algorithms, updating max_silhouette if the Silhouette score is
higher. The algorithm then sets a silhouette threshold (max_silhouette − α)
and selects algorithms within this range with the highest CH index, updating
best_algorithm, best_parameters, and best_ch_index accordingly.

Step 4-Communication of Recommendations: The server communi-
cates the recommended clustering algorithm and its parameters to the data
owners, based on the analysis of the shared data.

Step 5-Execution of Collaborative Clustering: Data owners apply the
suggested algorithm and hyper-parameters for collaborative clustering. As dis-
cussed in Section 2, previous approaches often used encryption for distributed or
collaborative clustering. In contrast, this study focuses on selecting the optimal
algorithm and hyper-parameters, assuming mutual trust among data owners for
clustering on the combined dataset. Further details are provided in Section 4.2.

By following these steps, our framework provides recommendations for the
optimal clustering algorithm and its hyper-parameters when data owners wish
to perform clustering in a collaborative environment.

6 Evaluation

6.1 Datasets

We use the Obesity dataset [2] (2,111 records, 17 features) and the Extended Iris
dataset [1] (1,200 rows, 20 features) which is an enhanced version of the classic
Iris dataset [16]. The Obesity dataset assesses obesity levels based on diet and
physical condition, while the Extended Iris dataset provides detailed biological
and ecological information about the iris flower. These datasets were chosen due
to their varying characteristics and complexity, which provide a comprehensive
evaluation of our proposed approach across different types of data distributions
and clustering challenges.
6.2 Metric Significance and Evaluation Approach

ARI, Silhouette Score, classification accuracy, and Calinski-Harabasz Index (CH)
provide a comprehensive performance view. ARI and Silhouette Score assess in-
ternal cluster consistency and separation, while classification accuracy offers ex-
ternal validation, and CH highlights cluster distinctness. Together, these metrics
enable a thorough assessment of both the clustering effectiveness and the impact
of privacy-preserving techniques on data utility. In our evaluation, we analyze
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Privacy-Preserving Optimal Parameter Selection for Collaborative Clustering 9

Table 3: Comparison of Silhouette and Elbow Methods for Predicting the Optimal
Number of Clusters (k): It highlights the superior performance of the Elbow method
in predicting the optimal cluster count, leading to its selection for further analysis in
this study.

ϵ Baseline K Silhouette K Elbow K
0.0010 7 2 8
0.1000 7 2 8
1.00 7 2 8
5.00 7 2 7
10.00 7 2 7

these metrics under varying conditions of data perturbation and privacy budget
settings to explore the trade-offs between clustering quality and privacy preser-
vation. The goal is to achieve optimal hyper-parameter selection that balances
these aspects effectively, demonstrating the practical utility of our approach in
collaborative clustering scenarios.
6.3 Evaluation Results

The datasets were pre-processed by converting categorical variables to numerical
values for analysis. To determine the optimal number of clusters, we applied the
elbow and silhouette methods, as detailed in Section 5. Our experiments, par-
ticularly under varying privacy budgets (ϵ), aimed to identify the most effective
method for our data. The results for dataset 1 are shown in Table 3.

Given that dataset 1 has 7 clusters and dataset 2 has 3, our analysis shows
that the elbow method outperforms the silhouette method in determining the
optimal cluster count. Consequently, we use the elbow method for a more detailed
analysis, aiding in the selection of the optimal k for clustering algorithms like
K-Means, hierarchical clustering, and Gaussian mixture models.

Optimum Input Parameter Selection Results on Noisy Datasets: The
experimental findings of this study are illustrated in Table 4 and Figure 2. Ta-
ble 4 offers a glimpse into the server’s input parameter recommendations, based
on the analysis of 10% of the noisy data shared by the data owners, with a noise
parameter (ϵ) set at 0.1. Figure 2, on the other hand, showcases the clustering
outcomes derived from applying these server recommendations to the combined
dataset. Notably, the results from this application highlight the superiority of
the K-Means clustering algorithm for the combined dataset, a finding that res-
onates with the server’s initial suggestion regarding the most suitable algorithm
and hyper-parameter configuration. These findings and recommendations by the
server are not merely data points, but they serve as critical guidance for the
data owners. They enable the owners to align their clustering strategies with
the server’s insights, which are rooted in a meticulous analysis of optimal input
parameters. This alignment is key to enhancing the effectiveness and accuracy of
the clustering process in a collaborative, privacy-preserving data environment.

Effect of Privacy Parameter ϵ: We have examined the influence of different
levels of ϵ, which perturb the data through the Randomized Response (RR)
mechanism, on the server’s ability to suggest input parameters for clustering
algorithms. In this experiment, the server receives the same amount of data
while varying the value of ϵ, and its suggestions are evaluated on the joint dataset
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Table 4: Server Suggestions for Clustering Input Parameters: Recommendations for
various clustering algorithms based on 10% shared noisy data (ϵ = 0.1).
Dataset Algorithm Data shared to Server ϵ K or Eps Silhouette CH

GMM 10% 0.1 k = 8 0.34 301.30
Dataset #1 DBSCAN 10% 0.1 k = 10, Eps = 1 - -

K-Means 10% 0.1 k = 8 0.36 318.13
HC 10% 0.1 k = 8 0.31 237.61
GMM 10% 0.1 k = 3 0.23 46.88

Dataset #2 DBSCAN 10% 0.1 k = 6, Eps = 7 - -
K-Means 10% 0.1 k = 3 0.36 61.92
HC 10% 0.1 k = 3 0.37 51.57

(a) (b)
Fig. 2: Visual Representation of Clustering Algorithm Performance Across Com-
bined Datasets. This figure illustrates the performance metrics from Table 4 for var-
ious clustering algorithms—GMM, DBSCAN, K-Means, and Hierarchical Clustering
(HC)—evaluated under conditions of 10% data sharing and a privacy parameter of
ϵ = 0.1. Performance metrics including Adjusted Rand Index (ARI), Homogeneity
(Homo), Completeness (Comp), Silhouette Score, Calinski-Harabasz Index (CH), and
Accuracy are plotted. Algorithms recommended by the server are highlighted with
dots, showcasing their superior performance in comparison to others in each dataset
scenario.

without any noise. Experimental results, as shown in Tables 5 and 6, reveal a
notable consistency in the server’s recommendations.

Regardless of the ϵ value, the server consistently proposes around 7 clusters
for the first dataset (Obesity dataset) and approximately 3 clusters for the sec-
ond dataset (Extended Iris dataset). This consistency closely aligns with the
established ground truth, indicating a marginal effect of the privacy parameter ϵ
on the server’s cluster count recommendations. However, it is important to note
that the actual quality of the clusters formed is subject to the specific clustering
algorithm employed. For instance, in the first dataset (Obesity dataset), cluster-
ing algorithms demonstrate varied effectiveness influenced by different privacy
budgets (ϵ), shown in Table 5. K-Means excel, achieving high ARI values, reach-
ing up to 1.0 when less noise introduced to data (higher ϵ), but maintain low
classification accuracy across all settings, indicating well-defined clusters that do
not match predefined labels. Silhouette scores also improve with increased ϵ, sug-
gesting clearer cluster definition. Hierarchical Clustering (HC) shows moderate
and stable ARI values around 0.48 but face declines in accuracy under extreme
privacy settings, hinting at potential misalignments with actual labels. Gaus-
sian Mixture Models (GMM) record lower ARI and negative silhouette scores,
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(a) (b) (c)

Fig. 3: (a):Contrast in dataset #1 with Overlapping Clusters (ϵ = 1, 5, 10): This
part displays the differences between original (’O’) and noise-modified (’X’) data in
closely positioned clusters, colored blue and red. (b) : Comparison in dataset #1 with
Clear Cluster Gaps (ϵ = 1, 5, 10): Here, the focus is on the impact of the Randomized
Response (RR) method on data (original ’O’, noisy ’X’) in maintaining cluster gaps
despite noise variations, balancing privacy with data structure integrity. (c): Original
vs. Noisy Data in dataset #2 (ϵ = 1, 5, 10): This section compares original (’O’) and
noise-affected (’X’) data at different privacy levels, using blue, red, and green to show
cluster separation effectiveness via the RR mechanism. Note: Plots can be zoomed in
for clearer visualization.

suggesting less effective clustering and poor separation, with fluctuating accu-
racy that sometimes aligned with class labels under minimal privacy constraints.
DBSCAN consistently performs poorly with very low ARI, negative silhouette
scores, and minimal accuracy, indicating its unsuitability for this dataset due
to its sensitivity to specific parameter settings and data density. In the sec-
ond dataset (Extended Iris dataset), the performance of clustering algorithms
vary significantly under different privacy settings as shown in Table 6. K-Means
showcases excellent clustering with ARI values of 0.997 at low and high ϵ levels,
though it drops at ϵ = 1, reflecting its sensitivity to privacy settings, despite
maintaining high silhouette scores for good cluster separation. However, its con-
sistently low accuracy indicates a misalignment between the clusters and actual
class labels. Hierarchical Clustering (HC) remains stable across all metrics and
ϵ settings, achieving moderate to high ARI and silhouette scores, and compara-
tively better accuracy at 0.38, suggesting it aligns more closely with true labels.
Gaussian Mixture Models (GMM) exhibit poor performance with negative ARIs
and low silhouette scores, with only moderate accuracy, underscoring its chal-
lenges in this dataset under privacy constraints. DBSCAN performs poorly, with
extremely low ARI, negative silhouette scores, and zero accuracy across all ϵ

settings, confirming its unsuitability for the dataset. Overall, the K-Means algo-
rithm excels over others when the server’s recommendation was k = 3, according
to various evaluation metrics. Furthermore, the server’s recommendations do not
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significantly deviate from the original data in both datasets. To understand the
behavior of data points in dataset #1, we conducted an analysis by selecting
two clusters from the original dataset and applying the RR mechanism with
varying ϵ values. This investigation revealed that the RR mechanism effectively
maintains the separation between clusters when present.

A comparison of Figures 3a and 3b illustrates that the distinction between
two randomly selected clusters is retained even when the data is subjected to
different ϵ values. This finding is significant as it demonstrates that despite lower
ϵ values possibly leading to a more sparse appearance of the data, the server is
still capable of accurately identifying two distinct clusters. This is because the
RR mechanism ensures that data points are redistributed within a range akin
to their original positions. Furthermore, an analysis of Table 4 shows that the
server’s recommendations for second dataset closely mirror the original data.
An exploration involving a comparison of the original and RR-perturbed data
points across different ϵ values, as demonstrated in Figure 3c, indicates that in
two out of the three clusters in dataset #2, data points overlap without a clear
gap, while the third cluster’s points are notably distanced from the others. This
observation reinforces the notion that the RR mechanism is capable of preserving
existing gaps between clusters for various ϵ values.

These results underscore the RR mechanism’s proficiency in safeguarding the
intrinsic structure of the data while incorporating elements of privacy protection.
By effectively maintaining the relative distances between data points, the server
is enabled to provide precise recommendations for the number of clusters, de-
spite the noise caused by different ϵ values. This highlights the RR mechanism’s
balance in protecting data privacy while ensuring the accuracy of clustering
algorithm suggestions in a privacy-conscious data analysis setting.

Table 5: Differential Impact of Privacy Levels on Clustering Algorithms in the dataset
#1. This table explores the performance variations (measured through ARI, Silhouette,
and Accuracy) of four distinct clustering algorithms (K-Means, HC, GMM, DBSCAN)
at different privacy budget levels (ϵ = 0.1, 1, 5) with a consistent data sharing percent-
age (10%).

Algorithm Shared ϵ K ARI Silhouette Accuracy
K-Means 10% 0.1 k = 8 0.75 0.41 0.18
K-Means 10% 1 k = 8 0.75 0.41 0.18
K-Means 10% 5 k = 7 1 0.44 0.15
HC 10% 0.1 k = 8 0.481 0.39 0.005
HC 10% 1 k = 7 0.482 0.41 0.17
HC 10% 5 k = 8 0.482 0.41 0.005
GMM 10% 0.1 k = 6 0.185 -0.0143 0.201
GMM 10% 1 k = 8 0.2069 -0.072 0.05
GMM 10% 5 k = 6 0.2008 -0.007 0.14
DBSCAN 10% 0.1 k = 10 0.017 -0.504 0.005
DBSCAN 10% 1 k = 10 0.017 -0.504 0.005
DBSCAN 10% 5 k = 10 0.017 -0.504 0.005
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Table 6: Influence of Privacy Settings on Clustering Recommendations in the dataset
#2. This table details how varying privacy budgets (ϵ = 0.1, 1, 5) affect the recom-
mendations for clustering parameters and subsequent algorithm performance (ARI,
Silhouette, and Accuracy) for multiple clustering algorithms (K-Means, HC, GMM,
DBSCAN), all with a consistent 10% data sharing arrangement.

Algorithm Shared ϵ K ARI Silhouette Accuracy
K-Means 10% 0.1 k = 3 0.997 0.52 0
K-Means 10% 1 k = 2 0.44 0.57 0.18
K-Means 10% 5 k = 3 0.997 0.52 0
HC 10% 0.1 k = 3 0.84 0.51 0.38
HC 10% 1 k = 3 0.84 0.51 0.38
HC 10% 5 k = 3 0.84 0.51 0.38
GMM 10% 0.1 k = 3 -0.0003 0.021 0.3
GMM 10% 1 k = 2 -0.0004 0.051 0.34
GMM 10% 5 k = 3 -0.0003 0.021 0.3
DBSCAN 10% 0.1 k = 6 0.003 -0.6 0
DBSCAN 10% 1 k = 6 0.003 -0.6 0
DBSCAN 10% 5 k = 6 0.003 -0.6 0

Impact of Shared Data Volume on Server Suggestions: In exploring the
influence of shared data volume on clustering algorithm suggestions for both
datasets 1 and 2, the results consistently indicate that varying the proportion
of data shared with the server does not significantly impact the server’s rec-
ommendations for clustering input parameters. To investigate this, we conduct
experiments where varying amounts of data are shared with the server while
keeping the privacy parameter (ϵ) unchanged. This observation is consistent
across both datasets and all tested algorithms, as shown in Tables 7 and 8.

For the first dataset, the K-Means algorithm maintains the same ARI, Sil-
houette, and Accuracy metrics across different data sharing proportions, sug-
gesting that its performance remains stable despite changes in the volume of
data shared. Similarly, Hierarchical Clustering (HC), Gaussian Mixture Mod-
els (GMM), and DBSCAN show consistent performance metrics across different
data sharing amounts, further supporting the notion that the quality of clus-
tering recommendations does not deteriorate with reduced data sharing. In the

Table 7: Impact of Data Sharing Proportions on Clustering Algorithms’ Performance
in the dataset #1. This table evaluates how different proportions of data shared with
the server (10%, 30%, 50%) influence the clustering outcomes (ARI, Silhouette, and
Accuracy) for various algorithms (K-Means, HC, GMM, DBSCAN) at a fixed privacy
parameter (ϵ = 0.1).

Algorithm Shared ϵ K ARI Silhouette Accuracy
K-Means 10% 0.1 k = 8 0.75 0.41 0.18
K-Means 30% 0.1 k = 8 0.75 0.41 0.18
K-Means 50% 0.1 k = 8 0.75 0.41 0.18
HC 10% 0.1 k = 8 0.481 0.39 0.005
HC 30% 0.1 k = 8 0.481 0.39 0.005
HC 50% 0.1 k = 8 0.0.481 0.39 0.005
GMM 10% 0.1 k = 6 0.185 -0.143 0.201
GMM 30% 0.1 k = 8 0.175 -0.111 0.18
GMM 50% 0.1 k = 5 0.169 -0.001 0.23
DBSCAN 10% 0.1 k = 10 0.017 -0.504 0.005
DBSCAN 30% 0.1 k = 10 0.017 -0.504 0.005
DBSCAN 50% 0.1 k = 10 0.017 -0.504 0.005
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Table 8: Analysis of Server Recommendations for Clustering Parameters Based on
Data Sharing Amounts in the second Dataset. This table examines the influence of
varying amounts of data shared (10%, 30%, 50%) on server-suggested clustering pa-
rameter (k) and their resulting ARI, Silhouette, and Accuracy metrics at a constant
privacy parameter (ϵ = 0.1).

Algorithm Shared ϵ K ARI Silhouette Accuracy
K-Means 10% 0.1 k = 3 0.997 0.52 0
K-Means 30% 0.1 k = 2 0.44 0.57 0.18
K-Means 50% 0.1 k = 2 0.44 0.57 0.18
HC 10% 0.1 k = 3 0.84 0.51 0.38
HC 30% 0.1 k = 2 0.55 0.52 0.66
HC 50% 0.1 k = 2 0.55 0.52 0.66
GMM 10% 0.1 k = 3 -0.0003 0.021 0.3
GMM 30% 0.1 k = 2 -0.0004 0.051 0.32
GMM 50% 0.1 k = 2 -0.0004 0.051 0.32
DBSCAN 10% 0.1 k = 6 0.003 -0.6 0
DBSCAN 30% 0.1 k = 6 0.003 -0.6 0
DBSCAN 50% 0.1 k = 6 0.003 -0.6 0

second dataset, similar patterns emerge. For instance, the K-Means algorithm
and HC adjust their suggested number of clusters slightly depending on the data
share, but the overall performance metrics such as ARI and Silhouette remain
relatively stable. This trend continues with GMM and DBSCAN, which also
show little variation in performance across different data sharing proportions.

These findings suggest that the server is capable of providing robust and reli-
able recommendations for clustering parameters regardless of the amount of data
shared, enabling effective clustering outcomes even when data owners choose to
share minimal data. This is particularly advantageous in scenarios where data
privacy is a concern, as it allows data owners to restrict the amount of shared
data without compromising the effectiveness of the clustering process. Over-
all, the server’s ability to consistently suggest appropriate clustering parameters
across varying data proportions demonstrates its effectiveness and reliability in
guiding the clustering process under different data availability conditions.
7 Privacy Analysis: Membership Inference Attack
Membership inference attacks (MIA) are techniques used to determine whether
specific individual data was included in a dataset. These attacks pose significant
privacy risks, especially when datasets contain sensitive information. Our goal
is to minimize these risks for individuals whose data is part of a dataset shared
with others. To enhance data privacy, only a portion of the dataset, even in its
noisy format, is shared with the server. It has been observed that the likelihood
of successful membership inference attacks is inversely related to the amount of
noise added to the dataset. We divide the data into two groups to assess the
impact of these attacks:

Case Group: This group contains data from specific number of individuals
(150 for first dataset and 100 for second dataset) and represents the subset of
the dataset that is shared with server, thus exposed to potential membership
inference attacks.

Control Group: This group includes data that remains entirely internal and
is not shared with the server. It serves as a benchmark to gauge the risk of data
exposure. We address membership inference attacks by computing a threshold
that determines whether an individual’s data is likely part of the training dataset
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Fig. 4: Analysis of Membership Inference Attack Risks: This figure illustrates the
increasing likelihood of data identification in two datasets as privacy parameters (ϵ)
increase. The blue bars represent dataset #1, and the green bars represent dataset #2,
highlighting the direct correlation between reduced noise levels and heightened data
vulnerability.

based on similarity between shared and unshared data. Similarity exceeding this
threshold indicates a risk of data exposure through membership inference.

Our detailed analysis is visually represented in Figure 4, demonstrating the
impact of the privacy parameter (ϵ), with increased ϵ values reducing the noise
and thereby increasing the risk of data identification.

Our findings show that as ϵ increases, the risk of membership inference at-
tacks rises, indicating less noise leads to higher identification likelihood. There-
fore, limiting shared data and augmenting it with noise is essential to reduce
these risks, necessitating a strategic approach to balance data utility and pri-
vacy in collaborative clustering.
8 Conclusion
This study aims to identify optimal input parameters for four clustering algo-
rithms to facilitate collaborative clustering among multiple data owners. Intro-
ducing a semi-trusted third party improves clustering reliability and accuracy
by recommending optimal algorithms and parameters. Results show that neither
the amount of perturbed data shared nor the privacy budget (ϵ) significantly im-
pacts the server’s recommendations.

Furthermore, this study conducts an analysis of membership inference attacks
to evaluate the vulnerability of the system. As the privacy budget (ϵ) increases,
the power of membership inference attacks also increases. This indicates that
higher levels of privacy budget compromise the effectiveness of privacy protec-
tion, making it easier for attackers to infer whether an individual’s data is part
of the shared dataset.

These findings emphasize the need for careful consideration of privacy-preserving
mechanisms and the importance of maintaining an appropriate balance between
privacy protection and utility. While the server’s suggestions for input param-
eters remain consistent regardless of the amount of perturbed data or the pri-
vacy budget, the potential risks associated with membership inference attacks
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highlight the need to adopt appropriate safeguards and mitigation strategies.
Protecting the privacy of individuals and ensuring the security of collaborative
clustering processes should be key priorities in future research and system design.
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Abstract. The advanced inference capabilities of Large Language Mod-
els (LLMs) pose a significant threat to the privacy of individuals by en-
abling third parties to accurately infer certain personal attributes (such
as gender, age, location, religion, and political opinions) from their writ-
ings. Paradoxically, LLMs can also be used to protect individuals by
helping them to modify their textual output from certain unwanted in-
ferences, opening the way to new tools. Examples include sanitising on-
line reviews (e.g., of hotels, movies), or sanitising CVs and cover letters.
However, how can we avoid miss estimating the risks of inference for
LLM-based text sanitisers? Can the protection offered be overestimated?
Is the original purpose of the produced text preserved?
To the best of authors knowledge, no previous work has tackled these
questions. Thus, in this paper four design rules (collectively referred to
as reteLLMe) are proposed to minimise these potential issues. We vali-
date these rules and quantify the benefits obtained in a given use case –
sanitising hotel reviews. We show that up to 76% of at-risk texts are not
flagged as such without fine-tuning. Moreover, classic techniques such as
BLEU and ROUGE are shown to be incapable of assessing the amount
of purposeful information in a text. Finally, a sanitisation tool based
on reteLLMe demonstrates superior performance to a state-of-the-art
sanitiser, with better results on up to 90% of texts.

Keywords: LLM · Privacy · Inference · Anonymisation

1 Introduction

Large Language Models (LLM) and related generative artificial intelligence tech-
niques are on the rise. They are able to perform complex tasks such as video
generation or speech synthesis, to name a few [2].

Despite their countless advantages, LLMs pose a serious threat to privacy by
means of inferences [19,5]. Indeed, their ability to accurately predict sensitive
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attributes (such as age, gender or political beliefs) of the author of a text that is
believed to be benign has already been demonstrated [16]. This may lead to the
complete deanonymization of the author of a piece of work that was intended to
remain unknown, thus leading to undesired consequences.

Conversely, the very same inference capability of LLMs can be applied to
mitigate the privacy threat. Previous works have already shown how LLMs can
be converted into large-scale anonymizers, thus transforming a piece of data (say
text, video, image, etc.) into another one that can reduce the precision of LLM-
based inferences [17,18]. Some approaches have also considered the utility of the
generated texts as a feature to preserve [4].

There are a number of motivating use cases for such a privacy-preserving
use of LLMs. For example, in the context of online reviews, whether for hotels,
products, or services, it is essential to protect the anonymity of reviewers to en-
courage honest and unbiased feedback. Here, a LLM can assist by sanitizing text
to conceal Personally Identifiable Information (PII), ensuring consumer opinions
are shared without fear of personal exposure. Similarly, in professional environ-
ments, such as job applications, ensuring that work-related documents such as
reports or cover letters may not leak any highly sensitive information such as
religious beliefs or political thoughts could help mitigate discrimination.

A great number of recent efforts revolve around using LLMs as privacy-
preserving tools, such as [14,17], to name a few. Although they exhibit promising
performance features, their use of LLMs does not follow any particular design
criteria. This leads to undesired effects in text utility, user privacy or both.
Therefore, it is essential to build those privacy-preserving LLMs in a sound
manner, providing reliable evidence of their effectiveness.

To address these issues, this paper proposes a set of design rules (collectively
referred to as reteLLMe) to build privacy-preserving LLMs and evaluate their
efficiency. They provide solid grounds to achieve an optimal transformation of
a piece of information while keeping a privacy-utility tradeoff. More specifically,
the contributions of this work are as follows:

– We propose a novel problem statement by identifying three main underlying
challenges, namely (1) the assessment on a realisic LLM-based attacker, (2)
the sanitisation of the piece of information to limit these inferences and (3)
the assessment of the utility of the sanitised output to maintain a threshold;

– We provide a set of design rules to address the above challenges;

– We show experimentally the benefit of following these rules, and conversely
the impact of ignoring them, in the context of a hotel review sanitiser.

Paper organization. Section 2 introduces the problem statement. Section
3 introduces the proposed design rules in a case-agnostic fashion. Section 4 de-
scribes the application of these rules in the context of sanitising hotel reviews.
Section 5 provides an experimental validation and comparison with the state of
the art. Section 6 introduces the related work. Lastly, Section 7 concludes the
paper and points out future work directions.

DPM & CBT 2024

27



reteLLMe: Design rules for using LLMs to Protect Privacy 3

2 Problem Statement

This paper tackles the intricate task of text sanitisation through the utilization of
LLMs to shield sensitive author attributes (e.g., age, gender, etc.). This Section
introduces three underlying difficulties of this task (Sections 2.1, 2.2 and 2.3)
and concludes with the problem formulation (Section 2.4).

2.1 Difficulty 1: Using LLMs for Privacy Risk Assessment

Recent studies have shown that off-the-shelf LLMs can infer personal informa-
tion from texts [16]. However, utilizing pre-trained LLMs in a defensive manner
to help individuals assess the risk of inference in their texts presents two main ob-
stacles. Firstly, LLMs can sometimes produce inferences as accurate as a random
guess, making them unreliable for privacy risk assessments without a mechanism
to evaluate the inference likelihood. Secondly, fine-tuning LLMs has shown ef-
fectiveness in various contexts, such as reidentifying personal information from
anonymized medical documents [18], highlighting the need for considering high-
quality and diverse training datasets to accurately estimate privacy risks.

2.2 Difficulty 2: Assessing Text Utility after Sanitisation

Traditional free-text utility metrics like BLEU [11] and ROUGE [8] may be
considered in text sanitisation (see e.g., recent preprint [17]). Such metrics are
excellent for evaluating summaries by comparing n-gram co-occurrences between
texts. However, they fail to differentiate between the loss of utility due to the
modification of words and the destruction of relevant information. For example,
consider the following fictitious hotel review and its sanitised version:

[Original text ] I went there with my husband Francis for the
3rd anniversary of our youngest child. The staff was delight-
ful and the room clean.

[Sanitised text ] Family friendly. The staff was delightful and
the room clean.

Although the sanitised version retains all the information essential for eval-
uating the hotel, an n-gram analysis would result in a low utility score with
BLEU, of around 0.27. In addition, consider the identifying excerpt:

[Privacy-sensitive excerpt ] I went there with my husband
Francis for the 3rd anniversary of our youngest child.

The BLEU value for this Privacy-sensitive excerpt is 0.57, which is surpris-
ingly higher than the score for the sanitized text containing the more descriptive
hotel review segment. This discrepancy highlights the challenge of accurately
assesing the trade-off between privacy and utility.
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2.3 Difficulty 3: Optimising the Overall Sanitisation Process

Designing a text sanitisation process that balances the preservation of content
utility with a significant reduction in privacy risks is a multifaceted challenge.
Indeed, the inference ability of potential adversaries equipped with fine-tuned
LLMs and example datasets must be countered. Existing methods, like mask-
ing or direct removal of Personally Identifiable Information (PII), either tend to
overly sanitise the text, diminishing its original utility, or retain enough informa-
tion for sensitives to be inferred. For instance, Microsoft’s Azure AI solution [1]
can identify text segments that might expose PII and health identifiers (PHI).
However, recent studies [16] indicate that simply blacking out these segments
is not always effective against inferences made by current LLMs. Yet, these ap-
proaches often overlook the utility loss associated with de-identification [3].

2.4 Overall Problem Formulation

The challenge in developing an LLM-based text sanitisation tool is to strike a
balance between preserving utility and mitigating privacy risks. To our knowl-
edge, this intricate problem remains unsolved. The objective of this article is to
provide a set of design rules to address this goal effectively. This complex task
can be distilled into three building blocks:

– Likelihood measure ΛA for inferences: assesses the validity of the in-
ferred values for a given set A of sensitive attributes.

– Utility measure UP : quantifies the utility of a text based on its alignment
with a given purpose P for which the original text was created.

– Sanitisation process SΛA,UP
: transforms the original text into a sanitised

text in order to reduce the likelihood of inferences while maintaining utility.

Original text : Sanitised text :
We loved Grand 

Palladium Bavero Hi,My

husband and I really 

enjoyed Grand 

Pallidium, the junior 

suite was great to 

stay in, the people 

were very friendly and 

the food was great 

(...) we will be back. 

Viola ..Alta. Canada

The stay at 

Grand Palladium 

Bavero was 

enjoyable. The 

junior suite was 

comfortable; the 

staff were 

friendly; and 

the food was 

great.

Produce from

Decrease likelihood of inference

Preserve         utility

Fine-tuning

SanitisationInference

D

Utility

Based on LLMs

Fig. 1: Main building blocks of a text sanitisation process S using LLMs

Figure 1 illustrates the overall process and the building blocks for sanitising
content using LLMs, from the user text t0 in input (left) to the sanitised text
t in output (right). Our goal is to provide essential guidelines for the design of
such LLM-based systems that address the difficulties mentioned above.
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3 reteLLMe Design rules

In order to address the problem, clear and effective design rules are required.
This section introduces these design rules, collectively referred to as reteLLMe,
organised around the three building blocks they address – inference (Section
3.1), utility (Section 3.2) and sanitisation (Section 3.3).

3.1 Inference Design Rules

The ability of LLMs to make inferences can be regarded as an adversary. The is-
sues raised in Section 2.1 require the consideration of a realistic (i.e., sufficiently
strong) adversary model suitable for the specific use scenario. An attacker model
based on a generic LLM, as considered in recent works [16,17], may underesti-
mate the attacker. This leads to a first practical design rule:

Design rule 1: Tailored Adversary LLM. Avoid using generic at-
tacker models, such as generic LLMs, as this may underestimate accu-
racy and privacy risks. Instead, employ tailored models such as fine-tuned
LLMs.

On the other hand, the capability to infer using LLMs alone is not enough
without evaluating the likelihood of these inferences. This leads to introduce:

Design rule 2: Well-Formed Likelihood Metrics. The tool must
incorporate a well-formed likelihood metrics ΛA to predict the validity of
guesses when truth values are unknown.

These design rules imply an attacker model where RA (Realistic Adversary)
has access to a text t authored by a user u and is interested in a specific set of
sensitive attributes A. For each sensitive attribute A∈A (e.g., Age), DA repre-
sents its domain, and au∈DA denotes its true value for u (e.g., the actual age
of u). Using LLMs, RA produces at, the value it inferred from t for each au. To
represent realistic threats, the adversary is assumed to have access to:

– a dataset D of pre-existing texts written by a set of users U , not including
u, for which real values of sensitive attributes au′∈U are known;

– a likelihood metric ΛA which evaluates the accuracy of guesses about sen-
sitive attributes (i.e., the probability that the inferred value at matches the
true value au).

Designing ΛA is challenging. The likelihood metric estimates the accuracy
of each guess made by the attacker. Ideally, a guess represents the probability
of its correctness. However, since the truth values of targeted users during the
attack are unknown, this probability cannot be analytically computed.

A likelihood metric ΛA is considered well-formed and satisfies design rule 2, if
and only if it satisfies the following property: for u the author of text t, ∀A ∈ A,
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∀ϵ ∈ [0, 1], ϵ 7→
|{t∈D:ΛA(at)>ϵ∧at=au}|

|{t∈D:ΛA(at)>ϵ}| is a monotonically increasing function.

It ensures that ΛA can predict whether the probability of a guess being correct
is above or below a given threshold. This capability allows an attacker to know
whether the inference is plausible and it allows a sanitising tool to alert the user
that their text is at risk.

3.2 Utility Assessment Design Rules

We advocate for the adoption of purpose-centric utility metrics alongside infer-
ence metrics. The objective is to identify and prioritize information aligned with
the intended purpose of texts. This leads to the following rule:

Design rule 3: Purpose-Centric Utility. The integration of purpose-
centric utility metrics UP , defined independently of privacy considerations
and tailored to the specific purpose of the original text, is essential for
maintaining the practical value of LLM-based sanitised outputs.

This guideline entails defining a purpose as a set P of purpose-related at-
tributes, where each attribute P ∈ P represents a category of relevant informa-
tion regarding the initial purpose for which the text was produced.When a text
t produced by sanitising t0 transmits information about an attribute linked to a
purpose P, other users can deduce a value from t. UP should evaluate the ability
of t to convey the same information relevant to the purpose as t0.

3.3 Sanitisation design rules

The process of sanitisation relies on LLMs to transform a text t0 into a sani-
tised text t, aiming to reduce privacy risks while maintaining utility. We do not
prescribe specific guidelines for the sanitisation process, whether it should be
iterative, interactive, or otherwise.

The effectiveness of a sanitisation technique hence hinges on the indepen-
dence between the purpose-centric attributes P and the sensitive attributes A,
leading to a fourth rule:

Design rule 4: Privacy-Utility Independance. Sanitisation tech-
niques must aim to decrease inference likelihood while retaining useful
information. The efficiency of the sanitisation process is constrained by
the degree of independence between privacy and utility metrics. In case
where independence is lacking, residual privacy risks must be carefully
evaluated and addressed.

The theoretical feasibility of a perfect sanitiser, which would fully preserve
utility while nullifying privacy threats, relies on the independence of relevant in-
formation categories between sensitive attributes and purpose-centric ones. How-
ever, in practical scenarios where independence is not assured, different trade-offs

DPM & CBT 2024

31



reteLLMe: Design rules for using LLMs to Protect Privacy 7

need exploration, and residual privacy risks must be considered. This underscores
the importance of robust privacy risk assessment, as highlighted in Section 3.1.

4 Application of reteLLMe design rules

Demonstrating the suitability of the reteLLMe design rules requires instanti-
ating them in a practical scenario. This section shows the instantiation of a
sanitiser based on an LLM for sanitising hotel reviews. The scenario and dataset
are described in Section 4.1. Then the design rules for inference, utility assesment
and sanitisation are implemented in Section 4.2.

4.1 “Hotel reviews sanitiser”: scenario and dataset description

We consider a practical application scenario where a sanitisation tool based on
ChatGPT3.5 is at stake – users enter their hotel review text and the tool rewrites
the text to improve privacy while preserving the review utility. This tool could
be integrated into commercial platforms such as Booking.com or Airbnb.

To validate our design rules, we use the PAN6 dataset [13], which provides
4.160 hotel reviews written in English (see an example on left part of Figure
1). Each one has truth values of two attributes of its author – gender (male or
female) and age ([18, 24], [25, 34], [35, 49], [50, 64] or [65, xx]).

4.2 Implementation and compliance to design rules

The inference values at for age (A) and gt for gender (G) for a text t are produced
using a specific prompt. The inference process involves fine-tuning ChatGPT3.5
using a random subset of the PAN hotel reviews dataset. Concerning likelihood
values, they are also produced using specific prompts. All prompts are shared in
our online repository as stated below.

In what comes to utility, we define a set of purpose-related attributes P that
typically summarise hotel reviews, including general sentiment, specific problem
noted, cleanliness, room quality and service standards. Each attribute in P is
categorized into positive (good), negative (bad), or neutral/missing (⊥) values,
reflecting its impact on the overall assessment of hotel performance. For each P ∈

P, we define a binary utility, which is 1 if ChatGPT3.5 provides the same answer
for t and t0 (the latter being a non-null value), and 0 otherwise. The overall
utility UP is computed as the average of these utilities. Concerning sanitisation,
ChatGPT3.5 is instructed to eliminate textual elements that could reveal the
reviewer’s age or gender. Subsequently, the anonymised text is rewritten in a
neutral tone to mitigate unintended biases.

6 PAN is an annual competition [12] that provides datasets for different tasks, includ-
ing author profiling. We are using the 2014 dataset which is the most comprehensive
provided for our use. PAN also provides the accuracy achieved by the winners, which
will be used for comparison.
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All these decisions are in line with design rules: we apply fine-tuning (Design
rule 1); the likelihood of each inference is also self-evaluated by ChatGPT3.5, and
we show experimentally in the next section that the resulting likelihood metric
is well-formed (Design rule 2); we score texts depending on their information
across purpose-related attributes (Design rule 3) and we balance privacy and
utility in sanitized texts (Design rule 4).

5 Assessment of reteLLMe design rules

This section presents the experimental results on the proposed reteLLMe design
rules. First, the methodology and experimental settings are discussed in Section
5.1. Afterwards, we use the same order as in the previous sections – Section 5.2
focuses on the inference process, Section 5.3 on utility computation, Section 5.4
on the sanitisation effectiveness. Lastly, Section 5.5 discusses the results.

5.1 Experimental settings

Since the attacker model involves fine-tuning which may lead to variations de-
pending on the training dataset, we randomly partition the dataset in four.
Each partition is randomly split into two categories, training (H840, approxi-
mately 80% of texts) and tests (the remaining 20%). Experiments are run four
times on each dataset. Reported results are the average of all experiments.

To generate our prompts, we used well-known techniques (e.g., “Let’s play a
game...”) to force ChatGPT7 to perform undesired actions [7,16]. To fine-tune
ChatGPT, we used OpenAI’s dedicated API [10]. To foster further research, our
experimental scripts and prompts are publicly released8.

5.2 Validating reteLLMe measure for inference and likelihood

The goal of this section is to validate the inference module by (i) evaluating
the impact of fine-tuning ChatGPT and confirming the strength of the realistic
attacker (to assess Design rule 1) and (ii) validating the proposed likelihood
metric (to assess Design rule 2).

Attacker definitions. In accordance with Design rule 1, our experiment con-
siders a (realistic) strong attacker relying on a fine-tuned version of ChatGPT
as described above. For comparison, this strong attacker is compared to a weak

attacker that behaves similarly but relies on an off-the-shelf ChatGPT.

7 We used ChatGPT3.5.
8 GitHub repository to be added after acceptance
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Fine-tuning - Design rule 1. Figure 2 shows the accuracy of the strong
attacker and its weak version with respect to a random guess and the best
scores in each category of the PAN competition. The random guess (“baseline”)
has a score of 0.5 for gender as there are only two options (male/female), and
0.2 for the age as there are five ranges (see Section 4.1). Thus, the total baseline
accuracy is 0.1 as the product of the two.
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Fig. 2: Accuracy of the weak and strong reteLLMe-compliant attackers

Figure 2 shows a significant improvement in the total accuracy from 0.16 to
0.45 with fine-tuning, surpassing both the baseline and the competition results.
Furthermore, the comparative analysis between age and gender reveals that the
gender category benefits more from fine-tuning than the age category. This could
be explained by the differences in the complexity of inferring age, which involves
multiple categories, versus gender, which is classified as female or male.

Well-formed likelihood - Design rule 2. Figure 3 shows the number of
inferences and their average accuracy as a function of their likelihood range.
Each attacker provides its own likelihood, so the inferences are partitioned twice
according to both. For each likelihood range, the bars show the proportion of
inferences (percentage of reviews, left axis) and the curves show their average
accuracy (right axis). Note that when no review lies in a likelihood interval, the
value of the curve representing accuracy cannot be computed (as in the case of
(0,0.6) for gender with the strong attacker).

Accuracy of the strong attacker for age and gender shows a correlation with
likelihood (Pearson value of 0.99 for age and 0.96 for gender), as opposed to
the weak attacker (age: 0.33, gender: 0.56). In fact, for the strong attacker, the
accuracy increases monotonically for increasing likelihood ranges, showing that
the likelihood metric is in this setting a well-formed metric (in the sense of
Section 3.1) that satisfies Design rule 2.
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Fig. 3: Accuracy of inference based on likelihood (original texts)

Underestimation of risks - Design rule 1. Beyond the well-formedness,
Figure 3 illustrates the distribution of text accross different likelihood levels. A
text is at risk when it falls within a likelihood range where the average accuracy
significantly exceeds random guessing. Here, in reality, all texts are at risk. The
(realistic) strong attacker, adhering to reteLLMe design rules, achieves a likeli-
hood greater than 0.6 for each text, with an average accuracy well above random
guessing, even within the [0.6, 0.8) likelihood interval. On the contrary, the weak
attacker fails to identify texts with likelihood below 0.8. This discrepancy leads
to a significant underestimation of risks: 76% of texts (for age) and 59.5% (for
gender) with high inference risks would not be flagged as such.

5.3 Validating reteLLMe measure for utility

This section validates the purpose-centric reteLLMe utility measure presented
above (see Section 4.2). It first compares the responses obtained using this mea-
sure with those provided by humans. It then shows how BLEU and ROUGE
behave and concludes on the importance of Design rule 3.

Automated purpose-related utility - Comparison with humans. We
assign to each review a score out of 10. The score is calculated as the sum of
each of the five purpose-related attributes, by assigning 2, 1, and 0 points to
each “good”, “neutral” and “bad” value respectively. This score is therefore not
a measure of the utility of the review (a negative review can be very useful), but
simply a way of ranking the reviews from the most positive to the most negative.

Figure 4 shows the distribution of scores for each of the humans and Chat-
GPT responses. Each box represents 10% of reviews, from the most positive to
the most negative. These three curves show a strong similarity between the hu-
mans themselves and between the humans and ChatGPT. This leads to Pearson
correlations of 0.8 and 0.82 between each human and ChatGPT. However, it
should be noted that the variations in ChatGPT are less uniform than those
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between humans. Therefore, although imperfect, ChatGPT is a good source of
utility in the absence of ground truth.

(a) Ground truth 1 vs
Ground truth 2

(b) Ground truth 1 vs Chat-
GPT

(c) Ground truth 2 vs Chat-
GPT

Fig. 4: Human and ChatGPT-based evaluation of purpose-related attributes

BLEU/ROUGE against purpose-related utility - Design rule 3. To
analyse the suitability of BLEU and ROUGE metrics, we examine their align-
ment with purpose-related utility metric by applying these measures to original
hotel reviews (t0) and sanitised versions (t) and comparing obtained scores with
utility preservation according to our proposal.

Figure 5 presents the distribution of BLEU and ROUGE scores, catego-
rized into quintiles with increasing utility preservation. Utility preservation for
each sanitized text t compared to original text t0 is determined by analysing
ChatGPT3.5’s responses to a purpose-related questionnaire using both texts.
This involves calculating binary utility UP for purpose-related attribute based
on ChatGPT3.5’s responses (which is 1 is same answer is provided, and 1 other-
wise) and averaging these values for the five attributes to derive utility preserva-
tion (i.e., 1 means fully preserved with same answers to the five purpose-related
questions, 0 means answers are all different).

Our results show a significant decorrelation between BLEU/ROUGE scores
and utility preservation. Hence, they inadequately assess the purposeful infor-
mation conveyed in texts, highlighting the negative repercussion of disregarding
Design rule 3.

5.4 Sanitisation effectiveness

We compare our method to the two settings of the anonymiser proposed by
Azure, Azure (All entities) and Azure (Three entities) [1]. There are three issues
to consider – whereas after sanitisation the inference likelihood is effectively
reduced, the inference accuracy is also decreased and the utility is preserved, as
needed to satisfy Design rule 4.
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Fig. 5: BLEU/ROUGE scores of sanitised texts ordered by purpose-centric utility

Decreasing likelihood. Figure 6 shows the distribution of the inference like-
lihood for both attributes in the three considered methods. Intuitively, lower
likelihood values are preferred from a privacy perspective.
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Fig. 6: Inference likelihood after sanitisation

Figure 6a illustrates the inability of Azure to sanitise gender-related data
in both settings, resulting in median likelihood scores of 0.99 and 0.95. Unsur-
prisingly, the setting removing less data, “Three entities”, exhibits the highest
likelihood score. On the contrary, reteLLMe is significantly more effective to
protect this attribute, leading to a median likelihood of 0.6. A similar situation
happens for the attribute age (Fig. 6b). Thus, our module outperforms both
settings of Azure for the protection of both age and gender attributes.

Decreasing accuracy. Figure 7 shows the distribution of accuracy values for
the three methods. Recall that random guess thresholds are different for age
(which is 0.2) and gender (being 0.5). Intuitively, lower likelihood scores lead to
smaller accuracy values. Interestingly, reteLLMe exhibits good behavior for the
highest level of likelihood. Thus, an average accuracy of 0.27 and 0.71 is reached
for the age and gender, respectively. For lower likelihood ranges, reteLLMe

accuracy is closer to a random guess.
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As a matter of fact, the amount of texts that remain at risk after sanitisation
is largely different. Remarkably, for both attributes and both Azure variants,
more than 90% of reviews remain at risk, i.e. belongs to likelihood intervals with
an average accuracy significantly more than random guessing (up to 52% average
accuracy for age and 78% for gender). When reteLLMe is applied, only 11% of
reviews are at risk with regard to gender.
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Fig. 7: Accuracy of inference based on likelihood (after sanitisation)

Utility preservation. Beyond reducing the likelihood of inferences, it is also
necessary to ensure that the utility is preserved. Figure 8 shows the distribution
of utility preservation across the three methods at stake. The three methods
lead to a substantial utility preservation, as the highest amount of records count
on the biggest utility preservation figures. Indeed, reteLLMe, Azure 3 entities,
and Azure all entities preserve between 80% and 100% utility of 71.6%, 70,5%,
and 65.6% of texts respectively. Overall and as expected, the “3 entities” setting
outperforms the “all entities” setting with regard to utility preservation.
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Fig. 8: Distribution of utility preservation
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5.5 Discussion

Our experimental results are merely limited to the use-case of hotel reviews with
a limited test dataset (4 experiments with 200 texts per experiment). They are
however valid to confirm the proposed guidelines.

First, they confirm that LLMs such as ChatGPT can be used as privacy-
enhancing tools in an effective manner that outperforms industrial state of the
art anonymisers in term of both risk minimization and utility preservation. More
importantly, they demonstrate the importance of our design rules.

Indeed, they illustrate the effect of considering a strong adversary by showing
how fine-tuning impacts ChatGPT’s inference ability. They demonstrate how
generic adversaries may severely underestimate privacy risks.

As opposed to the state-of-the-art, they shown that purpose-centric utility
metrics are a differentiating factor. Specifically, it is shown that generic met-
rics such as ROUGE or BLEU may be wholly decorrelated to the amount of
purposeful information present in a text.

Our results, however, are limited in that Design rule 4 asked for a sanitisa-
tion procedure that decreases the inference likelihood while preserving utility.
Nevertheless, our input to ChatGPT does not include the inference likelihood.
Our results confirm that even without that input, the inference likelihood and
accuracy are severely decreased while the utility is preserved. We argue that
this phenomenon cannot be extrapolated to any use case, as it may be due to
the very nature of hotel reviews. Nevertheless, our assessment is comprehensive
enough to confirm that even the most simplified sanitiser observing this design
rule is effective enough.

6 Related Work

The use of LLMs as privacy-enhancing technologies has already attracted some
research attention. Indeed, an increasing amount of papers have been produced
in the last years. Interested readers may refer to a systematic literature review by
Sousa et al. [15]. In a nutshell, LLMs seem to be a suitable technology considering
the challenges posed by text anonymization, due to the unbounded nature of
information related to individuals [9].

[16] was the first study to highlight the critical privacy concerns posed by
LLMs beyond the commonly discussed issues related to data memorization. They
show that LLMs are able to identify personal data at an unprecedented scale
and emphasizes the need for new anonymization techniques to counteract such
evolving threats. While the authors effectively illustrate the problem the of in-
ferring personal data from text, they do not propose any solution. Our research
builds upon their findings by not only considering these issues but also proposing
new guidelines to mitigate the risk of such inferences. Moreover, contrary to our
guidelines, they count on a generic attacker – their LLM is not fine-tuned.

A follow-up work by the same authors [17] marks a significant advancement
in this domain. They propose an evaluation framework that leverages the ca-
pabilities of LLMs for text anonymization. It employs a multiple round process
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where a LLM adversary analyzes the text for private attribute inference, followed
by an anonymizing LLM that modifies the text to obscure identifiable informa-
tion. Furthermore, this framework introduces a binary ”certainty” scoring system
discriminating inferences depending on whether they rely on statistical bias or
directly identifiable information within texts. We consider that this ”certainty”
score serves as a metric of inference likelihood. However, [17] does not validate
its relation to accuracy. Since statistical analysis may provide accurate guesses,
it is not immediate that certainty is a good predictor of accuracy.

Beyond the inference likelihood, Staab et al. consider utility metrics such as
BLEU and ROUGE. Complementarily, they use a ”judge” prompt that assesses
anonymized texts across three dimensions – readability, meaning, and halluci-
nation. Interestingly, the “meaning” dimension assesses semantic proximity that
could be purpose-centric. Since it takes into account all information, we argue
that it exhibits the same limitations as those discussed in Section 2.2 and can
never be independent from privacy considerations. This is supported by the ob-
servation that BLEU, ROUGE, and judge exhibit the same trends [17].

Another relevant study is [4]. The authors introduce the concept of self disclo-
sure abstraction that allows paraphrasing personal disclosures into more general
terms without losing their communicative value, reducing privacy risks while pre-
serving the overall utility (e.g., “Im 16F” to “I’m a teenage girl”.) Their method-
ology involves a fine-tuning strategy to identify instances of self-disclosures which
confirms the importance of considering a realistic attacker model as highlighted
in our guidelines. However, their approach does not work properly for sensitive
attributes which are not directly mentioned in the text, as [16] already proved.

[18] addresses the issue of the de-identification of clinical reports to facili-
tate data access for research purposes while ensuring patient privacy using the
CamemBERT model, a BERT variant specially crafted for French texts. This
approach aligns partially with our proposed guidelines. They count on a well-
formed inference likelihood metric. Moreover, their attacker model is concrete
enough due to fine-tuning. However, it does not include the notion of utility.

Our work distinguishes itself from recent research by proposing a number of
guidelines that have been partially overlooked by previous efforts, as discussed
above. To the best of our knowledge, this is the first effort in this direction. Our
work has also illustrated which is the impact of not following these guidelines.

7 Conclusion

LLMs have already been shown to be effective to both anonymise and de-
anonymise texts. This dual nature gives them an unprecedented ability to be
used as privacy-enhancing technology. However, previous attempts have failed
to propose such an usage considering the common pitfalls in text utility, inference
assessment and sanitisation effectiveness. In this vein, this work has proposed
reteLLMe, a collection of design rules in this regard. Our assessment in the
context of protecting hotel reviews has not only shown the convenience of the
proposed rules, but also the negative consequences of disregarding them.
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Future work will focus on exploring the suitability of these rules in other
contexts. In this vein, the design of well-formed and generalizable purpose-centric
utility metrics is envisioned as a critical issue. On the other hand, exploring
the impact of LLM-based threats such as privacy leakages [6] in this privacy-
enhancing usage is another interesting direction.
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Plausible Deniability of Redacted Text
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Abstract. Providing privacy for natural language text data remains a
largely open problem, despite its great practical importance. The current
state of the art is manual redaction of sensitive words such as names,
addresses etc. In this paper we propose viewing a corpus of text as a
probability distribution over sequences of words. A sentence is then one
realization from this distribution and redacting words changes the proba-
bility distribution. We use the Renyi-divergence divergence as a measure
of the distance between two redacted datasets. We show that if enough
words are redacted then sensitive redacted text can be made be statis-
tically indistinguishable from non-sensitive redacted text. This can be
used to develop efficient redaction strategies, that minimise the amount
of redaction while meeting a privacy target.

Keywords: Data Privacy · Natural Language Processing · Text Saniti-
zation.

1 Introduction

Training of neural nets such as large language models requires the availability of
natural language text training data. In this paper we revisit the question of how
to sanitise sensitive text data so that it can be used for model training while
preserving privacy. We introduce a new approach for quantitatively estimating
the privacy gain from text redaction and demonstrate its usefulness on a wide
range of datasets. This can be used to develop efficient redaction strategies, that
minimise the amount of redaction while meeting a privacy target. The approach
is closely related to differential privacy, but differs in several respects that are
important for text data.

There are two main approaches to enhancing privacy when training machine
learning models. These approaches are complementary, and both can be used
together. One is to add noise to the gradient updates used during training, e.g.
see DP-SGD (1) (17) and related work. The other is to sanitise the training data
itself. Here we focus on the latter.

When the training data is numeric then the addition of appropriate noise,
e.g. Laplacian noise scaled proportionally to the differential privacy (DP) “sen-
sitivity” of the data, can be used to enforce differential privacy guarantees (7).

⋆ This work was supported by Science Foundation Ireland grant 16/IA/4610.
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Fig. 1: Measured Renyi vs random redaction level for Medal dataset.

While it is tempting to apply this approach to text by mapping the text to a nu-
meric embedding vector, adding noise, and then mapping back to text (8; 5; 20),
this creates a host of unpleasant issues. For example, the nature of the mapping
from text to vectors (which texts are mapped to vectors near or far away from
one another) directly affects the impact of added noise, and so privacy. However,
this is poorly understood, especially for modern embedding approaches based
on neural networks. Another deeply problematic issue is that the words in a
sentence tend to be correlated in complex ways, making any privacy approach
based on individual words tend to overestimate the privacy gained.

In practice, the most popular approach for sanitising text data is redac-
tion i.e. replacing selected words with an uninformative mask token. This is,
for example, already widely used to remove personally identifying information
(PII), e.g. names and addresses, from documents (12). However, other aspects
of the text data can also be sensitive. For example, the text data may reveal
sexual/gender traits, political preferences, health-related information/concerns,
social and racial characteristics, etc of the user population from which the data
was gathered. Textual style can also act as a personal fingerprint facilitating
de-anonymisation and membership attacks against neural nets trained on this
data.

Protecting privacy is especially challenging with text data because simply
redacting specified keywords is rarely enough: the surrounding context can easily
continue to reveal sensitive information (3). For example, in the sentence “I
am diagnosed with cancer. I have to go to St Lukes for chemotherapy and will
probably lose my hair” redacting “cancer” and ”chemo” is not sufficient to conceal
the cancer diagnosis if St Lukes is known to be a cancer care hospital. If “St
Lukes” is also redacted, the combination of “diagnosis” and “lose my hair” is still
enough to indicate a cancer diagnosis with high probability.

In summary, there is an urgent need more effective methods for improving
the privacy of text data. Given the challenging nature of natural language text,
it is probably too much to hope for theoretical guarantees but that should not
stop us from trying to develop useful methods motivated by theoretical analysis.
In this paper we take a step in that direction. We use redaction to add “noise”
to text and by staying within original text domain thereby avoid most of the
issues with numerical embeddings, and by working with text corpuses rather
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Fig. 2: Illustrating the increasing overlap between the semtence embeddings for
cancer and non-cancer text from the Medal dataset as the level of redaction
is increased. SentenceBERT embeddings are projected to two dimensions using
PCA, random redaction is used.

than individual words or sentences we can accommodate the word correlations
within sentences.

1.1 Our approach

A dataset D is a collection of items. Each item is a sequence x = (x1, ....., x|x|) of
words xt belonging to a fixed vocabulary and with length |x| ≤ N , N being the
maximum admissible length. A redaction policy πp(x) maps sequence x to a new
sequence where some words have been redacted i.e. replaced by an uninformative
mask token MASK. We will assume that every redaction policy is parameterised
by a parameter p taking a value between 0 and 1 such that when p = 0 then
no words are redacted, when p = 1 then every word is redacted. For example,
the uniform random πrand,p(x) redaction policy redacts each word in sequence
x with probability p. Alternatively, we might rank the words in our vocabulary
by their sensitivity and redact the top p fraction of these.

Each item x in a dataset is a random draw from a probability distribution
P (x) over sequences of words. After redaction, each element x is mapped to a new
sequence redact(x) and the redacted dataset becomes a sample from probability
distribution redact(P ). We measure the distance between two redacted datasets
redact(D0) and redact(D1) by the smallest value of ϵ ≥ 0 such that P̃0(y) ≤
eϵP̃1(y) + δ and P̃1(y) ≤ eϵP̃0(y) + δ where P̃0 := redact(P0) is the probability
distribution over token sequences in dataset redact(D0), P̃1 = redact(P1) in
dataset redact(D1) and y is any redacted sequence of words with length |y| ≤ N .

This distance measure is similar to that used in (ϵ, δ)-differential privacy but
with the difference that the set of neighbouring databases now consists of the sin-
gle database redact(D0) rather than all databases differing from redact(D1) by a
single element. When ϵ, δ are sufficiently small, the publication of private dataset
redact(D1) then only provides an attacker with limited new information over and
above that already available from the public dataset D0. That is, we gain pri-
vacy in the sense of indistinguishability between the redact(D0) and redact(D1)
datasets. It will prove convenient to work in terms of the Renyi-divergence
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Dα(P̃0||P̃1) to calculate the distance between the datasets. We then convert
this to an (ϵ, δ)-privacy guarantee using equations (2) and (3). See Section-4.1
and Section-4.2 for more details.

We assume the availability of a “safe” dataset D0 e.g. a public dataset that
is suitably diverse and non-sensitive. Applying redaction policy πp to both the
sensitive dataset D1 and the safe dataset D0 then we expect that distance ϵ

between the datasets decreases as the level of redaction increases, the distance
becoming zero after redaction with p = 1.

Figure 1 illustrates this for the Medal dataset of medical records (see below
for further details). The original dataset is split into a dataset D1 of cancer
patients and a dataset D0 of non-cancer patients. Random redaction is used.
The figure shows the measured Renyi-Divergence Dmax(P0||P1) between the
empirical probability distributions P0 and P1 induced by D0 and D1 as the level
of redaction is varied. As expected, it can be seen that the divergence decreases
as the amount of redaction increases i.e. the two datasets become more similar.

Figure 2 illustrates this behaviour more visually. Redacted sentences are
mapped to embedding vectors using SentenceBERT (15), the vectors are then
projected onto to dimensions using PCA and shown as a scatter plot. It can be
seen that without redaction the sentence embeddings have little overlap but as
the level of redaction increases the overlap between the embeddings increases,
indicating that distinguishing between the two datasets is becoming harder.

We make the following observations. (i) Redaction sanitizes the text data
itself (rather then vector embeddings) and so yields a sanitized dataset that
can be used for training ML models that take word sequences as input. (ii)
By working in terms of the probability distribution over word sequences we take
account of the correlation between the words in a sentence (the word context) and
the associated potential for leakage of sensitive information. (iii) Sanitising the
dataset is akin to local differential privacy i.e. the input to a query is perturbed
to ensure privacy rather than the output of the query being perturbed. (iv)
As the distance ϵ between the sanitized dataset and the safe dataset decreases,
privacy increases but of course we expect utility to decrease (the added value of
the new dataset decreases).

2 Related work

The existing literature on enhancing the privacy of text data can be roughly
categorised as follows:

Redacting PII. Much of the literature on text redaction has focussed on
redacting personally identifying information (PII). For example, (12) uses an
ensemble of deep learning methods to detect and redact PII information from
the medical notes of the patient, (2) considers the discovery of names, home
towns, etc in student discussion boards. Other recent work includes (6) (21)
(16).

Word-Level DP. Word-level DP approaches map an individual word to a vec-
tor embedding, add noise and then either map back to a new word or use the
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noisy embedding directly. See e.g. (8; 20; 5). A typical choice of vector em-
bedding is Glove (14). The choice of vector embedding has to made up front
and its properties affect the privacy gained1 in ways that remain very poorly
understood. Words are discrete quantities and the impact of quantisation when
mapping from vectors back to words also remains poorly understood. The DP
"database" is a sentence and the words are the database entries. The DP guaran-
tee (modulo concerns regarding the embedding already noted) therefore relates
to insensitivity to an individual word in a sentence. However this DP analysis
ignores correlations between the words in a sentence and so can underestimate
the information release. The impact of correlations on DP is well known and was
first noted by (9). See (10) for further discussion on the deficiencies of word-level
DP.

3 Threat model

We consider the use of natural language text datasets for training machine learn-
ing models. We assume that the sensitive dataset itself is stored securely, but
the sanitized/redacted dataset is publicly released. The main threat we consider
is that that the sanitized dataset may be used to infer sensitive user traits e.g
sexuality, health conditions, political preferences. This is a particularly topical
concern since the development of LLMs is currently being driven by companies
with a commercial interest in identifying user traits e.g for use in targeting ad-
verts or other services. We assume that PII (names, addresses etc) has been
removed, there being many existing techniques for this, see e.g. (6) (21) (16)

4 Preliminaries

The Renyi-divergence of order α > 1 between two probability distributions P0

and P1 on sample space Y is (13):

Dα(P0||P1) =
1

α− 1
log

Z

Y

P0(x)
αP1(x)

1−αdx (1)

and similarly for Dα(P1||P0). When α = 1 the Renyi-divergence equals the KL-
divergence (11).

We say that two probability distributions P0 and P1 are (ξ, ρ)-zero-concentrated
differentially private when:

Dα(P0∥P1) ≤ ξ + ρα (2)

for all α > 1. In the differential privacy literature P0, respectively P1, is the prob-
ability distribution induced by a randomised mechanism M applied to dataset

1 Adding noise to an embedding perturbs it to nearby words, the way in which words
are mapped to be close together (or far apart) therefore directly affects the output
of the word-level DP sanitisation process.
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Fig. 3: Divergence vs α for non-redacted cancer and non-cancer text from Medal
medical dataset.

D0, respectively D1 (4). Inequality (2) is then required to hold for all neigh-
bouring datasets D0, D1, where datasets are neighbours if they differ by a single
element. However, here we will consider other choices for P0 and P1. Specifically,
they will be the distributions from which two datasets D0 and D1 are sampled.

When P0 and P1 are (ξ, ρ)-zCDP then from the proof of Lemma 21 in (4),

P1(x) ≤ exp(ϵ)P0(x) + δ (3)

for every δ > 0 where ϵ = ξ + ρ + 2
q

ρ log 1
δ
. We will use (3) to map from

Renyi-divergence curves to an (ϵ, δ) privacy guarantee.

4.1 Estimating Renyi-Divergence

To estimate the Renyi-divergence between two datasets we extend the estima-
tor of (13), which is observed to scale well for high dimensional data. We up-
dated the estimator to handle duplicate word-sequences, since these can become
common following redaction2. In addition, each word sequence is mapped to
a vector embedding3 Xi. These are then fed to the estimator to calculate the
Renyi-divergence. We use boot-strapping to calculate confidence intervals for
the estimate. Namely, we sample with replacement n times from redact(D0)
and redact(D1), estimate Dα(P0||P1) is calculated for each sample and then the
mean and standard deviation of these n estimates calculated. We select n by
calculating the mean and standard deviation vs n and selecting a value large
enough that these are convergent. The mean of the estimated Renyi divergence
is shown in our plots with the standard deviation indicated by error bars.

2 See Appendix https://anonymous.4open.science/r/appendix_repo-F4CC for more
details.

3 The choice of embedding will, in general, affect the estimated divergence. This can
be mitigated by calculating the divergence for many different embeddings and using
the worst-case (i.e. largest) value. However, we found the impact to be relatively
minor in practice, see Section-6.3, and SentenceBERT (15) to work well.
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(a) Medal dataset
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(b) Political dataset
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(c) Amazon dataset
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(d) Reddit dataset

Fig. 4: Measured ϵ between redacted sensitive and safe datasets vs redaction
level; random redaction. A lower value indicates better privacy. Also shown is the
measured accuracy of a classification attack that tries to label which dataset the
redacted sensitive text originated from (lower accuracy therefore equals greater
privacy, with a classification accuracy of 50% corresponding to a random classi-
fier).

4.2 Calculating (ϵ,δ)

To calculate ξ and ρ in equation (2), we first calculate Dα for a range of α

values4. We then find a line that lies above the Dα vs α curve and select ρ as
the slope of the line and ξ the intercept. Of course, many lines lie above the Dα

curve, so we try to select one such that ρ and ξ are minimised. See for example
Figure-3, which shows Dα vs α for the Medal medical dataset (the blue curve).
This curve is upper bounded by the red line. The values of ρ and ξ corresponding
to this red line are plugged into equation (3 to obtain the corresponding (ϵ,δ)
privacy values.

Note. We use δ = 0.00008 in all of our experiments as it is encouraged to
keep δ < 1

n2 where n is the number of input points (1).

5 Experiments

5.1 Datasets

We evaluate performance using the following datasets, each of which we split
into “sensitive” and “safe” datasets.

(i) Medal dataset (19)5. This dataset contains abstracts of medical papers,
along with the diseases the abstract talks about. We partition this dataset into
text with cancerous and non-cancerous diseases. Each dataset contains 2200
sentences. For our experiments, text with cancerous diseases was chosen to be
the sensitive dataset.

(ii) Political dataset-(18)6. This contains comments on Facebook posts from
412 members of the United States Senate and House. Each comment is labeled
4 We select the range to be large enough that Dα no longer increases as we increase
α.

5 https://huggingface.co/datasets/medal
6 Data can be downloaded by following the instructions in the repository

https://github.com/xuqiongkai/PATR
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(a) Medal dataset
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(b) Political dataset
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(c) Amazon dataset
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(d) Reddit dataset

Fig. 5: Measured ϵ between redacted sensitive and safe datasets vs redaction level;
more efficient redaction strategy. A lower value indicates better privacy. Also
shown is the measured accuracy of a classification attack that tries to label which
dataset the redacted sensitive text originated from (lower accuracy therefore
equals greater privacy, with a classification accuracy of 50% corresponding to a
random classifier).

with the corresponding Congressperson’s party affiliation i.e. S ϵ {democratic,
republican } We partition the dataset into text from users with Republican and
Democrat political preferences. Each dataset contains 2000 sentences. For our
experiments, text from users with Republican political preferences is chosen to
be the sensitive dataset.

(iii) Amazon dataset7. This dataset contains product reviews from Amazon
customers. We selected the reviews which were categorised as "drug-store" and
"kitchen-appliances". For our experiments, the dataset with drug-store reviews
was chosen to be the sensitive dataset.

(iv) Reddit dataset8. This dataset contains post content from the subred-
dits r/depression and r/SuicideWatch. We partition this data into posts related
to suicide and depression. Each dataset contains 2000 sentences. For our ex-
periments, the text from the suicide subreddit was chosen to be the sensitive
dataset.

5.2 Enhancing Privacy By Redaction

For each of the datasets we measured the Renyi-divergence as the percentage of
words redacted using a random redaction policy was varied from 0 to 100%. The
divergence values were then converted to ϵ values as explained previously. The
results are shown in Figure 4.

To help gain confidence that redaction really is improving privacy, we carry
out a simple classification attack. The redacted datasets are split into training
and test data (90:10 split). A classifier is trained on this data, taking a sequence
of words as input and outputting an estimate of whether the sentence came from
the safe or sensitive datasets. Since there are only two classes and the data is
balanced, a classification accuracy of 50% corresponds to a random classifier.

7 https://huggingface.co/datasets/amazon_reviews_multi
8 https://www.kaggle.com/general/256134
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(a) Word-level DP
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(b) San-Text
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(c) CusText

Fig. 6: Measured ϵ-renyi and attack accuracy for various word-level DP ap-
proaches applied to Medal Dataset.

Figure 4 shows how the measured accuracy of this classifier varies with the
redaction level for each of the datasets. It can be seen that the accuracy decreases
as the redaction level increases, and that this decrease is roughly proportional
to the decrease in the measured ϵ value.

5.3 Smarter Redaction

It can be seen from Figure 4 that when random redaction is used then relatively
high levels of redaction are needed to ensure smaller ϵ values. Of course random
redaction is rather crude, and smarter redaction approaches (in the sense that
they achieve a target ϵ with fewer words redacted) are certainly possible.

We illustrate the scope for smarter redaction via a simple approach based
on logistic regression weights. Namely, we took the logistic regression classifier
from Section 5.2 and ranked the words from the datasets by the magnitude of
the weight assigned to them by this classifier. We then redact the top p percent
of these words from the datasets when redacting at level p.

Figure 5 plots the measured ϵ between the sensitive and safe datasets as the
redaction level is increased in this way. It can be seen that a much lower level
of redaction is now needed, compared to Figure 4, to obtain a given ϵ value.
Also shown in Figure 5 is the measured accuracy of the simple classification
attack as the redaction level is varied and it can be seen that the accuracy also
now falls much more rapidly. For example, in Figure 4(a) a redaction level of
around 90% is needed to reduce the accuracy of the attack to 60% (recall an
accuracy of 50% corresponds to a random classifier, so 60% represents a high
level of privacy), for the Medal dataset while with the smarter redaction strategy
a redaction level of around 30% is sufficient to achieve this. Observe also that
there is now a clear “knee” in the measured divergence vs redaction level curve,
with the knee corresponding a low attack accuracy. It can be seen from Figure
5 that the behaviour is also similar for the other datasets studied.

5.4 Word-level DP

Word-level DP approaches sanitize text by converting each individual word to a
vector embedding, adding noise to the embedding, and then mapping the noisy
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(a) Medal dataset
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(b) Political Dataset
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(c) Amazon Dataset
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(d) Reddit dataset

Fig. 7: Measuring impact of privacy on utility. Next word prediction performance
for LSTM trained on redacted dataset. Performance is measured on non-redacted
data. The vertical line indicates the redaction level that reduces classification
attack accuracy to 60%, taken from Figure 5.

embedding back to a word (8; 20; 5). In this section, we compare our approach
to word-level DP approaches.

As discussed previously, word-level DP approaches aim to hide the informa-
tion revealed by the individual words and so can fail to hide information revealed
by the sentence as a whole9.

We illustrate this by conducting the same attack as before on the word-level
DP sanitized data, while also checking the ϵ (indicated by ϵ-renyi) between the
sensitive and safe datasets. A high attack accuracy indicates that sensitive infor-
mation is leaked from the sanitized sentences. Similarly, a high ϵ-renyi indicates
that there are significant differences between sensitive and non-sensitive datasets.

Figure 8 shows the measured ϵ-renyi for the Medal dataset as the level of
noise is increased (indicated by ϵ) for various word-level DP approaches. Also
shown is the measured accuracy of our classification attack. It can be seen that
even when a great deal of noise is added (low ϵ values), both the ϵ-renyi values
and the attack accuracy remain high. Results for other datasets show similar
behaviour and are provided in the Appendix 10.

5.5 Utility vs Privacy

In general, we expect there to be a trade-off between privacy and utility. By
redacting text to make a sensitive training dataset more private, the value of
the sensitive training data is likely to be reduced because (i) redaction reduces
the textual information contained in the sensitive dataset and (ii) by making the
sensitive dataset more similar to an existing safe public dataset the added value
over only using the public data for training is reduced.

To investigate this trade-off we trained a next-word-prediction model using
PyTorch. A standard LSTM-RNN model11 was used with two layers, each layer

9 In particular, the DP analysis ignores correlations between the words in a sentence
and so may greatly underestimate the information release. The impact of correlations
on DP is well known and was first noted by (9).

10 https://anonymous.4open.science/r/appendix_repo-F4CC
11 Training code can be found at: https://github.com/pytorch/examples/tree/main/word_language_model
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(b)
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(c)

Fig. 8: 8a Measured ϵ and attack accuracy for cancer sentences when compared
against IMDB reviews.8b Measured Renyi-divergence (α = 2) and attack ac-
curacy for logistic regression and BERT transformer classification attacks as
the redaction level is increased. Medal dataset. 8c Measured Renyi-divergence
(α = 2) with different embeddings: (i) general-purpose sentenceBERT, (ii) fine-
tuned medical sentenceBERT, (ii) Glove. Medal dataset.

having 200 hidden states and an input Embedding layer. The model has 4,041,675
parameters. A dictionary of all words was created from the dataset and input
text was vectorized by replacing each word with its corresponding index in the
dictionary. The model was trained using a negative log-likelihood loss.

The sensitive dataset was divided into a train-validation (90:10) split. The
training data was redacted while validation data was not redacted. The model
was then trained on the redacted training data and was tested against the held-
out validation data. The model performance was evaluated by the measured
perplexity (ppl) on the validation set, the lower the value of perplexity the better
the model is at predicting a given sequence.

Figure 7 shows the measured perplexity on the validation data of the next
word prediction model for each of the datasets studied as the redaction level is
varied (for the smarter redaction approach of Section 5.3). The vertical line in
the plot indicates the point where the measured attack classification accuracy is
60% (taken from Figure 5). It can be seen as expected, the perplexity increases
as the redaction level increases. It can be seen that the perplexity increases with
the level of redaction, as expected. However, for redaction levels up to 20-30%
the perplexity of the model trained on the redacted dataset remains fairly close
to the perplexity of the model trained on non-redacted dataset. A redaction level
of 30% is sufficient to bring the attack classification accuracy down to 60% i.e a
good degree of privacy can be obtained while preserving the utility of the dataset
for model training.

6 Discussion

6.1 Choice of the Safe dataset

When the safe dataset is similar to the sensitive dataset, then we can expect
that only a small amount of redaction is needed to bring the two datasets closer
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12 Vaibhav Gusain and Douglas Leith

together. Conversely, we expect that a higher level of redaction is needed to
make very disparate datasets similar.

This is illustrated in Figure-8a, which can be directly compared with Figure-
5a. In both cases the Medal cancer text is the sensitive dataset but in Figure-8a
the safe dataset is IMDB review text while in Figure-5a it is Medal non-cancer
text. It can be seen that with the IMDB data almost 80% of the words need
to be redacted to get an attack accuracy close to 50% whereas with the Medal
non-cancer text a redaction level of around 50% is sufficient.

The choice of safe dataset is therefore a privacy design parameter that can be
used to manage the trade-off between privacy and utility in a fairly transparent
manner.

6.2 More Powerful Attacks

It is important to stress that it is the Renyi-divergence that provides a sound
measure of privacy, not the accuracy of any specific attack. In the previous
sections we use a classification attack based on logistic regression to roughly
verify privacy. However, this attack on its own does not provide any privacy
guarantee.

For example Figure-8b shows the attack accuracy and Renyi-divergence as
the level of redaction is varied. It can be seen that at redaction levels around
50-80% the attack accuracy is low (close to 50%, the accuracy of a random
classifier). However, the Renyi-divergence remains relatively high at around 2.5
at these redaction levels, indicating that the datasets remain dissimilar. We
therefore trained a more powerful BERT transformer model and used it to carry
out the classification attack. Figure-8b, shows the measured attack accuracy. It
can be seen that at 50-80% redaction the attack accuracy now remains relatively
high, demonstrating the predictive power of the Renyi-divergence approach.

6.3 Choice of Embedding

The estimator in Section 4 maps text to a vector embedding and then estimates
the Renyi-divergence between sets of vectors. It therefore depends on the choice
of embedding used. It is problematic for a privacy approach to depend on the
choice of embedding since (i) the properties of these embeddings remain poorly
understood and (ii) an attacker can easily use a different embedding. For ex-
ample, if a general purpose embedding is used in the Renyi-divergence but the
attacker uses a domain specific embedding, a natural concern is that attacker
may be able to extract information even when the Renyi-divergence estimate is
low.

One of the great advantages of redaction is that it does not depend on the
choice of embedding, but rather works directly with the text data12. We can then

12 And one of the major deficiencies of all approaches tied to a single up front choice
of embedding, such as word-level DP approaches.

DPM & CBT 2024

54



Plausible Deniability of Redacted Text 13

calculate Renyi-divergence estimates for different choices of embeddings and use
the largest value to evaluate privacy.

For example Figure-8c shows the measured Renyi-divergence estimates for
three different choices of embedding: (i) a general-purpose pre-trained sentence-
BERT embedding 13, (ii) sentenceBERT after fine-tuning on medical data and
(iii) Glove14 (14). sentenceBERT is a state of the art transformer embedding,
Glove is an older embedding commonly used on word-level DP.

It can be seen from Figure-8c that the Renyi-divergence estimates for the two
sentenceBERT embeddings are almost the same and consistently higher than
the Renyi-divergence estimate using Glove i.e. Glove overestimates privacy. The
consistency in the divergence estimates between the general purpose and fine-
tuned sentenceBERT embedding indicates the robustness of the general purpose
sentenceBERT and is why we use it in our earlier plots.

6.4 Limitations

Renyi-divergence is an estimate. Probably the main limitation of our approach
is that it uses an estimate of the Renyi-divergence rather than the true value. We
partially mitigate this by also estimating confidence intervals. However use of an
estimate seems unavoidable since the true divergence cannot be calculated for
realistic text data, and for similar reasons theoretical differential privacy guar-
antees are intractable. We argue that adopting a pragmatic approach and using
estimates provides a way forward that is both useful and represents significant
progress over the state of the art in text privacy. This is particularly pressing
given the prevalence of text data and the current great interest in using it to
train large language models.

7 Conclusions

We revisit the question of how to sanitise sensitive text data so that it can
be used for model training while preserving privacy. The great majority of the
existing literature on privacy enhanced model training gains privacy by adding
noise to gradients used for training. The amount of noise added needs to scale
with the number of model parameters since the DP sensitivity scales with this.
When the number of model parameters is large (as it usually is for language
models), the amount of noise needed is considerable and adversely affects model
utility. Sampling of the input data can be used to boost privacy, but requires
effective anonymisation which can be hard to achieve in practice and reduces
the volume of training data available. The data sanitisation approach that we
consider complements this line of work and offers new ways to manage the trade-
off between privacy and utlity.

13 https://www.sbert.net/
14 The embedding vector of each word in a sentence is calculated, and the mean of

these vectors is used as the sentence embedding.

DPM & CBT 2024

55



Bibliography

[1] Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Tal-
war, K., Zhang, L.: Deep learning with differential privacy. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security. p. 308–318. CCS ’16, Association for Computing Machin-
ery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978318,
https://doi.org/10.1145/2976749.2978318

[2] Bosch, N., Crues, R., Shaik, N., Paquette, L.: " hello,[redacted]": Protecting
student privacy in analyses of online discussion forums. Grantee Submission
(2020)

[3] Brown, H., Lee, K., Mireshghallah, F., Shokri, R., Tramèr, F.:
What does it mean for a language model to preserve privacy?
In: 2022 ACM Conference on Fairness, Accountability, and Trans-
parency. p. 2280–2292. FAccT ’22, Association for Computing Machin-
ery, New York, NY, USA (2022). https://doi.org/10.1145/3531146.3534642,
https://doi.org/10.1145/3531146.3534642

[4] Bun, M., Steinke, T.: Concentrated differential privacy: Simplifications, ex-
tensions, and lower bounds (2016)

[5] Chen, S., Mo, F., Wang, Y., Chen, C., Nie, J.Y., Wang, C., Cui,
J.: A customized text sanitization mechanism with differential pri-
vacy. In: Findings of the Association for Computational Linguistics:
ACL 2023. pp. 5747–5758. Association for Computational Linguistics,
Toronto, Canada (Jul 2023). https://doi.org/10.18653/v1/2023.findings-
acl.355, https://aclanthology.org/2023.findings-acl.355

[6] Doudalis, S., Kotsogiannis, I., Haney, S., Machanavajjhala, A., Mehrotra,
S.: One-sided differential privacy (2017)

[7] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sen-
sitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of
Cryptography. pp. 265–284. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

[8] Feyisetan, O., Balle, B., Drake, T., Diethe, T.: Privacy- and utility-
preserving textual analysis via calibrated multivariate perturbations. In:
Proceedings of the 13th International Conference on Web Search and
Data Mining. p. 178–186. WSDM ’20, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3336191.3371856,
https://doi.org/10.1145/3336191.3371856

[9] Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceed-
ings of the 2011 ACM SIGMOD International Conference on Management
of Data. p. 193–204. SIGMOD ’11, Association for Computing Machin-
ery, New York, NY, USA (2011). https://doi.org/10.1145/1989323.1989345,
https://doi.org/10.1145/1989323.1989345

[10] Mattern, J., Weggenmann, B., Kerschbaum, F.: The limits of
word level differential privacy. In: Findings of the Association

DPM & CBT 2024

56



Plausible Deniability of Redacted Text 15

for Computational Linguistics: NAACL 2022. pp. 867–881. As-
sociation for Computational Linguistics, Seattle, United States
(Jul 2022). https://doi.org/10.18653/v1/2022.findings-naacl.65,
https://aclanthology.org/2022.findings-naacl.65

[11] Mironov, I.: Rényi differential privacy. In: 2017 IEEE
30th Computer Security Foundations Symposium (CSF).
IEEE (Aug 2017). https://doi.org/10.1109/csf.2017.11,
http://dx.doi.org/10.1109/CSF.2017.11

[12] Murugadoss, K., Rajasekharan, A., Malin, B., Agarwal, V., Bade, S.,
Anderson, J.R., Ross, J.L., William A. Faubion, J., Halamka, J.D.,
Soundararajan, V., Ardhanari, S.: Building a best-in-class automated
de-identification tool for electronic health records through ensemble
learning. medRxiv (2021). https://doi.org/10.1101/2020.12.22.20248270,
https://www.medrxiv.org/content/early/2021/02/23/2020.12.22.20248270

[13] Noshad, M., Moon, K.R., Sekeh, S.Y., Hero, A.O.: Direct es-
timation of information divergence using nearest neighbor ratios.
In: 2017 IEEE International Symposium on Information Theory
(ISIT). IEEE (Jun 2017). https://doi.org/10.1109/isit.2017.8006659,
http://dx.doi.org/10.1109/ISIT.2017.8006659

[14] Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word
representation. In: Empirical Methods in Natural Language Processing
(EMNLP). pp. 1532–1543 (2014), http://www.aclweb.org/anthology/D14-
1162

[15] Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using
siamese bert-networks (2019)

[16] Shi, W., Shea, R., Chen, S., Zhang, C., Jia, R., Yu, Z.: Just fine-tune twice:
Selective differential privacy for large language models. In: Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Process-
ing. pp. 6327–6340. Association for Computational Linguistics, Abu Dhabi,
United Arab Emirates (Dec 2022), https://aclanthology.org/2022.emnlp-
main.425

[17] Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. p. 1310–1321. CCS ’15, Association for Computing Machin-
ery, New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813687,
https://doi.org/10.1145/2810103.2813687

[18] Voigt, R., Jurgens, D., Prabhakaran, V., Jurafsky, D., Tsvetkov, Y.: RtGen-
der: A corpus for studying differential responses to gender. In: Proceedings
of the Eleventh International Conference on Language Resources and Eval-
uation (LREC 2018). European Language Resources Association (ELRA),
Miyazaki, Japan (May 2018), https://aclanthology.org/L18-1445

[19] Wen, Z., Lu, X.H., Reddy, S.: MeDAL: Medical abbrevia-
tion disambiguation dataset for natural language understanding
pretraining. In: Proceedings of the 3rd Clinical Natural Lan-
guage Processing Workshop. Association for Computational Lin-

DPM & CBT 2024

57



16 Vaibhav Gusain and Douglas Leith

guistics (2020). https://doi.org/10.18653/v1/2020.clinicalnlp-1.15,
https://doi.org/10.18653%2Fv1%2F2020.clinicalnlp-1.15

[20] Yue, X., Du, M., Wang, T., Li, Y., Sun, H., Chow, S.S.M.: Dif-
ferential privacy for text analytics via natural text sanitization. In:
Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021. pp. 3853–3866. Association for Computational Linguis-
tics, Online (Aug 2021). https://doi.org/10.18653/v1/2021.findings-acl.337,
https://aclanthology.org/2021.findings-acl.337

[21] Zhao, X., Li, L., Wang, Y.X.: Provably confidential language modelling.
In: Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Tech-
nologies. pp. 943–955. Association for Computational Linguistics, Seattle,
United States (Jul 2022). https://doi.org/10.18653/v1/2022.naacl-main.69,
https://aclanthology.org/2022.naacl-main.69

DPM & CBT 2024

58



Exploring Distribution Learning of Synthetic Data

Generators for Manifolds

Sonakshi Garg1[0000−0002−7204−8228] and Vicenç Torra1[0000−0002−0368−8037]
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Abstract. In the era of data protection regulations like GDPR, safeguarding sen-

sitive information has become paramount, prompting the exploration of synthetic

data generation as a privacy-preserving alternative. Generative Adversarial Net-

works (GAN) and Variational Autoencoders (VAE), among other tools, have be-

come popular for synthetic data generation. Despite their effectiveness, these

models often carry the perception of being black boxes due to their complex

learning mechanisms. Understanding the intricate behaviors of data within GAN

or VAE poses a significant challenge, particularly with high-dimensional datasets.

This is essential from privacy perspective as one can use synthetic data instead of

original data and this can be considered as an alternative to anonymization. Our

study aims to assess the distribution learning capabilities of synthetic data gen-

erators. Our methodology centers on artificially created datasets, such as swish

roll and S-curve distributions, which offer easy visualization in Rn space. Addi-

tionally, we evaluate point datasets containing discontinuous points to determine

whether GAN and VAE comprehend the discontinuity behavior of datasets. By

evaluating the data processed by GAN and VAE, we aim to reveal their learn-

ing capabilities and disentangle the complexities of synthetic data generation.

Our research shifts the focus from real-world image datasets to artificially gen-

erated datasets, enabling exploration of commonly encountered distributions in

low-dimensional spaces. Despite widespread recognition of GAN in image syn-

thesis, achieving satisfactory results often requires employing numerous tricks

due to training instability. We found that VAE exhibit a superior understanding of

the underlying distribution of points in Rn space compared to GAN. This inclina-

tion towards VAE arises from their more stable training process, inherent ability

to capture latent structures within the data, and faster convergence compared to

GAN.

Keywords: Manifold Learning · Privacy · Synthetic Data Generators · Genera-

tive Adversarial Networks · Variational Auto Encoder

1 Introduction

In today’s data-driven world, privacy concerns, especially under GDPR [6], highlight

the need for effective data protection. Two key approaches are data anonymization [19,4]

and synthetic data generation. While data anonymization has been extensively studied,

synthetic data generation is a growing field. Generative Adversarial Networks (GANs) [7]

and Variational AutoEncoders (VAEs) [10] are prominent methods for this. GANs use

adversarial training with a generator and discriminator to create realistic data, whereas
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VAEs use probabilistic inference to encode and decode data. Both models excel but are

often seen as black boxes with limited insight into their internal workings [18].

While GANs and VAEs excel in image synthesis, their black-box nature complicates

visualization and understanding, particularly with complex datasets like ImageNet [3].

To address this, our methodology utilizes simpler, artificially created datasets like Swish

Roll and S-Curve, which can be easily visualized in lower-dimensional spaces. This ap-

proach helps illuminate the learning behavior of these models and their synthetic data

generation capabilities. While GANs perform well on some datasets [9], their effec-

tiveness can vary with more complex data distributions [2,14], making simpler datasets

ideal for exploring their strengths and limitations. Thus, our research shifts focus to arti-

ficially generated datasets, allowing us to explore the learnability of commonly encoun-

tered distributions in low-dimensional spaces. Through this endeavor, we seek to en-

hance understanding of synthetic data generation methods and their applicability across

various domains.

We use UMAP [12] leveraging its unique capability of inverse transformation, which

is not possible with many other approaches to transform datasets into a latent space,

generate synthetic data with GANs and VAEs, and then reconstruct the data using

UMAP’s inverse transform. This approach allows us to evaluate the performance of

both manifold learning and synthetic data generators. Our experiments, including on

datasets like Swish Roll and S-Curve, show that VAEs better capture data distribution

compared to GANs. We also found that GANs often struggle with instability and require

complex optimization. Our research addresses the challenges of visualizing and evalu-

ating synthetic data generation for manifold datasets, which are distinct from traditional

image datasets.

The main contributions of the paper are as follows.

1. We explore how synthetic data generators (GANs and VAEs) perform on artificially

created datasets, focusing on privacy concerns.
2. Our methodology involves using UMAP to map datasets to a latent space for syn-

thetic data generation and subsequent reconstruction to assess learning capabilities.
3. We evaluate these models on various datasets, including Swish Roll, S-Curve, and

image datasets, uncovering challenges and insights.
4. Our findings show that VAEs outperform GANs in capturing data distribution, and

we address the difficulties encountered in GAN training.
5. We address challenges in synthetic data generation for high-dimensional manifold

datasets, aiming to improve understanding and performance.

2 Preliminaries

In this section we will explain the important concepts that are used in this paper.

2.1 Manifold Learning

Mathematically, a manifold is a topological space locally resembling Euclidean space,

meaning it can be approximated by Euclidean space in small neighborhoods. Formally,

a manifold is a space where each point has a neighborhood that is homeomorphic to an

open subset of n-dimensional Euclidean space.
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Definition 1. (Manifold Learning) Given a finite set of data points x1, ...xn ∈ R
D be

in a D-dimensional space, Manifold learning aims to find the low-dimensional points

y1, ...yn ∈R
d where d ≪ D such that Euclidean relationship between (yi,y j) reflects the

intrinsic non-linear relationships between (xi,x j) [5].

In manifold learning, the hypothesis is that data points reside on a low-dimensional

manifold R
d , embedded within a higher-dimensional ambient space R

D [20]. The goal

is to find a mapping from R
D to a lower-dimensional space while preserving geometric

properties.

2.2 Synthetic Data Generators

Synthetic data generators create data that mimics original data to address privacy con-

cerns and reduce reliance on actual data. Regulatory frameworks like GDPR highlight

the importance of data protection. While one method involves anonymizing data, an-

other involves generating synthetic data that replicates original data structures. GANs [7]

have recently become popular for this purpose. GANs have been applied in fields like

natural language processing and computer vision. The basic GAN architecture, known

as Vanilla GAN, generates realistic data across various domains. For more control over

output, Conditional GAN (cGAN) [13] allows for conditional image generation based

on factors like class labels. Another specialized variant, Deep Convolutional GAN (DC-

GAN) [16], improves image synthesis by using convolutional layers in both the gener-

ator and discriminator, enhancing training stability and capturing spatial hierarchies in

images. Conditional Tabular GAN (CTGAN) [21] is a robust GAN variant designed

for diverse real-world datasets, capturing data heterogeneity effectively. In addition to

GANs, Variational Autoencoders (VAEs) [10] are another prominent generative model

family. VAEs are autoencoders that regularize the encoding distribution to ensure a

well-structured latent space for generating new data. They are trained to minimize re-

construction error while avoiding overfitting.

3 Methodology

In this section we propose our methodology for visualizing the manifolds to determine

whether the manifolds generated using synthetic data generators converge to real data

manifolds. We aim to assess the ability of generators to understand and replicate the

underlying distribution of the data it is trained on. We describe our methodology with

step-by-step explanation as follows.

1. Dataset Selection: Start by selecting a real-world high-dimensional dataset with

a manifold structure. For this task, we use the MNIST [3] dataset.

2. Train a Manifold Learning Model: Train Uniform Manifold Approximation

and Projection (UMAP) [12] on the chosen dataset to transform it into a lower-dimensional

space. UMAP is selected for its ability to preserve both local and global structures,

functionality of inverse-transformation and its faster computation compared to t-SNE.

3. Reconstruction to Original Space: Use UMAP’s inverse mapping to reconstruct

the data back to its original high-dimensional space, ensuring the model handles mani-

fold structures effectively.
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4. Generation of Artificial Data: Test the trained model on artificial datasets in R
4

and R
2 to visualize and understand the dataset, the lower-dimensional transformations,

and the synthetic data, which is not feasible with high-dimensional real-world data.

5. Test the Manifold Learning Model: Apply the trained manifold learning model

to transform artificial datasets into the latent space for visualization. This step assesses

the model’s ability to preserve proximity between points from high-dimensional to

lower-dimensional spaces and allows for performance evaluation of the manifold learn-

ing algorithm.

6. Synthetic Data Generators: Introduce generators like GAN and VAE to create

synthetic data from the latent space. This step evaluates how well the generated data

resembles real data and ensures privacy by retaining data structure while introducing

variability to avoid exact replication.

7. Synthetic Data Reconstruction: Use the inverse transformation function to re-

construct synthetic data back to its original dimensional space. Compare the recon-

structed data with the original synthetic data to evaluate the accuracy of the reconstruc-

tion process.

4 Experimental Setup

In this section we describe the setup of our experiments which includes description of

the datasets and some details about the synthetic data generator architectures.

4.1 Datasets Description

We selected various datasets with manifold structures to evaluate our approach compre-

hensively. Manifold structure represents intricate data distribution patterns in a high-

dimensional space that can’t be fully captured by traditional linear methods. These

include high-dimensional point datasets like Swish Roll [11] and S-curve residing in

R
4, and lower-dimensional datasets such as Concentric Circles, Mixture of Gaussian

Points, and Two-Half Circles residing in R
2 plane, all generated using the sklearn li-

brary [15]. Each dataset consists of 4000 samples with each sample representing a fixed

point in R
n. Additionally, we used the MNIST dataset to test manifold learning on real-

world complex data distributions. This variety allows us to assess the robustness and

effectiveness of our manifold learning techniques and synthetic data generators.

4.2 Architectures

We trained our model using Vanilla GAN, where both the generator and discriminator

networks were built. The generator had four dense layers with Leaky ReLU activations

and a tanh activation at the output. The discriminator mirrored this setup but used a

sigmoid activation at the output. After updating the discriminator, it was frozen, and the

generator was trained on fake data, with loss backpropagated to adjust its weights. Next,

we used the DCGAN architecture for image synthesis. The DCGAN generator includes

dense layers, Batch Normalization, and a Convolution1D layer for upsampling. Unlike

traditional GANs, the DCGAN discriminator handles image inputs rather than vectors,
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and both generated and original images are evaluated by it. Leaky ReLU activations

are used in this setup, while the discriminator’s operation follows the traditional GAN

process.

Alongside Vanilla GAN and DCGAN, we used Conditional Tabular GAN (CT-

GAN) and Differentially Private GAN (DPGAN) for synthetic data generation. CT-

GAN was used for its specialization in tabular data, while DPGAN’s architecture was

employed to ensure differential privacy. This approach allowed us to assess the effec-

tiveness of these GAN variants in generating synthetic data and addressing privacy con-

cerns across different domains. We used VAE for synthetic data generation, featuring

an encoder with two dense ReLU layers to produce the mean and log variance of the

latent distribution, and a decoder with two dense ReLU layers and a sigmoid output

for reconstruction. The sampling layer utilizes the reparameterization trick to generate

latent vectors. All models, including VAE, were trained with the Adam optimizer at a

learning rate of 10−4.

5 Results and Discussion

In this section, we delve into the outcomes of our experiments and provide comprehen-

sive discussion on them.

5.1 Visualizing Synthetic Generation from S-Curve Transformation

Figure 1 outlines our methodology applied to the S-Curve dataset, beginning with

its creation using the ’make-s-curve’ function from sklearn. We first transformed this

dataset into a 2D plane using a pre-trained UMAP model, originally trained on the

MNIST dataset (Figure 1b). This transformation effectively retained the original shape

and geometry of the S-Curve, validating the manifold hypothesis which posits that prox-

imity in high-dimensional space is preserved in lower-dimensional representations. The

labeled points in the 2D plane confirm the accurate univariate positioning based on the

primary dimensions of the manifold.

Next, we generated synthetic data using a Variational Autoencoder (VAE) trained

on the UMAP-transformed data (Figure 1c). VAEs, known for capturing the underlying

distribution of input data, utilized the lower-dimensional structure provided by UMAP

to produce synthetic data that mirrors the original dataset’s patterns. The latent space

representation by the VAE further confirmed its efficacy in capturing the essential fea-

tures of the S-Curve. Finally, we used the inverse transform functions of UMAP to

reconstruct the data in the original space (Figure 1d). While the reconstructed points

generally clustered around the central region, the dispersion was limited, highlighting

the challenge of precisely recovering the high-dimensional structure and indicating ar-

eas for improvement in the transformation process.

5.2 Unrolling the Swish Roll: Exploring Manifold Transformation

Figure 2 shows the Swish roll dataset, initially visualized in Figure 2(a). Transforming

this data into 2D using UMAP (Figure 2b) reveals its intricate structure and relation-
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(a) Original Data (b) Data Transform (c) Synthetic Data (d) Reconstructed data

Fig. 1: S-Curve Dataset

ships, illustrating manifold learning principles. UMAP effectively captures and pre-

serves the dataset’s complex high-dimensional patterns in a lower-dimensional space,

highlighting its utility for creating meaningful data representations. In Figure 2(c), syn-

thetic data generated by VAE from UMAP-transformed points displays distinct labels

and closely mimics the original data, with minor dissimilarities indicating noise for

privacy. This highlights VAE’s effectiveness in capturing the original data’s character-

istics while preserving privacy. Figure 2(d) shows the reconstruction of original data

using the manifold model’s inverse transform. Although points cluster by label, over-

lapping regions complicate accurate reconstruction, reflecting challenges in handling

high-dimensional data with noise and overlapping surfaces.

(a) Original Data (b) Data Transform (c) Synthetic Data (d) Reconstructed data

Fig. 2: Swish Roll Dataset

5.3 Understanding 2D Point Datasets

In our analysis of synthetic data generators, we applied our methodology to 2D point

datasets. Figure 3(a) shows Gaussian clusters generated using sklearn’s make-blobs

function, with three clusters having a standard deviation of 0.2. We then used a VAE to

replicate this data, as seen in Figure 3(b). The VAE-generated points form three distinct

clusters, though some points are stretched within each cluster. This indicates the VAE’s

success in producing data similar to the original while preserving privacy through slight
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dissimilarities. The VAE effectively learns and reproduces the discontinuous nature of

the original data points, despite not following a continuous pattern. This contrasts with

findings in [17], where the model struggled with data discontinuity due to assumptions

of a continuous latent space.

(a) Original Data (b) Synthetic Data

Fig. 3: Mix of Gaussian Points

In Figure 4, we observe a similar pattern with the concentric circles dataset and the

two half circles dataset. In both visualizations, the original datasets exhibit a discon-

tinuous nature with distinct geometrical patterns. This process ensures that the privacy

of the original data’s structure and geometry is maintained while generating synthetic

data. The produced synthetic data closely resembles the structure and geometry of the

original datasets while incorporating some variation. This behavior arises because the

VAE learns the distribution of the data and generates new points based on this learned

distribution, thereby preserving the essential characteristics of the original data while

introducing slight deviations.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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0.4
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0.8

1.0

Original Points

−0.002 0.000 0.002 0.004 0.006 0.008

−0.004

−0.002

0.000

0.002

0.004

Reconstructed Points

(a) Concentric Circles (b) Two Half Circles (c) Synthetic Data

Fig. 4: Concentric and Two Half Circles
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5.4 Visualizing Real-World Data

We explored the capabilities of manifold learning and synthetic data generators using

the MNIST dataset, a widely-used real-world dataset in machine learning. Firstly, we

visualized the original MNIST dataset, consisting of 70,000 handwritten digit images

sized at 28x28 pixels, as shown in Figure 5(a). Next, we transformed this data into a 2D

latent space using manifold learning, resulting in well-separated clusters representing

different digits, as depicted in Figure 5(b). We then generated synthetic data from this

transformed data using a VAE, shown in Figure 5(c), where the data points appear clus-

tered closely together. The reconstructed data, seen in Figure 5(d), closely resembles the

original data. However, when dealing with real-world image datasets like MNIST, we

can only visualize the original and reconstructed data. Once the data is transformed into

a latent space, visualization is limited to observing if the data points are well-separated

according to their labels. This black-box-like mechanism of synthetic data generators

makes it difficult to visualize how the geometry of data points changes at each step.

This is why we used artificially created datasets in 4D and 2D planes, allowing us to

visualize the workings of synthetic data generators more effectively.
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(c) Synthetic Data
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(d) Reconstructed Data

Fig. 5: MNIST Dataset

5.5 Privacy Risk Assessment in VAE

We extended our privacy analysis of VAEs by adding new artificial points to the origi-

nal S-Curve dataset and examining the VAE’s ability to regenerate these points. Figure

6(a) shows the original data with 10% additional points arranged along a straight line,

marked in red and green. Figure 6(b) displays the synthetic data generated by the VAE,

which accurately regenerates the added points. This demonstrates the VAE’s proficiency

in learning and generalizing from the dataset, effectively capturing the underlying struc-

ture, including the newly introduced points. When the added points are numerous and

systematically distributed, as in Figure 6(a), the model’s ability to regenerate them in

Figure 6(b) indicates that it has effectively learned the underlying structure of the data,

including the newly introduced points. This capability highlights the VAE’s proficiency

in learning and generalizing from the dataset, ensuring that it can produce realistic syn-

thetic data while preserving the distribution of added data points.

If the VAE regenerates very few newly added points precisely at their original lo-

cations, it indicates a potential privacy leak due to memorization of individual samples
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rather than learning general patterns. Figures 6(c) and 6(d) illustrate this scenario. In

Figure 6(c), only 0.01% of points are newly added and strategically placed. In Figure

6(d), the synthetic data shows these points in different locations, indicating the VAE

did not memorize the specific data samples but learned general patterns instead. The

scattered positions of the newly added points demonstrate that the VAE preserves the

overall S-curve structure without retaining exact data points, reducing the risk of pri-

vacy leakage. In Figure 6(c), the three newly added points (two green and one red)

coincide with the S-Curve data points but are not regenerated at the same positions by

the VAE, indicating they were not memorized. Instead, these points are scattered across

the S-Curve structure. Figure 6(d) shows that while the VAE preserves the overall S-

shape, it does not retain the exact positions of individual data points, as evidenced by

the color spectrum. This observation is crucial for privacy, demonstrating that the VAE

does not memorize specific, potentially sensitive information, thereby reducing the risk

of privacy leakage.

This visualization assesses privacy risks in VAE data generation. Accurate regener-

ation of specific, newly added points by the VAE suggests memorization of exact details

rather than learning general patterns, potentially leading to privacy breaches. Ensuring

the VAE does not memorize individual data points is crucial for maintaining privacy

and avoiding the revelation of sensitive information.

(a) Data with 10%

new points (b) Regenerated point

(c) Data with

0.01% new points (d) Regenerated point

Fig. 6: Privacy Risk Assessment in VAE

5.6 Visualization with Diverse GAN Architectures

We tested various GANs for synthetic data generation, including Vanilla GAN, DC-

GAN, CTGAN, and DPGAN. Starting with Vanilla GAN on the S-Curve dataset, as

shown in Figure 7(a), we found that it performed poorly, with generated data being far

from the original points. This indicates that Vanilla GAN struggled with the 3D point

data’s intrinsic dimensionality. We tested various GANs on all datasets, but obtained

similar results across them. For simplicity, we are only presenting the findings for the

S-Curve dataset. We applied DCGAN to the Swish Roll dataset (Figure 7(b)), finding

that while the generated points overlapped with the original, they were disorganized.

Using CTGAN on the S-Curve dataset (Figure 7(c)), the generated points also showed

significant overlap with the original data, and the latent space representation was scat-

tered, highlighting CTGAN’s difficulty in capturing the 3D geometry.
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We tested DPGAN on the Swish Roll dataset (Figure 7(d)), but found that the gen-

erated points were scattered and lacked geometric fidelity. GANs, known for their in-

stability and slow convergence [7,16] compared to VAEs [1], struggled with manifold

data. This led us to favor VAE, which provided more reliable results. Unlike GANs,

which often face mode collapse, VAE effectively captured the diverse structures in our

datasets [8], making it the preferred choice for our synthetic data generation. This dis-

crepancy sheds light on why GAN struggled with our manifold data, which consists of

data points in R
n space rather than images.

(a) Vanilla GAN (b) DCGAN (c) CTGAN (d) DPGAN

Fig. 7: Results with other types of GAN

6 Conclusion and Future Works

In this study, we examined the effectiveness of synthetic data generators, GAN and

VAE, for privacy-preserving data. Given their black-box nature and challenges with

high-dimensional data, we used artificially created datasets in R
n and applied UMAP

for data transformation. This approach allows us to visualize and evaluate the perfor-

mance of GAN and VAE throughout their training, providing clearer insights into their

learning capabilities. Our findings indicate that VAE demonstrate a superior ability to

understand and learn the intrinsic structure of our artificial point dataset compared to

GAN. Furthermore, when attempting to reconstruct the original data using inverse trans-

formation, we observed interesting outcomes. For instance, in the case of the swish roll

dataset, the data points were clustered according to their labels, while in the s-curve

dataset, the produced samples were situated between the clusters of data. This outcome

leads to generalization of data which is promising from a privacy perspective, as the

generated data samples fall within the range of the original data points without fully

revealing their exact shape and structure. However, the effectiveness of this process

depends on the compression and inverse transformation techniques employed. Never-

theless, privacy always comes at the cost of utility. Future research could focus on de-

veloping techniques that offer both efficient transformation and inverse transformation

with minimal loss. Additionally, there is a need for synthetic data generators tailored

specifically for point datasets in R
n rather than images, which could further enhance

privacy-preserving data generation techniques.
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������ ������ ��� ������� ����������� ����

����� ����� ����������� ����������

�� ����1� ��������� ����1� �� ��1� ��� ����1� ������ ���1,3� ��� �� ��2(�)

1 ��� ���������� �� ���� ����� ���� ����� �����
����������������������������������������������������

2 ��������� �� ��������� ������� ������� �� ��������� �������� �����
����������������

3 �������� �� ����������� ��������� �����

��������� ��� ���������� �� ����� ��������� ��� �������������� ���
���� ���������� ���������� ������� ��� ����� �� ������� ������� ����� ���
��� �� ������ ������ �� ����������������� ���������� ���� �� ���������� ���
������� ����� ����������� ���������� ����� �� � ��������� ��������
���� ������� ������������ �� ��������� ���� ������� ����������� ����
����� ��� ����������� �������� �� ��� ������� ��� ��������� ��� �� �����
�������� ��������� ���� ������� ��������� ����� �� ��������������
������������ ��� ���� ������ ��������� ���� ���� ���������������� �����
��� �� ���������� ������������� ��� ��� ���� �� �� ���������� ���������
���� ������ �������� ��������� �������� �� ��� ��������� ������ ��
������ ���������� ��������
�� ���� ������ �� �������������� ��� ���� ����������� ��������� ����
������ ���� �������� ������ ��� ������� ����� ����� ���������� ���
������� ��� ����������� �� ��� �� ����������� ��� ��������� ���������
��� ��� ��� ������� ������ ��� ������ ��� ������ ������ ����������
����� ������ �������� ��� ��������� ������� �������� ��� �����������
���������� �� ����� �� ���������� ��� ��������� ����������� �����
������ ����������� ��������� ���� ������ �������� ��������� ���������
� ������� ��������� �∼44.1%� �� ���������� ������� ����� ���� �������
��� ������ ���� ������� ���������� �� ��� ������ �� ��������� �����
���������� ������������� ��� ���� ������� ��� ��������� �� ������� ���
������������ �� ��� ����� ���������� ������ ������ ��� ���������� ���
��������� ����������� ��� �������� ��� ����������� �� ����� ��������
�� ��� ���������������� �������������� ��������� ���� �������

��������� ����� ����������� ���������� ����� � ������ ����������
���������� ������ � ����������

� ������������

��� ���������� �������� �� ����� ��������� ��� �������������� �������� ����
����� ��������� ������ ���������� ���������� ������ ���� ��� �������� �����

� �� �� �� ��� ������������� �������
�
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� �� ���� �� ���

������� �������� ���� ���������� ��� ������������� �� ������ ������ �� ���������
����� ���� �������������� �� �� ������ ���������� ����������� ����� ��� ������
����� ��� ������� ���� ���� ����������� ��� ���������� ����������� ����������
���� �� ���������� ��� ������ ���� ��� ����������� �� ��������� ��������� ����
�� �������� ��� ��������� �� ���������� ���� ����������� ��� �� �������� ������

�� ������ ��� �������� �� ���� �� ������ ������� ����������� ���������� �����
������ ������ ��� ���� ��� ��� ����� ��� ���������� ��� ���� ��������� ��� ��
����� ��������� �� ������� ������������ ��� �������� �� ��������� ����� ��������
����� ����������� ���������� ����� ���� ��������� ���� ���������� �� ��������
������������ �� ��������� ���� ������� ��� ���� ��� ����������� ������� ������
��� ��� ����������� �� ����� ��������� ��������� ����� ���������� ���� ��������
�������� �� � ������� ����� ��� ���� � ����� �� �������� ������ �� ������ ���������
���� ������� �������

�������� �������� ��� �� �������� �� ���� ���� ������� �� ���� ��������
������������� �� ������ ���� ����������� ����������� ��������� ��� ���������
���� ��������� ��� ���� ��������� ��� �� ���� �� ��������� ������ � ��������
������ ���������� �������� �� ∼104�105× �������� �� ��������� �������������

���� �������� ���� ��� �������� ���� �� ���������� ��������� ���� ����
����� �������� ���� ������� ����� �������� ��� ����������� ������������ ���
��������� ������������� ����� ������ ��� ����� ���������� �� ����� ��� ��������
�� �������������� ������������ �� ��������� ��� ���������� ������������� ���
��� ����� ��������� ������������� ��������� ������������ ����� ������ ��� �������
��� ���� ����� �� ������� ��� ����������� �� �������� �������� ��������� ���
��� ���� ����� ����� ������� �������� ������� ����������� �������������
���� ������ ����� �� ��� �������������� ����� ��� ���� ���� ����������� ���� ���
��������������� �� ����� ���� ������������ ��� �������� �������� �� � ����
�������� ������� ���� �� ���� ����� ���� ��� ���� ���������� ���� ��������� ��
����������� �� �������� ��� ����������� �������� ����������� ������������ ������
�������� ���������

��� �������� �������� �� ������� �������� ��������� ���� ������� �� �
����������� ������ �� �� ��������� ��� ��������� ��������� ����� ����� � �����
����������� �������� �� ����������� ���� ����������� ������ �� �� ����� ������ ���
��� ����� ������������ �� ����� �� ��� ���� ���� �� ������ �� ��� ���������
����� �������� �� � ����������� ���� ��� �������� ������ ����� �����������
��� ���� ���������� ��� ���� ����������� ������������� ��������� ��������� ���
���� ���������� ���� ��� ������� ��� ��� ������� ������ ��� ��� ������ ����
������ ���� ��������� � ������� �� ��� ���� ��� ��������� ������������ ����
����� �������� ����� �������� �������� ��� ����������� ���� ���� ������� ���� ���
�������� ����������� ������������� ��� ������ ������ ��� ������������ �������
���� ��� ���� ��� �� ��� ������������� ������ ����� ����� �� ��� ���� ������
��� ������ ����� ���� ��������� ��� ������������ ������� ��� ������� ��� ����
�������� �������� �� �������������� ����������� ��������� �������� � ��������
��� �������������� ����������� ������������ ���������� ��������� ��� ���������
��������� �� ���������� ���������
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���� �� �� �������� �� ��� ����� ����� �������� �� �������������� �����������

�������� �������� ��������� ��������� ���� ������� ����� ��� ������
���� ����� �� ������������ �� �� ���������� ��� ����������� ������������ ��� ���
������ �� ��� ���������� �� ��������� ��������� ������ �� ���������� �� �����
��� ������������ �������� ��������� ��� ���� ����� �� ��� ��������� ����� ���
���������� ���� ���������� ���� �� � ������ �������� ����� �� �� �����������
�� ������ ������� ����� ����������� ��� ��������� ��� ���� ������ �� ��� ���������
�� � ����������� ��������� ������ �� ������� ��������� �� ����� ������������
������� ����� ��������� ���������� ���������� ����������� ���������� ������ ��
���������� ��� ���� �� �� ��� ������ ��� ��������� ������ ��� �������� ���
������� ����� �� ��� ���������� ������� � ���������� ���������� ��� �� ���
���� ������������ �� �������� ��� ������������ ��� ���� ���������� ��� �����
����������� ��� �������������� �� �������� �� ��������� ��� ������ ������ ���
������ �������������� ������� ��� ����� ��� ��� ���� ������� ���� ���� ������� ��
������������ ��������������� ������������� ������ 99.96% �� ��� ������� �����
��� �� �� ���������� �� ����� ��� ����������� ���� ����� �� ��� ��������� ������
������ ��������� �� ��� ���� �� ������� ��� ������ ��������

�� ������� ����� ����������� �� ������� ������ ��� ���� ����������� ����
����� ���� ������ �� ��� ��������� ����� ���� ������� ������ ��� �������
���� ����������� ��� ���� ������� �� ���� �� ��������� � ��������� ���������
����� ������ ��� ����� ����� �� �������� ���������� ������ ��������� ��� ������
����� ��� ���������� �������� ��� ���������� �� ��� �������� ���� ������� ����
���� ������� �� ��������� ������������ �������� �� ����������� ��� ����������
���� ������� ������ ��� ������ ��� ������ ������ ���������� ����� ��������
��� ��������� �������� �������� ��� ����������� ���������� �� ����� �� ���
����� ��� ����������� ���������� ���������� ���� ��������� ��� ������ ������� ��
�� ������ � ������ ���� ��������� ���� ��������� ��� ����������� �������������
���� ������ ��� �������� �� ��� ����������� ���� ��� ��� ��������� ������� ���
������� ����� �� �������� ��������� ��� ���� ��������� ������� �������� ��� ����
��� ���������� �� ��������� ��� ���� ������� ��������� ������ �������� ��������
��������� ����� ��� � ���� �� ���������� ������ �� ������������ �� ��� ���
���������� �������� ������ �� ������� ��� ������������ �� ��� ����� �����������
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� �� ���� �� ���

�� ����� ����� �� ��� �� ��3�� ���� � ���������������� �������������� ����
����� ��������� �������� ��������� ���� ������� ������ ���� ��������� ��
�������� ��� ����������� �� ������ �� ��������� ����������� ����� ��� ����
� ��������� ����� ��� ���������� ������� ����������� ��� ����������

� ����� �� �������� �� ������������ ������� ���������� ������� �� 44.1% ����
����� �� ��3�� ���� ���� ��������� ������ ������������� ��� ��� �����
����� ��������������������� �������������������� ������� ������� 96.7%
��� 97.1% ���������� �� ������� ������������� ���������� ���������� ��� ����
�������� ���������� �� ���������

� ����� �� ��������� ��� ������������ ������ ���� ���������� �� ��� ����
��� �� ��������� ����� ���������� ��������� ���� ��� ����������� ���������
������������ �� ��� ��������� ������

�� �������� ��� ���� ����� ��� ��������� �������������� ��� �� ���������
��� ��������� ��������� ��� ������������ ������ ���� ��� ��� ���� ���
������� ���������� �������� ����������� ����������� �� ��������� ���� ����
����� ��� �� ������� �� ����������������� ���������� ������������ ��� ����
���� ��� ���� ������� �� ������� ��� �������� ����������� ��� ������� ����������
������������ �� ����������� ��� ���������� ������� ������������ �� �����
�������� �� ��� ���������������� �������������� ��������� ���� �������

� ���������� ��� ������� ����

��� ����������� ���������� ����

����������� ���������� ���� ���� �� � ������������� ��������� ���� �������
������������ �� ��������� ���� ������� ����������� �� �������� �� �������� ��
���������� �������� E(m) ���� �������� � ������� m ���� � ���������� c ��� �
���������� �������� D(c) ���� �������� c ���� ���� ��� �������� m� ��� �����
������� �������� ������� ��� ����������� �� � �������� f �� ��������� ���� c1
��� c2� ��������� �� �� ��������� ������ f(c1, c2) ����� �� ����� �� E(g(m1,m2))�
����� g �� ��� ������������� �������� ���� �������� �� ����������

�� ��� �� ����������� ���� ����� ������ ��������� ����������� ����������
������ �������� ����������� ���������� ������� ��� ����� �����������
���������� ������ ��� �������� ���� ��� ���� �� ��������� ��������� �� ����
������������� ����� ���� �������� ���� ����� �� ��������� ��� ���� �������
������ ���� �� ��� ����� ����� �������� �� ��������� ������ �� �������� ���
�������������� ������������ �� ��������� ����� ������ �� ��� ���� ��������
��� ��������� ���� �� ���

����� ��� ������������ �� ��� ����� �������� ��� ������� ���� ��������
��������������� ���� ���� �������� �������������� ����� ��� ���� ���� �����������
��������� ���� ��������� ���� �� ��� ��� ����� ��������� ������ ���� �� ���
������� ���� ����� ��� ����� ����� ��� ������ ����� �������� ��� ����������
���������� ������������� ���������� �∼104�105×� ��� ������ �������� �∼103�
104×�� �������� ��� ��������� ����������� �� ���������� ����������
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������ ������ ��� ������� ����������� ���� ����� ��� �

����� �� ���������� �� ����� ��� ������� ������ ���� �������� ��������
�������� ��������� ������� ��� ������ ��� ������� ���� ������ ��������� ���
����������� ��������� ������� ��� ������ �� ����������� �� ������� ��������
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Encrypt

 SELECT SUM(price)

 FROM t_sale

 WHERE month > 5

 GROUP BY type

price month type

4.5 6 1

1.2 4 2

3.3 7 1

5.8 6 2
... ... ...

price month type

'\xDF12' '\x5J2L' '\xGJR2'

'\x3H23' '\xFGW1' '\xCA36'

'\x4JS1' '\xD24D' '\xGJR2'
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     ...         ...          ...     

Encrypt

 SELECT SUM(price)

 FROM t_sale

 WHERE month > '\x8GE3'

 GROUP BY type
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'\x90DL'

7.8

5.8

Decrypt
Cloud
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Machine 1

WorkerWorkerWorkers
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WorkerWorkerWorkers
Int.
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Plaintext Dataset Encrypted Dataset
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month
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'\xFGV1'
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    ...     
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 WHERE month > '\x8GE3'
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pre-group
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Hom

AND

=

month

> 5 

HomMSB

HomSub

type== 1 

HomMSB

HomSub

SELECT SUM(price)

FROM t_sale

WHERE month >  5 

AND type =  1 

Subquery

price month type

4.5  6  1 

1.2  4  2 

3.3  7  1 

5.8  6  2 

Encrypted Dataset

Hom

Sum

TFHEs

 1 

 0 

 0 

 1 
TFHEsToCKKS

Hom

VecMul

CKKS

(The filter)

 1 

 0 

 0 

 1 

Filtering
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  0  

  0  

CKKS
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 1.2 

 3.3 
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Pre-aggregation
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� pk ← ������������������� ek ← ����������������pk��
� Den ← ��������Dpl�pk�� attr�table ← �����������������������Dpl�pk��
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� shards�array[] ← �������������Den�machine�num��
� ��� ���� ����� ������� mi� ��
� ����������shards�array[mi]��
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������ ��� ��������� ���������� ����� ����� ➊�� ���� ������� ���� �� ��� �����
������� �� ��� ����� ����� ➋�� ��� ���������� ����� �� �� ��������� ���������
���������� �� ��� ��� �������� ��������� ������� ����� �� �������� ��� ��� ���������
��������� ��������� �� ����� ����� ��������� ��� ��������� ���� ��� ��� ����������
������ ��� ����������� ������������ ���������� ��� ��������� ���� ���� ���� ������
��� ����������� ���� ������ �������� �������� ����� ➌��

��� ����� ����������

��� ����� ���������� ����� �������� �� � ������ �� �������� �� ��� ����� �����
�� ������ � ��� ��������� ��

������ ��� ����� ���������� ������ ��� ������ ���� �������� ��� ����� ���
�������� ����� ➊� ��� ����� ��� ��������� ����� �� ��� ����������� ����� ➋��
��� ����������� ���� �������� ��������� ���������� ����� ➌� �� �������� ����
������� ����� �� ��� ����� �� ��������� ��� ��� ������������� ��������� ������
��� ���� ������� �� ���������� ������ ����� �� �����
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�� �� ���� �� ���

��������� �� ����� ����������

������ ����� ���� ����� ������ QS ���� ��������� �������� ���������
���������� Ppl ��� ����� �� ��������� G

�� ���� ➊� ������� ����� ����������
� pk ← ������������������� Pen ← ��������Ppl�pk��

�� ���� ➋� ���� ����� ���� ��������� ���������� �� �����������
� ����������QS� Pen� G��

�� ���� ➌� ��������� ���������
� attr�table ← ��������������������
� sub�queries[] ← ���������QS� Pen� G� attr�table��

�� ���� ➍� ������ ���� ����� �� ������ �����
� ����� ���� ��� �������� ��
� worker ← ������������� SMap�task ← ������������sub�queries��
� �����������worker� SMap�task��

�� ���� ➎� ������� ������� ���� �����
� SMap�task ← ������������������
� int�result ← �����������SMap�task�� ���������������int�result��

�� ���� ➏� ������ ������� �����
�� ����� ������� ��� �������� ��
�� worker ← ������������� SReduce�task ← �����������������
�� �����������worker� SReduce�task��

�� ���� ➐� ������� ������� ������� �����
�� SReduce�task ← ���������������������
�� int�results ← ��������������SReduce�task�key��
�� partial�result ← ��������������SReduce�task� int�results��
�� ������������������������partial�result��

�� ���� ➑� ����������� �������� ��� ������� ��� ���� ������
�� result ← �������������������� �������������result��

����� ��� ��������� ����������� ��� ����������� ������� ����� �� ������ ������
����� ��� ������� ���� ��� ������� ���� ��� �������� ��� ������� �� ��� ����
��� ������� ������ ��� ��������� �� �����

�� ��� ���� ������ ��� ����������� ������� ��� ���� ����� ��������� ��� ����
����� ���������� ���������� ��� ��������� ��������� ����� �� ���������� �� ���
��� ������� ����� ➍�� ���� ������ �������� ��� �������� ��� ���������������
���������� �� ��� �������� ���� ����� ��� ������ ��� ������������ ������� �����
➎�� �� �������� ������������� ��������� ��� ����������� �������� �� ������
��� ���� ����� �� ��� ���� �������� ���� ��� ������� �������� ����� ������ ����
������ ��� ����������� ���� ��� ��������� �� ��� ������ ������������ ��������

�� ��� ������� ������ ��� ����������� ������� ��� ���������������� ����� ��
��� ������ ������� ����� ➏�� ����� �� ������� �� ��� ������ ��������� �� ���
��������� ������ �� �������� ��� ��� �������� ����������� �� ��� ���������
����� �� ���������� ��� ��� ����� �������� ���������� ��� ������������ ����
���������� �������� ��� ������ ������� ����� ��� ������������ ������� ���� ���
��� ������� �� ���� �� ��� ������ ������� ��� ������� ��� ����������������
���������� ����� ��� ��� ������� �������� ����� ������� ������ ��� �����������
�������� ��� ���� ������� ��� ����� ���� ���� �� ��� ������ ����� ➐��

����� ���� ��� ������ �������� ��� ������� ��� ���� ����� ������� ����� ➑��
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������ ������ ��� ������� ����������� ���� ����� ��� ��

� ���� �������

�� ��������� �� ����� ��� ���� ������� ��� �� ��������� ������� ���� ��� �������
����������������� ���� ��� ����������� ������������ �������������� �� ��������
�� ������ �� ��������� �������� �������� ��������� ���� ��� ��� �����������
����������� �� ��� ���� �������� ���������� ����������� ���� ���������� ���
����� ���������� ���� ���������� ����������� ������� ��� ����������� ������
������� ��� ������� ���� ���� ��� ������ �� �������� �� ��������� ��� ������
����� ������ ������������� �� ������ ��� ��� ���������� ����������� ����
��� �������������� ������� ��� ����� ��� ��� ����� ���� ������� �� ������ �����
��������� ��� ���� �� � ���������� ����������� ����������� ������ �� �������
������� 99.96% �� ��� ������� ����� �������� �� �������� ����������� ��������
�����������

�� ����� ���� ��� ��� ��������� ������� ���� � ���� ������������� ���� ��
�������� ��������� �� ����� ����� ��������� ��� ��������� �������� ��� �������
�� ������������ �� �� �������� �� ����� ������ �������� �������� �������� ���� ��
������������ ������� �� ���������� �������� ����� ����� ������� ��� ������
�� ���� ������ ������� �������� ���� ��� ������������ ������ ��� �������� �����
���������� �� ��������� ��� ���� ������� �� ������� ��� ��������� ��������
������ �� ����� ���� ��������� �������� ������ ��� � ���� �� �����������
����� �������� ������ �� ��������� ��� ����������� �����������

��� ���� ����� �� ������������� ��������

������� ���� �� � ������ ���� ������ ���� ������ �� ������� ������������� �����
������� ��� �������� ��������� �������� ���� ���� ��� �� ������ �� ����������
������������� ���������� ����� �� ������������� ����� �� ������� ����� ��������
������ �� ��� ���� ������ �� ������� ��������� ���������� �������� ������
�� ������ ��������� ��� ��������� �������� ��������� ���� ������� ������
�� �������� �� �� �������������� ��� ������� �� ������������� �� ������
��������� �� ���� �� ������ ���� ��� ��������� ��������� ������� ��� �������
���� ����� ��������� ������� ��� ��� �� ��� ��� ��� ������ ��� ������������
���� ��������

��� ���� ����� �� ���������������� ��������

���������������� �������� �� � ��������������� ��� ������� ������ ���� ����
� ���� �������� �� ��� ���� �� � ��������� ����� ��� ����� ���� ���������� ���
������� �������� ��� �������� ������� �� ��������� ������ ������ ����� ����� ����
�� ������� ��������� ���� ���� ���� ��� ���� ������� ����������� ������� ��
�������� �������� �������� �� ������� � ��������� ����� ��������� ����� �� ���
������� ���� �������� ��� ��� ����� ����� �� ���������� ��� ��������� �� ���
������� ����� �� ������� ��� ����� �� ����� ��������� ������ �� ��� ����� ������
�� ��������� � ������ ����������� ��������� ����� �� ��� ��������������� �� ���
���� ��������� �� �������� ��������� ���� ������������ �� ���� ���� ������ ��
��������� ���� �������� ������ ���� ������ ��������� ��� ��������� ��������
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�� �� ���� �� ���

����� �� ������� ��������� �������� ��� � ������� ���� ��� ����� ����� ���
��������� ��� �����������

������ ������������
���������������

��������� ����� ����������
������������������� ��������������������

��3�� �������±����� ������±����� ��� �������±�����
����� �������±������ ������±����� �����±����� ������±����� �������±������

������������� �����±����� ������±����� �����±����� ������±����� �����±�����
���������������� �����±����� ������±����� �����±����� ������±����� �����±�����

��������� �������� �� �� ����������������� ��� ������� �� ����������������
������� ��������� ���� �� ��������������

� ����������

��� ���������� �����

�� ����������� ����� ����� ��� ��3�� ��� ��������� ��� �������� ��� ���
������� ���� ����� ����������� ����� ��� ������ ���� ��������� ��� �������
���������� �� ���� ��������� ��� ���� ������� �� ��� ����� ������� ��� ����
�������� ����������� ��� ��� ������ ���� ��� ��� ������������ ����� ��� �����

��������� ��� ������� ����������� ��������� �� �� �������� ���� ��������� ����
����������� ���� �������� ���� � ������� ����� ������� �� ���� ���� ����
���� ������ ���� ��� �� ������ ��� ������� ���� ������� ������� ��� ����� ���
∼�������� �� ���� ��� ���� ��������� �� ��3��� ����� �� � ������ �� ���
����� ���� �������� ��� ������� ��������� ���������� ���������� �� ��3���
�������� ���� ��� ���������� �������� �������� ���� �� ��3��� ��� �������� ��
������� ��� ���� ������ �� ��3��� ����� ���� ��� ��������� �� �������� ������
�� ��� ����� ������� ��� ���������� ��� ���� ���� ��� ���� �����

���������� ��� ������������ �� ��� �� ������� ��� ��������� ����� ��������
����������

� �� ���� ������ ��� ������� ����������� �� �������� �������� �� ���
���������������� �������������� �������

� ��� ���� ���������� ����������� ����������� ��� �� �������� �� ��������
��� �������� �������

� ��� ���� ������� ����������� ���� �� ��� ������ �� ��������� �����
����������

��� ���������� �����������

�� ��������� �� ������� ��� ����������� �� ������ �������������� ���
���������������� �� � ��������� ������ ����� ��3�� ������� �� � ������
������� �� ��� ��������� ��� ��� ����� ����� � ��� ���� �� ��� ���� �����
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���� �� ���������� ������� �� ������������������� ����������������������
����� ��� ��3���

��� �������� �� ����������� �� ������ ��� ����������� ���� ����� ��������
������������ ����� ������� �������� �� ��3��� ������� ���� 40.8% �� 71.6%�
������������� ��� ���������������� ������� ������ ��� �������� ���������
2.56% �� 9.47% ��� 2.33% �� 8.97% �� ������� �������� ������������� �����
������� �������� �������� ���� ����� ����������� ��3�� �� ����� �� ����
������ �������� ��� ���������� ����������� ������������ ��� �� �������� ��
�������� ��� �������� ������� �������� ���� ����� �� �������� �����������

��� ��������� ��������

�� ������� ������� � ������������� �������� �� ��� ����������� �������������
�� ��������� � ������� ��������� �������� �� � ������� �� ��� ���� ����� �
����� ������ ��� � �������� �� ����������� �� ������ �� ��� ���������� �� ����� ��
��� ������ �������������� �������������������� �� ������� ��� ����� ����
���� ���� ���� ������ ��������� ���������������� ������ ��� ����������������� ���
����������� ����� �� ���� �� ������� ����� ��������� ���� ��� �������� ���� ��������
��� ����� ���������� �� ��� ���� �� ��3��� ��� ����� ������� ��� ������� ����
��� ������ �������� ��� ������������ �������� ����� � ������� ���� ��� ���������
���� �������� ������������ ���� ���� �������� �� ����� ����� ������ ��� ����
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�� �� ���� �� ���

����� ������������� ��� ������ �������������� ��� ��������� �� ��� ���������
����� �� ���� ��������� �� ������ ���

��� ������� ����������� ���� ���� ��������� ����� ��� ��3��� ��������
����� ���������� �� ���������� ����� ������������� ����� ��� �������� ������
���� ���������� ����������� ��� ������������� ��������� ��������� �� � ����������
��������� �� ��� ������� �� ���� ��� �������� ��� ����������� ������ ��������
������������� 46.1% ��� 19.8% �� ��3���� �������� ������������� ���������
��� ���������� ������� ��� ��� ���� ����� ������� ������ ������������� ���
����������������� ��� ������ �� �� �������� ���� ��� ������� �� ��� ��������
���� �� ������������ ��������� �� ���� ������ ���������� ��� ������������� 99.7%
��� 99.8% ��������� �� ������� �������� ������������� ������������� ��������
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Abstract. This paper shows card-based cryptographic protocols to cal-
culate several Boolean functions with a standard deck of cards using
private operations. They are multi-party secure computations executed
by multiple semi-honest players without computers. The protocols use
private operations that are executed by a player at a place where the
other players cannot see. Most card-based cryptographic protocols use a
special deck of cards that consists of many cards with two kinds of marks.
Though these protocols are simple and efficient, the users need to prepare
such special cards. Few protocols were shown that use a standard deck of
playing cards, though the protocols with a standard deck of cards can be
easily executed in our daily lives. It was shown that logical AND, logical
XOR, and copy protocols can be executed with the minimum number of
cards. However, the protocols for complicated functions are not known.
This paper shows that by using private operations, all of the following
Boolean functions can be calculated without additional cards other than
the input cards: (1) any three input Boolean functions, (2) half adder and
full adder, and (3) any n-input symmetric Boolean functions. The results
show the effectiveness of private operations in card-based cryptographic
protocols.

Keywords: card-based cryptographic protocols · multi-party secure com-
putation · Boolean functions · half adder · symmetric functions · private
operations · standard deck of cards.

1 Introduction

1.1 Overview of Card-based Cryptographic Protocols

Card-based cryptographic protocols [26, 28] were proposed in which physical
cards are used instead of computers to securely compute values. They can be
used when computers cannot be used or users cannot trust the software on
the computer. Also, the protocols are easy to understand, thus the protocols
can be used to teach the basics of cryptography [4, 21] to accelerate the social
implementation of advanced cryptography [6]. den Boer [3] first showed a five-
card protocol to securely compute the logical AND of two inputs. Since then,
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many protocols have been proposed to realize primitives to compute any Boolean
functions [8, 11, 29, 34, 37, 38, 47, 48] and computate a specific class of Boolean
functions [1, 2, 5, 7, 13–15,18,22,25,35,36,40,41,44–46,50,51].

This paper considers computations of (1) any three input Boolean functions,
(2) half adder and full adder, and (3) any n-input symmetric Boolean functions.
No additional cards are necessary to calculate these functions with a standard
deck of cards when we use private operations.

Note that in this paper, all players are assumed to be semi-honest. Few
works are done for the case when some players are malicious or make mistakes
[10,16,24,27,30,49].

1.2 Standard Deck of Cards

Most of the above works are based on a two-color card model. In the two-color
card model, there are two kinds of cards, ♣ and ♡ . Cards of the same marks

cannot be distinguished. In addition, the back of both types of cards is ? . It

is impossible to determine the mark in the back of a given card of ? . Though
the model is simple, such special cards are not available in our daily lives.

To solve the problem, card-based cryptographic protocols using a standard
deck of playing cards were shown [9,12,13,19,20,23,30,31,33,47]. Playing cards
are available at many houses and are easy to buy. The standard deck of playing
cards is also used for zero-knowledge proof of puzzle solutions [39, 42]. This
paper discusses protocols to calculate logical functions. Niemi and Renvall first
showed protocols that use a standard deck of playing cards [33]. They showed
logical XOR, logical AND, and copy protocols since any Boolean functions can
be realized by a combination of these protocols. Their protocols are ‘Las Vegas’
type protocols, that is, the execution times of the protocols are not limited. The
protocols are expected to terminate within a finite time and the efficiency of these
protocols is evaluated by the expected execution time. However, if the sequence
of the random numbers is bad, the protocols do not terminate forever. Mizuki
showed fixed time logical XOR, logical AND, and copy protocols [23]. Though
the number of cards used by the XOR protocol is the minimum, the ones used
by the logical AND and copy protocols are not the minimum. Koch et al. showed
a four-card ‘Las Vegas’ type AND protocol and it is impossible to obtain a four-
card finite time protocol with the model without private operations [9]. Koyama
et al. showed a three-input ‘Las Vegas’ type AND protocol with the minimum
number of cards [12]. Koyama et al. showed an efficient ‘Las Vegas’ type copy
protocol [13]. Shinagawa and Mizuki showed protocols to compute any n-variable
function using a standard deck of playing cards and a deck of UNO1 cards [47].
Miyahara et al. showed a protocol that solves Yao’s millionares’ problem using a
standard deck of playing cards [19]. Miyahara and Mizuki showed new protocols
that use a special primitive that opens the suit of a playing card [20]. This paper
discusses protocols that publically or privately open the cards. Another class of
protocols is considered, in which each player knows his/her private data, and

1 https://www.letsplayuno.com
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Card-based protocols with a standard deck of cards 3

the player privately inputs the data to the protocol. Nakai et al. showed AND,
XOR, and majority protocols [31].

1.3 Private Operations

Randomization or a private operation is the most important primitive in these
card-based protocols. If every primitive executed in a card-based protocol is
deterministic and public, the relationship between the private input values and
the output values is known to the players. When the output values are disclosed,
the private input values can be known to the players from the relationship. Thus,
all protocols need some random or private operation.

First, public randomization primitives have been discussed then recently,
private operations are considered. Many protocols use random bisection cuts [29],
which randomly execute swapping two decks of cards or not swapping. If the
random value used in the randomization is disclosed, the secret input value is
known to the players. If some player privately brings a high-speed camera, the
random value selected by the randomization might be known by analyzing the
image. Though the size of a high-speed camera is very large, the size might
become very small shortly. To prepare for the situation, we need to consider
using private operations.

Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be exe-
cuted under the table or in the back. Private operations are shown to be the
most powerful primitives in card-based cryptographic protocols. They were first
introduced to solve the millionaires’ problem [32]. Using three private operations
shown later, committed-input and committed-output logical AND, logical XOR,
and copy protocols can be achieved with the minimum number of cards on the
two-color card model [37].

For the primitives of logical AND, logical XOR, and copy operation, the
minimum number of cards is achieved with a standard deck of cards using private
operations [17]. So the research question is whether we can achieve the minimum
number of cards for complicated calculations.

1.4 Our Results

This paper shows new card-based protocols with a standard deck of cards using
private operations to calculate (1) any three input Boolean functions, (2) half
adder and full adder, and (3) any n-input symmetric Boolean functions. All of
these protocols need no additional cards other than the input cards. Thus these
protocols are optimal in regard to the number of cards.

In Section 2 basic definitions and the private operations introduced by [37] are
shown. Then, the sub-protocols shown in [17] and used in this paper are stated.
Section 3 shows protocols to calculate three input Boolean functions. Section 4
shows protocols to calculate half and full adder, and n-input symmetric Boolean
functions. Section 5 concludes the paper.
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2 Preliminaries

2.1 Basic Notations

This section gives the notations and basic definitions of card-based protocols
with a standard deck of cards. A deck of playing cards consists of 52 distinct
mark cards, which are named as 1 to 52. The number of each card (for example,
1 is the ace of spade and 52 is the king of club) is common knowledge among

the players. The back of all cards is the same ? . It is impossible to determine

the mark in the back of a given card of ? .

One-bit data is represented by two cards as follows: i j = 0 and j i = 1
if i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as ? ?
| {z }

x

.

The base of a commitment is the pair of cards used for the commitment. If card
i and j(i < j) are used to set commit(x) (That is, set i j if x = 0 and set

j i if x = 1), the commitment is written as commit(x){i,j} and written as

? ?
| {z }
x{i,j}

. When the base information is obvious or unnecessary, it is not written.

Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.
Thus, logical negation can be computed without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?

|{z}
s1

?
|{z}
s2

?
|{z}
s3

. . . , ?
|{z}
sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by two players, Alice and Bob. The players are

semi-honest, that is, they obey the rules of the protocols but try to obtain secret
values.

The inputs of the protocols are given in a committed manner, that is, the
players do not know the input values. If a player knows his secure input value x,
the player just makes a commitment of x, and the protocols in this paper can be
used. The output of the protocol must be given in a committed format so that
the result can be used as an input to further computation. If the players need to
obtain the output value, they just open the committed output. Thus committed
output is desirable.

A protocol is secure when the following two conditions are satisfied: (1) If
the output cards are not opened, each player obtains no information about the
private input values from the view of the protocol for the player (the sequence
of the cards opened to the player). (2) When the output cards are opened, each
player obtains no additional information about the private input values other
than the information by the output of the protocol. For example, if the output
cards of an AND protocol for input x and y are opened and the value is 1, the
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players can know that x = 1 and y = 1. If the output value is 0, the players
must not know whether the input (x, y) is (0, 0), (0, 1), or (1, 0).

The following protocols use random numbers. Random numbers can be gen-
erated without computers using coin-flipping or some similar methods. During
the protocol executions, cards are sent and received between the players. The
communication is executed by sending the cards between the players to avoid
information leakage during the communication. If the players are not in the same
place during the protocol execution, a trusted third party (for example, the post
office) is necessary to send and receive cards between players.

2.2 Private Operations

We show three private operations introduced in [37]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =

�

S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =
commit(x), given S0 = ? ?

| {z }
x

, The player’s output S1 = ? ?
| {z }
x⊕b

, which is ? ?
| {z }

x

or ? ?
| {z }

x

.

Note that a private random bisection cut is the same as the random bisection
cut [29], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

�

S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.
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Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

�

s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Opaque Commitment Pair

An opaque commitment pair is defined as a useful situation to design a secure
protocol using a standard deck of cards [23]. It is a pair of commitments whose
bases are unknown to a player. Let us consider the following two commitments
using cards i, j, i′ and j′. The left (right) commitment has value x (y), respec-
tively, but it is unknown that (1) the left (right) commitment is made using i

and j (i′ and j′), respectively, or (2) the left (right) commitment is made using
i′ and j′ (i and j), respectively. Such a pair of commitments is called an opaque
commitment pair and written as commit(x){i,j},{i

′,j′}||commit(y){i,j},{i
′,j′}.

The protocols in this paper use a little different kind of pair, called semi-
opaque commitment pair. A player thinks a pair is an opaque commitment pair
but another player knows the bases of the commitments. Let us consider the case
when a protocol is executed by Alice and Bob. Bob privately makes the pair of
commitments with the knowledge of x and y. For example, Bob randomly selects
a bit b ∈ {0, 1} and

S =

�

commit(x){i,j}||commit(y){i
′,j′} if b = 0

commit(x){i
′,j′}||commit(y){i,j} if b = 1

then S = commit(x){i,j},{i
′,j′}||commit(y){i,j},{i

′,j′} for Alice. Such a pair is
called a semi-opaque commitment pair and written as commit(x){i,j},{i

′,j′}|Alice||
commit(y){i,j},{i

′,j′}|Alice, where the name(s) of the players who think the pair is
a opaque commitment pair is written. Note that a name is not written does not
mean the player knows the bases of the commitments. For example, the above
example says nothing about whether Bob knows the bases or not. Note that the
name of the player is written with the initial when it is not ambiguous.
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2.4 Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations [38]. The first round
begins from the initial state. The first round is (possibly parallel) local execu-
tions by each player using the cards initially given to each player. It ends at
the instant when no further local execution is possible without receiving cards
from another player. The local executions in each round include sending cards
to some other players but do not include receiving cards. The result of every
private execution is known to the player. For example, shuffling whose result is
unknown to the player himself is not executed. Since the private operations are
executed in a place where the other players cannot see, it is hard to force the
player to execute such operations whose result is unknown to the player. The
i(> 1)-th round begins with receiving all the cards sent during the (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i− 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. The number of rounds of a protocol is the maximum
number of rounds necessary to output the result among all possible inputs and
random values. If the local execution needs many operations, for example, O(n)
operations where n is the size of the problem, we might need another criterion
to consider the cost of local executions.

Let us show an example of a protocol execution, its space complexity, and
time complexity.

Protocol 1 (XOR protocol) [17]
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x⊕ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and commit(y){3,4}

using the same random bit b ∈ {0, 1}. The result is commit(x ⊕ b){1,2} and
commit(y ⊕ b){3,4}. Alice sends these cards to Bob.

2. Bob executes a private reveal on commit(y ⊕ b){3,4}. Bob sees y ⊕ b. Bob
executes a private reverse cut on commit(x⊕ b){1,2} using y ⊕ b. The result
is commit((x⊕ b)⊕ (y ⊕ b)){1,2} = commit(x⊕ y){1,2}.

The number of cards is four since no cards are used other than the inputs.
Let us consider the time complexity of the protocol. The first round ends

at the instant when Alice sends commit(x ⊕ b){1,2} and commit(y ⊕ b){3,4} to
Bob. The second round begins with receiving the cards by Bob. The number of
rounds of this protocol is two.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to send cards between players and
set up so that the cards are not seen by the other players. Thus the number of
rounds is the criterion to evaluate the time complexity of card-based protocols
with private operations.
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2.5 Protocols for AND, Copy, and Other Boolean Functions

This subsection shows the sub-protocols presented in [17] used in this paper’s
protocols. The correctness proof is shown in [17].

AND Protocol Before showing the AND protocol, a subprotocol to fix the
base of commitments is shown.

Protocol 2 (Base-fixed protocol) [17]
Input: commit(x){1,2},{3,4}|A||commit(y){1,2},{3,4}|A.

(Note: y is a private value that must not be known to the players)
Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on both pairs using two distinct
random bits br1, br2 ∈ {0, 1}. The result S1 = commit(x⊕br1)

{1,2},{3,4}|A||commit(y⊕
br2)

{1,2},{3,4}|A. Bob sends S1 to Alice.
2. Alice executes a private reveal on S1. Alice sees x ⊕ br1 and y ⊕ br2. If the

base of the left pair is {1, 2}, Alice just faces down the left pair and the cards,
S2, are the result. Otherwise, the base of the right pair is {1, 2}. Alice makes
S2 = commit(x⊕ br1)

{1,2} using the right cards. Alice sends S2 to Bob.
3. Bob executes a private reverse cut using br1 on S2. The result is commit(x){1,2}.

Using the base-fixed protocol, the AND protocol in [17] is shown below.

Protocol 3 (AND protocol) [17]
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} using ran-
dom bit a1. Alice sends the results, S1 = commit(x ⊕ a1)

{1,2} and S2 =
commit(y){3,4} to Bob.

2. Bob executes a private reveal on S1. Bob sees x⊕ a1. Bob privately sets

S3,0 =

�

commit(0){1,2}||commit(y){3,4} if x⊕ a1 = 0
commit(y){3,4}||commit(0){1,2} if x⊕ a1 = 1

Bob sends S3,0 to Alice.
3. Alice executes private random bisection cuts on each of pairs in S3,0 using

two distinct random bits a2 and a3. Let the result be S3,1.

S3,1 =

�

commit(0⊕ a2)
{1,2}||commit(y ⊕ a3)

{3,4} if x⊕ a1 = 0
commit(y ⊕ a2)

{3,4}||commit(0⊕ a3)
{1,2} if x⊕ a1 = 1

Alice sends S3,1 to Bob.
4. Bob randomly selects bit b1 ∈ {0, 1}. Bob reveals S3,1 and exchanges the

bases of the two commitments if b1 = 1. Let the result be S3,2.

S3,2 =

�

commit(0⊕ a2)
{1,2},{3,4}|A||commit(y ⊕ a3)

{1,2},{3,4}|A if x⊕ a1 = 0
commit(y ⊕ a2)

{1,2},{3,4}|A||commit(0⊕ a3)
{1,2},{3,4}|A if x⊕ a1 = 1

Bob sends S3,2 to Alice.
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5. Alice executes private reverse cuts on the two pairs of S3,2 using a2 and a3,
respectively. Let the result be S4.

S4 =

�

commit(0){1,2},{3,4}|A||commit(y){1,2},{3,4}|A if x⊕ a1 = 0
commit(y){1,2},{3,4}|A||commit(0){1,2},{3,4}|A if x⊕ a1 = 1

Alice then executes a private reverse selection on S4 using a1. Let S5 be the
result and the remaining two cards be S6. The result S5 = commit(y){1,2},{3,4}|A

if (a1 = 0 and x⊕ a1 = 1) or (a1 = 1 and x⊕ a1 = 0). The condition equals
x = 1.
S5 = commit(0){1,2},{3,4}|A if (a1 = 0 and x ⊕ a1 = 0) or (a1 = 1 and
x⊕ a1 = 1). The condition equals x = 0. Thus,

S5 =

�

commit(y){1,2},{3,4}|A if x = 1
commit(0){1,2},{3,4}|A if x = 0

= commit(x ∧ y){1,2},{3,4}|A

Alice sends S5 and S6 to Bob.
6. Bob and Alice execute Protocol 2 (Base-fixed protocol) to S5||S6. Then they

obtain commit(x ∧ y){1,2}.

COPY Protocol

Protocol 4 (Copy protocol) [17]
Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2}. Let b be
the random bit Alice selects. Alice sends the result, commit(x ⊕ b){1,2}, to
Bob.

2. Bob executes a private reveal on commit(x⊕ b){1,2} and sees x⊕ b. Bob pri-
vately makes commit(x⊕b){3,4}. Bob sends commit(x⊕b){1,2} and commit(x⊕
b){3,4} to Alice.

3. Alice executes a private reverse cut on each of the pairs using b. The result
is commit(x){1,2} and commit(x){3,4}.

The protocol is three rounds.

Preserving an Input In the above protocols to calculate Boolean functions,
the input commitment values are lost. If the input is not lost, the input com-
mitment can be used as an input to another calculation. Thus input preserving
calculation is discussed [34,37].

In the XOR protocol, commit(y⊕b){3,4} is no longer necessary after Bob sets
the result. Thus, Bob can send back commit(y⊕b){3,4} to Alice. Then, Alice can
recover commit(y){3,4} using the private reverse cut. In this modified protocol,
the output is commit(x⊕ y){1,2} and commit(y){3,4} without additional cards.
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By exchanging the roles of x and y, the output can be commit(x ⊕ y){3,4} and
commit(x){1,2}.

An input preserving AND protocol can be obtained using the idea in [34].
When we execute the AND protocol, two cards are selected by Alice at the final
step. The remaining two cards are used to recover an input value. The unused
two cards’ value is

�

0 if x = 1
y if x = 0

thus the output is commit(x ∧ y).
Execute the above input preserving XOR protocol for these two output values

so that the input x ∧ y is preserved. The output of the XOR protocol is (x ∧
y) ⊕ (x ∧ y) = y. Thus, input y can be recovered without additional cards.
By executing a base-fixed protocol, the output can be commit(x ∧ y){1,2} and
commit(y){3,4}.

n-input Boolean Functions Since any 2-input Boolean function, NOT, and
COPY can be executed, any n-input Boolean function can be calculated by the
combination of the above protocols using 2n+ 4 cards by the idea in [34,37].

Any Boolean function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = x̄1∧x̄2∧· · · x̄n∧f(0, 0, . . . , 0)⊕x1∧x̄2∧· · · x̄n∧f(1, 0, . . . , 0)⊕
x̄1 ∧ x2 ∧ · · · x̄n ∧ f(0, 1, . . . , 0)⊕ · · ·⊕ x1 ∧ x2 ∧ · · ·xn ∧ f(1, 1, . . . , 1).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can

be written as f =
L k

i=1 v
i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or x̄j . Let us write

Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .

Protocol 5 (Protocol for any n-variable Boolean function [17]
Input: commit(xi)

{2i+3,2i+4}(i = 1, 2, . . . , n).
Output: commit(f(x1, x2, . . . , xn))

{1,2}.
The additional four cards (two pairs of cards) 1,2,3, and 4 are used as follows.
1 and 2 store the intermediate value to compute f .
3 and 4 store the intermediate value to compute Ti.

Execute the following steps for i = 1, 2, . . . , k.

1. Copy vi1 from the input commit(x1) as commit(vi1)
{3,4}. (Note that if vi1 is

x̄1, NOT is taken after the copy).
2. For j = 2, . . . , n, execute the following procedure: Execute the input preserv-

ing AND protocol to commit(·){3,4} and commit(vij) so that input commit(vij)

is preserved. The result is stored as commit(·){3,4}. (Note that if vij is x̄j,
NOT is taken before the AND protocol, and NOT is taken again for the
preserved input.)
At the end of this step, Ti is obtained as commit(vi1 ∧ vi2 ∧ · · · ∧ vin)

{3,4}.
3. If i = 1, copy commit(·){3,4} to commit(·){1,2}. If i > 1, apply the XOR

protocol between commit(·){3,4} and commit(·){1,2}. The result is stored as
commit(·){1,2}.

At the end of the protocol, commit(f(x1, x2, . . . xn))
{1,2} is obtained.
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3 Protocols for Three-input Boolean Functions

This section shows protocols for three input Boolean functions. The arguments
to show the protocols with six cards are just the same as the one in [35]. The
main difference is that logical AND can be calculated by four cards using private
operations. In our protocols, no additional cards are necessary other than the
cards for inputs.

There are 22
3

= 256 different functions with three inputs. However, some of
these functions are equivalent by replacing variables and taking negations. NPN-
classification [43] was considered to reduce the number of different functions
considering the equivalence class of functions. The rules of NPN-classification
are as follows.

1. Negation of input variables (Example: xi ↔ xi).
2. Permutations of input variables (Example: xi ↔ xj).
3. Negation of the output (f ↔ f).

For example, consider f1(x1, x2, x3) = (x1∧x2)∨x3. Several functions in the
same equivalence class that includes f1 are: f2 = (x1∧x2)∨x3, f3 = (x1∧x3)∨x2,
f4 = f3, and so on.

Input negation and output negation can be executed by card-based protocols
without increasing the number of cards. They are executed by just swapping
input cards or output cards. Permutations of input variables can also be executed
without increasing the number of cards. They can be achieved by just changing
the positions of the input values. Therefore, all functions in the same NPN
equivalence class can be calculated with the same number of cards.

Theorem 1. Any three input Boolean functions can be securely calculated with-
out additional cards other than the input cards with a standard deck of cards
when we use private operations.

Proof. When the number of inputs is 3, there are the following 14 NPN-representative
functions [43]. (Note that x, y, and z are used to represent input variables.)

1. NPN1 = 1
2. NPN2 = x

3. NPN3 = x ∨ y

4. NPN4 = x⊕ y

5. NPN5 = x ∧ y ∧ z

6. NPN6 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
7. NPN7 = (x ∧ y) ∨ (x ∧ z)
8. NPN8 = (x ∧ y) ∨ (x ∧ y ∧ z)
9. NPN9 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)

10. NPN10 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) = x⊕ y ⊕ z.
11. NPN11 = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
12. NPN12 = (x ∧ z) ∨ (y ∧ z)
13. NPN13 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
14. NPN14 = (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ y ∧ z)
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Among these 14 functions, NPN1 - NPN4 depend on less than three in-
puts. These functions can be calculated without additional cards [17]. We show
a calculation protocol for each of the remaining functions. Note that the out-
put is commit(f){1,2} when the inputs are commit(x){1,2}, commit(y){3,4}, and
commit(z){5,6}.

For NPN5, x∧ y can be calculated without additional cards. Then x∧ y ∧ z

can be calculated without additional cards other than the input cards, x∧y and
z.

NPN7 can be represented as NPN7 = x∧ (y∨z), thus this function can also
be calculated without additional cards.

NPN10 can be calculated as (x⊕ y)⊕ z without additional cards.
NPN13 can be represented as NPN13 = x ∧ (y ⊕ z), thus this function can

also be calculated without additional cards.
NPN14 can be represented as NPN14 = x⊕ (y ∨ z), thus this function can

also be calculated without additional cards.
NPN6 can be represented as NPN6 = (x⊕ y) ∧ (x⊕ z). First, calculate

commit(x⊕y){3,4} with preserving input commit(x){1,2}. Then calculate commit(x⊕
z){1,2}. Then NOT is applied to each result. Next, calculate AND to these results.

NPN8 can be represented as NPN8 = (x⊕ y) ∧ (y ∨ z). First, calculate
commit(x⊕ y){1,2} with preserving input commit(y){3,4}. Then NOT is applied
to the result. Then calculate commit(y ∨ z){3,4}. Next, calculate AND to these
results.

NPN9 can be represented as NPN9 = (x⊕ y ⊕ z) ∧ (x ∨ z). First, calcu-
late commit(x ⊕ y){3,4} with preserving input commit(x){1,2}. Next, calculate
commit((x⊕ y)⊕ z){3,4} with preserving commit(z){5,6}. Then NOT is applied
to the result. Next, calculate commit(x ∨ z){1,2}. Next, calculate AND to these
results.

NPN12 can be calculated as follows. First, calculate commit(x∧z){1,2} with
preserving input commit(z){5,6}. Next, calculate commit(y ∧ z){3,4}. Then, cal-
culate OR to these results by using the AND protocol.

NPN11 can be represented as

NPN11 =

(
z if x⊕ y = 1

x if x⊕ y = 0

Since this equation is similar to the AND equation, the function can be calculated
by modifying the AND protocol as follows.

1. Alice and Bob calculate commit(x⊕y){3,4} with preserving input commit(x){1,2}.
2. Alice executes private random bisection cut on commit(x⊕y){3,4}, commit(x){1,2},

and commit(z){5,6} using different random bit a1, a2, a3 ∈ {0, 1}. Alice sends
the result commit(x ⊕ y ⊕ a1)

{3,4}, commit(x ⊕ a2)
{1,2}, and commit(z ⊕

a3)
{5,6} to Bob.

3. Bob privately select a bit b1 ∈ {0, 1} and exchanges the bases of commit(x⊕
a2)

{1,2} and commit(z ⊕ a3)
{5,6} if b1 = 1. Though Bob sees the committed

values, Bob obtains no information about x and z since Alice randomized
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the values. Bob sends commit(x⊕a2)
{1,2},{5,6}|A||commit(z⊕a3)

{1,2},{5,6}|A

to Alice.
4. Alice executes private reverse cuts to the sequence using a2 and a3. Alice

sends the result commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A to Bob.
5. Bob executes private reveal on commit(x⊕ y ⊕ a1). Bob sets

S2 =

�

commit(z){1,2},{5,6}|A||commit(x){1,2},{5,6}|A if x⊕ y ⊕ a1 = 1
commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A if x⊕ y ⊕ a1 = 0

6. Alice executes a private reverse cut on S2 using the bit a1 generated in
the private random bisection cut. Let the obtained sequence be S3. S3 is
commit(z){1,2},{5,6}|A||commit(x){1,2},{5,6}|A if (x⊕ y ⊕ a1 = 1 and a1 = 0)
or (x⊕ y ⊕ a1 = 0 and a1 = 1). The case equals to x⊕ y = 1. The output is
commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A if (x⊕ y ⊕ a1 = 1 and a1 = 1)
or (x⊕y⊕a1 = 0 and a1 = 0). The case equals to x⊕y = 0. Thus the result
is

S3 =

�

commit(z){1,2},{5,6}|A||commit(x){1,2},{5,6}|A if x⊕ y = 1
commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A if x⊕ y = 0

Note that the left pair has the value of the result.
7. Alice and Bob execute base-fixed protocol on S3. They obtain

�

commit(z){1,2} if x⊕ y = 1
commit(x){1,2} if x⊕ y = 0

Therefore, NPN11 can also be calculated without additional cards. ⊓⊔

4 Half Adder, Full Adder, and Symmetric Functions

This section first shows a realization of half adder and full adder. In our protocols,
no additional cards are necessary other than the cards for inputs.

The input and output of the secure half adder are as follows:

– Input: commit(x){1,2} and commit(y){3,4}

– Output: S = commit(x⊕ y){3,4} and C = commit(x ∧ y){1,2}

The half adder is realized by the following steps, whose idea is just the same
as the one in [34].

1. Execute XOR protocol with preserving input x. Thus commit(x){1,2} and
commit(x⊕ y){3,4} are obtained.

2. Obtain commit(x⊕ y){3,4} by swapping the two cards of commot(x⊕y){3,4}.
3. Execute AND protocol to commit(x){1,2} and commit(x⊕ y){3,4} with pre-

serving input commit(x⊕ y){3,4}. Thus commit(x⊕ y){3,4} and commit(x∧
(x⊕ y)){1,2} = commit(x ∧ y){1,2} are obtained.

4. Obtain commit(x⊕y){1,2} by swapping the two cards of commit(x⊕ y){1,2}.
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No additional cards are necessary other than the four input cards.
The input and output of the secure full adder are as follows:

– Input: commit(CI)
{1,2}, commit(x){3,4}, and commit(y){5,6}.

– Output: CO = commit((x∧y)∨(x∧CI)∨(y∧CI))
{1,2} and S = commit(x⊕

y ⊕ CI)
{3,4}.

Since the half adder can be calculated without additional cards, the full adder
can also be calculated without additional cards by the following protocol.

1. Add CI and x using the half adder. The outputs are commit(x ⊕ cI)
{3,4}

and commit(x ∧ CI)
{1,2}.

2. Add commit(y){5,6} to the result commit(x⊕CI)
{3,4} using the half adder.

The outputs are commit(x⊕ y ⊕ CI)
{3,4} and commit(y ∧ (x⊕ CI))

{5,6}.
3. Execute OR protocol to commit(y∧ (x⊕CI))

{5,6} and commit(x∧CI)
{1,2}.

Since (y ∧ (x⊕CI))∨ (x∧CI) = (x∧ y)∨ (x∧CI)∨ (y ∧CI), the carry CO

is obtained by the base of {1, 2}.

Using the half adder and full adder, calculation of symmetric function can be
done by the technique in [34]. n-input symmetric function f(x1, x2, . . . , xn) de-
pends only on the number of variables such that xi = 1. Let Y =

P n

i=1 xi. Then
the function f can be written as f(x1, x2, . . . , xn) = g(Y ). When Y is given by
a binary representation, Y = ykyk−1....y1, g can be written as g(y1, y2, . . . , yk),
where k = ⌊log n⌋+ 1.

Given input x1, x2, . . . , xn, first, obtain the sum of these inputs using the half
adder and full adder protocols without additional cards. The sum is obtained as
y1, y2, . . . , yk. Then, calculate g using yi. When n ≤ 7, k ≤ 3, thus any three input
Boolean function g can be calculated without additional cards. When n ≥ 8, Y
is represented with k = ⌊log n⌋+ 1 bits. Since n− k ≥ 4, at least 8 input cards
are unused after yis are calculated. Any Boolean function can be calculated with
four additional cards, thus g can be calculated without additional cards other
than the input cards.

Theorem 2. Any symmetric Boolean function can be securely calculated without
additional cards other than the input cards when we use private operations.

5 Conclusion

This paper showed card-based cryptographic protocols to calculate three input
Boolean functions, half adder, full adder, and symmetric functions with a stan-
dard deck of cards using private operations. These results show the effectiveness
of private operations.

One of the important open problems is obtaining another class of Boolean
functions that can be calculated without additional cards using private opera-
tions. However, it seems very difficult to achieve all four-input Boolean functions
without additional cards.
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Abstract. Local differential privacy (LDP) has recently emerged as a
popular privacy standard. With the growing popularity of LDP, recent
works have applied LDP to spatial data, and grid-based decompositions
have been a common building block in DP and LDP. In this paper, we
study three grid-based decomposition methods for spatial data under
LDP: Uniform Grid (UG), PrivAG, and AAG. UG is a static approach
that consists of equal-sized cells. To enable data-dependent decomposi-
tion, PrivAG was proposed by Yang et al. (2022). To advance the state-
of-the-art in adaptive grids, this paper proposes the Advanced Adaptive
Grid (AAG) method. For each grid cell, following the intuition that the
cell’s intra-cell density distribution will be affected by its neighbors, AAG
performs uneven cell divisions depending on the neighboring cells’ den-
sities. We experimentally compare UG, PrivAG, and AAG using three
real-world location datasets, varying privacy budgets, and query sizes.
Results show that AAG provides higher utility than PrivAG, demon-
strating the superiority of our proposed approach. Furthermore, when
the grid size is chosen optimally in UG, AAG still beats UG for small
queries, but UG beats AAG for large (coarse-grained) queries.

Keywords: Local differential privacy · location privacy · spatial grids ·
location-based services · spatial data management.

1 Introduction

Large volumes of spatial data are nowadays available for collection and analysis,
thanks to the popularity of smartphones, connected cars, location-based services
(LBS), and social networks. Ensuring the privacy of spatial data is imperative
since it contains sensitive information about individuals, such as their home and
work addresses, frequently visited locations, and personal habits. Hence, users
are reluctant to share their location data with untrusted data collectors. In recent
years, local differential privacy (LDP) has become a widely accepted standard
for privacy protection and deployed in products of various companies such as
Apple, Google, and Microsoft [2,4,6,7]. With the growing popularity of LDP,
several recent works have applied LDP to spatial data and LBS [1,5,9,11,13,14].
However, in many applications of DP and LDP to spatial data, the data needs to
be discretized so that the input and output domains of the privacy mechanisms
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are discrete and finite. Grid-based decompositions, which decompose the overall
geospatial area Ω into non-overlapping cells, are a popular method for this pur-
pose. After a grid is laid, the user’s location can be discretized by determining
which cell it falls inside. Indeed, uniform and adaptive grids have been widely
used in the DP and LDP literature for trajectory collection and sharing [5,13],
range query answering [10], synthetic data generation [8], and so forth.

A uniform grid (UG) partitions the geospatial area Ω into N × M cells of
equal size. However, since the uniform grid does not adapt to the underlying data
distribution [10,13], it may result in a poor partitioning when certain regions of
Ω have too high or too low density. To enable density-dependent decomposition
of Ω, the adaptive grid approach was proposed [10,13,8]. Its main idea is to
first lay a uniform grid G1 over the given Ω, and according to the cell density
estimations obtained from a portion of the users, further divide each individual
cell (i.e., adapt the grid). To the best of our knowledge, the most recent adaptive
grid approach in LDP is PrivAG by Yang et al. [13].

In this paper, we propose Advanced Adaptive Grid (AAG). In PrivAG, when
a certain cell Ck ∈ G1 needs to be divided further, this division is done evenly. In
AAG, we propose to perform this division by taking into account Ck’s neighbor
cells because Ck’s intra-cell density distribution is likely to mimic its neighbors’
densities. For example, if Ck’s right neighbor is dense but the left neighbor is
sparse, then the intra-cell density of Ck is likely to be skewed towards the right.
Following this intuition, we perform an uneven division which is weighted propor-
tional to the neighbors’ densities. Furthermore, we propose heuristic strategies
to handle edge cells and corner cells that lack one or more neighbors. In addition,
motivated by our observation that the parameter choices in PrivAG yield cell
counts too similar to G1, we propose new parameter values for AAG.

We experimentally compare UG, PrivAG, and AAG using three real-world lo-
cation datasets (Gowalla, Porto, Foursquare) by measuring their Average Query
Errors (AQE) in answering spatial density queries with different privacy budgets
ε and query sizes ρ. We find that the AQEs of UG are heavily dependent on the
grid size, i.e., it performs well when the grid size is chosen optimally, but poorly
otherwise. Comparing UG with optimal grid sizes against PrivAG and AAG, we
observe that: (i) AAG is preferable to PrivAG across all ε and ρ, demonstrating
that AAG improves the state-of-the-art in adaptive grids in LDP, (ii) AAG is
the best approach when ρ is small but UG is the best approach when ρ is large.

2 Background

Let U = {u1, u2, u3, ...} denote the set of users where |U| is the total number of
users, and let the two-dimensional geospatial area be denoted by Ω. For each user
ui, the user’s true location is represented by li, such that li ∈ Ω and li consists
of a pair of (latitude, longitude) coordinates. We assume that the boundaries of
the overall domain Ω are not privacy-sensitive, and can be known by all parties.
Yet, each user’s location is privacy-sensitive and must be protected.

Local differential privacy (LDP) is a widely accepted standard for safeguard-
ing privacy. In LDP, users’ data is perturbed on their devices before being col-
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lected by the aggregator (also called the “server”). After collecting perturbed
data, the server uses estimation methods to recover statistics pertaining to the
general population. However, since each user’s data is perturbed, the server can-
not infer exact information about a specific user. In our context, since each user’s
location li needs to be protected, we define LDP as follows.

Definition 1 (ε-LDP). A randomized algorithm Ψ satisfies ε-local differential
privacy (ε-LDP), where ε > 0, if and only if for any two inputs li, l

∗

i :

∀y ∈ Range(Ψ) :
Pr[Ψ(li) = y]

Pr[Ψ(l∗i ) = y]
≤ eε (1)

where Range(Ψ) stands for the set of all possible outputs of the algorithm Ψ .

ε-LDP ensures that having observed the output y, the server (or any other
party who observed y) is not able to distinguish whether the original location
of the user was li or l∗i with probability more than the odds ratio controlled
by eε. The strength of the privacy protection is controlled by the parameter ε,
commonly known as the privacy budget. Lower ε yields stronger privacy.

Numerous LDP protocols have been proposed to minimize utility loss and/or
communication cost under various conditions. In this paper, we use a state-
of-the-art protocol called Optimized Local Hashing (OLH) [12] due to its high
utility and low communication cost [3,7]. Similar to other LDP protocols, OLH
consists of two main components: (i) user-side encoding and perturbation on
users’ devices, and (ii) server-side estimation after collecting perturbed data
from the user population. Due to the page limit, we refer the reader to [12] for
the components’ technical descriptions. Note that although we use OLH as the
LDP protocol, the grid methods are not specific to OLH. Other protocols such as
GRR, RAPPOR, OUE, and the Staircase Mechanism can also be used [11,12].

3 Grid-Based Decompositions Under LDP

We first describe the Uniform Grid (UG) approach in Section 3.1, then the
existing adaptive grid approach called PrivAG [13] in Section 3.2, and finally
our novel Advanced Adaptive Grid approach called AAG in Section 3.3.

3.1 Uniform Grid (UG)

A uniform grid partitions the geospatial area Ω into N ×M cells of equal size.
We denote this grid by Guni = (C1, C2, ..., CN×M ) where each Cj ∈ G is one
cell. The geographic coverage of all cells are disjoint from one another. User ui

with location li discretizes his/her location by finding which Ci ∈ G their li
falls inside. Then, to satisfy LDP, the cell information Ci needs to be perturbed.
Hence, we feed Ci into the OLH protocol with the appropriate parameters.

An overview of LDP location data collection using Guni is shown in Algorithm
1. For each user ui with location li, the user first finds their true cell Ci, i.e., which
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Algorithm 1 Collecting location data with LDP using a grid

1: Input: Users U , grid G, privacy budget ε

2: Output: Densities of each cell in G
3:
4: ▷ User-side discretization and perturbation

5: for each user ui ∈ U do

6: for each cell Cj ∈ G do

7: if li falls inside Cj then

8: Set user’s true cell as: Ci ← Cj

9: break

10: Execute user-side OLH with true value = Ci, domain = G, and budget = ε

11: Send the resulting tuple ⟨Hu, x
′

u⟩ to the server

12:
13: ▷ Server-side estimation

14: Server receives ⟨Hu, x
′

u⟩ from all ui ∈ U
15: for each cell Cj ∈ G do

16: Compute Sup(Cj) as the number of tuples for which x′

u = Hu(Cj)
17: Compute Φ(Cj) using the server-side estimation of OLH

18: return Φ(C1), Φ(C2), ... for all Cj ∈ G

cell in the grid their location falls inside (lines 6-9). Then, the user executes the
OLH protocol by treating their true value as Ci, the domain of the protocol as
Guni = (C1, C2, ..., CN×M ), and using the privacy budget ε. Since li is discretized
as Ci, the domain of OLH is also discretized: D = Guni = (C1, C2, ..., CN×M ),
instead of using a continuous domain D = Ω. Each user sends the OLH protocol
output to the server. The server receives the outputs from all users and then
estimates the density of each cell Cj ∈ Guni (lines 15-17) using the server-side
estimation procedure of OLH.

3.2 Existing Adaptive Grid: PrivAG

UG is a static approach that does not adapt to the underlying data distribution
[10,13]. It may result in a poor partitioning of Ω when certain regions have too
high or too low density. For example, when a cell is too crowded, then further
partitioning it into smaller cells enables a better understanding of the detailed
data distribution within that cell. Yet, the uniform grid is not able to achieve
this. On the other hand, if a certain region of Ω is sparse, then the cells in that
region will have zero or near-zero density, and the uniform grid will be over-
partitioning that region. Over-partitioned cells lead to utility loss since their
estimated densities are non-zero due to LDP perturbation, leading to fictitious
and skewed results. To enable data-dependent decompositions, the adaptive grid
approach was proposed in DP and LDP [10,13]. Its main idea is to first lay a
uniform grid G1 over the given Ω, and according to the cell density estimations
obtained from users, further divide each individual cell (i.e., adapt the grid).

To the best of our knowledge, the most recent adaptive grid approach in LDP
is PrivAG, proposed by Yang et al. [13]. An algorithmic overview of PrivAG is
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Algorithm 2 Algorithmic summary of the PrivAG approach

1: Input: Users U , parameters α and σ, privacy budget ε

2: Output: Densities of each cell in adaptive grid Gag

3:
4: ▷ First phase of PrivAG

5: Server computes g1 and divides U into U1 and U2 such that |U1| = σ × |U|
6: Server lays g1 × g1 uniform grid G1 on Ω

7: Call Algorithm 1 with U1, G1 and ε to obtain Φ(C1), Φ(C2), ... for all Ck ∈ G1

8:
9: ▷ Second phase of PrivAG

10: for each cell Ck ∈ G1 do

11: Compute gk2 and divide Ck into gk2 × gk2 cells of equal size

12: Let Gag denote the resulting grid after the above divisions
13: Call Algorithm 1 with U2, Gag and ε to obtain Φ(C1), Φ(C2), ... for all cells in Gag

given in Algorithm 2. In PrivAG, the server first divides the set of users U into
two groups: U1 and U2. Then, the server constructs a uniform grid G1 of size
g1 × g1 and broadcasts G1 to users in U1. Based on G1, users in U1 discretize
their locations and use OLH to send their perturbed outcomes to the server.
The server estimates the densities of each cell in G1. Then, for each cell Ck ∈ G1,
the server further partitions Ck into gk

2
× gk

2
cells, where gk

2
depends on Φ(Ck)

and other parameters. After all cells are partitioned according to their gk
2
, the

resulting adaptive grid Gag is obtained. Then, Gag is advertised to users in U2

and desired statistics are obtained using Gag, e.g., cell densities. Since the values
of g1 and gk

2
have an important impact on the final grid, Yang et al. propose

guidelines for choosing them in [13].

3.3 Proposed Approach: Advanced Adaptive Grid (AAG)

We propose the Advanced Adaptive Grid (AAG) approach which advances Pri-
vAG. Consider Figure 1, which exemplifies a uniform grid with user densities
written inside the cells (on the left), PrivAG (in the middle), and AAG (on the
right). Say that the first phase of PrivAG laid a 3 × 3 uniform grid G1 on Ω, and
the resulting densities of cells are shown on the left of Figure 1. In its second
phase, PrivAG iterates through each Ck ∈ G1 and decides how to further divide
Ck. Say that in the current iteration, Ck is the middle cell in Figure 1, and it is
found that g2 = 2. Then, PrivAG divides the middle cell into 2 × 2 = 4 equally
sized cells. Our intuition is that the division of this middle cell into equal-sized
cells is suboptimal. This is because there are 10.000 users in the upper neighbor
whereas 50.000 users in the lower neighbor. Furthermore, there are 2.000 users
in the left neighbor whereas 4.000 users in the right neighbor. Based on these
neighbor cells’ densities, it is likely that the bottom right corner of Ck is denser
whereas the upper left corner is more sparse, because the intra-cell distribution is
likely to be affected by neighbor cells. According to the original intuition behind
adaptive grids [10,13], it is desirable to have many small cells in dense areas but
few large cells in sparse areas. Hence, instead of dividing Ck evenly (as done in
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Fig. 1. Difference between PrivAG and AAG

PrivAG), AAG proposes to divide the cell by taking into account the neighbors’
densities. Therefore, the vertical division of the cell is done with the ratio 1-to-5
which is proportional to the densities of the upper and lower neighbors (10.000
vs 50.000), whereas the horizontal division is done with the ratio 1-to-2 which is
proportional to the left and right neighbors (2.000 vs 4.000). The result is shown
on the right of Figure 1.

We give an algorithmic overview of our proposed AAG approach in Algorithm
3. The first phase of AAG is identical to PrivAG, i.e., it lays a g1 × g1 uniform
grid G1 on Ω and obtains the cell densities Φ(C1), Φ(C2), ... for all Ck ∈ G1 using
ε-LDP. The core difference lies in the second phase. After computing gk

2
, instead

of dividing cell Ck uniformly, AAG first calculates the horizontal split location
using the densities of the left and right neighbors. Denoting the left neighbor
of Ck by CL

k and the right neighbor of Ck by CR
k , the horizontal split location

hsplit is calculated as:

hsplit =
Φ(CR

k )

Φ(CL
k ) + Φ(CR

k )
× (width of Ck) (2)

Similarly, to calculate the vertical split location, the densities of the upper and
lower neighbors are used. Denoting the upper neighbor of Ck by CU

k and the
lower neighbor of Ck by CB

k , the vertical split location vsplit is calculated as:

vsplit =
Φ(CB

k )

Φ(CU
k ) + Φ(CB

k )
× (height of Ck) (3)

Then, Ck is divided horizontally using hsplit and vertically using vsplit. As
a result, four subcells of Ck are obtained. If gk

2
> 2, then each of the four

subcells needs to be further divided. This further division is done uniformly, i.e.,
uniformly into (gk

2
− 1)/2 pieces horizontally and (gk

2
− 1)/2 pieces vertically, to

make sure that Ck is divided into gk
2
× gk

2
subcells overall.

Handling edge and corner cells. When Ck is a cell that is located on one
of the edges or corners of G1, it will lack one or more neighbors. For example,
consider the top left cell in Figure 1, which is a corner cell. This cell has a
lower neighbor and a right neighbor, therefore Φ(CB

k ) and Φ(CR
k ) can be found.

However, it does not have an upper neighbor or a left neighbor, therefore Φ(CU
k )

and Φ(CL
k ) are not available. Similarly, if a cell is an edge cell, then it has three
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Algorithm 3 Algorithmic summary of the AAG approach

1: Input: Users U , parameters α and σ, privacy budget ε

2: Output: Densities of each cell in adaptive grid Gaag

3:
4: ▷ First phase of AAG

5: The first phase of AAG is the same as PrivAG
6:
7: ▷ Second phase of AAG

8: for each cell Ck ∈ G1 do

9: Compute hsplit and vsplit for Ck according to Equations 2 and 3
10: Divide Ck into four subcells using hsplit and vsplit

11: if gk2 > 2 then

12: Uniformly divide each subcell into gk
2
−1

2
pieces horizontally and vertically

13: Let Gaag denote the resulting grid after the above divisions
14: Call Algorithm 1 with U2, Gaag and ε to obtain Φ(C1), Φ(C2), .. for all cells in Gaag

neighbors but it lacks one neighbor. For cells that lack one or more neighbors,
computing their hsplit and vsplit locations via Equations 2 and 3 using zero
densities for the missing neighbors leads to erroneous results. To address this
problem, we perform the following. If any of the neighbors of the current cell Ck

is missing, then Ck uses its own density Φ(Ck) in place of the missing neighbor’s
density. For example, for the top left cell which lacks an upper neighbor and
left neighbor, instead of assuming Φ(CU

k ) = 0 and Φ(CL
k ) = 0, we enforce:

Φ(CU
k ) = Φ(Ck) and Φ(CL

k ) = Φ(Ck).
Choice of g1 and gk

2
. PrivAG has two parameters (α and σ) which affect

the values of g1 and gk
2
. As we experimented with PrivAG and AAG, we observed

that the recommended values for the α and σ parameters in PrivAG yield Gaag

with cell counts that are similar to the initial uniform grid G1, which diminishes
the benefits of using an adaptive grid. To address this problem, we propose to use
different values for the α and σ parameters in AAG, leading to different choices
of g1 and gk

2
. Our choices aim to obtain an increased number of cell divisions in

dense regions so that dense regions can be partitioned and represented in more
detail, but without causing excessively large gk

2
. Specifically, as opposed to the

default values of α and σ in PrivAG, we use α = 0.25 and σ = 0.5 in AAG.

4 Experiments and Discussion

4.1 Experiment Setup and Datasets

In this section, we experimentally compare the three grid-based decomposition
methods (UG, PrivAG, AAG). We implemented all algorithms and methods in
Python. We use three real-world location datasets in our experiments: Gowalla,
Porto, and Foursquare. To account for LDP randomness, each experiment is
repeated 10 times and the average results are reported.

Gowalla: Gowalla was a location-based social networking site where users
shared their locations via check-ins. From the full dataset, we extracted check-ins
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made in the United States, between longitudes -124.26 and -71.87 and latitudes
25.45 and 47.44. Consequently, we have 3,451,190 remaining locations.

Porto: The Porto dataset contains trips of 442 taxis driving in the city of
Porto. It was released as part of the Taxi Service Prediction Competition in
ECML-PKDD. The original dataset contains full taxi trips, i.e., trajectories
with multiple location readings per trip. We pre-processed it by keeping only
one randomly sampled location from each trip and treated them as the current
locations of users U . We only used the locations between longitudes -8.691294
and -8.552009 and latitudes 41.138351 and 41.185935, corresponding to the city
of Porto. This resulted in 1,620,157 remaining locations.

Foursquare: The Foursquare dataset contains location check-ins of social me-
dia users in Tokyo, between April 2012 and February 2013. We used this dataset
without pre-processing. In total, the dataset contains 573,703 locations.

Following previous works, we use spatial density queries for utility measure-
ment [1,8,10,13]. A spatial density query q with geospatial area denoted by A(q)
is a query of the form: “How many users are located within A(q)”? Let ansq de-
note the ground truth answer of q and ans′q denote the version estimated using
LDP grids. We generate γ = 500 number of random queries q1, q2, ... with dif-
ferent A(qi) and compute their ansqi and ans′qi . Then, we measure the average
error between ansqi and ans′qi using the AQE metric:

AQE =
1

γ
∗

γX

i=1

|ansqi − ans′qi |

max{ansqi , b}
(4)

Here, b denotes a bound to mitigate the dominating effect of queries with ex-
tremely low ansqi [8]. We set the value of b as: b = 2%× |U|.

4.2 Comparison of Grid Approaches

In this section, we compare the three grid approaches (UG, PrivAG, AAG) using
different-sized random queries. To do so, we enforce that the random queries
we generate for calculating AQE have size: A(q) = ρ × Ω, where ρ ∈ (0, 1]
is the query size parameter. In Table 1, we fix ε = 1 and vary the value of
ρ between 0.005% and 0.5%. Note that these are relatively low values of ρ,
i.e., the generated queries are small. We use the bold notation in Table 1 when
comparing the two adaptive grid approaches (PrivAG vs AAG), i.e., the one that
yields lower AQE is written in bold. This helps to demonstrate the improvement
of AAG compared to PrivAG. We use the grey cell background to denote the
best-performing approach when comparing all three (UG vs PrivAG vs AAG).

The results in Table 1 show that AAG achieves lower error compared to
PrivAG in all settings. In addition, AAG also achieves lower error compared to
UG in the majority of settings. However, as ρ increases, UG starts performing
better than AAG. This implies that for fine-grained density modeling and small-
sized queries, AAG is the best approach. This is an intuitive result, considering
that AAG excels in dividing dense areas in a detailed fashion. Yet, for more coarse
(high-level) density statistics, UG can perform better. Another observation we
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Table 1. AQEs with varying query sizes ρ, fixed ε = 1.

Dataset Method ρ = 0.005% ρ = 0.01% ρ = 0.05% ρ = 0.1% ρ = 0.5%

Gowalla
UG 0.0034 0.0067 0.0279 0.0485 0.120

PrivAG 0.0039 0.0077 0.0374 0.0728 0.305
AAG 0.0023 0.0051 0.0236 0.0460 0.185

Porto
UG 0.0028 0.0045 0.0180 0.0321 0.082

PrivAG 0.0034 0.0056 0.0283 0.0540 0.205
AAG 0.0025 0.0045 0.0247 0.0501 0.195

Foursquare
UG 0.0032 0.0054 0.0243 0.0416 0.126

PrivAG 0.0036 0.0062 0.0291 0.0547 0.203
AAG 0.0025 0.0043 0.0234 0.0450 0.177

Table 2. AQEs with varying privacy budgets ε, fixed ρ = 0.01%.

Dataset Method ε = 0.5 ε = 1 ε = 3 ε = 5

Gowalla
UG 0.0070 0.0066 0.0064 0.0056

PrivAG 0.0075 0.0077 0.0072 0.0062
AAG 0.0047 0.0051 0.0049 0.0041

Porto
UG 0.0048 0.0045 0.0045 0.0045

PrivAG 0.0058 0.0056 0.0059 0.0060
AAG 0.0048 0.0045 0.0049 0.0049

Foursquare
UG 0.0055 0.0054 0.0051 0.0048

PrivAG 0.0060 0.0062 0.0061 0.0069
AAG 0.0044 0.0043 0.0040 0.0047

make from Table 1 is that when ρ increases, the errors also increase. This is
because increasing ρ causes the intersection between A(qi) and various cells to
increase, therefore ansqi and ans′qi become larger. Hence, overall noise amount
increases as well, and among the two factors in the denominator of Equation 4,
ansqi starts to dominate rather than b. Consequently, higher AQEs are obtained.

4.3 Impact of the Privacy Budget ε

In this section, we keep the query sizes ρ fixed and vary the privacy budgets ε

between 0.5 and 5. We selected this range of ε values since they are parallel to
the commonly used values in the LDP literature. Table 2 provides the results
with ρ = 0.01% and Table 3 provides the results with ρ = 4%. In both tables,
we use the same bold and grey color highlight strategies that we used in the
previous section. According to the results in Table 2, when ρ = 0.01%, AAG is
the best approach. It yields the lowest AQEs across all ε. On the other hand,
when ρ = 4%, UG becomes the best approach as shown in Table 3. This is
parallel to the results reported in the previous section. When ρ = 4%, although
AAG consistently beats PrivAG, it cannot reach UG’s low AQE values.

In both tables, we observe that as ε increases, AQEs of UG decrease. This
is an intuitive result since higher ε means less perturbation caused by LDP,
therefore results are more accurate. On the other hand, this trend does not
always hold for PrivAG and AAG. For example, despite increasing ε, there are
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Table 3. AQEs with varying privacy budgets ε, fixed ρ = 4%.

Dataset Method ε = 0.5 ε = 1 ε = 3 ε = 5

Gowalla
UG 0.28 0.23 0.17 0.19

PrivAG 1.09 1.15 1.08 0.98
AAG 0.68 0.71 0.68 0.76

Porto
UG 0.16 0.12 0.10 0.09

PrivAG 0.77 0.76 0.71 0.71
AAG 0.49 0.49 0.62 0.63

Foursquare
UG 0.26 0.19 0.16 0.16

PrivAG 0.69 0.63 0.75 0.69
AAG 0.61 0.56 0.55 0.51

cases in PrivAG and AAG in which AQE values increase. This is because ε is used
in the choice of g1 and gk

2
. Hence, changing ε also changes the grid structures

in PrivAG and AAG. These structural changes may affect ans′q positively or
negatively, and LDP perturbation is no longer the only factor in the accuracy
of ans′q. Thus, we do not see a consistent trend between ε and AQE in PrivAG
and AAG. On the other hand, this observation shows that if the choices of g1
and gk

2
are made in a more optimized fashion, especially in high ε regions, there

is potential to improve utility, which can be an avenue for future work.
Combining all experiment results, we arrive at the following take-away mes-

sages: (i) AAG is preferable to PrivAG across all ε and ρ, (ii) AAG is the best
approach when ρ is small, e.g., for computing answers to small queries or for
detailed statistics, and (iii) UG is the best approach when ρ is large, e.g., for
computing answers to large queries or for coarse statistics.

5 Conclusion

In this paper, we studied three grid-based decomposition approaches under LDP:
UG, PrivAG, and AAG. Our proposed AAG approach advances the state-of-the-
art adaptive grid approach (PrivAG) by performing cell divisions according to
neighboring cells’ densities. We experimentally compared UG, PrivAG, and AAG
using three datasets and multiple ε and ρ values. We observed that AAG always
beats PrivAG, and it also beats UG when ρ is small. However, when ρ is large,
UG with a near-optimal choice of grid size becomes better than AAG. Note that
the utility improvement of AAG comes at no additional LDP cost for users since
UG, PrivAG, and AAG are compared using the same ε budgets.

Overall, considering the use of grids in the DP and LDP literature as well
as the utility improvement offered by AAG, our work enables potential utility
improvements in various LDP tasks such as density estimation and visualization,
query answering, trajectory collection and sharing, and synthetic data generation
[5,13,8]. In future work, we plan to integrate AAG into such downstream tasks.
Furthermore, we plan to compare UG, PrivAG, and AAG against tree-based
decompositions. Finally, we will investigate methods to improve PrivAG and
AAG’s utility especially in high ε regimes.
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Abstract. In the modern era, characterized by the widespread pres-
ence of sensor-based systems, ensuring time-series data privacy without
compromising utility has emerged as a significant challenge. While cur-
rent strategies for safeguarding time-series data prioritize either input
data protection or privacy-preserving classification models, they often
fall short in assessing the balance between data privacy and utility, par-
ticularly when strong adversary classification models are involved. Our
approach introduces a novel protection technique specifically designed
for multivariate Time-Series Classification. This technique involves per-
turbing the data by distributing the noise among features using a feature
importance-based approach, thus securing the data while preserving its
analytical value. We propose a dual-model evaluation system consisting
of two supervised classifiers, a Privacy-Breaking Classifier and a Utility-
Focused Classifier. These are designed to respectively assess the potential
for privacy breaches and the extent of data utility preservation in the con-
text of protected time-series data. The experimental results demonstrate
the effectiveness and viability of our methodology. Our approach provides
a framework for evaluating the privacy and utility levels of time-series
data. Additionally, it guides the selection of an appropriate perturbation
level to ensure both aspects are adequately addressed.

Keywords: Utility-preserving data privacy · Time-series classification ·

Local differential privacy · Automotive systems.

1 Introduction

Data collected from sensor-based systems, such as automotive vehicles, wear-
able devices, or smart grids, is often transmitted over the Internet to centralized
databases for analysis and processing by third-party systems (e.g., traffic moni-
toring conducted by authorities or insurance companies). While time-series data
itself does not explicitly contain personally identifiable information (e.g., names,
e-mails), they may expose user-related details (e.g., geolocation and biometrics)
or lead to user identification or re-identification (e.g., by data classification) [6,
12]. Protecting sensor data from both “honest-but-curious” data processors and
malicious actors is crucial. To address these concerns, data can be distorted or
aggregated to enforce privacy without losing its utility.
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While methods exist to safeguard data collected from sensors during trans-
mission to third-party systems [10], ensuring data privacy poses additional chal-
lenges. When applying data protection mechanisms, monitoring and retaining
data usefulness is essential to ensure that enough information is preserved for
effective analysis. Typically, evaluating data utility (i.e., the usefulness of data)
involves measuring how well a selected data privacy method preserves aggregate
statistical information. However, when addressing the classification of time-series
data, relying exclusively on aggregate statistical information derived from pro-
tected data might not adequately capture the extent to which the data achieves
a balance between privacy and utility. In the field of time-series data classi-
fication, data privacy predominantly relies on two primary methodologies: (i)
secure input data through diverse techniques such as perturbation, encryption,
de-identification, data transformation, machine learning methodologies (e.g., us-
ing deep autoencoders) [11, 14]; and (ii) employing classification models that
preserve privacy, thereby securing the training data against potential adversaries
[1].

The proposed approach introduces a time-series data protection mechanism
tailored for multivariate data, which can be implemented at the device level and
is designed to neutralize adversaries using powerful classifiers. This mechanism
is configurable to achieve the desired balance between privacy and utility. To
summarize, the research presented in this paper advances the state of the art
from several perspectives:

– We formulate the problem of balancing privacy and utility in the context of
multivariate Time-Series Classification (TSC), using a dual-model, consisting
of two opposing classifiers, a Privacy-Breaking Classifier (PBC) and a Utility-
Focused Classifier (UFC);

– We propose a protection technique independent of the perturbation type, ap-
plying the perturbation to multivariate time-series data and utilizing feature
importance to distribute the noise;

– We introduce the classification utility-privacy balance score, BUP , and a
methodology for determining the appropriate value of the applied pertur-
bation, to achieve the desired level of utility and privacy;

– We demonstrate the effectiveness and viability of the proposed methodology
by enforcing a Local Differential Privacy (LDP) perturbation on two well-
known driver datasets [9, 15], and compare the results with the outcomes of
uniformly applying the same perturbation across all features.

The remainder of this paper is organized as follows. Section 2 describes the
addressed problem, and it introduces the basic concepts and terminology. Sec-
tion 3 presents an in-depth description of the proposed approach. This is followed
by extensive experimental results in Section 4. The paper concludes in Section 5.

2 Problem Definition and Basic Concepts

Consider data collected from sensors, temporarily stored at the device level, and
sent as data streams to a central data warehouse for classification. The objective
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is to protect the multivariate time-series data from a privacy-breaking adversary
classifier while preserving data utility. Furthermore, we impose the restriction
that no dimensionality reduction methods are permitted, ensuring that the full
set of features is maintained.

Within this setting, two distinct types of classifiers are evaluated: (i) a UFC,
for identifying non-user related data patterns, and (ii) a PBC, designed to de-
termine the identity of the users. The objective of this research is to propose a
protection mechanism at the device level, such that the UFC provides suitable
detection accuracy while the accuracy of the PBC is as low as possible.

Classification model generation The process of generating the UFC model
assumes a secure environment without any device-level perturbations. In both
the training and testing phases of constructing the UFCs, data labels for each
batch of records are stored in the data warehouse. After constructing the UFC
models, there is the possibility to remove the data labels from the database. No
label information is shared with third-party systems. Moreover, during the pre-
diction phase, no explicit information that could identify the user is transmitted
to the central database, or recorded in any form. This procedure serves as a
fundamental privacy protection strategy.

Adversarial model We examine the scenario in which the attacker possesses
access to all potential data sources, containing both the training dataset with
labels, the unlabeled data collected from the devices, and other observable, non-
perturbed data. Consequently, the attacker is capable of constructing a PBC that
promptly and accurately re-identifies users based on intercepted data. Another
potential privacy breach is associated with “honest-but-curious” entities, such
as a data analyst who has access to all the data needed to construct a classifier
that compromises privacy.

Local w-event level differential privacy for time series To demonstrate
the proposed approach, we choose LDP as the time series perturbation method.
This involves applying LDP perturbation per feature for each batch of w data
values. The w-event-level DP perturbation [8] provides privacy protection to
any sequence of w consecutive events and represents a compromise between the
user and the event-level privacy. To perturb the data at the device level we
utilize the local w-event-level DP [13]. The size of the noise is determined by
the privacy budget ϵ and the sensitivity [3]. Introducing noise into the data
through a mechanism that satisfies ϵ-differential privacy is achieved using the
Laplace mechanism, as proposed by Dwork et al. [3]. Data collected from sensors
is multivariate, meaning the resulting time-series data has numerous attributes
or features. We apply the w-event LDP separately for each feature.

Privacy and utility measurements To validate the proposed approach in
the context of TSC, we use the classification accuracy of the PBC as a measure
of privacy protection. Similarly, the classification accuracy of the UFC measures
the data utility. Additionally, we employ the Mean Average Error (MAE) to
further assess the utility of the perturbed data, a metric commonly used for
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comparing time series perturbation methods [16]: MAE = 1
N

P

i∈N |Vi − V ′

i |,
where N is the number of values of the time series, V is the original set of values,
and V ′ is the perturbed data.

3 Proposed Approach

Time-series data, continuously collected from sensors, is perceived as infinite
data streams, with each distinct value representing an event generated by the
user (such as an event indicating “the driver u traveled at speed s at time t”).
Further, we introduce our proposed approach for protecting the sensitive data
encapsulated in these events.

We propose a time-series perturbation method suitable for multivariate time-
series data that outperforms the uniform distribution of perturbation across all
features. Our approach is designed to be independent of the specific perturba-
tion method used, ensuring robustness and flexibility in handling diverse types
of time-series data. Additionally, the method is developed for locally applied
perturbation at the device level.

Let the continually collected data, consisting of records with d features, be
stored locally on the device and then transmitted in groups of w records to a
central location for processing. Thus, let Xt

i be the time-series data collected
for a period of time and stored locally at time t, on the sensor-based device i.
Xt

i is represented as a matrix of w rows and d columns. Each column denotes
measurements associated with a particular attribute/feature.

TSC refers to the task of assigning a label or category to a given time-series
data based on its patterns, trends, or features. A classifier model produces a
function f : Rw·d −→ C, C = {1, ..., n}, where w is the number of records, d is
the number of features and n the number of categories, that is applied to any
input X. The function f(X) is regarded as an estimate of the category that X
belongs to [5]. Let fp and fu be two classification functions, fp : Rw·d −→ Cu
and fu : Rw·d −→ Cp that output the class that Xt

i belongs to, in case of the
PBC, and UFC, respectively. fp(X

t
i) is the PBC classifier that breaks the user

privacy by identifying the set of collected values as belonging to a user from a
specified class Cp, and fu(X

t
i), the UFC, classifies the non-sensitive information

from a class Cu.
In the training and testing phases of building the UFC, for each Xt

i an id of
the device or/and of the user is also collected and stored, with the objective of
labeling the data. Let Yt

pi be the label information for the user identification,
and let Yt

ui be the label for non-user-related data classification. In the prediction
phases, as a fundamental measure to preserve privacy, no data that could identify
individuals or devices is transmitted to the central data warehouse.

The objective is to perturb time-series data Xt
i with a mechanism M such

that two conditions are met: the classification accuracy of fp on the perturbed
data is minimum, and, simultaneously, the classification accuracy of fu on the
perturbed data is maximum.

Let the classification accuracy, which shows the number of correct classifica-
tions, for the two classifiers fu and fp be defined as follows:
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Au =
1

N · T

N
X

i=1

T
X

t=1

I(Yt
ui = fu(X

t
i)),Ap =

1

N · T

N
X

i=1

T
X

t=1

I(Yt
pi = fp(X

t
i)), (1)

where Au is the accuracy of fu, Ap is the accuracy of fp, N is the number of
sensor-based devices, T the number of data batches collected, and I(c) the binary
indicator function returning 1 iff the condition c is true, and returns 0 otherwise.
Furthermore, the classification accuracy for the perturbed data is defined as:

A′

u(θ) =
1

N · T

N
X

i=1

T
X

t=1

I(Yt
ui = fu(M(Xt

i; θ))), and (2)

A′

p(θ) =
1

N · T

N
X

i=1

T
X

t=1

I(Yt
pi = fp(M(Xt

i; θ))). (3)

where M is the perturbation mechanism, M : Rw·d −→ R
w·d, and θ is the set

of perturbation parameters (e.g., ϵ for LDP).
Thus, the data perturbation objective is bounded by the following conditions:

A′

p(θ) ≪ Ap and A′

u(θ) ≈ Au, (4)

such that the accuracy of PBC is significantly diminished when data is perturbed,
while the accuracy of the UFC for perturbed data remains close to the accuracy
of the classification on non-perturbed data.

Achieving a balance between privacy and utility presents a significant chal-
lenge, particularly when considering classification tasks involving two opposing
classifiers. We introduce BUP , the classification utility-privacy balance, as a mea-
sure for balancing privacy and utility in the proposed classification problem,
computed as follows:

BUP (θ) = 1−
A′

u(θ)

Au

·
�

1−
A′

p(θ)

Ap

�

. (5)

The score BUP is positive and close to zero when the perturbation successfully
meets the specified objectives from Eq. 4. This indicates that the accuracy of
the UFC with perturbed data is close to its accuracy with unperturbed data,
while the accuracy of the PBC with perturbed data is significantly lower than its
accuracy with unperturbed data. A negative BUP value signifies that the chosen
perturbation has increased the accuracy of the PBC, representing the worst-case
scenario.

The proposed method for finding the perturbation parameters consists of the
following steps: (i) compute feature importance for the two classifications (UFC
and PBC); (ii) cluster features based on the computed importance coefficients;
(iii) distribute and apply the perturbation to the features of the time-series data
Xt

i; (iv) select the perturbation parameter set θ∗ such that BUP (θ) is minimum:

θ∗ = argminθ{BUP (θ)|BUP (θ) > 0}. (6)
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3.1 Feature Importance Computation and Feature Clustering

Feature importance computation [2] estimates the relative significance of features
within a dataset for a specific classification. One notable benefit of employing
feature importance computation techniques lies in assessing feature significance
without requiring prior knowledge of the adversarial model. Consequently, this
computation is conducted solely based on available data labels and by anticipat-
ing potential classifications.

We propose using the Random Forest (RF) algorithm [2], a popular technique
for feature ranking and feature importance computation, to identify the features
that hold the most relevance for classifications. For the current research, we
selected the impurity-based feature importance (e.g., Gini importance [2]).

Let X be the set of all Xt
i selected for the training phase. By computing

the feature importance for classifying X on class Cp using the labels Yp and for
classifying X on class Cu using labels Yu, we obtain Ip and Iu, the vectors of
importance coefficients (Ipi, Iui ∈ [0, 1], i ∈ {1, ..., d}).

Let F be the set of selected features from the dataset, F = {F1, ..., Fi, ...}.
Based on the computed importance coefficients Ip and Iu, we aim to cluster
F into three subsets: Fu with features necessary for the utility-focused classi-
fication, Fp with features that play a significant role in resolving the privacy-
breaking classification, and Fup with features that are important for both clas-
sifications, such that F = Fu ∪ Fp ∪ Fup.

Let SFi
(Iui, Ipi) be the score of importance coefficients for feature Fi in Ip

and Iu, respectively, such that: SFi
(Iui, Ipi) = Iui − Ipi. Further, let the line

represented by SFi
(Iui, Ipi) = 0, ∀i ∈ {1, ..., d}, be the main decision boundary

and ρI be the distance between the main and secondary decision boundaries.
The following rules for clustering are considered:

Fi ∈ Fu if SFi
(Iui, Ipi) > ρI , Fi ∈ Fp if SFi

(Iui, Ipi) < −ρI , (7)

Fi ∈ Fup if SFi
(Iui, Ipi) ∈ [−ρI , ρI ]. (8)

The score SFi
(Iui, Ipi) determines when a feature shows a significantly greater

significance in a classification context compared to another. When SFi
(Iui, Ipi) =

0, only the features that have the same importance coefficients for both UFC
and PBC belong to Fup.

3.2 Data Perturbation

The proposed mechanism introduces a global perturbation budget to be divided
within the features in F . To achieve the goal of reducing the PBC’s impact
while preserving the accuracy of the UFC, we introduce substantial perturba-
tion to features within Fp, moderate perturbation to features within Fup, while
maintaining the features within the cluster Fu unmodified.

Consider the mechanism M of perturbing Xt
i a composition of d mechanisms

Mi, one for each feature Fi in clusters Fp, Fup and Fu. Let the total perturbation
budget βT be allocated to M and distributed to mechanisms Mi, based on the
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membership in clusters Fp, Fup and Fu. Let βp, βup, and βu be the cumulative
privacy budgets for features in clusters Fp, Fup and Fu, respectively, such that:

βp = αp ·βT , βup = αup ·βT , βu = 0, and αp+αup = 1, with αp, αup ∈ [0, 1], (9)

where αp and αup are the perturbation budget distribution parameters. Within

each cluster, budgets are uniformly distributed such that: βpi =
αp·βT

|Fp|
, and

βupi =
αup·βT

|Fup|
, where βpi is the privacy budget allocated for each Fi ∈ Fp,

βupi the budget allocated for each Fi ∈ Fup, and |Fp|, |Fup| the number of
features in clusters Fp and Fup. Additionally, the imposed requirement is that
the perturbation applied to features in Fp be higher or equal to the one applied
to features in Fup. When the data perturbation is proportional to the allocated
budget we enforce that βpi ≥ βupi, otherwise βpi ≤ βupi.

A possible perturbation method to be applied in the proposed context in-
volves implementing the w -event level LDP (described in Section 2) to features
in clusters Fp and Fup. The selection of perturbation budget parameters αp and
αup needs to account for the number of features in the cluster. The challenge
lies in identifying ρI , which defines the feature clustering (Section 3.1), along
with βT , αp, αup, to ensure that BUP (θ), with θ = {ρI , βT , αp, αup}, is mini-
mized while remaining positive. Further, the experiments confirm that suitable
values for the perturbation parameters can be identified and that the BUP score
effectively indicates the appropriate size of the perturbation.

4 Experimental Results

To demonstrate the validity of the proposed approach, we focused the exper-
iments on two datasets collected from automotive vehicles, the UAH-Driveset
[15], and, the HCRL Driving Dataset [9]. For benchmarking the driver iden-
tification classification, we utilized the LSTM-based approach, as proposed by
Karim et al. [7].

Recall that the work at hand addresses two objectives: to protect sensitive
information while concurrently preserving data utility in the context of multi-
variate TSC. We examine two distinct scenarios: (i) driver detection as PBC
with road type detection as UFC, which we term driver-vs-road-type classifica-

tion; and (ii) driver detection functioning as the PBC and behavior detection
operating as the UFC, a setup we refer to as driver-vs-behavior classification.

The first experimental stage involved constructing classification models specif-
ically trained to identify the driver, determine driver behavior, and categorize
road types. These models utilized the FCN-LSTM architecture [7] and were
trained on non-perturbed data from the selected datasets. The datasets were
preprocessed following the same procedures proposed by El Mekki et al. [4]. The
obtained results represented the accuracy achieved by the classification models
in various tasks.

To evaluate the impact of distributing perturbation unequally between fea-
tures, as outlined in Section 3.2, we initially explored a scenario where features
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were not clustered, with each feature receiving an identical amount of perturba-
tion. This approach was a direct extension of perturbation methods originally
designed for univariate data, specifically the w-event LDP [8, 13]. In this case,
ϵi = ϵj for all i, j ∈ {1, ..., d}, and the total privacy budget for all features was

ϵT =
P d

i=0 ϵi. The budget ϵi for each feature Fi was uniformly distributed among
the values belonging to the same feature, according to the formula w ·∆g/ϵi pro-
posed by Kellaris et al. [8] for w -event LDP, where ∆g represents the data
sensitivity. The noise was generated using the Laplace mechanism [3] and ap-
plied to data batches of w = 60 records of sensor values. Figure 1 and Table
1 demonstrate that applying an equal perturbation to all features fulfills the
objectives stated in Eq. 4. However, in all cases, the accuracy A′

p(θ) of the PBC
remained close to A′

u(θ) for smaller perturbations, where A′

u(θ) ≈ Au.
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(c) Driver-vs-behavior
(UAH Driveset)

Fig. 1: Classification accuracy with equally distributed perturbation for all fea-
tures.

Furthermore, the experiments involved computing feature importance to
evaluate the relevance of each feature for driver detection and non-driver-related
data classification. Subsequently, features were clustered (Fig. 2) in Fp, Fup, and
Fu, according to the rules described in Section 3.1, considering the computed
feature importance for driver identification and behavior/road type detection,
respectively. Features in Fp and Fup were perturbed, as described in Section
3.2, using the same w-event LDP method, with variable privacy budget for each
cluster.

The proposed approach for distributing the perturbation is based on a set of
parameters, including the clustering parameter ρI , the privacy budget ϵT , and
the cluster privacy budget distribution parameters αp and αup. We analyzed
the number of features in each cluster to determine potential values for ρI .
Our criteria ensured that there is at least one feature in both Fu and Fp and
that the number of features in Fup is less than the sum of the features in Fp

and Fu to maintain manageable uncertainty. For the cluster privacy budget
distribution parameters αp and αup, we followed the condition that

αp

|Fp|
≤

αup

|Fup|
.

The considered values for ρI , αp, and αup are listed in Table 1.

The perturbed data was verified against previously trained classification mod-
els to determine an appropriate perturbation level ϵT , aiming to achieve the de-
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(b) Driver-vs-road-type
(HCRL Dataset)
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(c) Driver-vs-behavior
(UAH Driveset)

Fig. 2: Feature clustering based on feature importance coefficients for two classifi-
cations (UFC and PBC), conducted using Random Forest with Gini importance
(ρI = 0.01).

sired levels of privacy and utility while adhering to the established constraints.
Figure 3 shows the classification accuracy for the considered parameter values in
the case of driver-vs-road-type classification. The findings, as presented in Table
1 (with the best results highlighted in bold), demonstrated that certain parame-
ter settings for the proposed approach produced superior outcomes compared to
uniformly distributing noise across all features, aligning with the objectives out-
lined in Eq. 4. The overall performance evaluation was based on the calculation
of the classification utility-privacy balance, BUP (θ).
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Fig. 3: Driver-vs-road-type classification accuracy on perturbed data (UAH
dataset).

For the driver-vs-road-type classification using the UAH dataset, the accuracy
A′

p(θ) of the PBC was lower than the reference accuracy, while the classification
accuracyA′

u(θ) of the UFC is higher. The minimum value of BUP (θ) was achieved
when clustering resulted in a large number of features in Fp and a small number
of features in Fup and Fu. This configuration allocated most of the perturbation
to the features in Fp, amplified by the large number of features in this cluster.
Additionally, the MAE value was lower than the reference, indicating higher data
utility. The privacy budget ϵT in this scenario was significantly higher (ϵT = 100
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compared to ϵT = 15) than the proposed approach, indicating an overall lower
perturbation. For the HCRL dataset, in the same type of classification, the best
results were obtained when the clustering (ρI = 0) did not include features in
Fup.

In the case of the driver-vs-behavior classification, both classifiers relied on a
similar set of features (Fig. 2c). However, the results showed that data protection
was possible under the considered constraints with ρI = 0, αp = 0.3, αp = 0.7,
and ϵT = 50. Similar accuracy for PBC and UFC were obtained for significantly
lower perturbation (ϵT = 50 compared to ϵT = 30).

5 Conclusion

In conclusion, our research aimed to reach a balance between data privacy and
utility when dealing with protected time-series data in the context of TSC. The
proposed methodology offers several significant advantages: it results in a lower
A′

p (accuracy of PBC), a higher A′

u (accuracy of UFC), and improved utility,
as quantified by MAE. Further benefits of this approach are: (i) certain features
(Fu, crucial for utility classification) remain unperturbed, thereby preserving
their utility for a variety of data processing activities beyond classification; (ii)
the perturbation budget is significantly higher, resulting in lower noise when
clustering is employed to achieve comparable privacy and utility objectives.

Table 1: Classification accuracy for perturbed data using the proposed approach.

Dataset Classification
scenario

Perturbation ap-
proach

Clustering
parameter
(ρI)

# of features
per cluster (Fp,
Fup, Fu)

Perturbation
parameters (αp,
αup)

min(BUP ) ϵT A′
p(θ) A′

u(θ) MAE

UAH [15] Driver-vs-road-
type

w-event LDP [8, 13]
(no clustering)

- - - 0.3348 15 0.2103 0.8610 1.0170

w-event LDP 0 {15,0,2} {0.3,0.7} 0.3357 60 0.2480 0.9058 0.7424
(feature clustering, {0.1,0.9} 0.3459 100 0.1941 0.8266 1.3350
proposed method) 0.005 {12,3,2} {0.3,0.7} 0.3022 40 0.2227 0.9175 0.6038

{0.1,0.9} 0.2973 100 0.2012 0.8967 0.6921
0.01 {10,5,2} {0.3,0.7} 0.3630 20 0.2564 0.8831 0.8141

{0.1,0.9} 0.3623 40 0.2253 0.8415 1.0194

HCRL [9] Driver-vs-road-
type

w-event LDP [8, 13]
(no clustering)

- - - 0.5683 30 0.4356 0.7941 0.5291

w-event LDP 0 {10,0,5} {0.3,0.7} 0.5765 60 0.4613 0.8235 0.4306
(feature clustering, {0.15,0.85} 0.5629 120 0.4377 0.8076 0.4302
proposed method) 0.01 {9,2,4} {0.3,0.7} 0.5785 60 0.4635 0.8235 0.4304

{0.15,0.85} 0.5749 100 0.3755 0.6945 0.5168
0.015 {7,4,4} {0.3,0.7} 0.5803 40 0.3841 0.6968 0.4946

{0.15,0.85} 0.5707 90 0.4263 0.7750 0.4428

UAH [15] Driver-vs-
behavior

w-event LDP [8, 13]
(no clustering)

- - - 0.4859 30 0.3090 0.6844 0.5077

w-event LDP 0 {9,0,8} {0.3,0.7} 0.4692 50 0.3181 0.7220 0.3651
(feature clustering, {0.15,0.85} 0.4834 100 0.3305 0.7175 0.3655
proposed method) 0.005 {6,6,5} {0.3,0.7} 0.4986 20 0.3759 0.7545 0.4110

{0.15,0.85} 0.5426 20 0.4000 0.7201 0.5002
0.01 {4,8,5} {0.3,0.7} 0.4836 25 0.3714 0.7707 0.3609

{0.15,0.85} 0.4965 20 0.3480 0.7207 0.4458

We introduced the classification utility-privacy balance score, BUP , which
provides a detailed assessment of the privacy and utility achieved by the selected
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Balancing Privacy and Utility in Multivariate Time-Series Classification 11

parameter set. This score maximizes the distance between A′

u(θ) and A′

p(θ), ef-
fectively balancing the trade-offs. However, alternative perturbation parameters
may be selected if the accuracy of PBC or UFC is prioritized. Depending on
specific requirements, such as maximizing the classification accuracy for PBC or
maintaining the classification accuracy for UFC below a predetermined thresh-
old, different perturbation parameters can be chosen.
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Abstract. With the rapid digitization of Electronic Health Records
(EHRs), fast and adaptive data anonymization methods have become in-
creasingly important. While tools from topological data analysis (TDA)
have been proposed to anonymize static datasets—allowing the creation
of multiple generalizations for different anonymization needs from a sin-
gle computation—the application to dynamic datasets remains unex-
plored. To address this, our work adapts existing methodologies to the
dynamic setting. We develop an improved version of weighted persis-
tence barcodes that track higher-dimensional holes in data, allowing us
to edit persistence information on the fly. Additionally, we introduce fil-
tration trimming, a novel technique designed to update persistence data
quickly with minimal computing effort when data is added. Our work
represents a significant advancement in healthcare data privacy, offering
a refined approach to protecting highly sensitive and evolving patient
data through dynamic k-anonymity.

Keywords: Persistence Barcodes · k -anonymity · Dynamic datasets ·
Medical Data Privacy

1 Introduction

In the era of digital transformation, the healthcare sector has accumulated vast
amounts of patient data through EHRs, encompassing demographics, medica-
tions, diagnoses, progress notes, and medical history. By 2019, 96% of general
practitioners in the EU had adopted EHRs1. This shift coincides with strict pri-
vacy regulations like the GDPR2, which mandate de-identification or anonymiza-
tion of sensitive data before processing.

Healthcare providers face the challenge of utilizing this rich data for improved
healthcare while ensuring patient privacy. Anonymizing EHRs before public or
third-party access enables researchers to conduct large-scale studies, aid in public
health monitoring and develop crucial medical treatments without compromising

1 eHealth adoption in primary healthcare in the EU is on the rise, European Commis-
sion

2 General Data Protection Regulation ((EU) 2016/679)
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privacy. The primary technique for anonymizing EHRs has been k -anonymity
[30, 37], but it is vulnerable to attacks like background knowledge attacks [22,
34], attribute disclosure attacks [21], membership inference attacks, and linkage
attacks [18], as highlighted by Sweeney’s analysis of the 1990 U.S. Census data
[36]. To address these limitations, l -diversity [22, 45] and t-closeness [21] were
developed to enhance k -anonymity. Despite its computational challenges and
NP-hardness [25], k -anonymity remains widely used [28, 2, 38, 40, 42, 41, 24].

Differential privacy, another key privacy technique, adds noise to data to
ensure that the omission of a single entry does not significantly alter analysis
results [11]. It protects against linkage and dataset reconstruction attacks [12]
and is used in various fields, such as privacy-preserving data sharing in GWAS
studies [14, 1] and health recommender systems [39]. However, differential privacy
is analysis-sensitive — the amount of noise added to the data depends on the
type of queries or computations executed on it. k -anonymity often emerges as a
more general alternative for various applications.

Amongst numerous techniques that achieve k-anonymity, [33] stands out,
being the only topologically informed method. It is particularly notable for its
unique ability to compute multiple generalizations for different k values without
the need to rerun the algorithm for each generalization or each k. This in turn
allows for stronger privacy measures such as l -diversity and t-closeness to be
applied. This remarkable efficiency is achieved through a single computation of
a weighted persistence barcode, using scalable algorithms [23, 3, 9]. However, the
method has a critical limitation - it is limited to static datasets. This is a signifi-
cant drawback in time sensitive fields such as healthcare where data is frequently
republished, often with alterations. When handling the dynamic nature of data
in such cases, [33] would require a complete re-computation of the weighted
persistence barcode for the dataset, leading to significant computational strain.

1.1 Our Contribution and Paper Structure

In our work, we address the major limitation identified in [33] by developing
a method that removes the need for complete re-computation of persistent ho-
mology when the data changes. We introduce the concept of hole-weighted per-
sistence barcodes, a new approach to track the evolution of higher-dimensional
holes in the data. This innovation allows us to manage data removal, addition,
and updating in dynamic datasets efficiently.

For data removal and updating, our algorithm changes the existing hole-
weighted persistence barcodes directly, thus avoiding the need to recalculate
persistent homology with every change in the dataset. When new data is added,
we use filtration trimming, a novel technique which significantly reduces the
number of persistent homology re-computations needed. Our proof of concept
experimental evaluation using [3] on simulated data exhibits a significant reduc-
tion in the number of re-computations needed for data additions compared to
[33].

We chose to evaluate our method against Speranzon et al. [33] because of
its pioneering role in topology-informed k -anonymity and its unique advan-
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Dynamic k-anonymity: A Topological Framework 3

tages. To the best of our knowledge, our work is the first topologically-informed
anonymization method for dynamic data.

The remainder of the paper is structured as follows. In Section 2, we review k -
anonymity and other preliminaries. In Section 3, we discuss related work, with a
focus on [33]. In Section 4, we propose our methodology, proposing hole-weighted
persistence barcodes, and inductively describing handling of addition, deletion
and updating of data. We conclude in Section 5.

2 Preliminaries

2.1 k-anonymity

When employing k -anonymity, one aims to work with datasets whose attributes
are categorized into identifiers, quasi-identifiers, and sensitive data, as described
in Table 1.

– Identifiers: These are attributes like name or Social Security number that
can directly identify an individual. These are typically de-identified before
data publishing to protect the privacy of individuals.

– Quasi-identifiers: These are attributes A1, A2, . . . , AM such as age, gender,
or zip code that cannot individually identify an individual but can do so when
combined together.

– Sensitive data: These are attributes like medical conditions or salary, which
are sensitive information one intends to keep private.

Name Admission Date Age Blood Pressure Diagnosis

Maria 02.10.2022 23 121mm Hg Anxiety
Priya 05.10.2022 44 97mm Hg UTI

Ahmed 03.01.2023 21 95mm Hg −
Aiden 05.02.2023 41 100mm Hg Asthma

| {z }
Identifiers

| {z }
Quasi-identifiers

| {z }
Sensitive Data

Table 1: Table illustrating the classification of data attributes into identifiers (to
be de-identified prior to publication), quasi-identifiers, and sensitive data.

The table of quasi-identifiers is denoted by T (A1, A2, . . . , AM ) consisting of
N rows, where Ai are attributes that can take numeric or categorical value.
Then the ith sample’s jth quasi-identifier data is denoted as Tij . Another table
T̄ = (Ā1, Ā2, . . . , ĀM ) consisting of N rows is said to be a generalization T̄ of T
if for all i, j, Tij ⊂ T̄ij .

Definition 1 (k-anonymity [30]). Consider a generalization T̄ of T . T̄ is said
to have the k-anonymity property if every row in T̄ appears at least k times in
T̄ .
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T

02.10.2022 23 121
05.10.2022 44 97
03.01.2023 21 95
05.02.2023 41 100

T̄

2022 20− 50 95− 125
2022 20− 50 95− 125
2023 ∗1 70− 100
2023 ∗1 70− 100

T̄ ∗

∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗∗ ∗∗ ∗∗
∗ ∗ ∗∗ ∗∗ ∗∗
∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗

Table 2: Here, T represents the original data table, T̄ is the 2-anonymous gen-
eralization of T , while T̄ ∗ is an over-generalization of T and T̄ .

An illustration of k -anonymity is described in Table 2. The objective of k -
anonymity is to transform a given table T with quasi-identifiers into a general-
ized table that satisfies the k -anonymity property. There exist multiple gener-
alizations that achieve k -anonymity, but we aim to minimize data loss, so the
anonymized data is private, but also usable for further analysis. A common first
step used to achieve k -anonymity, is mapping data to a metric space, and forming
a point cloud with the data. This allows for geometric structures to be defined
to create generalizations.

Definition 2 (Embedded Point Cloud [33]). Consider a table of quasi-
identifiers T containing M attributes and N samples. An embedded point cloud
PT ∈ R

M is formed by treating each row of T as a point in R
M , such that

PT = {p1, p2, . . . , pN}, where pi corresponds to the ith row of T . This data is
generally standardized along every attribute.

3 Related Work

3.1 k-anonymity in practice

The implementation of k -anonymity involves techniques like data generaliza-
tion, fragmentation, and microaggregation, each with its own distinct advan-
tages. Generalization can use predefined intervals (hierarchy-based) such as [30,
19] or runtime-determined intervals (recoding-based) like Mondrian [20, 33], and
our approach. Data fragmentation separates quasi-identifier data from sensitive
information [45], while microaggregation forms clusters with a minimum of k -
similar records [10, 31, 32, 24].

k -anonymity is applied in various fields. During COVID-19, contact-tracing
apps used Bluetooth Low Energy (BLE) to maintain user privacy [28, 2, 38, 40].
These contract tracing applications anonymize data via encrypted beacon IDs or
hash-based representations of user contacts, ensuring users were indistinguish-
able from at least k-1 others. In location-based services (LBS), spatial cloaking
[15, 16, 26] reduces location accuracy to ensure each request is indistinguishable
from k-1 others, using trusted anonymizers. Other applications include road net-
works [27], autonomous vehicles [42], crowd-sensing [43], and data publishing for
research [41].
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The utility of k -anonymity to safeguard dynamic datasets has been explored
in various studies, each offering vastly different methodologies to ours limiting
direct comparability. The seminal work by [5] established a method for efficiently
updating k -anonymized frameworks with the addition of new data entries, al-
though it does not address deletions or modifications. In contrast, m-invariance
[46] utilizes counterfeit data to preserve privacy when data is either added or
removed. Alternatively, [29] employs micro-aggregation to manage changes in-
cluding additions, deletions, and updates, which is fundamentally different from
generalization-based approaches.

Unique in its application, [33] employs topological information to achieve
k -anonymity. This method not only supports the generation of multiple gener-
alizations but also caters to varied k -anonymity requirements in a single com-
putation.

3.2 Topology-based k-anonymity

We now briefly discuss the theoretical framework developed by [33], which en-
ables the application of persistent homology to the k -anonymity problem to
derive an optimal generalization for a database with minimal loss. We will dis-
cuss application to numerical data, as in the foundational work, and this can be
extended to categorical data using generalization trees.

Definition 3 (Anonymity Complex [33]). Given an embedded point cloud
PT derived from a table T of quasi-identifiers, an anonymity complex Cϵ(PT ) is
the Cêch complex [17] defined over PT comprising of simplices [17], each having
vertices that correspond to points in PT . A k-simplex is included in Cϵ(PT ) iff the
ϵ-ball neighborhoods around its k + 1 vertices share at least one common point.

Definition 4 (k-anonymity Complex [33]). An anonymity complex Cϵ(PT )
is termed a k-anonymity complex if the following conditions are met:

1.
S

Sl = PT , where Sl is an l-simplex with l ≥ k − 1.
2. Sl1 ∩ Sl2 = ∅ for all l1 ̸= l2.
3. For every pi in PT , pi belongs to some Sl.

The smallest ϵ for which Cϵ(PT ) satisfies these conditions is termed the global
generalization strategy for parameter k, and is denoted by ϵk. Other ϵ that satis-
fies these conditions are other generalizations. We call the sequence of subcom-
plexes ϕ ⊆ Cϵ1(PT ) ⊆ . . . ⊆ Cϵn(PT ), where ϵi < ϵj if i < j, a filtration.

Notably, it was demonstrated in [33] that an anonymity complex Cϵk(PT ) is a
k -anonymity complex iff it has trivial homology groups Hn(C

ϵk(PT )) = 0 for all
n > 0.

By mapping T into an embedded point cloud PT and constructing a Čech
filtration as illustrated in Figure 1, we aim to find the smallest ϵ-value, ϵk, that
forms a k -anonymity complex Cϵk(PT ). Simplices Sl in the complex form when
their l+ 1 vertices have overlapping ϵk-ball neighborhoods. However, these sim-
plices do not represent the anonymized equivalence classes. Instead, equivalence
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Fig. 1: A comparative visualization of two filtration levels, ϵ1 and ϵ2, showcasing
the formation of a 3-simplex, S3, at ϵ2 > ϵ1. While the points do not form a
3-anonymity complex at ϵ1, they successfully form a 4-anonymity complex at ϵ2.

classes are defined by computing the circumcenter and circumcircle radius r
of each simplex. The equivalence class for a simplex is the higher-dimensional
hypercube centered at the circumcenter with side length 2r. This method gen-
eralizes the data, distinguishing equivalence classes from the simplices.

Weighted Persistence Barcodes To identify the optimal generalization strat-
egy ϵk for a specific k -anonymity problem, [33] introduced weighted persistence
barcodes, as shown in Figure 2. We replicated this using PHAT [3]. Unlike tra-
ditional persistence barcodes, the weighted versions feature bars with varying
thickness, determined by the number of vertices in each H0 component.

Fig. 2: The weighted persistence barcode describing the merging of components
and formation of holes on a simulated dataset consisting of 15 samples and 2
quasi-identifiers.
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The goal is to find filtration values where all H0 bars have a thickness of k,
and higher-order homology groups are trivial, indicating a viable k -anonymity
complex. These regions are potential generalization values ϵk. The number of
equivalence classes in a generalization relates to the maximal simplices [17] cov-
ering the complex at specific filtration values. Thus, a single persistence barcode
calculation for a dataset can identify multiple generalizations for any k, which
other algorithms cannot achieve [30, 19, 20, 45, 10, 31, 32, 24, 29].

The smallest viable generalization is optimal, and for stronger properties like
l -diversity and t-closeness, other generalizations can be used.

Computational Constraints Although [33] stands out amongst other meth-
ods of anonymization with its unique advantages, it comes at a cost since com-
puting persistent homology is a costly operation. When limited to static datasets,
the method needs to recompute the persistent homology for the entire data when
any change occurs in the dataset. In the worst case scenario, this comes at a com-
putational cost of O(

P M
i (NCi)

3) where N denotes the number of points, and
M the number of quasi-identifiers [13, 6, 8].

4 Proposed Method

In this section, we introduce our methodology to utilize persistence information
to anonymize dynamic datasets. Recalculating persistent homology with every
dataset change is computationally impractical. Our goal is to efficiently use ex-
isting persistence barcode information and extract insights as the data evolves.
We address data removal, addition, and updating scenarios inductively.

First, we introduce hole-weighted persistence barcodes that help avoid recom-
puting persistent homology when data is removed. Next, we introduce filtration
trimming, a technique that significantly reduces the number of persistent homol-
ogy recomputations made when additional data is added. Finally we discuss data
updates, where the stability of persistence diagrams help avoid recomputations.

4.1 Hole-weighted Persistence Barcodes

To capture information about holes across the filtration, we enhance weighted
persistence barcodes from [33] to include both component and cycle information.
This non-trivial task is detailed in Algorithm 1, which tracks the birth and
progression of topological holes. Specifically, we track a k-dimensional hole from
its birth ϵbirth to its death ϵdeath. We do this by constructing a graph of simplices
and using breadth-first search (BFS) [4] to find loops. Persistence data P will
represent simplex formations and corresponding filtration values.

Figure 3 simulated using persistence information with the help of [3] demon-
strates that in contrast to the growing thickness of bars in H0, bars for holes
decrease in weight over time due to the ongoing filling of these holes.

We now establish our notation to describe hole-weighted persistence barcodes
as visualized in Figure 4. Let’s represent each component in Hn as nB

i. Each
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Fig. 3: Hole-weighted persistence bar-
code describing the merging of com-
ponents and evolution of holes demon-
strated on simulated data comprising 15
samples and 2 quasi-identifiers.

Fig. 4: Visual representation of the
notation used.

component nB
i comprises a series of bars represented as (nB

i
1, nB

i
2, . . . , nBi

ni
).

Here, nB
i
j denotes the jth bar in the component nB

i. ni represents the number

of bars in the ith n-dimensional component.
Further deconstructing, each bar, nB

i
j , is represented as a tuple: nB

i
j =

(nb
i
j , nd

i
j , nw

i
j , nV

i
j ), where:

– nb
i
j denotes the birth of a topological hole.

– nd
i
j denotes the death of a topological hole.

– nw
i
j represents the number of vertices forming the hole.

– nV
i
j is the set of vertices that form the hole.

To ensure chronological coherence, we maintain that for every j < n, the relation

nd
i
j = nbij+1 holds true. This alignment presents a sequential understanding of

the evolution of topological holes over time.

4.2 Data Removal

Healthcare data management is subject to strict regulations, often requiring
time-bound consent for patient information. As a result, healthcare institutions
periodically delete patient data from their databases. To handle this removal of
data efficiently, we directly modify hole-weighted persistence barcodes instead
of recomputing persistent homology across the filtration of the updated data.
Without loss of generality, we detail the removal of vertex vr from the data in
Algorithm 2. It is worth noting that we wouldn’t need to track holes for further
updates in the data since the algorithm inherently produces the hole-weighted
persistence barcode associated with the updated data.
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Algorithm 1 Tracking k-dimensional holes in a filtration

Require: Persistence data P, ϵbirth, ϵdeath.
Ensure: Updated hole-weighted persistence barcode B.
1: Let VI ← [v1, v2, . . . , vk+1] be the simplex forming at ϵbirth.
2: Initialize Sk ← all k-simplices from P formed at or before ϵbirth.
3: Initialize an undirected graph G(V,E) where V = Sk.
4: for each pair of simplices s1, s2 ∈ Sk do

5: if s1 ∩ s2 has k vertices then

6: Add edge (s1, s2) to E.
7: end if

8: end for

9: G′ ← component of G containing VI .
10: L ← BFS(G′) to identify all loops.
11: for each loop l ∈ L do

12: ∆l ←
S

s∈l
s

13: if NOT ∃s ∈ P such that s formed before ϵbirth and s = ∆l then

14: Mark ∆l as a hole.
15: end if

16: end for

17: for each k-simplex s formed after ϵbirth and before ϵdeath do

18: if s ⊆ ∆l then

19: Add s as a vertex to G′.
20: for each sG′ ∈ G′ do

21: if s ∩ sG′ has k vertices then

22: Add edge (s, sG′) to G′.
23: end if

24: end for

25: L′ ← loops in ∆L using BFS(G′) such that s ̸⊆ ∆L′ .
26: Update ∆L with ∆L′ .
27: end if

28: end for

29: return B updated based on changes to ∆L.

Algorithmic Complexity In the worst-case scenario, where the dataset forms
a fully connected graph, the BFS algorithm employed for generating the hole-
weighted persistence barcode incurs a computational complexity of O(

P M
i (NCi)

3),
where N represents the number of data points and M the dimension of the space
the points reside in. This complexity is analogous to that of computing persis-
tent homology for the dataset as discussed earlier in Section 3. Consequently, the
cumulative complexity for both computing the persistence information and gen-
erating the hole-weighted persistence barcode is O(2

P M
i (NCi)

3), in comparison

to the O(
P M

i (NCi)
3) required solely for computing persistence information.

However, an important distinction arises in the context of data removal.
While recalculating persistent homology after each data point removal remains
computationally intensive, modifying the existing hole-weighted persistence bar-
code is considerably more efficient, with a complexity of only O(N). After under-

DPM & CBT 2024

136



10 A. Swaminathan and M. Akgün

Algorithm 2 Data removal

Require: Persistence data P, vertex vr to be removed.
Ensure: Updated hole-weighted persistence barcode.
1: Collect all 0B

r where 0d
r
1 is the shortest distance between vr and any other point.

2: Remove any one component 0B
r̂ that contains only one bar 0B

r̂
1 .

3: if 0V
r̂
1 = [vl] ̸= [vr] then

4: for 0B
r̃ with 0V

r̃
1 = [vr] do

5: Replace every occurrence of vr with vl and vice versa.
6: end for

7: end if

8: for each bar 0B
i
j in every component do

9: if vr is a member of 0V
i
j then

10: if 1-simplex [vt, vr] forms at bij and vt ∈ 0V
i
j then

11: d ← min{∥vr − vs∥ | vs /∈ 0V
i
j }.

12: Adjust 0b
i
j by adding d.

13: end if

14: Remove vr from 0V
i
j .

15: Update 0w
i
j = 0w

i
j − 1.

16: end if

17: end for

18: for each component k≥1B
i do

19: if vr ∈ kV
i
j then

20: Remove kB
i
j .

21: end if

22: end for

23: for each component without bars do

24: Remove the component.
25: end for

26: Relabel the persistence barcode to reflect changes.
27: return Updated hole-weighted persistence barcode.

going K successive data removal operations, [33] would incur a computational

complexity of O(
P N

J=N−K

P M
i (JCi)

3). In contrast, our approach maintains a

more manageable complexity of O(2
P M

i (NCi)
3 +KN).

4.3 Data Addition

The continuous flow of new data in the healthcare sector highlights the need
to regularly update medical datasets. Regular updates help capture changes in
patient profiles and medical treatments, improving diagnostic and therapeutic
strategies. However, this continuous addition of data presents a challenge: main-
taining the privacy of individuals while ensuring k -anonymity. Each new entry
can potentially compromise existing anonymizations.

Addressing the complexities of data addition, our concern is the recalibration
of persistence barcodes without the need to compute the persistence informa-
tion for the entire Cêch filtration. We demonstrate that the addition of a single
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point does not demand a comprehensive homology computation in Algorithm
3. Instead, updates primarily occur in the local vicinity of the added point. By
leveraging the persistent homology computations from the static data, we only
recompute specific trimmed segments influenced by the new data. This method-
ology promotes computational efficiency by reducing redundant calculations.

When introducing a new point, vN+1, we first identify the circumcenters
of all simplices that include vN+1 up to dimension M within its local neigh-
bourhood. Here, M represents the number of quasi-identifiers. Subsequently, we
calculate the distances between these circumcenters and vN+1, sorting them in
δ = {δ1, δ2, . . . , } where, for i < j, δi < δj .

Algorithm 3 Data addition

Require: δ, Persistence data P.
Ensure: Updated persistence barcode.
1: Add new component 0B

N+1

1 = (0,min(δ), 1, [vN+1]).
2: for any one vl such that ∥vl − vN+1∥ = min(δ) do

3: Find bar 0B
l
j such that 0b

l
j ≤ min(δ) ≤ 0d

l
j where vl ∈ 0V

l
j .

4: Set 0B
l
j = (0b

l
j ,min(δ), 0w

l
j , 0V

l
j )

5: Set 0B
l
j+

= (min(δ), 0d
l
j , 0w

l
j + 1, 0V

l
j ∪ [vN+1])

6: end for

7: Identify all δi with i > 1 and compute persistence in ascending order of δi.
8: Determine homology changes as compared to previous persistence information and

denote as δ̃ = {δ̃1, . . . , δ̃k}.
9: for each 0 ≤ i < k do

10: Compute persistent homology using the updatable SNF for the filtrations:

C δ̃i −→ Cϵ
1
i −→ . . . −→ Cϵ

k

i −→ C δ̃i+1

11: if Hk(C
ϵ
t

i ) matches the previous persistence information for any k at ϵti then

12: Move to next filtration
13: end if

14: end for

15: Relabel indices as per component and bar order.
16: return Updated persistence barcode

Algorithmic Complexity Calculating a simplex’s circumcenter is an O(t)
operation using Welzl’s recursive algorithm [44], where t is the dimensionality
of the simplex. Assuming we have T̄ simplices around the added point, cal-
culating the circumcenters of T̄ t-dimensional simplices has a complexity of

only O
�

T̄CT̄ /2(t/2)
�

. A key insight emerges from this: computing circumcenters

around our new data point is considerably less resource-intensive than computing
the persistent homology for an entire filtration.

The parameter δ and its reduction δ̃ has proven instrumental in our algorith-
mic approach to trimming the filtration length in our Cêch filtration, as shown in
Table 3 and Figure 5, generated using [3]. Here we measure the filtration lengths
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Data Added Filtration Trimmed

Points Points Length Length

10 1 231 19

10 2 298 20

10 5 575 45

20 1 1561 347

20 5 2625 386

20 10 4525 1115

50 1 22151 3301

50 5 27775 3792

50 10 36050 3374

100 1 171801 15379

100 5 193025 17263

100 10 221925 18760

100 25 325625 19242

Table 3: Filtration Lengths and
Trimmed Filtration Lengths for
Simulated Data with 2 Quasi-
identifiers.

1 2 3 4 5

2
−6

2
−1

2
4

Number of Increments

T
im

e
(s

)

[33] Our method

10 data points 20 data points

50 data points 100 data points

Fig. 5: Comparison of methods when data
points are increased by 10% of the origi-
nal dataset at each step. The time required
to compute persistent homology on full and
trimmed filtration lengths is plotted.

when additional data is added, and after we perform filtration trimming. The
runtimes reported are total persistent homology computation times for the re-
spective filtration lengths. This streamlined process, even with the addition of
extra data points, dramatically cuts down on computational overhead, espe-
cially when considering larger datasets. For our experiments, we worked with
data simulated using two quasi-identifiers to maintain simplicity.

4.4 Data Updatability

In rare cases when EHR data entries are modified, whether to refine diagnoses
or correct data, it raises challenges for maintaining k -anonymity.

Based on the findings from [7], minor data perturbations have minimal im-
pact on persistent homology. This suggests a practical approach: for slight data
modifications, first check if the current anonymized dataset meets k -anonymity
standards. If not, manage changes using protocols for data removal and addition.
If the data is minimally altered and k -anonymity is satisfied, updating the hole-
weighted persistence barcode is straightforward. If a component or hole arises
due to the formation of a simplex [. . . , vu, . . .] with vu being the adjusted data,
we modify the associated bar by computing the circumcenter of the simplex.

4.5 Comparison with related literature

Below, in Table 4, we present a comprehensive comparison between our method
and established k -anonymity techniques against key criteria. These were chosen
to highlight the strengths and potential areas for improvement of our approach
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relative to the current state-of-the-art. Our work, and [33] stand out as the
only two topology-informed methods, that can generate multiple generalizations
for multiple anonymization criteria with a single computation. Additionally, our
method’s ability to handle dynamic data allows us to adapt not only to changing
data but also to evolving privacy requirements.

Method Technique Applied
Handles

Categorical
Data

Multiple
Generalisa-

tions

Multiple
Anonymiza-

tions

Adaptability
to Dynamic
Databases

[20] Recoding-based × × × ×

[19]
Recoding/Hierarchy-

based
✓ × × ×

[35]
Recoding/Hierarchy-

based
✓ × × ×

[5] Recoding-based × × × partially

[46]
Recoding/Hierarchy-

based
✓ × × ✓

[29] Microaggregation ✓ × × ✓

[33] Recoding-based × ✓ ✓ ×

Our
Method

Recoding-based × ✓ ✓ ✓

Table 4: Comparison of various k-anonymity methods.

5 Conclusion and Future Work

In conclusion, our work substantially advances the application of TDA tech-
niques for privacy-preserving dynamic data publishing in the context of EHRs.
Previous work in the field focused on static datasets [33] and required computa-
tion of persistent homology on the whole dataset whenever data is updated. Our
methodology extends this by addressing key challenges in dynamic databases,
including data removal, addition, and updatability, enabling rapid adaptability
without the need for extensive recomputation of persistent homology for updated
data. Our solution can adapt not only to dynamic data, but dynamic privacy
demands without requiring additional computational strain.

For data removal, we have innovatively utilized hole-weighted persistence
barcodes, constructed through a breadth-first search algorithm on a graph de-
rived from existing persistence data. This approach allows for systematic editing
of the barcodes upon data removal. In the case of data addition, we have re-
fined the process by trimming the Cêch filtration, thus significantly reducing
the number of persistent homology recomputations required, as our experiments
have demonstrated. Regarding data updatability, we focused on the stability of
persistence diagrams and computed a limited number of simplex circumcenters,
avoiding expensive persistent homology re-computations.

Our approach enhances the balance between data utility, anonymization flex-
ibility and patient privacy, which is crucial in the context of rapid EHR adoption

DPM & CBT 2024

140



14 A. Swaminathan and M. Akgün

and stringent regulations like the GDPR. Although our work primarily addresses
numerical data, extending these methodologies to include categorical data using
zigzag persistent homology is a promising direction for future research. Moreover,
incorporating more robust privacy measures such as l -diversity and t-closeness
could enhance the algorithm. As tools for persistence computations continue to
evolve, the scalability and practical applicability of our approach are expected
to increase, providing greater utility across various applications.

Availability of software code

Our code to implement hole-weighted persistence barcodes is available at the
URL: https://github.com/mdppml/dynamic-topological-k-anonymity.git
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Abstract. Ensuring compliance with the General Data Protection Reg-
ulation (GDPR) remains a labor-intensive activity, especially in large
applications. Moreover, legal experts often do not have the technical
knowledge to assess source code. Privacy threat modeling can be used
to systematically guide the assessment of privacy threats in designs and
code, but it is time-intensive and needs to be redone for changes. In
this paper, we build on an existing approach to automate privacy threat
modelling using static code analysis and extend it for GDPR compliance
checks. We first derive code properties from individual GDPR articles,
implement them in a static code analysis tool, and propose queries for
the automated analysis of source code. Finally, we evaluate the results
using a novel test suite.

Keywords: Static Code Analysis · Privacy Threat Modeling · GDPR
Compliance Engineering.

1 Introduction

The General Data Protection Regulation (GDPR) [6] of the European Union
has established a high bar for data protection in software products that process
personal data. Due to lacking knowledge about the legal texts and their impli-
cations, implementing these legal requirements remains a challenge for software
engineers. Especially in large software systems with ongoing changes, ensuring
compliance to data protection regulations is a difficult task.

There are numerous approaches for implementing privacy-friendly software,
like checklists [11,1], Privacy Design Strategies [10] and Privacy Design Patterns
[2], but approaches to automatically verify compliance with data protection reg-
ulations, like the GDPR, are currently missing. Privacy threat modeling methods
such as LINDDUN [5,15] can uncover non-compliance issues using a data flow
diagram, but they focus on basic GDPR principles like data minimization and do
not cover specific articles of the GDPR. Creating a data flow diagram and per-
forming threat modeling require a comprehensive understanding of the system
and significant effort, and errors can affect the accuracy and reliability of the
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process. Additionally, threat modeling is a manual and time-consuming process,
making it difficult to integrate into the short sprints of agile software devel-
opment [8]. In comparison, automated approaches realized through static code
analysis offer an effective way to reduce effort and can be well integrated into
agile software development cycles. However, existing tools cannot check source
code for compliance with individual articles of the GDPR. For example, there
are tools that attempt to uncover data flows of personal data [3,14] or that check
source code for compliance with an individually defined privacy policy [7,13]. As
existing tools do not offer the possibility to check source code for compliance
with indvidual articles of the GDPR, manual assessment is still being used. As a
result, legal experts, who may not have the necessary expertise in understanding
source code and software architectures, are required to support the development
process and ensure that the software complies with legal requirements.

In this paper, we present a tool for static code analysis, which enables a (semi-
)automated check of source code for GDPR compliance. With this tool we want
to address the time-consuming and error-prone process of verifying compliance
of source code with data protection requirements. To this end, we first create
a generic example (Section 3), which is used to derive workflows that a service
provider can implement to comply with selected articles of the GDPR. In the
same section, we analyze the properties of these workflows and derive source
code properties from them, for example data flows and database operations.
Based on the resulting properties, in Section 4 an existing static code analysis
tool (the Privacy Property Graph (PPG) [12]) is extended to allow mapping
of all necessary code properties on the graph. Subsequently, compliance checks
are developed using reusable queries in the Cypher query language that enable
automated verification of the source code via the PPG. In summary, the following
contributions are presented:

• A translation of GDPR articles to low-level code properties that can be
identified in a static code analysis

• An extension of an existing static code analysis tool for the automated de-
tection of the identified code properties, in the form of a code property graph

• Reusable queries in the Cypher language to automatically check the graph
for indications of (non-)compliance with the GDPR articles.

2 Background and Related Work

Code property graphs (CPGs) are representations of source code that allow the
analysis of large source code projects [16]. They include nodes that represent
elements of the source code and edges that put the nodes into relation. Properties
that CPGs can depict include the program’s syntactic structure, its control flow,
data flows, as well as program dependencies. In the context of privacy analysis,
the representation of data flows in a Data Flow Graph (DFG) is essential to track
the flow of personal data. The resulting graph can be stored in a graph database
and can then be queried using a query language manually or automatically. This
way, problematic data usage patterns can be uncovered.
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Banse et al. [4] have extended a CPG library for the analysis of distributed
cloud applications. Kunz et al. [12], have then built on this work to also cover the
analysis of privacy threats, called the Privacy Property Graph (PPG). The PPG
focuses on the automatic detection of LINDDUN threats [5]. Yet, LINDDUN
does not directly address compliance with individual GDPR articles but only
addresses high-level data protection principles, like data transparency.

The Privacy Flow Graph [14] focuses on visualizing personal data flows to
support, e.g., privacy impact assessments. It analyzes source code to uncover
data flows of personal data, presenting them in a graphical format. The graphical
representation of the data flows can help auditors to uncover problematic data
flows. An automated GDPR compliance check, however, is not addressed.

Hjerppe et al. [9] use an Abstract Syntax Tree to track personal data via
annotations made by developers in code to automate the creation of a privacy
policy. Through the help of annotations the authors pointed out that it is easier
to spot personal data processing and storage. Their aim is to support the docu-
mentation of personal data processing and facilitate the development of tooling
as we propose it in this paper.

Ferrara et al. [7] also explore static code analysis for GDPR checks, but focus
on detecting data leaks. Their approach is based on custom policies that define
allowed data flows. Commercial tools include Privado [13], which is partly open-
source and also uses custom rules to define (non-)compliant program behavior.

Each approach facilitates GDPR compliance checks but a considerable gap
remains in the automated code-level check of specific GDPR articles. In this
paper we build on the PPG as it already addresses privacy threats on code-level,
is open source, and easily extendable.

3 Approach: Extraction of Code Properties

In this section we present our approach for automated GDPR compliance checks.
We derive code properties from GDPR articles, which can be detected through
static code analysis. Since the articles of the GDPR are defined in an abstract
manner, it can be challenging to translate them to the implementation-level.
To bridge the gap between the abstract level and concrete implementation sug-
gestions, we introduce a generic example service. This service is designed as
a typical client-server architecture, making it a representative model for many
types of services that process personal data and are subject to the GDPR.

A complete analysis of the GDPR is not in scope of this paper and is not
meaningful as many articles specify authority competences (Art. 51-59), reme-
dies, liabilities, and penalties (Art. 77-84), as well as other provisions that are
not reflected in source code. In this paper, we focus on articles that often imply
direct interaction of users with their data, i.e. access (Art. 15), rectification (Art.
16), erasure (Art. 17), and portability (Art. 20). Note, however, that the PPG
already largely covers Art. 15 which is why we focus on Articles 16, 17 and 20 in
the following. We expect that future work can build on the results to verify com-
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pliance with many other articles, such as identifying automated decision-making
(Art. 22) and determining flows to geolocations outside the EU (Art. 44).

Running example: The online notepad The example depicted in Figure 1
is an online notepad where registered users can store and retrieve personal notes.
Through a web app, users can interact with the online notepad and view all their
data, such as notes and account information, which is stored in the database. The
management server receives requests from users, converts them into database
queries, and sends the results back to the web app. Additionally, the management
server sends headlines of the notes and user interaction frequencies to an external
provider for advertising purposes. This example reflects a commonly used client-
server architecture, which we use in the following to derive code properties.
All communication between the parties is assumed to be handled via REST
interfaces and the HTTP protocol. Furthermore, all communication to external
parties is assumed to be done via the management server, i.e. from the data
controller. The limitations of this assumption including reliance on the HTTP
protocol for general applicability are discussed in Section 5.4.

User Web app
Management

server

External

advertising

server

Database

Data controller domain

Fig. 1. Data flow diagram of the running example: The User entity can interact with
the Web app provided by the data controller, which in turn communicates with a Man-
agement server. This server processes the incoming data and may use the Database
to store, retrieve or delete data. The Management server and the Database are rep-
resenting the domain of the data controller, which shares data with a third party’s
advertising server (External advertising server). All data flows between the elements
are realized with the HTTP protocol.

In the following we analyze Articles 16, 17 and 20 in the context of the
running example to derive code properties.

3.1 Article 16 - Right to Rectification

Article 16 states that the data subject has the right to request rectification of
his personal data by the data controller and to complete personal data that is
incomplete with additional data.

For the running example, the online notepad service can adopt this workflow
to comply with Article 16:
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1. The user can edit or complete his personal data within the Web app via a
user interface. The changes are then passed to a function linked to the user
interface.

2. After changing personal data, the Web app communicates these changes to
a specified REST interface of the Management server using a PUT HTTP
call (e.g. via URL path /user/user_id).

3. The Management server processes the incoming data and initiates the re-
save by forwarding the user’s rectified data to the Database via an update
database query.

The following code properties can be derived:

1. Prop-data-flow: A directed, chronological data flow for each personal da-
tum, starting from the property marked as (*Entry point) to the component
labeled (*Exit point)

2. Prop-ui-editing-form: An editing form in the client’s code that allows
editing personal data (*Entry point).

3. Prop-put-http-request: A PUT HttpRequest in the client’s code that
addresses an HttpEndpoint specified on the server.

4. Prop-put-http-endpoint: An HttpEndpoint in the server’s code, which is
addressed by the client program’s HTTP PUT request.

5. Prop-update-database-operation: A DatabaseOperation in the server’s
code that performs an update of already stored data (*Exit point).

3.2 Article 17 - Right to Erasure

Paragraph 1 Article 17(1) states that the data subject has the right to request
an erasure of his personal data by the data controller. The grounds can be, for
example, a revocation of consent to the processing or the unlawful processing of
data.

For the running example, the online notepad service can adopt this workflow
to comply with Article 17(1):

1. The user requests the deletion (e.g. of a personal note) within the Web app
via an UI-element, e.g. a button, which triggers the function described in
the next steps.

2. The Web app communicates the deletion request to a specified REST inter-
face of the Management server using a HTTP call of type DELETE, e.g.
using the URL path /user/user_id/notes/note_id

3. The Management server processes the incoming request and initiates the
deletion of the corresponding database entry via a delete query.

Paragraph 2 The second paragraph states that if the data controller discloses
personal data to a further data processor and an erasure of the data has taken
place in accordance with paragraph 1, the other data processors shall be informed
that the data subject has requested an erasure.

For the running example, the online notepad service can adopt this workflow
to comply with Article 17(2):
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1. The user requests deletion (e.g. of a personal note) from the Web app via an
UI-Element, e.g. a button, which invokes a function call, that triggers the
process described in the next steps.

2. The Web app communicates the deletion request to a specified REST inter-
face of the Management server using an HTTP call of type DELETE, e.g.
using the URL path /user/user_id/notes/note_id.

3. The Management server informs all other data processors who have received
personal data of the user (in the case of the running example the External
advertising server received headlines of the notes). This is realized via an
HTTP call of type DELETE, which is called from the Management server.

Derived Code Properties Since the paragraphs 1 and 2 of Article 17 are
closely related to each other, the code properties are nearly the same, except
one difference, which can be seen in the following derived code properties:

1. Prop-data-flow
2. Prop-ui-button-linked-function (*Entry point)
3. Prop-delete-http-request
4. Prop-delete-http-endpoint
5. (only for Article 17(1)): (Prop-delete-database-operation): A Database-

Operation in the server’s code that performs a deletion of the stored data
(*Exit point).

6. (only for Article 17(2)): Prop-delete-http-request-extern: A DELETE
HttpRequest in the server code targets a REST interface not maintained or
run by the service provider(*Exit point).

3.3 Article 20 - Right to Data Portability

Paragraph 1 Article 20(1) states that the data subject has the right to receive
his personal data in a structured, commonly used, machine-readable format,
which allows the transmission of his personal data to another data controller.
This right is given to the person if consent to the processing of the data was
given and the processing of the data is automated.

The workflow we expect the notepad service provider to implement assumes
that consent for data processing has been obtained and the processing is au-
tomated. For the running example, the online notepad service can adopt this
workflow to comply with Article 20(1):

1. The user can request via a form in the Web app that the service provider
delivers the user’s personal data in a machine-readable format (e.g. CSV or
JSON). The form is linked to a function, which initiates the process described
in the next steps.

2. The Web app communicates this request to a specified REST interface on
the Management server using an HTTP call of type GET, for example with
the URL path /user/user_id.
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3. The Management server queries all the user’s personal data, which are stored
in the Database, using a database read query.

4. The Management server passes the user’s personal data to the Web app by
answering the HTTP request.

5. The Web app saves the user’s personal data to a file that is machine-readable.
E.g. the file format is JSON or CSV.

The following code properties can be derived:

1. Prop-data-flow
2. Prop-ui-button-linked-function (*Entry point)
3. Prop-get-http-request
4. Prop-get-http-endpoint
5. Prop-retrieve-database-operation: A DatabaseOperation in the server’s

code that retrieves all stored data from the database.
6. Prop-json-data-format: The personal data is in a machine-readable for-

mat (e.g. JSON).
7. Prop-data-storage (*Exit point)

Paragraph 2 Article 20(2) states that the data subject has the right to re-
quest the data controller to transfer his personal data directly to another data
controller.

For the running example, the online notepad service can adopt this workflow
to comply with Article 20(2):

1. The user can request the transferral of his personal data in a machine-
readable format (e.g. JSON) to another data controller via a form in the
Web app. The submission of the form triggers a function executing the pro-
cess described in the next steps.

2. The Web app communicates this request to a specified REST interface on
the Management server using an HTTP call of type GET, for example with
the URL path /user/user_id?destination=example_destination

3. Management server queries all the user’s personal data, which are stored in
the Database, using a database read query.

4. The Management server converts all personal data into JSON format.
5. The Management server passes the data in a machine-readable format to the

specified destination of the user by adressing a REST interface via a POST
HTTP call.

The following code properties can be derived:

1. Prop-data-flow
2. Prop-ui-button-linked-function (*Entry point)
3. Prop-get-http-request
4. Prop-get-http-endpoint
5. Prop-retrieve-database-operation
6. Prop-json-data-conversion
7. Prop-post-http-request-extern: A POST HTTP request in the server

code targets a REST interface not maintained or run by the service provider
(*Exit point).
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4 Implementation

Various tools could be used for the implementation of the compliance checks. In
this implementation we leverage the PPG [12] which already provides support
for many of the code properties identified in Section 3. We thus map out the gaps
between the PPG implementation and the code properties identified above and
implement them. In Section 4.1 we present the modifications we applied to enrich
the graph with the properties of interest. In Section 4.2, we develop reusable
queries, which check the compliance of programs to the respective articles from
Section 3. Thereby, generic and reusable queries are written, which are applicable
across applications and programming languages. The enhancements of the PPG
as well as the evaluation test suite (Section 5.1) are published in the PPG open-
source repository3.

4.1 Enhancements of the PPG

The PPG creates the graph by first applying the underlying CPG library to it
and it then adds further nodes and edges through dedicated passes. Each pass
analyzes the source code and the code property graph that already has been
created for it (see Section 2), and modifies it further, e.g., to add nodes and
edges for HTTP connections or database operations.

To implement the missing code properties, we create such passes or extend
already existing ones. The resulting graph is stored in a Neo4j database which
provides the SQL-like Cypher language to query the database.

Firstly, the DatabaseOperationPass needs to be enhanced to enable the PPG
to identify and integrate various database operations into the graph. This in-
volves introducing a new type property for ‘DatabaseQuery‘ nodes to differenti-
ate among query types such as CREATE, READ, UPDATE, DELETE, and UN-
KNOWN (e.g. the called function executes an arbitrary database query, which
cannot be assessed before runtime).

Secondly, for the detection of HTTP requests and endpoints, the HttpRequest-
Pass must be extended. This involves creating ‘HttpRequest‘ and ‘HttpEnd-
point‘ nodes, with additional capabilities to recognize PUT and DELETE re-
quests and endpoints. An important addition is the ‘url‘ property for ‘HttpRe-
quest‘ nodes for the identification of destination URLs in HTTP requests.

Lastly, a significant enhancement involves the introduction of the FileWritePass
to detect file write operations. This requires the creation of a new ‘FileWrite‘
class in the CloudPG ontology, representing an abstraction for all function calls
that write to a file, regardless of the programming language. This class should
link to the respective ‘CallExpression‘ node performing the file write operation.
Moreover, language-specific passes are needed for different programming lan-
guages to accurately detect file write operations.

3 Currently open pull request in repository: https://github.com/clouditor/

cloud-property-graph
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4.2 Development of Compliance Checks

Having extended the PPG with passes that add further code properties to the
generated graph, we describe in this section how the graph can be used to check
for compliance to the respective articles (semi-)automatically. Users of these
compliance checks could be developers, designers, auditors, and privacy experts.
The queries are designed to be applicable to various software structures and
application types.

A key objective in crafting these queries is to minimize false-negative results,
i.e. false indications about a program’s compliance. However, given the com-
plexity of unambiguously determining compliance, our goal is to design queries
to report more false positives (incorrect non-compliance) rather than false neg-
atives (incorrect compliance). This approach ensures that compliance is only
indicated when there is a strong likelihood of its veracity. It is better if users
who analyze the results filter out false-positive results than to overlook an actual
non-compliance that may lead to costly design and implementation changes later
(see also Section 5.4).

These queries enable automatic non-compliance checks through the Neo4j
API, which interacts directly with the Neo4j database. They can be executed
directly on the database. Additionally, these queries can also be used for manual
compliance checks using the Neo4j UI.

Preliminary steps To automatically verify if source code complies with the
GDPR through static code analysis, personal data must be identifiable. We
propose that personal data be annotated in the code with labels, such as Pseudo-
Identifier. This label has to be added to every variable declaration that already
contains or will contain personal data when executing the software. This step
has to be executed first in order to be able to track personal data flows in the
following and subsequently analyzing them.

Article 16 - Right to rectification We assume compliance with Article 16
if a user can modify any of his stored personal data (Section 3.1). We check
for every flow of personal data that is stored in a database, if another data
flow exists, starting from a PUT HTTP request. This PUT HTTP request must
then lead to a PUT HTTP endpoint on the server, which receives the personal
data and then leads to a database update query. Also it must be ensured that
the database update query is performed at the the same database in which the
personal datum was initially stored. We show the developed query, checking for
all derived code properties (Section 3.1) in Listing 1.1 and a plot of the data
flows described above in Figure 2.

Note that in the Cypher queries we use the term path to denote a path
of data flows throughout the program. To query the graph and uncover these
paths, we use Neo4j’s query language Cypher. It uses round brackets to denote
nodes and their types ((:Expression)), dashes for undirected edges (–), arrows
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for directed edges (–>), and square brackets in between dashes to denote edge
types (-[:ANONYMIZES]-). The *-operator denotes a path of arbitrary length4.

MATCH path1=(ps1 : P s eudo Id en t i f i e r )−−() − [ :DFG∗]−>(hr1 : HttpRequest {name :
’POST’ } ) − [ :TO]−>(he1 : HttpEndpoint )−−() − [ :DFG∗]−>(d1 : DatabaseQuery {
type : ’CREATE’ } )

WHERE NOT EXISTS

{MATCH path2=(ps1 )−−() − [ :DFG∗]−>(hr3 : HttpRequest {name : ’PUT’ } ) − [ :TO]−>(
he3 : HttpEndpoint {method : ’PUT’ } ) −−() − [ :DFG∗]−>(d2 : DatabaseQuery )

WHERE ( d2 . type=’UPDATE’ ) /( d2 . type=’DELETE’ ) AND ( d1 ) − [ :STORAGE]−>(:
DatabaseStorage ) <−[:STORAGE]−(d2 ) }

RETURN path1

Listing 1.1. Cypher query which identifies non-compliant Article 16 and 17 personal
data flows. path1 traces all tagged personal data in a database. path2 follows path1

data leading to an update (Art. 16) or delete (Art. 17) query in the same database. If
path2 is absent, indicating non-compliance, path1 is returned.

Pseudo Iden tifie r

POST

HttpRequest
HttpEndpo in t

CREATE

DatabaseQuery

Database

PUT/DELETE

HttpRequest
HttpEndpo in t

UPDATE/ 

DELETE

Database  

Que ry

Pseudo Iden tifie r

POST

HttpRequest
HttpEndpo in t HttpRequest

DELETE

HttpRequest
HttpEndpo in t

DELETE

HttpRequest

Exte rna l r ecip ien t

Fig. 2. Diagram consisting of two data flow diagrams – Left data flow diagram: Illus-
trating path1 (in blue) and path2 (in red) data flows for assessing non-compliance with
Articles 16 and 17. Right Data flow diagram: Shows two data flows path1 (blue) and
path2 (red) of the query for the non-compliance check of Article 17(2).

Article 17 - Right to erasure The first paragraph describes that it must
be possible for the user to request the deletion of his stored personal data. We
check for each flow of personal data to a database, if another data flow exists
starting with a HTTP DELETE request. This HTTP DELETE request must
lead to an HTTP endpoint at the server, which receives the personal data leading
to a database delete operation within the same database in which the personal
datum was initially stored. The respective query, which checks for all derived
code properties (Section 3.2), can be seen in Listing 1.1. A plot of the data flows
described above can be seen in Figure 2.

The second paragraph describes that the data controller informs the other
recipients of the personal data as soon as the user requests deletion. We iden-
tify all data flows that are communicating personal data to an external party.
Note that a communication to an external party can be detected via the PPG
because the source code of the external party is not known and therefore the

4 See https://neo4j.com/developer/cypher/querying
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PPG does not create an HttpEndpoint node and connects it via a TO edge to the
HttpRequest. Knowing all data flows, communicating personal data to an exter-
nal data recipient, we check whether the external data receiver is informed about
the deletion request. This is the case if another data flow for every personal da-
tum exists starting from HTTP delete request. This HTTP delete request must
then lead to an HTTP endpoint on the server that receives the personal data
and informs all external recipients of the data about the deletion via an HTTP
delete request. We list the developed query, checking for all derived code prop-
erties (Section 3.2) in Listing 1.2 and the plot of the data flows described above
in Figure 2.
MATCH ( hr1 : HttpRequest ) , path1=(ps1 : P s eudo Id en t i f i e r )−−() − [ :DFG∗]−>(hr1 )
WHERE NOT ( hr1 ) − [ :TO] −( : HttpEndpoint ) AND NOT EXISTS

{MATCH path2=(ps1 )−−() − [ :DFG∗]−>(hr2 : HttpRequest {name : ’DELETE’ } ) − [ :TO
]−( he2 : HttpEndpoint {method : ’DELETE’ } ) −−() − [ :DFG∗]−>(hr3 :
HttpRequest )

WHERE ( hr3 . name=’DELETE’ ) AND ( hr3 . u r l = hr1 . u r l ) AND NOT ( hr3 ) − [ :TO
] −( : HttpEndpoint ) }

RETURN path1

Listing 1.2. Cypher query detects Article 17(2) non-compliance in data flows. path1
tracks personal data with PseudoIdentifier shared with external parties. path2 traces
notifications to these parties about deletion requests. Absence of path2 signals non-
compliance, returning path1.

Article 20 - Right to data portability The first paragraph states that
the user has the right to receive his stored personal data in a machine-readable
format. We check whether for each personal datum stored in the database a data
flow, starting from a HTTP request of type GET exists. This HTTP request then
in turn leads to an HTTP endpoint, leading to a database query that loads the
personal data from the same database, where it was initially stored and returns
it to the client. Returning data is indicated by HTTP status code OK (200).
Additionally, we verify if the data returns to the user through a file creation
process involving the personal data, presuming the file’s machine-readability.
The developed query, checking for all derived code properties (Section 3.3) is
shown in Listing 1.3 and a plot of the data flows described above is illustrated
in Figure 3.
MATCH path1=(p s i : P s eudo Id en t i f i e r )−−() − [ :DFG∗]−>(hr1 : HttpRequest {name :

"POST"}) − [ :TO]−>(he1 : HttpEndpoint ) − [ :DFG∗]−>(d1 : DatabaseQuery { type
: "CREATE"})

WHERE NOT EXISTS

{MATCH path2=(p s i )−−() − [ :DFG∗]−>(hr2 : HttpRequest {name : "GET"}) − [ :TO]−>(
he2 : HttpEndpoint {method : "GET"}) − [ :DFG∗]−>(d2 : DatabaseQuery { type : "
READ"}) − [ :DFG∗]−>({name : "HttpStatus .OK"}) ,
path3 =(: F i l eWri te ) − [ :CALLS]−>(m: MemberCallExpression ) − [ :ARGUMENTS

]−>(:Node ) <−[:DFG∗]−( hr2 )
WHERE ( d1 ) − [ :STORAGE]−>(:DatabaseStorage ) <−[:STORAGE]−(d2 ) }

RETURN path1

Listing 1.3. Cypher query that detects Article 20(1) non-compliant personal data
flows. path1 maps tagged personal data stored in a database. path2 traces these data
flows to a query retrieving the data from the same database. path3 finds member call
expressions using this data to create a files on the disk. Non-compliance returns path1
if path2 or path3 are missing.

DPM & CBT 2024

154



12 Binder and Kunz

PseudoIdentifier

POST

HttpRequest
HttpEndpoint

CREATE

DatabaseQuery

Database

GET

HttpRequest
HttpEndpoint

READ

DatabaseQuery
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FileWrite

MemberCall-

Expression

PseudoIdentifier

POST

HttpRequest
HttpEndpoint

CREATE

DatabaseQuery

Database

GET

HttpRequest
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READ
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PUT HttpRequestExternal recipient

Fig. 3. Diagram consisting of two data flow diagrams – Left data flow diagram: Shows
the three data flows path1 (blue), path2 (red) and path3 (purple) of the query for the
non-compliance check of Article 20(1). Right data flow diagram: Illustrating the two
data flows path1 (blue) and path2 (red) of the query for the non-compliance check of
Article 20(2).

The second paragraph specifies that the user can also arrange that the per-
sonal data is transmitted directly from the data controller itself to another data
controller in a machine-readable format. We check for every personal data that
is stored in the database if there exists a data flow that leads an HTTP request
of type GET. This HTTP request then leads to an HTTP endpoint, which sub-
sequently leads to a database query that loads the personal data from the same
database. Furthermore, we investigate whether the personal data loaded from
the database is now passed to an HttpRequest of type PUT, which does not
have an HTTP endpoint and thus communicates to an external recipient. The
query, checking for all derived code properties (Section 3.3) is shown in Listing
1.4 and the data flow is illustrated in Figure 3.

MATCH path1=(p s i : P s eudo Id en t i f i e r )−−() − [ :DFG∗]−>(hr1 : HttpRequest {name :
"POST"}) − [ :TO]−>(he1 : HttpEndpoint )−−() − [ :DFG∗]−>(d1 : DatabaseQuery {
type : "CREATE"})

WHERE NOT EXISTS

{MATCH path2=(p s i )−−() − [ :DFG∗]−>(hr2 : HttpRequest {name : "GET"}) − [ :TO]−>(
he2 : HttpEndpoint )−−() − [ :DFG∗]−>(d2 : DatabaseQuery { type : "READ"}) − [ :
DFG∗]−>(hr3 : HttpRequest {name : "PUT"})
WHERE NOT ( hr3 ) − [ :TO] −( : HttpEndpoint ) AND ( d1 ) − [ :STORAGE]−>(:

DatabaseStorage ) <−[:STORAGE]−(d2 ) }
RETURN path1

Listing 1.4. Cypher query that identifies Article 20(2) non-compliant data flows. path1
tracks tagged personal data in a database. path2 traces data flows from path1 to a
query that loads and sends this data via HTTP to an external party. path1 indicates
non-compliance if path2 is absent.
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5 Evaluation and Discussion

5.1 Accuracy

For assessing the accuracy of detecting (non-)compliance using our queries, we
developed a dedicated test suite, as no such test suite existed for GDPR-specific
code samples. It comprises 19 test cases split into two categories, i.e., for testing
compliance and for testing non-compliance. The tests are based on scenarios and
code properties from Section 3.

Each test case in our suite is structured as a Python program, consisting of
a client and a server, performing communication with each other. Additionally,
each case includes a configuration file with simulated deployment data, like mock
databases. The PPG is then used to generate a code property graph from the
Python code and storing the results in a Neo4j database. The Cypher queries
presented in Section 4.2 are then executed and compared against expected re-
sults. For instance, the Article 16 test case models a client-server interaction
handling personal data, with a focus on data rectification, and aims to ensure
no data flow contravenes Article 16 of the GDPR.

Our findings, summarized in Table 1, indicate the test suite’s effectiveness in
detecting non-compliances, albeit with some false positives and a false negative.
The causes of these inaccuracies and potential improvements are discussed in
Section 5.4. This test suite offers a foundation for future research to refine static
analysis tools and discuss the implications of the GDPR on code level.

Art.16 Art.17(1) Art.17(2) Art.19 Art.20(1) Art.20(2)

Table 1. Results of the evaluation of the compliance checks using the implemented
test suite: = Expected result, successful detection of (non-)compliance; = False
positive; = False negative

5.2 Performance

As the evaluation of the original PPG shows [12], its performance primarily
depends on used passes instead of memory, retrieval of results or the pure parsing
of the code. Therefore, we evaluate the impact of newly written or modified
passes on the execution time of the PPG. For this purpose, the software state of
the PPG before the extension of the passes is first applied to the Python code of
one test case of Article 20(1). This test case contains HTTP requests, database
operations and a write file call and thus triggers the DatabaseOperationPass,
HttpRequestPass and FileWritePass, which were extended in the scope of this
paper. Finally, the PPG and the extensions are applied to the same code part and
the results are compared. The benchmark involves 20 iterations, including one
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warm-up iteration not counted in the final measurement. We used a MacBook
Pro with Intel Core i7 processor of 2018 with 16gb of RAM for the evaluation.

Before extending passes, execution times varied from 685ms to 875ms, aver-
aging 742ms (SD = 28ms). After extensions, times ranged from 777ms to 879ms,
with an average of 839ms (SD = 26ms), marking a 97ms increase. Despite the
rise, we would argue that this difference is negligible, since the execution of the
tool is generally not time-critical.

5.3 Reduction of Effort through Automation

Compliance verification usually involves manual review of code and documen-
tation, a process that often is labor-intensive and error-prone. By automating
compliance checks, a more consistent and in-depth analysis is possible that allows
legal experts to make better informed decisions and allows to retest applications
quickly for potential non-compliances.

For programmers, the usage of automated compliance checks reduces the ef-
fort required by developers in two key ways. Due to the automated compliance
checks, programmers receive immediate feedback on GDPR compliance of their
code. This immediate response makes it easier for developers to address com-
pliance issues as they code, rather than having to revisit large sections of the
codebase for compliance reviews at a later stage. Automated compliance checks
significantly streamline the interaction between legal professionals and program-
mers by reducing the need for extensive explanations, how a certain article can
be reflected into source code, which is also necessary after changes made to
the software. Typically, translating complex legal requirements of GDPR into a
language that is understandable to programmers can be a challenging and time-
consuming process. With automated checks, this translation is inherent in the
PPG and highlights affected data flows.

In order to use the automated compliance checks, it is first necessary to setup
the PPG, create new passes, if certain programming languages or libraries are
not yet supported and to train developers to correctly insert PseudoIdentifier
labels in code. We do not discuss the effort related to these steps, since these are
introduced by the usage of the PPG itself and not from the compliance checks.
A discussion of these aspects can be found in the paper of Kunz et al. [12].

5.4 Limitations

In this paper, we have derived code properties based on an example scenario.
While the example is designed in a generic way to achieve broad applicability,
there is a possibility that the example might not encompass the full landscape
of real-world application variations. E.g., our current implementation focuses on
communication over HTTP, but also other communication protocols are used in
practice, like HTTPS, FTP, Telnet or SMTP. To enable the detection of these
protocols as well, additional passes for each respective protocol need to be added
to the PPG and the queries must be adjusted.
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Another limitation is that the proposed workflows represent only one ap-
proach to achieve GDPR compliance for the constructed running example. Of-
ten, multiple options exist for complying with GDPR articles, such as Article
17’s right to data deletion: Our workflow assumes user-initiated deletion via an
UI interaction, but alternative compliant methods, like email requests, exist. The
construction of the running example and the derivation of code properties from
proposed workflows thus can lead to false negatives.

Another limitation of our approach is that while it ensures the elements
required for GDPR compliance are present at the process level, it does not
guarantee the correctness of their implementation. For example, in the case of
the right to rectification (Art. 16), our approach can verify that an data flow
to an update operation exists, but it cannot ensure that the operation correctly
updates the intended rows in the database, potentially leading to incorrect or
incomplete updates.

Another limitation to note is that our implementation heavily relies on the
implementation of the CPG and the PPG. This reliance inherently means that
the accuracy and effectiveness of our work depends on the correct implementa-
tion of these tools. More significantly, any inherent limitations or shortcomings
present within the CPG and PPG approaches could be replicated in our own
implementation and can lead to false results in non-compliance detection. An
example, which leads to false positive results, arises from how the PPG han-
dles annotations in the source code. It creates a separate graph node for each
PseudoIdentifier annotation. Consequently, identical personal data processed in
different files results in multiple nodes, potentially missing necessary data flows
for compliance. For example let us consider a web app with distinct user reg-
istration and data editing pages, both handling the same personal data, but
recognized as separate by the PPG. This could falsely indicate non-compliance
(false positive) in some scenarios. A proposed solution is to assign a unique ID
to each PseudoIdentifier annotation, allowing the PPG to merge identical data
annotations into a single node, reducing false positives.

Another limitation involves the query for Article 20(1) non-compliance de-
tection. The current focus is on storage of personal data in a file, presuming
a machine-readable format (code property Prop-json-data-format). However,
without validating this property, the query might overlook scenarios where data
is not stored in a JSON format, leading to false negatives. Addressing this, we
suggest developing a new pass that abstracts file descriptor opening, verifying if
a file is in a machine-readable format.

Also annotating personal data in the code is crucial for successful compliance
checks. This allows the PPG to store and check associated nodes. However,
human errors in labeling can lead to false positives and negatives. Training for
developers on what should be considered “personal data” is thus essential.

Furthermore, the accuracy of compliance check results, as evaluated by our
self-implemented test suite, may have inherent biases due to the limited variety
of code examples tested. We thus plan to enrich the test suite with diverse test
cases, addressing various compliance scenarios (see Section 6).
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6 Conclusion

In this paper, we introduced an innovative method for automated GDPR com-
pliance checks using a code property graph. First, we have translated GDPR
requirements into code properties that can be automatically detected. We then
extended an existing static code analysis tool [12] to incorporate these proper-
ties, enabling automated verification. Our tool can thus integrate into automated
software development workflows and assist legal experts in compliance assess-
ment. Testing with a 19-case test suite confirmed the tool’s effectiveness and
practicality in identifying compliant and non-compliant code segments.

In future work we will refine the tool by expanding the test suite for more
complex cases, improving reliability in detecting GDPR issues, and minimizing
errors. Finally, we want to extend our tool to cover more GDPR articles.
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Abstract. There is a wide range of tabular data of great value to sci-
ence, economy and social progress. When sharing such data, privacy must
be taken into account. Traditionally, this has been addressed through
anonymization. However, in recent years, with the growth of AI, the
possibility of using generative models has emerged as a way to generate
synthetic data that guarantees privacy while maintaining their utility.
This systematic literature review aims to identify and classify existing
privacy-preserving tabular generative models in order to create a taxon-
omy of solutions. In addition, we analyze the privacy metrics and tech-
niques they use, and identify possible unexplored lines of research.

Keywords: Synthetic data · Privacy · Tabular data.

1 Introduction

There is a wide variety of tabular data, including medical records, financial trans-
actions, and demographic details. This data holds immense value for scientific,
economic and social progress, as it can be used to identify patterns, facilitate
decision-making and disseminate knowledge. However, the sharing of this data
raises privacy concerns, given that it often contains PII (personally identifiable
information).

Traditional methods for protecting privacy in tabular data include [20]: data
pseudonymization, which replaces PII with fake identifiers, and data anonymiza-
tion, which involves generalization, suppression and perturbation techniques that
modify attributes in the dataset to obtain a supposedly anonymous dataset. To
decrease the risk of re-identification some models like k-anonymity, l-diversity
and t-closeness have been proposed. Recently, generative models have emerged as
a way to guarantee the privacy of datasets [9]. These models generate synthetic
data from real datasets, mimicking the statistical properties of the training data.

When dealing with synthetic datasets, there are significant differences in the
amount of knowledge and access available to different users (see Fig. 1). This
involves a range of privacy challenges that need to be considered. Users further
to the right of the diagram show a higher level of difficulty in discerning which
data were used to generate the synthetic data. The number of barriers will be
higher the further to the right the user is located, i.e. the less knowledge and
access the user has.
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Data owner Model consumer Data consumer

Model trainer

Model user

API

D D'

Fig. 1. Different levels of knowledge and access to the trained model.

A model trainer uses the real data (D) given by the data owner to train a
generative model. The model trainer must be careful with possible data leakage
due to errors or intermediate outputs. The model trainer could also be mali-
cious, or the data owners may not trust the data owner. Security mechanisms
such as homomorphic encryption [3] or federated learning [36] should be imple-
mented. Once the model is trained, the user can have different levels of access
to the model. We refer to the user with full access to the model as the model
user. Despite having completed the training phase, it may be possible to obtain
information about D from the model [38]. Conversely, a model consumer can
only generate samples from the model using an API, but do not have access to
the trained model. The amount of information available to this type of users de-
pends on the API. A first-level API allows unlimited samples generation, leading
to honest-but-curious users who seeks information while respecting established
protocols. On the other hand, a second-level API has some restrictions on data
generation, i.e. limited number of requests or attributes that are not allowed to
be generated. Membership Inference Attacks (MIAs) [26] can exploit the lack of
restrictions on data generation. MIAs take advantage of differences in how mod-
els respond to queries from members inside and outside of the training dataset.
Finally, the data consumer only has access to a synthetic dataset (D’ ) gener-
ated by the model, and is unable to generate samples by himself. Although more
challenging, it is possible to obtain information about D from D’ [4].

The contributions of this paper can be summarized as follows:

1. The use of a systematic methodology to provide an overview of privacy
techniques used in tabular data generative models.

2. A collection of 24 systematically selected papers.
3. A collection of privacy metrics for in tabular data generative models.
4. A taxonomy of privacy-preserving generative models for tabular data.

This works is organized as follows. Section 2 introduces the methodology and
how the papers were selected. Section 3 discusses the different ways to measure
privacy in tabular data generation and explains the techniques used to ensure
privacy collected from the selected papers. Section 4 provides a taxonomy of
generative models for tabular data, giving an order and clarifying the differences
between them. Finally, Section 5 draws conclusions and outlines possible lines
of future research based on the observations made in the paper.
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2 Systematic literature review

A Systematic Literature Review (SLR) is a rigorous approach to reviewing and
synthesizing research literature on a specific topic. This methodology is designed
to provide a comprehensive, unbiased and reproducible summary of existing
research. The PICOC framework is employed to define the scope and focus of
our study. It involves three main steps: planning, conducting and reporting.

2.1 Planning

This SLR is performed to answer the following questions:

1. What are the main techniques used to guarantee privacy in generative models
for tabular data?

2. How can we measure the privacy of generative models for tabular data?

PICOC terms help to define a list of keywords, as shown in Table 1. Using
these keywords we can create a search query (see Definition 1), which addresses
our research questions.

Table 1. Keyword list created from PICOC terms.

Keywords Synonyms PICOC

Tabular data Database, Dataset Population
Privacy techniques Data masking, Differential privacy, Masked data, Pri-

vacy approach, Privacy methods, Privacy-preserving,
k-anonymity, l-diversity, t-closeness

Intervention

Generative model Data synthesis, Synthesizer, Synthetic data genera-
tion, Synthetic generator

Comparison

Benchmark Outcome
Privacy metric Anonymity metric Outcome
Utility metric Data quality, Data utility, ML efficacy, Usefulness of

data
Outcome

Definition 1 (Search Query). ("Tabular data" OR "Database" OR "Dataset")
AND ("Privacy techniques" OR "Data masking" OR "Differential privacy" OR
"Masked data" OR "Privacy approach" OR "Privacy methods" OR "Privacy-
preserving" OR "k-anonymity" OR "l-diversity" OR "t-closeness") AND ("Gen-
erative model" OR "Data synthesis" OR "Synthesizer" OR "Synthetic data gen-
eration" OR "Synthetic generator") AND ("Benchmark" OR "Privacy metric"
OR "Anonymity metric" OR "Utility metric" OR "Data quality" OR "Data
utility" OR "ML efficacy" OR "Usefulness of data")

The next step is to define which digital libraries use to search. We selected
IEEE Digital Library, ISI Web of Science and Scopus. There might be duplicate
papers but this will be taken into account in the conducting phase.
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To refine the search and ensure the inclusion of high-quality and relevant
studies, the following exclusion criteria are applied: (i) accepted papers should
address privacy for generative AI models for tabular data, (ii) surveys or re-
views will be discarded, (iii) only articles, conference papers, proceedings or
journals will be considered, (iv) a minimum number of citations is required. Pa-
pers published before 2022 should have at least 20 citations. Papers from 2022
are required to include a minimum of 10 citations. Papers from 2023 or 2024
must have a minimum of 5 citations. To sum up, these are the exclusion criteria:

– The paper does not discuss privacy
– The paper does not discuss AI
– The paper does not focus on tabular data
– It is a survey/review
– It is not an article, conference paper, proceeding or journal
– It has not enough citations
– It is not published in English

After an initial filtering using the exclusion criteria, a checklist of five ques-
tions (listed below) with specific criteria is established. There are three possible
scores for each criterion: Yes (1 point), Partially (0.5 points), or No. Thus, 5
points is the maximum score. Papers that reach 3 points are finally selected.

1. Does the article propose a new AI model for tabular data generation?
2. Does the article propose new attacks to privacy in generative models?
3. Does the paper propose a model practical implementation?
4. Does the model include techniques to provide privacy?
5. Does the article discuss how to measure privacy for tabular generative data

models? Does it also include a way to measure utility?

2.2 Conducting

The first step is to perform a search using the query string presented in Section
2.1. Initially, a total of 977 papers were found. From this list of papers, 36 were
duplicated, giving a total of 941 unique papers. To provide a clearer understand-
ing of the evolution of research on this topic, Figure 2 illustrates the number of
papers published each year. The graph shows a growth in the number of papers
over the years. Although the number of papers published in 2024 is lower than
in previous years, the reason is that the current writing date is mid 2024.

This is the moment to apply the exclusion criteria presented in Section 2.1.
All papers are reviewed, focusing on the title, keywords, and abstract. At the
end of this process, 61 papers are accepted.

After an initial filtering, it is time to apply the Quality Assessment Checklist
presented in Section 2.1. During this step, potential papers are added through
snowballing. The papers added in this way are also submitted to Quality As-
sessment Checklist. During the conducting process, a backward snowballing (or
backward reference searching) is performed. This involves looking through the
references listed in the selected papers to find older studies that the key papers
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Fig. 2. Number of papers found

Table 2. Reference list of papers.
Years Papers
2017 [15]
2019 [2], [34], [11]
2020 [33], [12]
2021 [6], [27], [13], [5]
2022 [28], [31], [32], [30], [8], [16]
2023 [22], [14], [35] [17], [29], [18], [19]
2024 [37]

have cited, which might also be relevant in the research topic. At the end of
this process, a final list of 24 papers are selected. The reference list of papers is
shown in Table 2. As with the papers found with the query (Figure 2) there is
an increase in the number of selected papers over the years, except in 2024.

2.3 Reporting

In this section, we extract some statistical data about the selected articles. The
information extracted from the papers is discussed in the following sections.

13
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Fig. 3. Model family distribution, in which
models are grouped according to their
nature or type.
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Fig. 4. Evolution of the GANs proposed
in the selected papers compared to the
number of selected papers.

Out of the 24 selected papers, 17 papers propose a new model for privacy-
preserving tabular data generation. There are two papers that propose two
models, for a total of 19 proposed models. Figure 3 shows the different types
of model families collected. This chart will be useful in establishing a taxonomy
of different generative models. There is a clear predominance of GANs over the
others.

Figure 4 compares the years of creation of GANs with the years of publication
of all selected papers. It can be seen that the growth of interest in GANs follows
the growth of interest in the research area. This shows that GANs are the type
of generative models that are most often used to generate tabular data with
privacy guarantees.
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3 Measuring Privacy in tabular data generation

There are several ways to measure privacy in generative models for tabular data.
Some traditional privacy techniques, such as k-anonymity or t-closeness, can
also implicitly act as privacy measures. Among the selected papers, differential
privacy stands out.

Differential privacy [7] is a mathematical framework designed to provide pri-
vacy guarantees for data entries within a dataset. Differential privacy ensures
that the inclusion or exclusion of a single individual’s data does not significantly
affect the outcome of any analysis, thereby protecting the individual’s privacy.

Definition 2 (Neighboring Datasets). Two datasets, D and D’, are neigh-
boring, if and only if D’ differs from D in only one entry.

Definition 3 ((ε, δ)-Differential Privacy). For a non-negative privacy bud-
get ε and a non-negative relaxation term δ, an algorithm, M , satisfies (ε, δ)-
differential privacy if for any pair of neighboring datasets D, D’ and S ⊆ Range(M)

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′) ∈ S] + δ (1)

where Pr is taken with respect to the randomness of M . δ is a relaxation
term to ε-differential privacy. There are a variety of techniques for achieving
differential privacy. Essentially, the algorithm M perturbs the input with some
noise distribution, i.e. normal distribution, based on ε and δ.

The following expression is obtained by clearing ε from expression 1:

ε ≥ ln

�

Pr[M(D) ∈ S]− δ

Pr[M(D′) ∈ S]

�

(2)

A lower value of ε implies a higher level of privacy because inequality 2 is
more restrictive. However, decreasing ε increases the noise that needs to be added
to satisfy Definition 3

There are some variations or extensions of the definition of differential pri-
vacy, such as RDP (Rényi Differential Privacy) [21], LDP (Local Differential
Privacy) or CDP (Concentrated Differential Privacy).

Privacy accounting concept indicates that there is a need of some “accoun-
tant” procedure that computes the privacy cost at each access to the training
data, and accumulates this cost as the training progress [1]. The privacy analysis
of our some differential privacy techniques employs the moments accountant ap-
proach to keep track of the privacy cost in multiple iterations. This concept can
also be used to measure privacy degradation with increasing number of queries.
One way to compensate for this progressive loss of privacy would be to progres-
sively increase the noise.

There are several techniques to ensure differential privacy, such as Differen-
tially Private Expectation Maximization (DP-EM) [25], Private Aggregation of
Teacher Ensembles (PATE) [23,24] or Differentially Private Stochastic Gradient
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Descent (DP-SGD) [1]. In general, they all involve the addition of noise in one
way or another.

Similar to differential privacy, there is also the concept of identifiability [33].
This framework is used to measure and limit the risk of re-identification. There
are also other ways to measure privacy for those models that do not theoreti-
cally guarantee privacy, but rather focus on an empirical approach to measure
privacy. These focus on performing attacks to see how effective they are. The
most common is the Membership Inference Attack (MIA) [26].

SELENA [30] is a ensemble method that combines Split-AI and Self-Distilla-
tion to mitigate MIAs. Although SELENA is primarily designed for supervised
classification tasks, it could be used as a component of a generative model. For
example, SELENA could be used in GANs to protect the discriminator from
revealing membership information about the training data. SELENA trains sub-
models on random data subsets and uses adaptive inference to ensure similar
behavior on member and non-member inputs, significantly reducing MIA risks.

4 A taxonomy for tabular data generative models

This section categorizes tabular data generative models from selected papers
(see Figure 5). Due to length restrictions, the taxonomy focuses on GANs with
privacy guarantees. However, other types of models were found:

– Autoencoders (AEs): DP-SYN [2]
– Probabilistic Graphical Models (PGMs): PrivMRF [5] and PrivIncr [18]
– Recurrent Neural Networks (RNNs): Conditional-LSTM [22]
– Copula-based models: LoCop and DR_LoCop [32]

The white boxes in Figure 5 represent each of the 13 models, while the gray
boxes represent the categories into which the different models fall. Note that DP-
GAN, whose connector is shown as a dotted line, is a particular case. Although it
is possible to introduce conditions on one of its components [13], it does not fall
within the definition of a conditional GAN. Therefore, it is placed in the category
of non-conditional GANs. Models that were originally designed to generate EHR
(Electronic Health Record) data are in a green box. Similarly, those GANs that
integrate an autoencoder as a component of their model are in a blue box.

4.1 Generative adversarial networks (GAN)

A generative adversarial network (GAN) [10] is a type of machine learning frame-
work where two neural networks are trained simultaneously in a zero-sum game
setting. GANs have established themselves as one of the state-of-the-art gener-
ative models. GANs consists of two adversarial models:

– Generator G : takes random noise as input and generates samples. It aims to
generate data that imitates a given dataset.
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Also includes AE

Focused on EHR

Fig. 5. Privacy-preserving tabular data GAN taxonomy

– Discriminator D : attempts to differentiate between real data samples taken
from the training dataset and fake data samples generated by the generator.
It outputs a probability indicating if a given sample is real or fake.

The generator tries to fool the discriminator by generating realistic data. The
discriminator tries to become better at distinguishing real data from fake data.
This creates a minimax game between them. The generator aims to maximize
the probability of the discriminator misclassifying its outputs as real, and the
discriminator aims to minimize the probability of incorrectly classifying real data
as fake and vice versa.

There is a wide variety of GANs, each one specialized in generating certain
kinds of data, such as images, video, network trafic, tabular data, etc.

Conditional GANs There is no control on the process of data generation in
a standard GAN. It generates synthetic data from the real data without allow-
ing any further conditions or requirements. Conditional Generative Adversarial
Networks (CGANs) are used to address this problem. With CGANs, a condition
can be included to control the data generation process. The following types of
CGANs are designed to generate tabular data ensuring differential privacy:

– CTAB-GAN+ [37]: It is a general purpose model trained with DP-SGD to
impose strict privacy guarantees and leverage the RDP for privacy account-
ing because it provides stricter bounds on the privacy budget.

– DP-CGAN [29]: It is focused on EHR data generation. This model uses
standard differential privacy.

– DP-CTGAN [8]: It is focused on EHR data generation. This model also
uses standard differential privacy. Has a federated learning-oriented variant,
FDP-CTGAN.

– EHR-M-GAN cond [17]: It is a conditional variation of EHR-M-GAN. It is
focused con EHR data generation. It uses a dual variational autoencoder
(dual-VAE) as a part of its architecture. DP-SGD is used to guarantee pri-
vacy.
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Non-conditional GANs There are other ways to create synthetic data with
privacy assurances beyond CGANs. The following GAN models provide privacy
guarantees but are not conditional:

– EHR-M-GAN [17]: It is focused con EHR data generation. It uses a dual
variational autoencoder (dual-VAE) as a part of its architecture. It uses
DP-SGD to guarantee privacy.

– DP-GAN [13]: One of the components is a conditional network, but it is
not a conditional GAN as CGANs are defined. This model uses standard
differential privacy.

– PATE-GAN [34]: This model modify the discriminator to be differentially
private using a modified version of PATE framework.

– RDP-CGAN [31]: It is a convolutional GAN focused on EHR data. To ensure
privacy, this model uses RDP.

– RDP-GAN [19]: This model uses RDP to ensure privacy. It is a general
purpose model.

5 Conclusions

This paper provides an overview of the state of the art in privacy-preserving tab-
ular data generation. From a total of 941 unique papers, we selected 24 papers
to answer two research questions: “What are the main techniques used to guar-
antee privacy in generative models for tabular data?” and “How can we measure
the privacy of generative models for tabular data?”. For the first question, we
found that although there is a wide range of generative models in the literature,
GAN is the predominant model for synthetic tabular data generation, and the
most used application scenario is the protection of medical records. Regarding
the second question, most models focus on providing differential privacy guar-
antees, either its standard definition or some variants. However, we also found
some models that do not theoretically guarantee privacy, but rather focus on an
empirical approach to measure privacy. As future work, we plan to identify other
generative models where the community has not yet begun to discuss privacy
risks, and analyze the reasons for this, in order to incorporate privacy guarantees
into these models.
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Abstract. Any data collection or processing activity that incurs signifi-
cant risk requires a Data Protection Impact Assessment (dpia), which
is a comprehensive, analytical evaluation of the risks of violating funda-
mental data protection rights. While performing a dpia is considered a
cornerstone activity for demonstrating gdpr compliance and adherence
to data protection by design principles, they are rarely made public by
organizations. Although dpias have received considerable attention from
a wide range of inter-disciplinary research perspectives, this attention
remains fragmented and a solid comparative basis does not yet exist.
In this paper, we present our efforts in establishing an open repository that
indexes common and representative dpias. Starting from clearly-defined
inclusion requirements for representative cases, we present the outcome
of the first two years of consolidation efforts: a repository indexing 130
dpias. Finally, we discuss how this repository enables interdisciplinary
dpia research, on comparing and evaluating diverse dpia approaches,
models, and tools. The resulting repository is a valuable resource for
researchers across disciplines, to spark debate on dpia goals and quality,
and to evaluate different dpia methodologies, approaches, and tools.

Keywords: data protection · dpia · privacy · repository.

1 Introduction

With its introduction in 2018, the gdpr has re-affirmed the importance of address-
ing privacy and data protection concerns early in the design and development
of software-intensive systems that collect or process personal data. One of its
obligations in cases with high risk –but a good practice regardless– is to perform
a Data Protection Impact Assessment (dpia). This activity starts with systemat-
ically describing the data processing operations and then involves an in-depth
assessment of the risks they pose to data subjects’ rights and freedoms.

While many national supervisory authorities provide guidance, advice, and
templates for dpia reports; these resources remain more generic in nature and do
not provide normative illustrations of the potential or desired results of such an
assessment in practice. Hence, it is hard for organizations to gain an appreciation
of the expected outcomes of a concrete dpia in terms of detail and depth.
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Many scientific communities have made efforts to center their collective focus
on exemplars [33,23], common and public data sets, problem characterizations [24],
and reference benchmarks [17,40,35]. The establishment and consolidation of
common, accessible resources is essential to create a community effect, to foster
discussion, and to enable empirical research efforts.

Similar efforts however are severely lacking in the research on dpias. In
recent years, many tools [8,34], guidelines [16,4,9,10,11], templates [3], commercial
offerings [27,5,32,1,28] and academic studies have emerged. In the work-up towards
the gdpr, the Article 29 Working Party [4] has established a number of criteria
and guidelines for dpias, but these are still relatively open-ended. While all of
these elements add value towards providing guidance, a common baseline or
shared understanding in terms of, for example, the degree of completeness or level
of detail is lacking. This problem is exacerbated by the fact that organizations
rarely publish outcomes: dpias are a risk analysis activity that may convey
sensitive details about the organizations.

To address these limitations, we present the approach and results of establish-
ing a public repository of dpias, currently consisting of 130 dpias.1 We discuss
the goals, inclusion criteria, and desired attributes of representative cases.

2 Related work

Performing a dpia is necessary in data processing operations that are “ likely to

result in a high risk to the rights and freedoms of natural persons” (Art. 35(1))
and is a generally accepted technique for a controller to meet its obligations
to appropriately manage risk [4], regardless of necessity. Dpias can be used to
assess a single processing operation, multiple similar or related ones, or to assess
the data protection impact of a specific technology or product. A wide range of
approaches, tools, methodologies, and recommendations [25] have been discussed.

Domain-specific approaches and cases. A number of approaches have
been proposed to conduct a dpia in specific application domains. One area of
active focus is the performance of dpia in health-related systems. Georgiou et
al. [19] discuss the application of the cnil methodology for a dpia of cloud-based
health applications. Várkonyi and Gradišek [37] use a dpia to assess the risks
inherent to the use of Artificial Intelligence (ai) in an e-health context. Conte
et al. [13] present a case study called Health360 involving the application of a
dpia to Electronic Health Records. Alnemr et al. [2] have presented a dedicated
approach and tool (dpiat) for performing dpias in cloud applications. Bisztray
et al. [6] present an in-depth analysis of the applicability of two dpia approaches
to biometric-based authentication systems. Other applications of dpias focus
on cyber-physical systems [22], big data applications [20], the use of ai [37] or
biometrics [6], smart cities [7], smart grids [30], but also vertical application
domains and sectors such as that of charities [21]. Vandercruysse et al. [36]

1 This repository is available at https://dpiarepository.distrinet-research.be.
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discuss the merits of applying dpias to particular enabling technologies and even
hardware-based systems.

Methodologies, approaches and tools. The performance of dpia is tra-
ditionally decoupled from the software development life-cycle, performed by a
more compliance-oriented stakeholder such as a data protection officer (dpo).
This decoupling is generally undesirable as contemporary development (agile
development, ci/cd) is highly incremental which leads to the dpia itself becom-
ing outdated very quickly. To avoid such a divergence, a number of tools and
techniques have recently emerged. Among these are model-based approaches that
involve the creation of intermediate artifacts [26,8,34,12,14], but also machine-
readable representations such as the Data Privacy Vocabulary (dpv) [29]. Some
tools and approaches [15] even focus on integrating these activities with the
source code.

Field studies. Wright et al. [39] have performed an in-depth comparison of
the adoption and implementation of Privacy Impact Assessment (pia) activities
in six different countries, focusing on both differences and commonalities. Their
study highlights the value of a pia as an activity, and emphasizes that these
activities are ideally not performed one-off, but part of a more continuous process.
The pia report itself in that sense as an artifact is just one element of the broader
context of a pia, and the process (e.g., accountability, internal review, etc.) is
considered equally important. The descriptive field study of van Puijenbroek
and Hoepman [31] focuses on practitioners in the Netherlands. It illustrates the
diversity of application domains, in approaches and methodologies (specifying
operations and assessing risk) and highlights the current lack of harmonization
and more concrete reproducible guidelines. Friedewald et al. [18] share experiences
gained from several specific and practical dpia efforts and highlight the value of
more interdisciplinary effort (e.g., through more extensive integration of dpia
outcomes in technology-centric risk assessment approaches and tools).

3 Requirements for a dpia repository

We first list and articulate the main requirements for the open shared dpia
repository presented in this article. Section 4 further motivates these requirements
on a per-stakeholder basis.

1 Quality assessment and control. The dpia reports selected for the repository
should include mature dpia examples of high quality.

2 Case inclusion and coverage.

2.a Representativeness. The repository should include representative examples
of typical or common application cases, and these should not be artificial.

2.b Diversity. The repository should contain a wide range of dpias for a
variety of data processing operation types.

3 Methodological Coverage.

3.a Representativeness. The repository should include dpias resulting from
sufficiently representative methodologies that are used in practice.
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3.b Diversity. The repository should have examples of dpia outcomes of
different methodologies and approaches.

4 Alternative dpia artifact for a single case. In addition to accepting intermediate
artifacts contributing to the establishment of a single dpia entry, the repository
should provide support for accepting different or alternative dpia outcomes
(models, spreadsheets, etc.) for the same case.

5 Multiple dpia artifact versions over time. The repository should support
keeping track of different versions of the dpia artifacts over time.

4 Motivating use cases

An open, shared, and accessible repository of dpia outcomes supports and
strengthens interdisciplinary scientific research, but has purposes beyond purely
research. This section discusses the motivating use cases2 for different types of
stakeholders.

Practitioners currently lack access to rich and normative dpia examples.
Even for examples that are available, information is lacking on the quality and
this prohibits them from selecting cases that can be considered normative and
positive. Practitioners require access to enriched examples, to allow them to
better grasp what is expected of them, in terms of comprehensiveness, detail,
and argumentation (req 1). In addition, an open, diverse, and representative
collection of dpias allows practitioners to search for the most relevant examples
based on similarity to their applications (req 2.a).

DPIA Researchers can study the diversity in approaches on how to struc-
ture and motivate different data processing operations (req 3.b) and explore and
evaluate scientific hypotheses (for example, completeness in terms of covering the
wp29 criteria [4]). Furthermore, it allows the development of quality criteria of
dpias (e.g., comprehensiveness and depth of the analysis) (req 3.b). Alternative
artifacts (req 4) for a single case also enable comparative evaluation of the qual-
ity of the dpia outcomes, while, inclusion of multiple versions (req 5) enables
longitudinal analysis. Once there is consensus about the quality of individual
artifacts, it paves the way for nominating exemplary and normative reference
cases.

Software vendors and service providers can access dpia outcomes to
help determine what information to provide to their customers for dpia efforts
and to assist them in performing dpias involving their products or services (reqs 1
and 2.a).

Data subjects will benefit from a public dpia repository to gain insight and
appreciation for the measures taken by organizations that process their personal
data and, ideally, to demand similar efforts from other organizations that process
their data (reqs 1 and 2.a). For concerned data subjects, including a dpia in
a public repository, and opening it up to public scrutiny can increase trust in
the organization’s intentions towards respecting key data subjects’ rights and
freedoms.
2 References to numbered requirements from Section 3 are included between brackets.
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5 A community repository of dpias

This section elaborates on the repository of dpias in four parts: the implementa-
tion, the dpia meta-data, and the current set, and operating the repository.

5.1 Design and implementation of the repository

This section elaborates on the development of the repository itself to host those
dpias and their metadata. The main criteria are the following: (i) prefer static sites
to avoid complex hosting requirements; (ii) provide support for processing/hosting
collections of items; (iii) enable the custom specification of metadata or properties;
(iv) input data should be structured in an accessible format (e.g., csv, yaml,
etc.); and (v) be relatively easy to customize the output.

The framework we encountered that best meets these criteria is Collection-

Builder [38], an open source framework for creating digital collections that
leverages the Jekyll static site generator. This makes it especially to create the
dpia index in a publicly-available repository on, for example, GitHub or GitLab.

Only a few implementation steps are needed to customize the output of the
collection items to provide all the additional attributes (Section 5.2) on the
generated dpia entry pages. The largest effort involves populating and enriching
the collection items with their metadata.

5.2 Dpia attributes

We enrich the collected dpias with a rich set of meta-data attributes. This
allows users to perform search queries and supports advanced navigation of the
repository. The attributes are grouped into the following categories (Tables 1
and 2): (i) the described processing operations, (ii) the involved organizations,
(iii) the dpia report or artifacts, and (iv) coverage of the wp29 dpia criteria [4].

5.3 Current set of dpias

At the initial release of the dpia repository in 2022, it consisted of 25 entries.
This amount has grown throughout 2023 to 41 and currently contains 130 dpias.

The initial set of dpias was gathered by conducting search queries for ‘data
protection impact assessment’ and ‘data protection impact assessment

report’ and through further snowballing (by including related dpias when they
were encountered). These queries were constrained to pdf, further discarding
templates and guidelines in the search results. These results are then further
complemented with dpias encountered by the authors. This initial set is to be
expanded as part of a continuing community effort over time.

The collection is not yet representative for the full range of published dpias,
or the diversity of methods and approaches that we aim at covering. In addition,
the complete determination of the different attributes outlined in Section 5.2 is a
still a work in progress as this will –amongst other efforts– require the peer review
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Table 1. Overview of dpia attributes

I. Intrinsic complexity of the processing operation

1 Indirect collection The amount of indirect collections of personal data.
2 Disclosure The amount of disclosures of personal data to other

parties.
3 Automated

decision-making
The amount of automated decision-making activities
that occur.

4 Sensitive personal
data

The amount of sensitive types of personal data are
processed as part of the data processing operations.

5 Sensitive personal
data types

The concrete types of sensitive personal data that are
processed.

6 Data subjects The amount of data subject types considered and a
characterisation (e.g., adults and minors).

7 Types of data
subjects

The concrete types of data subjects involved in the data
processing operations.

8 Cross-border
transfers

The amount of cross-border data transfers involved in
the data processing operations.

9 Processing size The size of the described processing operations in terms
of the amount of different processing operations.

II. Involved organizations

1 Controller The amount of controllers.
2 Processor The amount of (sub-)processors.
3 Controller countries The countries where the controllers are established.
4 Processor countries The countries where the (sub-)processors are established.
5 Organization types The types of involved organizations (e.g., government,

company)
6 Joint controllership Whether multiple controllers are involved in the

processing operation as joint controllers.
7 Representatives The amount of organizations involved in the processing

that need to have representatives in the eu.

III. Regarding the dpia artifact

1 Year The year of the dpia. This is the year when finished, not
when the assessment started.

2 Language The language in which the dpia is available.
3 Report size The size of the pdf report in number of pages.
4 Scope The scope: a single processing operation, multiple similar

processing operations, or a technology product?
5 Template The particular template used to create the dpia.
6 Method The methodology used to perform the dpia.
7 Tool execution The application or framework used to perform the dpia.
8 Performed by Who performed the dpia.
9 Artifact type Type of artifact (e.g., pdf, spreadsheet, model).

10 Version The version of the dpia.
11 Processing ID An ID for the processing that can be used to link

multiple repository entries to the same case.
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Table 2. Overview of dpia attributes (continued)

IV. Wp29 dpia criteria

1 Processing description Contains a systematic description of the processing.
This can be further broken down into: (i) the nature,
scope, context, and purposes; (ii) the personal data,
recipients, and period of storing; (iii) the processing
operations; (iv) the assets (hardware, software, people,
etc.); and (v) compliance with codes of conduct.

2 Necessity and
proportionality
(processing)

The dpia describes measures contributing to the
proportionality and the necessity of the processing.
This can be further broken down into: (i) specified,
explicit and legitimate purposes; (ii) the lawfulness of
the processing. (iii) what is necessary data. and
(iv) storage limitations.

3 Necessity and
proportionality (data
subject rights)

The dpia describes measures contributing to the rights
of data subjects. This can be further broken down into:
(i) information provided to the data subject; (ii) right
of access and data portability; (iii) rectification and
erasure; (iv) objection and restriction of processing;
(v) relationships with processors; (vi) safeguards
surrounding international transfer(s); and (vii) prior
consultation.

4 Risk to the rights and
freedoms of data
subjects

The dpia describes the risks (origin, nature,
particularity, and severity). This can be further broken
down into: (i) the risk sources; (ii) the potential
impacts to data subjects’ rights and freedoms; and
(iii) the estimated likelihood and severity of those risks.

5 Risk to the rights and
freedoms of data
subjects (measures)

The report describes specific measures to treat those
risks (mitigate, reduce, manage).

6 Interested parties The dpia describes the involved interested parties. This
can be further broken down into: (i) the dpo advice;
and (ii) views of data subjects or their representatives.

for quality control (outlined in Section 5.4). Nonetheless, we argue that this is a
significant and relevant stepping stone towards fostering the open collaboration
and the community effect that is required for this endeavor. In the next section,
we outline our vision on how the repository can be operated in support of this.

5.4 Operating the dpia repository

This section briefly outlines the operation of the repository. Although the current
version of the repository is not yet the result of a peer review process, we have
anticipated and designed an explicit process for community interaction and peer
review of the dpias.
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Table 3. Qualitative assessment of requirement coverage

Requirement
(Attributes)

Rationale

1 Quality (IV.1–6) The quality of the selected dpias in the repository is mainly
ensured through the process for including new dpias. Quality
assessment and peer review ensures that new submissions to the
repository are of sufficient quality and are paired with rich
meta-data in terms of the attributes from Table 1. The wp29

dpia criteria are a good set of independent properties to assess
the quality of the dpia report in terms their coverage (as
described in the dpia).

2.a Case
representativeness
(I.1–9, II.1–7)

The representativeness of the cases described in the dpias
submitted to the repository can be assessed using the dpia

attributes of categories I and II. These are assessed as part of
the submission process to ensure the described processing
operations are representative.

2.b Case diversity
(I.1–9, II.1–7)

The diversity of cases in the repository cannot be assessed for
an individual dpia, but needs to be continually assessed in
terms of the attributes of categories I and II to ensure that the
set of dpias in the repository contains enough variation over
these attributes.

3.a Method
representativeness
(III.4–8)

The method representativeness can mainly be assessed through
the artifact properties, to the extent that they document or
describe the process that was followed. The procedure for
including new dpia can ensure that the followed methodologies
are relevant and representative.

3.b Method
diversity (III.4–9)

The diversity in methods is assessed over the repository in
terms of the attributes in category III.

4 Artifact types
(III.5–7, III.9–11)

The repository supports capturing multiple different artifact
types as separate entries and link them to the same processing
operations (III.11)

5 Artifact
versioning
(III.10–11)

The version information and link to the same processing
operation that is being described allows the repository to
capture longitudinal information of how a processing operation
is described in different dpias over time.

Submission. Upon submission, the properties, involved artifacts, diversity and
representativeness (reqs 2.b and 2.a) are verified.

Review. The second phase entails the community review of the attributes by
other legal stakeholders to ensure agreement and correctness. This review
enables more extensive discussions in terms of the quality and the identifica-
tion of exemplary dpias in terms of, for example, the comprehensiveness and
depth of their system description or legal rationale.

Publication & Maintenance. After inclusion and publication, repository man-
agement will be a continuous effort to maintain data quality.
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6 Conclusion

In this paper, we highlight the current lack of high-quality, normative examples
and rich, realistic application cases and discuss how it impedes scientific research
on dpias. We particularly motivate the value of a public and accessible collection
of dpia artifacts for a variety of stakeholders, ranging from practitioners and
technology providers, to tool developers, to dpia researchers, and to data subjects.

As the main contribution, we present the design and implementation of a
dpia repository, open for collaboration and community contribution and report
its current state. Having been maintained for two years, the repository currently
consists of 130 dpias. Table 3 discusses how the requirements (Section 3) can be
attained through the repository (Section 5) and its operation.

This paper is a first necessary stepping stone in a longer-term community-
building effort on maintaining and enriching the overall repository of dpias. We
strongly believe that interdisciplinary collaboration will be required to further
grow this collection not just in size, but also in terms of documented attributes,
intermediate and alternative representations, etc. As a secondary effect of this
effort, we argue that a public, comparative repository may also nudge organi-
zations into further increasing their dpia efforts, to publish high-quality dpias,
thereby further increasing the transparency of their data processing operations
and reducing overall data protections risks. Finally, to further illustrate the
scientific value of the repository, we highlight that we are currently conducting
an in-depth comparative evaluation of a model-driven dpia framework called
dpmf [34] using dpia artifacts selected entirely from the repository.
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Abstract. As datasets and models grow in size and complexity to in-
crease performance, the risks associated with sensitive data also grow.
Differential privacy (DP) offers a framework for designing mechanisms
that provide a degree of privacy that can help conceal sensitive features
or information. However, different domains and applications can naturally
exhibit different rates of trade-offs between privacy and performance
depending on their characteristics. In contrast to well-studied areas (e.g.,
healthcare), one relatively unexplored domain is network traffic analysis
where the data contains sensitive information on users’ communications.
In this paper, we apply DP to various machine learning models trained
to classify between encrypted and non-encrypted packets from network
traffic; we emphasize that our goal is to examine a relatively unexplored
area to analyze the trade-offs between privacy and performance when the
data contains both encrypted and un-encrypted observations. We show
how varying model architecture and feature sets can be a relatively sim-
ple way to achieve more optimal performance-privacy trade-offs; we also
compare and contextualize reasonable privacy budgets from our analysis
in the network traffic domain against those in other more well-studied
domains.

Keywords: network traffic classification · differential privacy · privacy
budget · performance evaluation.

1 Introduction

Network traffic analysis is a key component of infrastructure security—proper
identification of network protocols can facilitate network sizing and enable the de-
tection of anomalous connections, revealing ongoing attacks or insecure protocols
within the network.

† This publication is a result of the work done during their stay at SandboxAQ.
‡ Corresponding author.
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A unique challenge for training machine learning (ML) models on network
traffic data lies with the data itself, which contains sensitive information such as
IPs, ports, protocols, or clear-text payloads. If these models are shared across
different parties, it is imperative that no sensitive information on the underlying
data is leaked.

In this paper, we explore the trade-offs of applying differential privacy (DP)
[9] to a ML model to protect the privacy of the data used to train it, in the
context of network traffic classification into plain and encrypted traffic. The
main reason behind it is to be able to detect the use of unsecure protocols
and unencrypted communications within an infrastructure, which may have
security and legal / compliance consequences. Although the use of zero-trust
architectures and encrypted communications by default is increasing, there may be
environments where these are still not enforced due to the increased management
and configuration complexity, and the potential penalisation in performance.

By varying the choice of model architecture and features used, we study the
privacy-performance trade-offs of training both the DP and non-DP versions
of models and show how these changes, along with the underlying domain and
data characteristics, can considerably impact the selection of reasonable privacy
budgets.

2 Background

2.1 Network Traffic

Data is carried over computer networks in the form of discrete network packets
where each packet carries protocol-dependent headers along with information in
its payload. These packets then constitute a tuple-like structure consisting of
multiple fields of information including source and destination IP addresses, ports,
and other data relevant to network protocols. These packets are our fundamental
unit of information as we classify between encrypted and un-encrypted/plain
traffic.

Although deterministic solutions already exist for distinguishing between
plain and encrypted traffic based on the protocol, entropy calculation, ports, and
other features, these solutions do not work well in corner cases especially when
compressed data is evaluated. Compressed values present higher entropy and
therefore are often indistinguishable from encrypted data. Any solution relying
on only such a metric would be prone to higher false positive values. This is our
main motivation for using machine learning for this classification.

We note that if a compressed file is sent over an un-encrypted protocol we
consider it plain.

2.2 Differential Privacy (DP)

Differential privacy, intuitively, ensures that for any given individual in a dataset,
the output of a DP-satisfying mechanism will be similar whether the individual’s
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Privacy-Performance Trade-Offs in Encrypted Traffic Classification 3

(a) An example of a plain network packet:
a data unit transmitted over a computer
network without any additional headers,
encapsulation, or encryption.

(b) An example of an encrypted network
packet: a packet that has been encoded or
scrambled to protect content from unau-
thorized access or interception.

Fig. 1: An illustration of the two types of packets: encrypted and un-encrypted
(or plain).

data is included in the mechanism input or not. Those protected by DP guarantees
(i.e., the entity whose presence is to be concealed) are known as privacy units
and can represent any entity in the data (e.g., a user). In this paper, our privacy
unit is a network packet or the information in said packet. We first formalize the
notion of DP.

Definition 1 ((ε, δ)-differential privacy) [8] A randomized mechanism M
satisfies (ε, δ)-DP if for all S ⊂ Range(M) and all neighboring datasets D
and D̃ (datasets differing by a single individual),

P (M(D) ∈ S) ≤ eεP (M(D̃) ∈ S) + δ, (1)

where ε > 0 and δ ∈ [0, 1) are privacy budget parameters. When δ = 0, we denote
this as ε-DP.

The degree of similarity between neighboring datasets for a DP mechanism is
governed by ε; smaller values correspond to more privacy and vice versa. The
parameter δ is commonly viewed as the probability with which ε-DP fails and is
usually set on the order of o(1/poly(n)), where n is the size of the dataset. DP’s
popularity can be largely attributed to its strong theoretical properties, relative
ease of use, and overall flexibility. We refer to [10] for a more comprehensive
review.

2.3 Related Work

Ad hoc anonymization methods alone have been insufficient to ensure privacy for
sensitive datasets [15,1]. Sweeney [21] linked public voter records to anonymized
health records from Massachusetts state employees to identify then-governor
William Weld’s health records. A similar attack [15] shut down the Netflix
Prize competition after individuals in the anonymized competition dataset were
partially de-identified. Even summary statistics of anonymized data have proven
insecure as attacks on 2010 US Census statistics were able to reconstruct 46% of
the records [6].

Models trained on sensitive data are also susceptible to attacks. [19] showed
that, by using a black-box “target model” to synthesize training data and using
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those to train “shadow models” replicating the target model, an attacker can use
the shadow models and synthesized data to infer membership of a given record
in the training dataset for the target model. [24] demonstrated (approximate)
attribute inference is also possible using membership inference as a subroutine. If
attackers have additional information (e.g., model parameters), more attacks are
possible [19,24]. DP makes no assumptions on the methods used by attackers to
reveal an individual’s presence in a sensitive dataset. [22] proved that an attacker’s
membership inference (MI) advantage AdvMI (i.e., the difference between the
attacker’s true and false positive rates) is bounded by AdvMI ≤ eε − 1. Even for
larger ε where theoretical MI advantage bounds no longer hold, [13] demonstrated
that DP still limits state-of-the-art MI attack success rates in practice. [2] explored
the use of DP to train a deep neural network to classify encrypted network traffic
into classes of interest but do not attempt to classify between encrypted and plain
data or study performance-privacy trade-offs using reasonable privacy budgets.
[17] uses a convolutional neural network to classify traffic flows into different
categories and applications. However, given that the payload is not used for the
training, the authors do not consider including privacy-protection techniques
such as DP to protect the training data.

2.4 DP in Network Analysis

As described in § 2.2, DP provides mathematically rigorous privacy guarantees
to the data which, in this context, we use to try and protect sensitive data that
is commonly exchanged throughout our networks. One problem with network
data is that sensitive information might be exposed while travelling the network,
for example behind TLS terminations in enterprise infrastructures. If attributes
can be inferred from the data, user information such as visited websites, financial
transactions, or even passwords can be revealed. Other domain-specific peculiari-
ties include the possible existence of more efficient DP mechanisms when portions
of the network data are already encrypted or applying DP to an online stream of
network packet time-series data among others—all relatively unexplored areas
which we leave as part of our future work.

3 Methodology

The goal is to train a binary classifier using two sets of features, with and
without DP in the model being trained, to distinguish between encrypted and
un-encrypted network traffic. These two sets of features can be characterized by
two approaches towards where the most useful network data lies: namely header-
based, in which information about the network packet header is extracted, and
payload-based, that focuses in calculating metrics that characterize the network
payload. We train vanilla versions of these models (without DP guarantees) as
baselines to compare against their differentially private versions.
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3.1 Approach

To classify network traffic into encrypted and non-encrypted (or plain) data,
we pursue two strategies, each characterized by a different set of explanatory
variables in classifying network data: a header-based approach and a payload-based
approach. In the former, a number of features are extracted from the header of
the packet, while, in the latter, information from the payload itself is used to
calculate randomness metrics as our features.

Our privacy-preserving versions of both random forest and logistic regression
models are implemented in Python via IBM’s DP library, diffprivlib [12]. These are
produced with ε-DP guarantees for various values of ε. As the dataset considered
for this paper is already public, our main focus is to explore the privacy-utility
trade-off to determine a reasonable domain-specific value for the privacy budget ε
that balances DP guarantees and model performance. To have a fair comparison
between vanilla and DP models, especially given the additional privacy budget
allocation that would be necessary for hyper-parameter tuning, we train each
model with its default settings.

Header-based. In this approach, the features are extracted from the header of the
network packets in the dataset 3.2 including multiple fields of network protocols
found in the network and transport layers. These features are calculated through
a custom network dissector tool, which provides a serialized representation
before entering into a pre-processing pipeline that processes the data in a way
to mitigate inconsistencies produced during the data capturing process from
network interfaces such as invalid or incomplete packets.

Payload-based. A payload-based approach is characterized by the hypothesis that
the entropy of encrypted data will be higher than that of equal-length plain data.
Inspired by [4], we use the statistics from randomness tests conducted on the
payload data as features to train our classifiers. The payload is first extracted
using a custom extraction algorithm before being passed into a module that
conducts randomness tests on the payload including entropy, chi-squared, and
arithmetic average, which are used as the key features in our payload-based
approach.

Model Choices. We train random forest, decision tree, AdaBoost, and logistic
regression models as our base models. Due to our specific domain and dataset,
we favored tree-based approaches that tend to be well-suited with both numerical
and categorical data. Likewise, we also chose to evaluate an AdaBoost algorithm
since weak learners behave similar to decision trees using a single split. Due to
the nature of the network data and its heterogeneity across different network
environments it might be useful to leverage its iterate methods to improve overall
performance. Finally, we explore the logistic regression model as a simple binary
algorithm to benchmark against previous models accordingly.
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3.2 Dataset

The dataset [18] consists of network data captures in PCAP format collected
between July 3rd at 9AM to July 7th at 5PM in 2017 and has been used relatively
frequently in the field of network traffic applications [17,20,23]. The data is
labeled as encrypted or un-encrypted (plain) before being divided into train/test
splits. The training set consists of ∼1.26 million packets while the test set has
∼350,000 with approximately equal representation between the encrypted/un-
encrypted classes.

4 Evaluation

We evaluate the performance and trade-offs of our models with and without
DP using both the feature and payload-based approaches with a 70%/30%
train-test data split. Vanilla (without DP) random forests, decision trees, Ad-
aBoost, and logistic regression models are trained; these classifiers were then
evaluated via prediction accuracy and F1-score on the test set. Then, for each
ε ∈ {10−7, 10−6.5, . . . , 103}, we train 30 random forests and logistic regression
models satisfying ε-DP, and calculate their accuracy and F1-scores on the test
set for comparison.

Header-based approach. Figure 2 shows the results of our DP simulations. As
expected, the average performance of the privacy-preserving models approaches
the performance of non-DP models as ε increases. For the DP version of logistic
regression, its performance approaches that of the non-DP version starting from
ε = 102 onward. While theoretical privacy guarantees at these ε values are weak,
[13] demonstrated that even at this large of a privacy budget, practical privacy
benefits can still be realized. For the header-based approach, the random forest
model appears to be more promising with only a slight performance loss. The
performance metrics level off beginning around ε = 10−4. Though at this ε we
see on average a 10% performance loss, the privacy guarantees at this level are
strong. Based on [22], an attacker’s membership inference advantage can be at
most e0.0001−1 ≈ 0.0001, guaranteeing that an attacker’s ability to infer whether
any given network packet is in the training set is barely better than random
guessing. Based on these results, a DP version of the random forest with the
header-based approach works best.

Likely, part of the difference in the behaviour of DP random forest and DP
logistic regression is due to the choice of hyperparameters such as regularization or
tree depth, which poses a trade-off since hyperparameter tuning requires spending
part of the privacy budget. In the case of DL logistic regression, the regularization
parameter may be too large compared to the signal when computing the loss
function for lower values of ϵ. In the case of DP random forest, the tree depth is
limited in order to limit the privacy budget required for fitting, which puts a cap
on the maximum accuracy that can be achieved for larger values of ϵ.
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Privacy-Performance Trade-Offs in Encrypted Traffic Classification 7

Payload-based approach. In Figure 2, for the payload-based approach, in contrast
to the header-based comparisons, both the DP logistic regression and DP random
forest reach their best performance levels at smaller values of ε. DP logistic
regression begins performing similarly to its vanilla counterpart around ε = 10−3,
while the performance of DP random forest levels off at around ε = 10−4.5. In
fact, for ε ≥ 10−2, DP logistic regression even outperforms DP random forest for
the payload-based approach. These values of ε all represent strong theoretical
privacy guarantees against membership inference attacks.
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Fig. 2: Comparison of model performance between vanilla classifiers and classifiers
trained with ε-DP guarantees across a range of ε privacy budget values. Both the
accuracy and the F1-score are shown. The first two columns show model results
from the header-based approach, while the last two pertain to the payload-based
approach. The solid lines represent the average metric value over 30 seeds and
the error bars represent one standard deviation in each direction. Dotted lines
indicate the non-DP models’ performance.

4.1 Privacy budget ε comparisons with other domains

We compare the minimum ε reasonable privacy budgets from our network traffic
domain to DP models in more common, well-studied domains in finance and
healthcare (Table 1).

For our purposes, we define a “reasonable privacy budget” to be a value ε

at which an ε-DP classifier achieves performance that is both better than a
baseline fully-random classifier and as close as possible to the performance of its
analogous vanilla (non-DP) classifier. For example, a reasonable privacy budget
for the DP random forest classifiers in Figure 2 would be ε ≥ 10−4. To ensure
a fair comparison, we took a random sub-sample of our network traffic data of
approximately the same size and class distribution and re-ran our DP model
simulations. In this circumstance, the payload-based approach achieves reasonably
good utility for ε values comparable to the finance domain, while the header-based
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8 S. Giddens et al.

Table 1: Comparison of privacy budgets (smallest values of ε achieving acceptable
utility) between our network traffic domain and other domains in other works.
For a fair comparison, we adjusted the size of our training dataset to match
the size of datasets from these other domains; therefore, the reasonable budgets
shown for the network traffic domain here differ from those in Figure 2.

Domain Dataset Model Type Reasonable
Budget

References

Finance Adult [7] Logistic regression ε ≥ 0.1 [5]

Finance Adult [7] Decision tree ε ≥ 1 [11]

Healthcare eICU [16] Deep learning ε ≥ 2.88 [3]

Healthcare Pneumonia [14] Deep learning ε ≥ 2.69 [25]

Network traffic PCAP data [18] Logistic regression (payload) ε ≥ 0.45 This paper

Network traffic PCAP data [18] Random forest (payload) ε ≥ 0.01 This paper

approach struggles to obtain better-than-baseline performance for any ε in [5,11],
possibly due to the dimensionality of feature sets used. Though the healthcare
domain results are not directly comparable to ours due to differences in the
types of differential privacy and ML models used, we believe these comparisons
give additional perspective and highlight the importance of better understanding
reasonable privacy budgets with respect to the particular data-generating process
and characteristics of each domain.

Since our results can be used to understand which models perform better with
a given privacy budget in the context of network classification, they can be used
as a starting point for systems and future research dealing with classification
problems with similar datasets and features, although additional fine-tuning may
still be required due to the differences in specific scenarios.

5 Conclusion

In this paper, we explored the performance/privacy trade-offs in the network
security domain and assessed how these trade-offs vary with the choice of features
and model architecture as well as against other more well-studied domains.
A better understanding of these trade-offs between performance and privacy
guarantees can derive easy and efficient ways to protect sensitive data and still
preserve performance. Our future work hopes to build upon this by developing
more efficient privacy-preserving mechanisms such as studying DP guarantees
for only protecting/concealing un-encrypted observations in datasets with both
encrypted and un-encrypted data.
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Abstract. In this work, we explore route discovery in private payment
channel networks. We first determine what “ideal” privacy for a rout-
ing protocol means in this setting. We observe that protocols achieving
this strong privacy definition exist by leveraging Multi-Party Computa-
tion but they are inherently inefficient as they must involve the entire
network. We then present protocols with weaker privacy guarantees but
much better efficiency (involving only a small fraction of the nodes). The
core idea is that both sender and receiver gossip a message which prop-
agates through the network, and the moment any node in the network
receives both messages, a path is found. In our first protocol the message
is always sent to all neighbouring nodes with a delay proportional to the
fees of that edge. In our second protocol the message is only sent to one
neighbour chosen randomly with a probability proportional to its degree.

We additionally propose a more realistic notion of privacy in order to
measure the privacy leakage of our protocols in practice. Our realistic
notion of privacy challenges an adversary that join the network with a
fixed budget to create channels to guess the sender and receiver of a
transaction upon receiving messages from our protocols. Simulations of
our protocols on the Lightning network topology (for random transac-
tions and uniform fees) show that 1) forming edges with high degree
nodes is a more effective attack strategy for the adversary, 2) there is a
tradeoff between the number of nodes involved in our protocols (privacy)
and the optimality of the discovered path, and 3) our protocols involve
a very small fraction of the network on average.

Keywords: Payment Channel Networks · Privacy · Bitcoin · Route Discovery
· Lightning Network
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1 Introduction

Payment channel networks (PCNs) is one of the most promising approaches to
scale cryptocurrencies like Bitcoin [18]. PCNs allow any pair of users to set up
a payment channel with each other, thereby enabling an unlimited number of
costless off-chain transactions between them. Users who are not directly con-
nected with a payment channel can still transact with each other by routing
the transaction through intermediate nodes in the network. These intermediate
nodes typically charge a fee for forwarding these transactions. There are sev-
eral PCN proposals [26,11,20,10,2,5]; the most widely used being the Bitcoin
Lightning Network [20].

To route a transaction in a PCN from sender to receiver, a two-step process
is necessary (but sometimes executed in parallel): (a) finding the optimal route
or route discovery, which typically means finding the shortest or cheapest path
from sender to receiver, and (b) executing the transaction payment in an atomic
fashion, i.e., the transaction is either executed or aborted in all the channels of
the path, so no party can lose money. The route discovery problem focuses on the
first step, and thus the goal is to find the optimal route from sender to receiver
in an efficient and privacy-preserving manner, while the atomic execution of
transactions is not considered. This is a well-researched problem with several
existing solutions [21,15,24,25,28,19]. However all these solutions assume that
the entire topology of the PCN is known by at least one party (for instance the
users who download the entire network [29] or trampoline nodes [21]).

Recently, however, the Bitcoin protocol upgraded to taproot [8] that uses
Schnorr signatures [16] to aggregate public keys and signatures, making a trans-
action involving multiple users indistinguishable from a transaction involving
just two users on the blockchain. As a result, the users of the Lightning Network
can now form private channels, leading eventually to a private payment channel
network with unknown topology. This in turn affects heavily the route discov-
ery process as all existing algorithms utilize the known PCN topology. Hence,
designing route discovery algorithms suitable for private PCNs is paramount.

Our Contribution. In this work, we consider for the first time the problem
of route discovery in private PCNs where the capacities, fees, and even the
mere existence of channels can be (partially) unknown. In particular, the route
discovery protocols we propose do not assume any knowledge about the network
other than the minimal requirement that nodes know about their own channels
(i.e., their balances, fees, and local neighborhood).

Our objective is to construct protocols that are efficient, private, and optimal
in terms of minimal fees. We identify several key challenges: (a) we observe that
in this setting, the only strategy a sender and receiver can follow to find an
(optimal) route is to send exploratory messages through the network. However,
this may incur high communication overhead. (b) To find the optimal path with
certainty, all nodes should be involved in the route discovery process, again
leading the high communication overhead. (c) To achieve ideal privacy, nodes
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that end up in a payment path should not learn any information beyond the
amount and the nodes right before and after them in the path; even the sender
and receiver jointly should not learn the users on a path other than their direct
neighbours. Thus, no information can be leaked on the PCNs topology but even
simple topology hiding broadcast protocols are highly inefficient [17,3]. (d) If
ideal privacy is out of reach, there is no practical notion of privacy for PCNs to
measure the possible privacy leakage.

We explain how we address these key challenges below. At its core, we exploit
a trade-off between the number of involved nodes (which defines efficiency and
affects privacy) and how cheap the discovered route is (optimality). To practi-
cally measure the privacy leakage, we present a novel game for route discovery
protocols over arbitrary networks. In detail, our contributions are:

– (Ideal and Practical Notion) We put forward a security notion for private
route discovery in Section 3 and give a feasibility result using multi-party
computation (MPC). Our notion is inspired by security notions from topol-
ogy hiding MPC. This solution is inefficient, not just because MPC compu-
tations are expensive, but also because it must involve the entire network
(and this inherent for any protocol achieving our ideal notion, confirming
challenge (c)). To account for the inefficiency of our ideal security notion,
we also define a practical notion of privacy in Section 3.3 inspired by met-
rics used in information retrieval (addressing challenge (d)). We empirically
analyse our protocols with respect to our practical privacy notion.

– (Practical Protocols) We present a family of route discovery protocols on
private PCNs in Section 4 that are much more efficient, involving a small
fraction of the network (addressing challenges (a) and (b)). These proto-
cols work by propagating exploratory messages from the sender and receiver
through the PCN. The first protocol we propose is Forward-to-All where nodes
forward messages on all their edges but each edge has a delay that is pro-
portional to its fee. In our second protocol Degree-Proportional Random Walk

nodes just send messages to one neighbour, chosen randomly with a prob-
ability proportional to their degree. Forward-to-All always finds the shortest
path, but it involves a larger fraction of the network than Degree-Proportional

Random Walk.

– (Simulations) We simulated our protocols on the Lightning Network and
a certain class of graphs (Barabási–Albert) that are used to model PCNs
in Section 5. Our simulation show that Forward-to-All typically involves
around 3% of nodes in Lightning, while Degree-Proportional Random Walk

only involves around 0.1%, and the discovered paths are around twice as
long as the optimal ones.

– (Analysis) We also prove some analytical bounds in Section 5 for our algo-
rithms on particular classes of graphs.

In the following, we use the terms user, node, and party interchangeably.
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2 Model and Definitions

We model a payment channel network (PCN) as a directed graph G = (V,E)
where each node in the set V represents a user in the PCN and an edge (u, v) in
the set E indicates an open channel between the users u and v in V . We denote
with fu,v(.) the fee function, i.e., u charges fu,v(x) to transfer x coins over the
channel (u, v). In existing PCNs like the Lightning Network, fu,v(.) is set by u.

The route discovery problem in a PCN represents the task of finding the
path with the smallest aggregated fees, or the cheapest path, in a PCN for a
given pair of sender/receiver nodes us, ur ∈ V and amount x, i.e., a path (u0 =

us, u1, . . . , uℓ = ur), minimizing the aggregated fees
P ℓ

i=1 fui−1,ui
(x + ϕi−1),

where ϕi, i = 0, . . . , ℓ− 1, is the aggregated fees that nodes ui+1, ui+2, . . . , uℓ−1

charge. Since the receiver uℓ is the last node in the path, ϕℓ−1 = 0. We use the
notation shortestPathG(us, ur, x) 7→ {u0 = us, u1, . . . , uℓ−1, uℓ = ur} to describe
the functionality that takes two nodes us and ur and a transaction amount x as
inputs and outputs the cheapest path between those two nodes.

Network model. We assume a synchronous network model, i.e., there exists
some known finite time bound ∆ and the adversary cannot delay delivery of any
message sent by honest parties for a larger than ∆ time period. We further as-
sume all users only have local knowledge of the topology of the payment channel
network with the addition of an estimate of the degree of their neighbours, i.e.,
each node u only knows their set of immediate neighbours and an estimate of
the degree of each neighbour in that set.

3 Ideal and Practical Privacy Notions

We first define an ideal notion of privacy for route discovery and outline how to
construct protocols achieving this notion, albeit very impractical ones.

Ideal privacy for PCNs means that each party only learns the bare minimum
information required to participate in the transaction: its predecessor and suc-
cessor on the payment path and the amount to be transferred. This information
is minimal, assuming that users know at the very least the current balances on
their own channels (as in the Lightning Network). In this case they learn the pre-
decessor, successor, and amount of a transaction they were involved in by simply
comparing the balances on their channels before and after the transaction.

We only consider path finding protocols Π, which always find the cheapest
path. Defining ideal privacy for protocols that do not necessarily output the
cheapest path is more complex because the privacy loss depends on the discov-
ered path. We also only consider passive adversaries, that is, an adversary can
corrupt users and learn their internal state, but not make them deviate from
honestly executing the protocol (e.g., by providing wrong or inconsistent input).

Our privacy notion is inspired by the Indistinguishability under Chosen
Topology Attack (IND-CTA) security definition from work on topology-hiding
multiparty computation [17], and it is defined as follows: We consider an adver-
sary that initially chooses two networks and a transaction for each of them, and
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also a subset of nodes to corrupt. We then require that given the view of the
corrupted nodes after the path finding protocols has been executed on one of the
two networks, an adversary cannot determine which. Of course we must require
that the adversary chooses the networks, transactions, and corrupted nodes such
that the corrupted nodes have the same neighbours and fee functions, and the
final output of the corrupted nodes (either they are not on the path, and if, they
learn their predecessor, successor and amount to be transferred) is identical in
both cases; otherwise distinguishing between both networks is trivial for any
protocol as one can distinguish using just the initial view and final output of the
protocol. We give a more formal definition below.

3.1 The Ideal Privacy Security Game

We consider a security game involving an adversary A against a path-finding
protocol Π. The protocol is run by the players V on a network G = (V,E). Each
player initially gets as inputs its neighbours and fee functions.

When the protocol starts, two players us, ur get as extra input (us, ur, x)
informing them they are, respectively, the sender and the receiver of some
amount x. The correctness we require from our protocol is that every u ̸∈
shortestPathGb(ub

s, u
b
r, x) outputs ⊥, while every u on the path outputs its pre-

decessor, successor and amount they transfer in this optimal path. The security
game goes as follows:

– A chooses the following for i ∈ {0, 1}:

1. A network (directed graph) Gi = (V i, Ei), where every edge (u, v) is
labelled with a fee function f i

u,v(.).

2. A sender and receiver pair (ui
s, u

i
r) and amount x.

A chooses a subset S ⊂ V 0∩V 1 of nodes to corrupt. These nodes must have
the same neighbourhood and fee functions in both networks, and their final
output (predecessor, successor and amount) must be identical.

– We choose a random bit b ∈ {0, 1} and run Π on Gb (with input (ub
s, u

b
r, x)).

– A gets the transcripts of the corrupted nodes.
– A outputs a bit b′. If b′ = b, A wins the game.

Let us call a path finding protocol Π ϵ-private if A wins the above game with
probability at most 1/2 + ϵ, and private if it is ϵ secure for some negligible ϵ.

3.2 Protocols with Ideal Privacy from MPC

If we assume a trusted third party T (that cannot be corrupted by the adversary
and has a channel to every node in the network), the design of a private path-
finding protocol is not challenging. In particular, each party in the network can
send their data to T , which will then locally compute the cheapest path and
send the output, i.e., either ⊥ or the amount, successor and predecessor in the
cheapest path, to every party.
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To design a protocol without a trusted third party, we can instantiate T us-
ing a multi-party computation (MPC) protocol. As here the users need to share
pairwise channels, they need to know about the other users, which means in our
security definition we need the users V 1 and V 2 in the two networks to be iden-
tical V 1 ≡ V 2. Our security notion is inspired by notions from topology-hiding
MPC, where the goal is to hide the topology of the communication channels. In-
stead, we assume pairwise channels but want to hide the topology of the payment
network. But of course we could also use a topology-hiding MPC to instantiate
T , in which case we would only require communication channels between users
that share a channel. In this setting, one could potentially also achieve secu-
rity when V 1 ̸= V 2 as nodes would only talk to their neighbours, and for the
corrupted nodes, these are identical.

3.3 A Practical Notion of Privacy

Here we outline the following game as well as some metrics to measure the privacy
of any route discovery protocol over an arbitrary network. The game is played
with an adversary A over an arbitrary network G = (V,E). The adversary A
is given some budget B ∈ N and A can corrupt (as defined in Section 3.1) any
number of nodes in the network such that the total number of edges incident to
these nodes is no greater than B. Here we emphasise two pertinent aspects of
the corruption process: first, when A corrupts a node, all of the node’s channels
must be added to the total count, and second, we do not double count channels
that have already been accounted for (which is the case where A corrupts two
neighbouring nodes). The constraint on the number of edges the adversary can
create captures the notion that creating new nodes (i.e., wallets) in a PCN is
cheap, however, creating new edges (i.e., channels) comes with some fixed cost.

We denote by Π a route discovery protocol run by a pair of honest nodes
(a source and a sink) over the graph G which may contain outputs (henceforth
called messages) for both honest and adversarial nodes in the process of running
the protocol. The goal of the adversary is to correctly identify the source or sink
of Π upon receiving a set of messages from Π.

Estimators. Let M denote the space of all messages adversarial nodes may
receive in process of honest nodes running Π. An estimator is simply a function
g that takes as input a set of messages M such that each message in the set is
from M and outputs a pair of nodes in V . That is, given a set of messages from
Π, the adversary outputs a guess of the nodes that are the source and sink of
the route finding protocol Π.

Privacy metrics. We adopt a similar approach as in [30] and use recall to
measure the privacy our of route discovery protocols. Recall is a common per-
formance metric used in information retrieval to evaluate estimators in classi-
fication settings. Let M(u,v) denote the set of messages the adversary receives
that originates from a pair of honest nodes u, v ∈ V running an instance of Π.
The recall of an estimator g is defined as the number of classifications for the
pair (u, v) where either u is classified as the source or v is classified as the sink
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over the total number of instances where Π is run between u as source and v as
sink. Formally,

Recg,(u,v) = �{g(M(u,v)) = (u, ·) ∨ g(M(u,v)) = (·, v)} (1)

We note that it is common to average as well as macro-average the recall
over all honest nodes to get the macro-averaged expected recall E[Recg] =

1
|V×V |

P
(u,v)∈V×V E[Recg,(u,v)].

4 A Family of Protocols

Consider a sender us ∈ V who wants to transfer x coins to a receiver ur ∈ V and
thus needs to know a path for the transaction, ideally the cheapest one. Next, we
present a family of exploratory route discovery protocols that provide solutions
to this problem. At its core, these protocols employ local probing: nodes send
exploratory messages (originating at the sender and receiver) to their neighbours
who in turn propagate them. Our protocols only require nodes to know their
incident channels, and some also require a degree estimate of each neighbour.

The protocols run in three phases, (1) exploration, which runs until the first
node receives both messages, i.e., the one originating at the sender and the re-
ceiver, (2) notification, where the relevant nodes are informed that a path was
found and (3) stopping, where the nodes currently participating in the explo-
ration phase are informed so they do not propagate messages further. Phase (1)
is running slow, i.e., messages are propagated with some delay which should be
significantly larger than the typical network delay, while in phase (2) and (3)
messages are relayed immediately. The main reason we need Phase (1) to be
slow is so the messages in the stopping phase can easily “catch up” to the nodes
which are in the exploration phase. This further helps to improve correctness
and even privacy.

Our protocols differ only on the proportion of nodes each node forwards the
message to. On one extreme, we have Forward-to-All that involves nodes sending
exploratory messages to all their neighbours, where each message is delayed
for some time proportional to the fees. As a result, the optimal path is always
discovered, and moreover, the first path that is found is also the cheapest one. On
the other end of the spectrum, we have a more parsimonious protocol, namely
Degree-Proportional Random Walk, that only involves sending messages to one
neighbour. In this case, we expect fewer nodes to be involved in the discovery
process but the optimal path may not be discovered.

As the protocols in the family are similar, we first present a generic overview
of Forward-to-All, and then briefly describe how to modify it to get Degree-

Proportional Random Walk. We then suggest some improvements to boost the
privacy of this family of protocols. For clarity of exposition, we leave the detailed
description of our protocols to Appendix A in our extended technical report [4].
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4.1 Forward-to-All Exploration Phase

In this protocol, both the sender us and receiver ur create messages with a
special identifier (so intermediate nodes who receive messages from us and ur

can associate them together), an amount x that us wants to send to ur, as well
as a tag Sender or Receiver which specifies whether they are sending or receiving
the transaction. The sender and receiver then propagate these messages through
the graph by sending these messages to all their neighbours who then in turn
propagate the message to all their neighbours. At every step of the propagation,
the nodes update the transaction amount adding their desired fees for routing the
transaction, and only forward the message after some time period has elapsed
that is proportional to their desired fees. All nodes store the messages they
received, as well as an id (not to be confused with identifier) of the node that
sent them the message. The precise rule and fee computation differs, however,
depending on whether a node gets a message from the sender or the receiver.

Fee computation for messages from receiver. Apart from the receiver,
each intermediate node ui upon receiving a message with the Receiver tag from
another node ui+1, updates the transaction amount to add a fee for sending
the transaction amount along the channel (ui, ui+1). This is to reflect the fee
ui would charge for forwarding the transaction to ui+1. Figure 1 illustrates this
process where the receiver ur sends a message with the transaction amount x to
all of ur’s neighbours. Upon receiving the message from ur, ui+1 adds a fee of
fui+1,ur

(x) to the transaction x. Messages with this updated transaction amount
of x+ fui+1,ur

(x) would be sent to all of ui+1’s neighbours.

Fee computation for messages from sender. The fee computation for the
sender and the nodes that receive messages with the Sender tag is trickier. Al-
though the sender knows the transaction amount x, they do not know the total
amount they would have to send at the end of the protocol as it would include
the fees along the path which is still unknown. Thus the sender would have to
add an estimate of the total fee of the path, δ, to the transaction amount in
their initial message. Each node that receives a message with the Sender tag,
updates the transaction amount to subtract a fee for each edge they propagate
the message to. This is to account for the fees the node will charge to forward the
transaction. For instance in Figure 1, the node ui−1, upon receiving a message
with transaction amount x + δ, subtracts fui−1,v(x + δ) from the transaction
amount before forwarding the message with this new transaction amount to the
node v. The node ui−1 does the same but subtracts fui−1,ui

(x + δ) from the
transaction amount before sending the message to ui.

Delay time computation. Let d be a publicly available delay function that
maps fees to delay times. Let du,v denote the delay time for the total fee for
sending an arbitrary but fixed amount x over the channel (u, v), i.e., du,v =
d(fu,v(x)). Every node (except the sender and receiver) computes a delay time
with the delay function d and the fees computed as described above. In Figure 1
for instance, since the sender us and receiver ur do not have fees, us and ur will
send their exploratory messages immediately. The node ui+1 will wait dui+1,ur
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us ur
ui−1 ui

x

x

x

ui+1

x+ fui+1,ur
(x)

x+ fui+1,ur
(x)x+ δ

x+ δ

x+ δ

x+ δ − fui−1,ui
(x+ δ)

vx+ δ − fui−1,v(x+ δ)

Fig. 1: Propagating exploratory messages from sender and receiver in the
Forward-to-All protocol. Each directed edge (u, v) is labelled with the transaction
amount in the message that u sends to v.

before forwarding the message to ui, and ui−1 will wait dui−1,ui
before forwarding

the message to ui.

4.2 Forward-to-All Notification Phase

Upon receiving a new message, a node checks its identifier with the identifiers of
the stored messages to see if the message identifiers can be associated together.
When a node ui finds an association of identifiers that indicate two messages are
from the sender and receiver of a given sender-receiver pair, ui begins a process
of notifying both sender and receiver that a path exists between them. We denote
the two nodes that sent ui the associated sender and receiver messages by ui−1

and ui+1, respectively. We also denote the transaction amounts in these messages
as xs and xr respectively. Then, ui immediately sends ui−1 a message with the
identifier and amount xs (resp. xr to ui+1). Both ui−1 and ui+1 then identify the
nodes that sent them the messages with the same identifier and forward these
messages to these nodes. Refer to Figure 2 for an illustration of the process.

uius

ur

ui receives both messages from the sender and the receiver

ui−1

ui+1

NotificationNotification Notification

NotificationNotification

Notification

Fig. 2: Sending informative messages back to sender and receiver.

This process repeats itself until the sender and receiver get the message. At
this point, the sender has enough information to proceed with the transaction. In
particular, the sender can easily compute the total fee of the path from x, x+δ, xs

and xr (communicated by the receiver).

Optimality of the discovered route. Using delay guarantees that in Forward-

to-All, either the notification message corresponding to the shortest path (subject
to the accuracy of the fee estimation of the sender) always reaches the sender
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first, or the sender can find out if someone on the path deviated from the delay
protocol. For example, let L∗ be the optimal path from us to ur and L′ be a
strictly more expensive path. Suppose several adversarial nodes on L′ immedi-
ately forward messages without delay and as a result, us receives the notification
message from an intermediate node on L′

first. Since us knows the time they sent
the first exploratory messages, us can extract the fees from the message received
and check if the total delay time on this path is larger than the difference of the
current time and the time us sent the first exploratory messages.

4.3 Forward-to-All Stopping Phase

When both sender and receiver are aware that a path exists between them and
the sender is satisfied with the cost of the path, both sender and receiver can
stop the protocol by sending a stop message with their identifiers to the nodes
they sent the exploratory messages to. Nodes that have not yet sent the ex-
ploratory message to their neighbours would, upon receiving the stop message
with the identifier, stop the message propagation. Nodes that have already send
the exploratory messages would forward the stop message to the neighbours they
sent the exploratory message to. This process is fast and thus will reach the slow
propagation of the exploratory messages.

4.4 Degree-Proportional Random Walk

The Degree-Proportional Random Walk protocol is analagous to the Forward-to-

All protocol with the exception that each node only forwards the message to one
neighbour. Specifically, each node chooses a neighbour to forward the message
to randomly with probability proportional to its degree. Thus, the messages
are propagated according to two weighted random walks on the network, one
starting from the sender and the other from the receiver, with the weight of any
directed edge (u, v) corresponding to the degree of v. We observe that due to
the probabilistic nature of Degree-Proportional Random Walk, optimality of the
discovered path is not guaranteed unlike in Forward-to-All.

4.5 Improving Privacy

From the messages that originate at the sender and receiver and propagate
through the network, we only need the property that one can efficiently recognise
when a message from both is received. The simplest solution is to simply sample
some random nonce I and propagate it together with a one bit tag specifying
whether it is a sender or receiver originating message.

These messages are, however, completely linkable. This is unfortunate as it
means that even if many path finding protocols are executed over the network
at the same time, a potential adversary that controls some nodes in the network
will still recognize with certainty which messages belong to the same path finding
request. Thus, we do not leverage the fact that many protocols are running at
the same time to improve privacy.
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Making messages unlinkeable using bilinear maps. We can improve un-
linkability by using a bilinear map [12] e : G1 × G2 → GT (such a map allows
“for one multiplication in the exponent” as e(ga1 , g

b
2) = ga·bT where g1, g2, gT are

generators of G1, G2, GT ) for a group where the DDH assumption holds in G1

and G2. Concretely, the sender and receiver sample a random x and then the
sender, for every outgoing edge, samples a random r and propagates (gx·r1 gr1) as

the identifier, while the receiver propagates (g
r′/x
2 , gr

′

2 ).
A node that receives (gx·r1 , gr1) (similarly for the receiver tuples) propagates

it only after re-randomizing it by exponentiating both elements with some fresh
r′ which gives a tuple (gx·r

′′

1 , gr
′′

1 ) where r′′ = r · r′. This way an adversary
(who does not know x) will not be able to distinguish a pair of tuples of the
form (gx·r1 , gr1), (g

x·r′

1 , gr
′

1 ) from random, and thus cannot decide whether they
belong to the same instantiation of the path finding protocol. We stress that the
unlinkeability is limited as it only holds if the adversary has access to messages
originating either only at the sender or only at the receiver. This is inherent
as we need parties who receive tuples (a, b) and (a′, b′) originating at both to
efficiently recognize a path is found by checking whether e(a, a′) = e(b, b′) as

(a, b) = (gx·r1 , gr1), (a
′, b′) = (g

r′/x
2 , gr

′

2 ) ⇒ e(a, a′) = e(b, b′) = gr·r
′

T

Quantising the transaction and encrypting the fees. Messages that con-
tain the exact transaction amount are also linkable, even when fees are added,
as the fees are typically miniscule compared to the transaction amount. To re-
duce this linkability (at the cost of fee accuracy), the sender and receiver can
quantise the amount of the transaction by rounding it up to a predefined value
(for instance, a power of 2). Then, instead of adding the fees to the quantised
transaction amount, nodes encrypt their fees using an additive homomorphic
encryption scheme such as additive ElGamal encryption. If several protocols are
running simultaneously on the network, nodes will see many messages with the
same quantised transaction amount, effectively reducing linkeability.

5 Analysis and Evaluation

In this section, we empirically study the efficiency, optimality and privacy of
our family of protocols described in Section 4 on a recent snapshot (September
2021) of the Lightning network [9], which comprises of 13780 nodes and 63518
channels. We parameterise our family of protocols by β ∈ (0, 1] which repre-
sents the proportion (rounded up to the nearest integer) of neighbouring nodes
in the Degree-Proportional Random Walk protocol that any node chooses to pass
messages to. We note that β = 1 corresponds to Forward-to-All. In our experi-
ments using the Lightning network, we chose 1000 random pairs of sender and
receivers and ran our protocols for selected values of β with these random pairs.
Our choices of β can be seen in Table 1 which also presents a summary of our
results.
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5.1 Efficiency

We measure the efficiency of our protocols by the communication overhead. This
is measured by the average number of involved nodes in one route discovery
attempt, i.e., the number of nodes that receive at least one message in any given
run of our protocol. As we can see from the second column of Table 1, the
expected number of involved nodes in a single route discovery attempt ranges
from 16 (0.1% of the network) to 459 (3% of the network) with the smallest
value corresponding to sending messages to just 1 neighbour and the largest
value corresponding to Forward-to-All.

We are also interested to see how our protocols perform as the Lightning
Network scales in size. To do so, we perform simulations of our protocols on
Barabási–Albert (BA) graphs. The BA model [7] is a popular algorithm to cre-
ate scale free networks using a preferential attachment mechanism. Many real
world networks, including the Lightning network, are characterized as scale-
free [6,22]. Figure 3 presents the average communication overhead as well as the
average ratio of the length of the found path over the optimal path. Our empir-
ical simulations show that the communication overhead for the BA graph with
20000 nodes is similarly low (2%) when compared to the Lightning Network. We
finally complement our empirical analysis with a theorem (proof in Appendix
D of [4]) which states that for BA graphs the communication overhead of the
Degree-Proportional Random Walk protocol scales sublinearly in the number of
nodes n.
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Fig. 3: Efficiency and optimality of our routing algorithms on Barabasi-Albert
graphs

Theorem 1. The expected number of involved nodes in the Degree-Proportional

Random Walk protocol on a BA graph with n nodes is O(
√
n · log2 n

log log n ).
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5.2 Optimality

The fee-proportional delay function that we described in the Notification Phase
of Section 4 guarantees that the first message that reaches the sender and the
receiver corresponds to the shortest path in Forward-to-All. There is no such guar-
antee, however, for our protocols in the case where β < 1 due to its probabilistic
nature. To measure the optimality of the discovered path for our protocols when
β < 1, we look at the average ratio of the discovered path length over the length
of the shortest path for various choices of β in the 1000 runs as described above.
In the third column of Table 1, we observe that protocols with β < 1 return
longer paths on average compared to Forward-to-All, as expected. However, even
for small values of β, e.g., β = 0.01, the average ratio is no more than 2.

β # involved nodes len(found path)
len(shortest path) Recall

only 1 neighbour 16 3.36 0.129
1% 34 1.54 0.129
10% 86 1.14 0.191
20% 133 1.10 0.249
40% 277 1.07 0.29
80% 431 1.01 0.371
100% 459 1 0.43

Table 1: Summary of the efficiency, optimality and privacy of our protocols on
the Lightning Network, run with budget 0.15 in our estimation of recall.

5.3 Privacy

We empirically measure the privacy of our protocols using the notion of recall as
defined in Section 3.3. We stress that there are two integral components of our
notion of recall. The first is the corruption strategy of the adversary, which is used
by the adversary to choose nodes up to the corruption budget B to corrupt. The
second is the choice of estimator the adversary uses to guess the source and sink
of an instance of the route discovery protocol. We will first describe 3 corruption
strategies, and then define the first spy estimator. We further show that the first
spy estimator is in general a good guessing heuristic for the adversary.

Corruption strategies. The first strategy, called random corruption, involves
choosing nodes at random in the network to corrupt (and all their edges) until the
total number of corrupted edges is less the adversarial budget B. In the second
strategy, termed well-connected corruption, we first sort the nodes in the network
based on their degree and then sequentially corrupt nodes in descending order
to their degree until the budget is depleted. The intuition behind this strategy is
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14 Z. Avarikioti et al.

that high-degree nodes tend to serve as hubs that route a large proportion of the
transactions in the Lightning Network [9,1]. However, this strategy assumes the
adversary has full knowledge of the degree of all nodes in the network, which is
not the case in private PCNs. To achieve similar results with only local knowledge
of the graph, we introduce our third strategy, called random hub corruption. In
this strategy, the adversary starts with a random node, but instead of corrupting
the node, it randomly corrupts one of its neighbours. This process continues until
the budget is depleted. Intuitively, the majority of nodes in a PCN are users that
are connected to high-degree hub nodes. As such, there is a high chance that a
random neighbour of a selected node is a hub node. An algorithmic description
of all 3 corruption strategies is given in Appendix B.1 in our extended version [4].

First spy estimator. The choice of estimator in our experiments is the first-
spy estimator [30], which is simply guessing the first honest node that passes
a message from the protocol to any adversarial node as the source. We justify
our choice of estimator with the following lemma (proof in Appendix B.2 in our
extended version [4]) which shows that the first spy estimator is optimal in a
restricted setting where messages are not re-randomised, sender and receivers
are randomly chosen, and timing assumptions are not taken into account.

Lemma 1. For Degree-Proportional Random Walk (without re-randomisation),
when sender-receiver pairs are chosen uniformly and independently from honest
nodes and both propagate their messages independently and randomly, the first
spy estimator is the Maximum a Posteriori (MAP) estimator.

We stress that our theoretical results hold in a restricted setting which does
not mirror the realistic setting which we run our experiments on. Indeed in
Appendix B.4 in our full paper [4], we highlight some limitations to the first spy
estimator under more realistic assumptions. Nevertheless, we believe it is a good
first step guessing heuristic and we leave developing stronger theoretical results
in the realistic setting as an interesting direction of future work.
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Fig. 4: Average recall over 1000 random runs of the protocols in the Lightning
network for different corruption strategies
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Average recall. Figure 4 presents the average recall for each of the corrup-
tion strategies given the first spy estimator over 1000 runs of each protocol. The
well-connected and random hub corruption strategies perform strictly better in
terms of recall for all β values compared to random corruption. Moreover, ran-
dom hub corruption performs almost equally well compared to well-connected
corruption and thus is a good choice to use in practice when there is only partial
information known about node degrees. Finally, our plots show that the adver-
sary achieves the highest average recall with Forward-to-All and the lowest with
Degree-Proportional Random Walk.

Optimality and efficiency/privacy trade-off. In Forward-to-All, nodes for-
ward messages to all their neighbours, and as a result a large fraction of the
network is involved in the route-discovery process, which as we see in Section 5.1
and Section 5.3 has negative impact on the efficiency and privacy of the proto-
col. On the other hand, reaching every node is the only way to guarantee the
shortest path is always found. In Degree-Proportional Random Walk, each node
just forwards messages to one neighbour and thus only a very small fraction of
the graph is involved. However, as we see from Section 5.1 the paths are longer
on average. We note that β values in between these extremes allow users to trade
off between optimality and efficiency/privacy.

6 Related Work

Existing work on route discovery in PCNs can be broadly classified into two cat-
egories: solutions which focus on efficiency, and solutions which focus on privacy.

On the efficiency front, Flare [21] and SilentWhispers [15] route payments
through highly connected nodes to improve the scalability of route discovery.
SpeedyMurmurs [24] and VOUTE [23] employ a similar routing technique called
prefix embeddings, which makes the process even faster. These solutions require
nodes to have global knowledge of the network, whereas we present a protocol
that does not require any knowledge of the PCN topology. Spider Network [25]
splits payments into smaller units and routes them over multiple paths using
waterfilling. However, this does not guarantee the discovery of an optimal path,
whereas our protocol guarantees optimality by adding a fee-proportional delay
in the route discovery process. Flash [31] uses a modified max-flow algorithm
to find the optimal path, but also requires nodes to have global knowledge of
the network. Perun [2] avoids routing through intermediaries altogether by in-
troducing the notion of virtual channels. However, this does not solve the route
discovery problem.

On the privacy front, MAPPCN [29] focuses on anonymity and privacy during
transaction execution, but does not address the issue of route discovery as users
are required to know the payment path. LightPIR [19] uses private information
retrieval to perform private route discovery efficiently, but does not account for
optimality in the case of private channels. In contrast, our protocols employ
local probing, thus our solutions are still optimal even with private channels.
Recently, [27] uses MPC to perform privacy preserving routing of transactions,
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however it is only limited to fixed star graph topologies. Finally, [14,13] present
routing protocols that also do not assume information about the topology of the
involved PCN, but lack formal definitions of privacy and evaluation metrics.

7 Conclusion

We presented route discovery protocols that are suitable for private PCNs. We
first formalized the ideal notion of privacy in PCNs, and showed that ideal
privacy is feasible yet inefficient. We then presented a family of practical route
discovery protocols which trade off between optimality and efficiency/privacy.
To evaluate their privacy leakage, we introduced and leveraged a novel practical
notion of privacy.

The simulation of our protocols on the Lighting Network and Barabási–Albert
graphs validates our approach, unveiling the aforementioned trade-off. We also
observe that our protocols involve a very small fraction of the network on aver-
age, showcasing we can indeed design efficient and private routing algorithms
that rely on minimal to no assumptions on the topology of the PCN with
almost optimal results. From our simulations on Lightning we further deduce
that an effective strategy for an adversary is to connect with high-degree nodes,
i.e., payment hubs. We also discover through our empirical simulations on large
Barabási–Albert graphs that the efficiency and privacy of our algorithms per-
form much better on average compared to our theoretical upper bound, which
demonstrates that our algorithms also scale efficiently with the size of PCNs.
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Abstract. This paper reports on a comparative study of two recent
software development kits (SDKs) for so-called “Application-specific
Blockchains” that support development of smart contracts in general-
purpose languages. Specifically we report on the similarities and differ-
ences between Cosmwasm and Polkadot smart contracts written in the
Rust programming language.
To help guide our comparative study we start from a representative set of
Solidity smart contracts, namely an English auction contract and a Non-
Fungible Token (NFT) contract. Both contracts offer insights into the
requirements that must be offered by a smart contract SDK. We develop
a concrete baseline for comparison between Cosmwasm and Polkadot
by translating the two Solidity contracts into Rust, using the respective
SDKs.
Our comparison defines a starting point for better understanding the
design space of smart contract SDKs, and what the advantages and
disadvantages are of different API interfaces and execution models.

Keywords: Smart contracts · API design · Rust

1 Introduction

The Ethereum [5] blockchain pioneered the concept of a “programmable” block-
chain by allowing users to deploy small programs on the blockchain, so-called
smart contracts. Such smart contracts have been widely adopted for use cases
ranging from creating custom (fungible and non-fungible) tokens, auctions, de-
centralized exchanges and community-controlled token vaults (DAOs).

Despite the widespread adoption, smart contracts in Ethereum remain mostly
limited to small-scale programs (both in program size as well as in runtime
execution). The most widely used smart contract language, Solidity, is a domain-
specific language designed specifically to write logic to execute on the Ethereum
Virtual Machine (EVM). Despite its domain-specific design, programs written in
Solidity are prone to a wide range of vulnerabilities, many of which have led to
large financial losses [2].

In addition, Ethereum has been a victim of its own success, with network
congestion leading to more and more smart contracts competing for limited
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transaction throughput and block storage, leading to large “gas fees” (transaction
costs), rendering many use cases too expensive to run as contracts on the
blockchain.

In response to these issues, application-specific blockchains, also called “App-
chains”, have arisen. In contrast to Ethereum where all contracts share a single
common blockchain, appchains support multiple independent blockchains that
each support one, or a few, application use cases. To avoid weakened security or
interoperability, most appchain platforms offer built-in ways for these separate
chains to interconnect, enabling shared security and transferability across chains,
to varying degrees.

Another distinguishing feature of appchain platforms compared to Ethereum
and its EVM, is their support for a general-purpose runtime environment to host
and execute smart contract code. Here, WebAssembly [9] is a widely used choice
because of its performance, portability across operating systems and instruction
sets, sandboxed execution environment, and common compilation target for a
large number of source languages.

WebAssembly is a portable bytecode format, but does not natively support the
features required to implement smart contracts and to interact with a blockchain
environment. Appchains must thus make an API available to the WebAssembly
code, and this API is usually exposed to the higher-level source language in
the form of a Software Development Kit (SDK) that helps developers design,
deploy and debug high-level contract code. The Rust programming language
is a widely adopted language for this purpose, because of its combination of
generating efficient code, small binaries, and expressive type system and memory-
safe programming model.

In this paper we perform a comparative study of the execution layer for
the two most popular appchain platforms, namely Cosmwasm and Polkadot.1

Both appchains offer a Rust SDK for developing WebAssembly-based smart
contracts (Section 2). To help guide our comparative study we start from a
representative set of Solidity smart contracts, namely an English auction contract
and a Non-Fungible Token (NFT) contract (Section 3). Both contracts offer
insights into the requirements that must be offered by a smart contract SDK
(Section 4). We develop a concrete baseline for comparison between Cosmwasm
and Polkadot by translating the two Solidity contracts into Rust, using the
respective appchain SDKs (Section 5). Our comparison provides a starting point
for better understanding the design space of smart contract SDKs, and what
the advantages and disadvantages are of different API interfaces and execution
models (Section 6).

1 One metric for popularity is to look at active contributors to code repositories
on GitHub, linked to appchain-related projects. According to Electric Capital’s
yearly Web3 Developer Report at https://www.developerreport.com/ the top four
projects based on total number of contributors on Dec. 31, 2023 were Ethereum,
Polkadot, Polygon and Cosmos. Of these four only Polkadot and Cosmos are appchain
projects (Polygon is an Ethereum side-chain and reuses the EVM for compatibility).
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2 Background on Application-Specific Blockchains

Figure 1 offers a high-level overview of how smart contracts are compiled and
deployed in Ethereum, Cosmwasm and Polkadot.

Fig. 1. Overview of smart contract compilation and deployment across different
blockchains

Cosmos [10] is a network of interoperable blockchains, called Cosmos zones,
built on the CometBFT consensus protocol. The project also offers the Cos-
mos SDK to allow blockchain developers to easily set up their own blockchain.
Cosmwasm is a separate open source project to add support for WebAssembly-
based smart contracts to any blockchain built with the Cosmos SDK. In addition,
Cosmwasm is also the name of a public blockchain with built-in support for
deploying WebAssembly smart contracts, similar to the public Ethereum network.
Cosmos zones can communicate via a Cosmos hub, a central Cosmos network
designed to relay messages, by using the Inter Blockchain Protocol (IBC).

Polkadot [14] is a multi-chain blockchain platform that offers a “relay chain”
to which custom appchains, called “parachains”, can be connected. Through
this relay chain, parachains can communicate with each other via Cross-Chain
Messages (XCM). To be allowed to connect to the relay chain, each parachain
needs to participate in an auction and bid to get a slot as these are limited.
Nodes of the relay chain will also serve as validators for the parachain to increase
security. A custom Polkadot runtime can be composed of palettes (similar to
modules). One of those palettes, the contracts palette, supports ink!, an embedded
domain-specific language (eDSL) in Rust that compiles to WebAssembly.
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3 Running example: NFT Auction

To be able to compare differences between the appchains, we will use two
representative contracts, as most real world use cases don’t consist of just one
smart contract, but multiple which call each other. The first is an NFT Contract
(ERC721), the second an NFT auction (English Auction), both based on examples
from Solidity by Example [12]. The interaction between the two contracts and
their participants is visualized in Figure 2.

NFT Contract 
Owner

Alice

(Seller)

Winner

Bidders

1'

5. Transfer to Auction

8. Transfer to Winner

4
'

8'Mint NFT for Alice1.

3. A
pprove Auctio

n

2. Create Auction

4. Start Auction

7. End Auction

6. Bid         Call

        Ownership

NFT Contract

Auction Contract

Fig. 2. Interaction Diagram of an NFT auction example

The interaction flow is as follows: 1. The NFT Contract Owner Mints a new
NFT for Alice. 2. Alice creates a new NFT Auction Contract to sell the NFT. 3.
Alice adds the NFT Auction Contract as approver of the NFT. 4. Alice starts the
auction which triggers 5., the NFT Auction contract makes itself, as approver,
the new owner of the NFT. 6. Multiple bidders make a bid for the NFT. 7. Alice
ends the auction when the deadline has been reached which triggers 8., the NFT
is transferred to the Winner (the person with the highest bid) and Alice gets the
highest bid transferred to her account (not visualized).

3.1 The NFT Contract

For the NFT contract we use a simplified NFT contract based on the ERC721
standard [8]. Anyone can instantiate a new NFT Contract and becomes auto-
matically the NFT contract owner. Only the contract owner is allowed to Mint

new NFTs for a specified NFT owner. The NFT owner can allow another party
to manage this specific NFT via the Approve action. Either the NFT owner or
the approved party can transfer the ownership of the NFT to someone else with
the Transfer action. Anyone can query the smart contract to check who the
owner is of a specific NFT (OwnerOf), which NFTs belong to a certain owner
(BalanceOf) and can request who the approver is for an NFT (Approved).

The NFT contract and its available methods are represented in Table 1.

DPM & CBT 2024

215



Rust smart contract SDKs in Application-specific Blockchains 5

Table 1. NFT Contract Methods

Action Role Conditions (NFT Contract nc, NFT n, Caller c)

Instantiate Contract Owner {}
Mint Contract Owner {nc.Owner == c}
Approve Seller {n.Owner == c}
Transfer Seller or Approver {n.Owner == c OR c ∈ n.Approved}
OwnerOf Anyone {}
BalanceOf Anyone {}
Approved Anyone {}

3.2 The Auction Contract

The second smart contract is an English auction. An NFT owner (Seller) can
create a new auction and becomes owner of the contract. After granting approval
to the NFT contract to manage the NFT, the seller can Start the auction. At
this moment the end time of the auction is determined and the auction contract
will take ownership of the NFT until the auction ends. Once started, everyone can
bid on the NFT using the Bid method with funds attached. A bid is accepted if
it is higher than the current highest bid and the auction has not ended. Previous
bidders, except the current highest bidder, can Withdraw their previous bids.
When the set amount of time has passed, anyone can End the auction. The
contract will check if the minimum bid, set at creation, was reached and if so
it transfers the NFT to the highest bidder and the seller is payed out. If the
minimum bid was not reached, the NFT is returned to the seller.

Table 2 summarizes the methods provided by the NFT Auction contract.

Table 2. NFT Auction Contract Methods

Action Role Conditions (Auction a, NFT n, Caller c, Bid b)

Instantiate Seller {}
Start Seller {a.Owner == c AND a ∈ n.Approved)}
Bid Anyone {a.Started AND a.EndTime > now AND b.Value > a.StartBid}
Withdraw Anyone {c != a.HighestBidder}
End Anyone {a.Started AND a.EndTime <= now}

4 Smart Contract Framework Requirements

To be able to implement the smart contracts defined in Section 3, the appchain
platform needs to fulfill certain requirements in its smart contract framework.
We will give an overview of these requirements in this section.

Message Endpoints Each contract requires at least one accessible message
endpoint for users and other contracts to interact with it.
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Identification A user or contract needs to be identifiable to be able to link
their digital assets (fungible or non-fungible) to them. Most blockchains represent
user or contract identity with an address, based on the public key of the user
or contract. Identification is used in the example contracts to assign ownership,
transfer funds and for the auction contract to call the NFT contract.

Ownership Different digital assets, like fungible tokens, non-fungible tokens,
but also smart contracts can be owned by a user or contract. This implies that
only that user or contract has the exclusive authority to transfer or use the assets.
In the auction example, ownership is used to determine who owns the smart
contracts, who owns the NFT and for the balance of native tokens of each party.

Access Control Some actions can only be performed by users who fulfill
certain conditions, e.g., the user needs to be owner or approver of a token to
transfer it. How can a smart contract enforce this? In the example only the NFT
owner and the NFT approver are allowed to transfer the NFT.

Transactionality In many situations a set of actions must either all succeed
or all fail. How does the framework enable a smart contract to enforce this kind
of atomicity rules? At the end of the auction, the NFT is sent to highest bidder
and the funds are transferred to the seller. If either of these actions should fail,
both action are reverted.

Persisting State Most smart contracts need to be able to maintain a
persistent state across different function calls. State is required in the auction
example in many cases, for example to keep track of which NFTs there are and
who owns them. Or who placed already a bid in the auction and for what value.

Token Transfer Blockchains typically have a cryptocurrency, which is the
native asset which can be traded with other users. This can be used to pay for
a service like the execution of a contract or to buy a digital asset. There are
also non-native tokens, which are non-unique (fungible) and can be exchanged
in a similar way. The example makes use of native tokens to place a bid in the
auction and to pay out to the seller.

Contract Metadata A contract needs to be able to acquire some information
about itself relative to the blockchain which is not maintained in its own state.
Examples of this are the contract address and the token balance of the contract.
The auction contract needs to know its own address to transfer the NFT or
transfer native tokens.

Blockchain State Smart contracts must be able to inspect the current state
of the blockchain, like the current block height, look up previous transactions or
access some other functionality offered by the blockchain like address validation.
Address validation is required in the example to validate addresses passed in
function parameters.

Notion of Time This can be considered as part of the Blockchain State but
it deserves some extra attention. Real world use cases require a notion of time.
A smart contract could base itself on the current block height, but that’s not
always an accurate measurement. Therefore most blockchains encode the current
real world time as a timestamp in the blocks. This notion of time is required
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Fig. 3. Key interfaces of a Cosmwasm contract

in the NFT auction contract to be able to determine whether the auction has
ended.

Call Smart Contracts Smart contracts need to be able to interact with
other contracts for many different reasons, size limitations of a contract, dynamic
adaptability, interacting with already existing contracts, ... By calling a smart
contract we mean executing a method on the smart contract which changes the
state of the contract. The auction smart contract needs to be able to call the
NFT smart contract to transfer the NFT for which the auction was created.

Query Smart Contracts Similar to calling smart contracts, a contract
needs to be able to query the current state of an existing contract. A query will
not change the state of the other contract. This can be used by the auction
contract to check whether the NFT is actually owned by the seller.

Events The decentralized application (dApp) ecosystem consists of more
than components on the blockchain. To communicate with external applications,
smart contracts emit events to notify that something noteworthy has happened.

5 Analysis of Appchain Rust SDKs based on smart

contract requirements

To be able to understand how different appchain SDKs support the requirements
that we put forward in Section 4, we implemented the NFT Auction presented in
Section 3 in both Cosmwasm and Polkadot.2 In this section we will elaborate on
how each technology handles smart contracts with its provided smart contract
SDK.

5.1 Smart contracts in Cosmwasm

Figure 3 offers an overview of the key interfaces for a smart contract in Cosmwasm.

2 The source code of the smart contracts is available at https://github.com/JvHKuL/
RustSDKCompare.
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Cosmwasm is a module that can be used in any Cosmos appchain, but there
already exists an appchain with the same name, Cosmwasm, that allows you to
deploy your own smart contracts on a publicly hosted shared blockchain, similar
to e.g. the Ethereum mainnet. At the moment Rust is the main programming
language for Cosmwasm. Although the normal Rust compiler is used to com-
pile the Rust code to WebAssembly, Cosmwasm does impose certain interface
requirements for it to be compatible with the module. Cosmwasm offers different
Rust crates to facilitate this setup and a cosmwasm-check utility to validate the
compatibility of the resulting contract.

Listing 1.1. Cosmwasm contract entry point signatures

1 #[entry_point]

2 pub fn instantiate (Depsmut, Env, MessageInfo, InitMsg) ->

3 StdResult<Response>

4 #[entry_point]

5 pub fn execute (DepsMut, Env, MessageInfo, ExecuteMsg) ->

6 StdResult<Response>

7 #[entry_point]

8 pub fn query (Deps, Env, QueryMsg) -> StdResult<Binary>

9 #[entry_point]

10 pub fn reply(DepsMut, Env, Reply) -> StdResult<Response>

Each contract exposes so called “entry points” for the appchain to interact
with it. Cosmwasm defines four basic entry points, instantiate, execute, query
and reply (Listing 1.1). A valid Cosmwasm smart contract expects at least an
instantiate entry point.

In Cosmwasm the bytecode of a contract is first uploaded to the blockchain.
This code can then be instantiated via the instantiate entry point, resulting
in a new instance of the contract with its own address and state.

The execute function is used to execute smart contract code that can alter
the state of the contract or blockchain.

The query function is used to query the state of the smart contract or
blockchain, without altering it.

Deps(Mut) is a utility parameter to communicate with the outer world. It
allows querying and updating the contract state, querying (not changing) other
contracts’ state, and gives access to an API object with a couple of helper
functions for dealing with Cosmwasm addresses.

Env represents the blockchain state when the message is executed. It contains
the chain height and id, current timestamp, and the address of the called contract.

MessageInfo contains the address of caller and the native tokens that were
sent with the request.

All functions return a StdResult<Response> returning either a value of type
Response or an Error.

Contrary to Solidity, Cosmwasm doesn’t allow the exposure of custom func-
tions as entry point. Instead Custom Message types are used to make the
distinction between what action needs to be triggered on the contract. This forces
the developer to declare a new message type for each functionality the smart
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contract needs to expose and avoids accidental exposure of functions. A message
enters the contract via one of the three basic entry points and is then dispatched
to the proper internal function based on the received message type.

Cosmwasm was designed this way because it follows the actor model [1].
Instead of directly executing calls on other contracts or appchain modules, a
contract must return a message via the response to a dispatcher, which resides in
the appchain. The dispatcher will then send the message to the proper contract or
module. The resulting response will then be relayed back to the original contract.
This approach has multiple advantages. There is loose coupling between the
contracts: only the exchanged data format, the message, needs to be agreed upon.
It avoids one of the most common problems in Solidity smart contracts, the re-
entrancy attack [2], by only sequentially treating calls in a contract, guaranteeing
that its state is finalized before a new message is processed. Cosmwasm assures
the atomic execution of the messages and their submessages by creating a save
point when a new external transaction is processed and performing optimistic
updates. If all goes well, the transaction is committed, if it fails, a rollback is
performed.

We will now analyse how the Cosmwasm SDK satisfies the requirements
offered in Section 4.

Message Endpoints Cosmwasm offers predefined message endpoints, called
“entry points”, primarily initiate, execute, query and reply. Rust enumera-
tions are used to distinguish different actions to be performed.

Identification Users and contracts are identified by their address. They have
a predefined prefix based on the appchain.

Ownership A distinction needs to be made between the ownership of native
tokens, a contract, or digital assets like NFTs. Native token ownership is handled
by a balance per account (address). For contract ownership the cw-ownable

utility crate provides macros to extend execute and query messages with default
values and functions to set and validate the current ownership of a contract.
Digital asset ownership is managed by the contract itself, typically by maintaining
a mapping between the owner address and the asset.

Access Control Access control for the owner is done via the previously men-
tioned cw-ownable utility functions, specifically cw_ownable::assert_owner,
which will throw a predefined OwnershipError. For other roles this is done by the
contract itself with conditional statements and internally stored role information.
In both cases the contract gets the caller information from the MessageInfo

parameter of the called function.

Transactionality Atomicity is guaranteed by the hosting environment via
the optimistic update and rollback mechanism. If a contract calls another contract,
and that call fails, the main contract can decide whether its state is still committed
or not. If there is a failure in the main contract, the state of both the main
contract and all called contracts is rolled back.

Persisting State Cosmwasm advises to use the cw-storage-plus package
which offers different classes that offer an abstraction on top of the standard
Storage class. It offers an Item class to store basic types or structs and also a
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Map. Important to note is that the developer is responsible for the loading and
saving of these classes to and from persistent storage. However there are a variety
of functions provided to hide this, e.g. a closure can be used to update a value in
the storage with loading and saving done automatically. (See Listing 1.2)

Listing 1.2. Cosmwasm storage handling using a closure

1 pub owned_tokens_count: Map<’a, &’a Addr, u32>

2 owned_tokens_count: Map::new(owned_tokens_count_key)

3 ...

4 self.owned_tokens_count

5 .update(deps.storage, &owner_addr, |old| match old {

6 Some(x) => Ok::<u32, ContractError>(x + 1),

7 None => Ok(1),

8 })?;

Token Transfer In CosmWasm, contracts are not called when tokens are
sent to them, but they can query their current balance via the deps.querier

parameter. Native tokens can be sent with a contract call. To access the amount
sent, the contract can query the info.funds parameter. Transferring tokens
from the contract to another address is done via a BankMessage attached to the
response, following the actor model. See Listing 1.3 for an example of the latter.

Listing 1.3. A token transfer using the Cosmwasm SDK

1 let bank_msg = BankMsg::Send {

2 to_address: caller.to_string(),

3 amount: vec![coin.to_owned()],

4 };

5 let resp = Response::new().add_message(bank_msg);

6 Ok(resp)

Contract Metadata The contract can find its own address in the Env

parameter. Token balance for any address can be queried by sending a BankQuery
through deps.querier.

Blockchain State and Notion of Time Information about the current state
of the blockchain is available in the Env parameter. This information includes
block height and the timestamp of the block. Cosmwasm offers also an API,
deps.api, to check the validity of an address.

Call Smart Contracts Calling another contract or module is done by adding
a new ExecuteMessage to the response of the current message. See Listing 1.4
for an example. To act on the result of the call, the message is encapsulated in a
submessage with the identifier of the current function and added to the response.
The dispatcher will send the result back to the reply entry point on the original
contract, where the reply is dispatched to the correct code based on the identifier
that was provided in the submessage.

Listing 1.4. Calling another contract using the Cosmwasm SDK

1 let erc_transfer_msg = erc721::ExecuteMsg::TransferNft {

2 recipient: env.contract.address.to_string(),

3 token_id: nft_id,
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4 };

5 let erc_transfer_msg = WasmMsg::Execute {

6 contract_addr: nft_contract.into_string(),

7 msg: to_json_binary(&erc_transfer_msg)?,

8 funds: vec![],

9 };

10 let resp = Response::new().add_message(erc_transfer_msg);

11 Ok(resp)

Query Smart Contracts Querying other contracts or modules can be done
via deps.querier. (See Listing 1.5)

Listing 1.5. Querying the state of another contract using the Cosmwasm SDK

1 let resp: erc721::OwnerOfResponse = deps.querier.query_wasm_smart(

2 nft_contract_addr.to_owned(),

3 &erc721::QueryMsg::OwnerOf { token_id: 1 },

4 )?;

Events Events are attached to the response of the current message, similar
to a BankMsg for a token transfer, and will then be published by the appchain.

5.2 Smart contracts in Polkadot

The ink! framework is an embedded domain-specific language (eDSL) to write
smart contracts in Rust that compile to WebAssembly. Figure 4 offers an overview
of the key interfaces using the ink! eDSL.

ink! offers its own CLI tool, cargo-contract, for setting up new contracts,
compiling them, but also for interacting with the application-specific chain (called
“parachain” in Polkadot).

The ink! eDSL uses Rust macros intensively to hide the complex underlying
mechanics and make it more user-friendly. Each ink! smart contract is preceded
by the #[ink::contract] macro and requires at least the following elements:
exactly one struct with the #[ink(storage)] tag for storing the state of the

Fig. 4. Key interfaces of a smart contract on a Polkadot parachain using the ink! eDSL
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contract, at least one function with the #[ink(constructor)] tag for initializing
the contract on creation and at least one function with the #[ink(message)]

tag which defines an entry point for the contract.
In Polkadot the bytecode of a contract is first uploaded to the blockchain. A

new instance of the smart contract can then be created by initiating it with one
of the defined constructors.

The messages that can be sent to the contract are defined as functions of the
storage struct, which is a very common pattern in Rust. (See Listing 1.6)

Listing 1.6. Structure of an NFT smart contract implemented with the ink! eDSL

1 #[ink::contract]

2 mod erc721 {

3 #[ink(storage)]

4 #[derive(Default)]

5 pub struct Erc721 {

6 token_owner: Mapping<TokenId, AccountId>,

7 ...

8 }

9 impl Erc721 {

10 #[ink(constructor)]

11 pub fn new() -> Self {...}

12 #[ink(message)]

13 pub fn balance_of(&self, owner: AccountId) -> u32 {...}

14 #[ink(message)]

15 pub fn transfer_from(&mut self, from: AccountId,

16 to: AccountId, id: TokenId,

17 ) -> Result<(), Error> {...}

18 }

19 }

Interaction with the blockchain environment is done via environment functions
which are available via a public crate function Self::env() in the constructor
or on self.env() for other methods.

ink! uses a synchronous approach to call or query other contracts which can
be done in 2 different ways: using contract references or using a builder API.

To use contract references the contract to be called needs to be imported in
the caller’s project and the contract needs to be instantiated from that project.
This can not be used to interact with contracts previously deployed on-chain.

The builder API can be used to call any smart contract compatible with the
contracts palette. However, the API is low-level and as the interface of the other
contract is not imported, it is not type-checked. See Listing 1.7 for an example.

Listing 1.7. Calling an external contract in ink! using the Builder API

1 let _my_return_value = build_call::<DefaultEnvironment>()

2 .call(self.nft) //Contract address

3 .call_v1()

4 .gas_limit(0)

5 .exec_input(

6 ExecutionInput::new(Selector::new(ink::selector_bytes!(
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7 "transfer_from")))

8 .push_arg(self.seller) //sender

9 .push_arg(self.env().account_id()) //address(this)

10 .push_arg(self.nft_id), //nftId

11 )

12 .returns::<ink::MessageResult<()>>()

13 .invoke();

We now analyse how the ink! eDSL covers the requirements from Section 4.
Message Endpoints A smart contract in ink! needs to have at least one

public function with the #[ink(constructor)]macro for initializing the contract
on creation and at least one public function with the #[ink(message)] macro to
process state-changing calls and queries without side effects. Each functionality
is implemented in a new public function.

Identification In most Polkadot parachains, user accounts and contracts are
identified by a 256-bit AccountId, which is often the public key of a cryptographic
key pair.

Ownership ink! has no built-in support for contract ownership. This means
that contract ownership is handled in the same way as digital asset ownership, by
storing ownership information in the contract’s state. Native tokens are stored
per AccountId and can be consulted via the self.env().balance() method.

Access Control Access control is managed by the contract itself with condi-
tional statements and internally stored role information. The caller AccountId is
retrieved via the self.env().caller() method.

Transactionality ink! uses a synchronous execution model. When the main
contract fails, all state changes are rolled back, including contracts called by the
main contract. In case the contract calls another contract, and that call fails, the
main contract has the option to handle the failure and still commit its own state.

Persisting State Each contract has exactly one Rust struct with the
#[ink(storage)] macro to store the contract state. ink! supports most common
data types, provides its own version of String and Vec. It also allows structs and
enums to be stored and provides a Mapping type. Initialization of the state is done
in the constructors. Loading and saving is handled by the #[ink(message)]

macro and is thus transparent for the developer. The macro will determine
whether the method is allowed to change the state or not, in case of a query, by
analyzing the method interface.

Token Transfer A method that can receive native tokens must be marked
with the #[ink(payable)] macro. The value received with the call can be deter-
mined with self.env().transferred_value() and the total contract balance
with self.env().balance(). Sending money from the contract is similar with
self.env().transfer(receiver_accountId, value).

Contract Metadata The contract AccountId, balance and the caller of
the method are all made available through functions on self.env().

Blockchain State Blockchain state can be queried through the self.env()
functions, for example self.env().block_number().

Notion of Time Like other Blockchain state information, the timestamp of
the last block can be found with self.env().block_timestamp().
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Call Smart Contracts and Query Smart Contracts Both call and query
are handled in a synchronous manner in ink!, depending on whether the contract
is instantiated by the calling contract, it can be included in the project and
allows for type checking at compile time. However if a call is to be made to a
previously deployed contract, the usage of a low-level builder API is required.

Events Events are defined by a struct with the #[ink(event)] macro. And
optionally the topic can be specified by #[ink(topic)] macro on the event fields,
which let the parachain index the events based on the topic. Events are generated
via the self.env().emit_event(...) function.

6 Qualitative and quantitative comparison of the SDKs

We now offer both a qualitative and a quantitative direct comparison between
the Cosmwasm and Polkadot SDKs based on our first-hand experience in im-
plementing the example contracts in each SDK. Table 3 summarizes the key
differences between the SDKs.

Table 3. Key differences of Rust smart contracts in Cosmwasm and Polkadot SDKs.

Cosmwasm Polkadot

Fixed set of entry points Open-ended set of entry points

Asynchronous inter-contract calls (actor
model). Type validation at compile time

Synchronous inter-contract calls. Prone to
re-entrancy attack

Explicit key-value storage. Developer re-
sponsible for saving and loading of state

Implicit storage of a single annotated
struct

Token transfer via BankMessage attached
to the Response

payable attribute required on function to
receive funds. Synchronous token transfer
via self.env().transfer()

Contract ownership with cw-ownable

crate
No built-in notion of contract ownership

Environment accessed via function param-
eters

Environment accessed via static functions

Events are attached to the Response Events are emitted via a function call

Our quantitative comparison consists of measuring the total lines of code
needed to implement both contracts in each SDK. Table 4 provides an overview
of the count of non-comment, non-blank source lines of code (SLOC) of the smart
contracts specified in Section 3 for Ethereum (Solidity), Cosmwasm (Rust) and
Polkadot (Rust with ink! eDSL).3 We took care to align the example code to
have the same functionality, and we excluded any code related to unit tests in
the count.

3 Tokei, which supports both rust and solidity, was used to perform these measurements.
https://github.com/XAMPPRocky/tokei
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Table 4. Comparison of example smart contract implementation lines of code.

Ethereum Cosmwasm Polkadot

NFT contract 72 313 184

Auction contract 63 318 217

Total 135 631 398

Perhaps unsurprisingly, Ethereum’s Solidity language enables the most com-
pact implementation with its tailored design. Both Cosmwasm and Polkadot Rust
implementations are significantly larger. Part of this is due to the coding style
and formatting rules of the Rust language. In addition, for Polkadot, the macro
annotations add verbosity, as well as inter-contract calls with the builder API.
Cosmwasm clearly has the most verbose implementation. This is in large part
due to its actor model interface, with more lines needed to define custom message
types and dispatching logic. However, the small difference in code count between
the two example contracts indicates that once the setup is in place, adding extra
functionality has less impact on the code count.

A final aspect of our qualitative comparison involves sharing some personal
experiences gained from porting the Solidity code to both SDKs:

Documentation Both Cosmwasm and Polkadot offer tutorials and docu-
mentation, but generally the right information is scattered across many sources.
The ink! documentation is more comprehensive, but still not complete enough to
serve as a single reference. ink!’s extensive usage of Rust macros hides a lot of
the complexity and results in a more straightforward migration from Solidity.

Scaffolding Polkadot offers a sample project to create a new smart con-
tract. In Cosmwasm, a new smart contract project is a normal Rust library
project, which needs to be manually customized or a template can be downloaded
from https://github.com/CosmWasm/cw-template. We felt that a Cosmwasm
project is more elaborate to set up, but once in place it is easy to extend and
avoids accidental exposure of unwanted functionality, as each message type needs
to be explicitly defined.

Testing Both SDKs offer frameworks that simulate the appchain and allow for
end-to-end testing. We found the Polkadot toolchain to be easier to use. It offers
a development node with initialised test accounts and a UI to facilitate contract
interactions. The Cosmwasm development node requires more configuration and
interaction can happen only via the CLI.

7 Related Work

Other comparative studies of smart contract languages and platforms exist in
the literature, but they do not focus specifically on Rust or the SDK aspects of
blockchain Dapp development. We review the most relevant studies below.

Bartoletti et al. [3] compare a variety of different smart contract languages,
but do not focus on the use of Rust and Webassembly as the execution layer. The
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authors do take into account the security implications of the language design and
the tooling ecosystem, which is an aspect we want to consider for Rust SDKs
as part of our future work (Section 8). Voloder and di Angelo [13] perform a
comparative study of different smart contract platforms, but focus on the entire
platform instead of the language and SDK aspects. Benahmed et al. [4] perform
a comparative analysis from the development and performance perspective of
the included platforms and only touch lightly on smart contract language design.

8 Conclusion and Future Work

We performed a comparative study of the Rust SDKs for developing smart con-
tracts on the two most popular appchain platforms, Cosmwasm and Polkadot.
Our study was guided by 13 requirements gathered from a representative pair of
Solidity contracts, namely an English auction contract that can autonomously
auction off an NFT (Non-fungible Token) managed by an NFT contract. Translat-
ing the two contracts to Rust using the Cosmwasm and Polkadot SDKs provides
a baseline comparison on how the SDKs cover these requirements.

Our analysis creates a starting point for better understanding the design
space of smart contract SDKs. Cosmwasm and Polkadot clearly occupy opposite
points in this space, with Cosmwasm offering a library-based API, programmer-
controlled storage and asynchronous inter-contract calls versus Polkadot’s eDSL
API, transparent storage and synchronous calls.

In future work we want to extend this research along three lines. First, we
want to gain a deeper understanding of the impact of the SDK design on smart
contract correctness (avoiding bugs), modularity (adding or changing function-
ality) and performance. Second, we want to extend the comparison to include
additional use case scenarios (contracts) and other blockchain SDKs with support
for WebAssembly (candidates include NEAR [11], Internet Computer [7] and
Solana [15]). We also want to add a more in-depth section on the usability of
the different SDKs and their ecosystems (user friendliness, available tooling,
documentation quality, community support). Third, inspired by research into
vulnerabilities in WebAssembly-based contracts [6] we want to extend the com-
parison from the Rust source code level to the WebAssembly bytecode level to
understand how the SDKs expose blockchain host functionality to their guest
Wasm contract modules.
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Abstract. In this paper, we present offchain runtime verification, a dy-
namic analysis technique to inspect blockchain executions without af-
fecting the blockchain itself.
Runtime verification (RV) is a technique that analyzes traces of system
execution based on monitors created from system specifications. There
are two flavors of RV: online and offline. In online RV, monitors run
in tandem with the system, either with their own resources or as code
inlined in the system implementation. In offline RV, monitors have a
dump of the system trace available. Examples of offline monitoring in-
clude post-mortem analysis and log inspection.
We present a novel notion of monitors running offchain while fetching
information about the blockchain evolution and its agents (e.g. external
users, bakers) to assess security and fairness, assign blame, and compute
explanations. Our monitoring infrastructure is both online—as the moni-
tors can receive new blocks incrementally—and offline since the monitors
can query the history of the blockchain. Online queries are necessary be-
cause monitors are created after the blockchain has been running and
relevant information is discovered online (e.g. who interacted in the past
with an address recently discovered to be malicious). We describe in
this paper an RV infrastructure for offchain monitoring for the Tezos
Blockchain.

1 Introduction

Blockchains [30] running smart contracts [43, 45] provide a trusted third party
where transactions are persistent and permanent. Smart contracts are immutable
pieces of code (the code is the contract) that govern the interaction between
agents using a blockchain without requiring a trusted centralized authority. We
can use smart contracts to describe sophisticated functionality, enabling many

⋆ This work was funded in part by PRODIGY Project (TED2021-132464B-
I00)—funded by MCIN/AEI/10.13039/501100011033/ and the European Union
NextGenerationEU/PRTR—by DECO Project (PID2022-138072OB-I00)—funded
by MCIN/AEI/10.13039/501100011033 and by the ESF—and by a research grant
from Nomadic Labs and the Tezos Foundation.
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applications like decentralized finances (DeFi), decentralized governance, and
Web3. Smart contracts are deterministic, i.e. the effects of executing smart
contracts are uniquely determined by the blockchain state and the transac-
tions parameters. Since smart contracts are immutable and they govern the
blockchain evolution (including the cryptocurrency exchanged), the correctness
of smart contracts is crucial and errors and vulnerabilities can lead to huge losses
(e.g. [37]). Both static [1, 6, 7, 11, 31, 36, 42]and dynamic techniques [2, 8, 14, 26]
have been proposed to approach the problem of smart contract correctness. Dy-
namic techniques analyze the evolution of the blockchain. Specifications describe
correctness criteria for smart contracts and monitoring code is generated which
extends the code of the contract. At runtime, monitors inspect smart contract
invocations, detecting violations and reverting illegal executions. This onchain

monitoring approach requires monitors to be deployed on-chain as part of smart
contracts themselves, because otherwise, once smart contracts commit their ef-
fects cannot be reverted. Onchain monitoring, in turn, affects the normal execu-
tion of smart contracts as monitors consume some gas.

In this paper, we explore an alternative monitoring technique where monitors
are deployed in a running system. Additionally, we seek non-intrusive monitors,
so that the execution of smart contracts is completely unaffected by the ex-
ecution of monitors. In these scenarios, monitors only observe a suffix of the
system original trace. There are three possible approaches to cope with this lack
of past observability: (1) ignore the missing past so monitors operate as if they
were observing the whole history, which is the simplest approach but can lead
to inaccurate results; (2) encode the lack of knowledge by modifying the specifi-
cation [22]; (3) access a log system to fetch the missing past and then continue
monitoring online with future events. We propose in this paper to follow the
third approach by combining offline and online monitoring.

Runtime verification (RV) is a formal method for analyzing execution traces,
one at a time. Traces are evaluated against monitors built from a given formal
specification [4,25]. Formal specifications are described using different languages
implementing different logics like linear temporal logic [39]. Most RV languages
describe a monolithic monitor that processes input events. Another approach is
dynamic parametrization, also known as parametric trace slicing, which quan-
tifies over objects and spawns monitors that follow independently the objects
observed as in Quantified Event Automata (QEA) [3]. One can think of it as
grabbing a magnifying glass when required.

Our approach is based on Stream Runtime Verification (SRV), pioneered by
Lola [13], which relates output streams of verdicts to input streams of obser-
vations. Originally designed for testing synchronous hardware, SRV has since
extended to other applications, including asynchronous and real-time systems
(e.g. [18]). HLola [9, 19, 21] is an implementation of Lola as an embedded DSL
in Haskell, which simplifies the specification development and runtime system.
HLola leverages Haskell data types for Lola streams. Our main technical con-
tribution is the extension of HLola with functionalities for retroactive dynamic

parametrization, where parametrized specifications can be specialized with infor-
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mation discovered dynamically (parametrization) and specifications can revisit
past events to obtain missing information (retroactivity).

The inspection of the blockchain evolution is a perfect application of retroac-
tive dynamic parametrization. The blockchain state, that is, the state of each
smart contract and wallet, is connected to the next state and monitors can
observe the whole execution history of the system. The challenge is to design
efficient monitoring runtime systems that compute only what is necessary to
produce a verdict.

Previous works have already inspected the blockchain evolution, mostly for
security concerns within blockchain ecosystems [5,10,12,16,23,24,27,28,28,29,33,
34,38,40,41,44]In general, these works focus on specific problems and are tailored
for performance but not correctness. In contrast, our framework is designed to be
applied to several scenarios, and it allows writting diverse specifications ensuring
that the monitors generated are correct with regard to the specification.

Running Example: Sandwich attacks. We introduce our running example,
a blockchain vulnerability known as sandwich attack. Decentralized Exchanges
(exchanges from now on) are a common application ofy blockchains to decentral-
ized finances (DeFi) where users trade tokens directly without intermediaries.
Sandwich attacks exploit the delay between transaction submission and trans-
action execution. When transactions are submitted for execution in blockchains
they are first added as requests to a distributed service, known as mempools,
containing transaction requests that have not yet been executed. The mempool
content is visible to all agents in the blockchain, including malicious actors which
inspect the mempool searching for victim transactions. In a sandwich attack, a
victim tries to trade a large amount of token A for B in an exchange which will
cause an increase in the price of token B. A malicious actor tries to “sandwich”
the victim transaction with two additional transactions to profit from the future
value increase of B. The first transaction, known as the frontrunning transac-
tion, buys tokens B and is scheduled before the victim transaction. In the second
transaction, known as the backrunning transaction, the malicious actor sells the
purchased tokens B at a major price obtaining a profit.

The frontrunning transaction increases the price of token B causing the victim
transaction to purchase B at a higher price than expected. Since token prices
often fluctuate, the price of a given token when a transaction is submitted might
differ from the actual transaction execution. Hence, most exchanges offer a way
to define price ranges where token purchases can occur, which limits the amount
of tokens B that the malicious actor can buy in the frontrunning transaction.
This limits malicious actor’s profits, but it does not prevent sandwich attacks
from happening.

Consider a user trading a large amount of Tezos (XTZ) for USDT on an
exchange. A malicious account can perform a sandwich attack purchasing USDT
with XTZ in the same exchange right before the victim’s transaction, and then
selling USDT for XTZ right after.

In the remainder of the paper, we focus on detecting sandwich attacks against
a specific account, denoted by a. We say that an account is malicious if it per-
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forms a sandwich attack to account a. We also identify suspicious wallets as
those that interacted directly with malicious accounts.

We implemented retroactive dynamic parametrization in HLola and report
the result of applying our implementation to detect sandwich attacks in the Tezos
blockchain [17]. An early prototype of this technique [35] was already used to
efficiently detect distributed denial of service attacks in realistic network traffic.
The contributions of this paper are:

– A new monitoring technique and its application for inspecting blockchain
histories, described in Section 3.

– A demonstration of how to apply the features of our framework to detect
sandwich attacks, identify involved actors, and compute attackers’ profits
and victims’ losses, shown in Section 4.

– Further applications of our monitoring framework, presented in Section 5.

2 Preliminaries

We introduce now necessary concepts of Blockchains and SRV.

Blockchains. Blockchains [30] were introduced as distributed infrastructures
that eliminate the need of trust third parties in electronic payment systems. Mod-
ern blockchains incorporate smart contracts [43,45], stateful programs stored in
blockchains controlling the functionality of blockchain transactions. Users inter-
act with blockchains by invoking smart contracts. Blockchain “actors” (users and
smart contracts) are identified by their account. We refer to accounts managed
by end-users as wallets.

A node is a machine that stores a copy of the blockchain (or at least a portion
of it) and keeps its local copy updated by regularly communicating with other
nodes in a peer-to-peer network. Public blockchains allow anyone to launch a
fully functional node. While nodes hold the entire history of the blockchain,
searching this data directly can be slow and resource-intensive. Therefore, there
is an ecosystem of tools, called indexers, that retrieve information from nodes
and process it to allow efficient search. Indexers crawl the whole blockchain
and store its data plus some additional information about the evolution of the
blockchain, offering an API to query this information. Each API restricts the
vision of the blockchain to what can be retrieved by such API language.

Stream Runtime Verification. Stream Runtime Verification (SRV) enriches
monitoring algorithms from runtime verification to handle arbitrary data. SRV
separates the logic of how data relates over time from the specific operations
of each datatype. In this paper, we use the extensible tool HLola [9, 19, 21], an
implementation of Lola [13] developed as an embedded DSL in Haskell.

Lola specifications consist of a set of typed input and output streams that
represent the input events observed by the monitor and the intermediate obser-
vations and outputs of the monitor, respectively. Specifications are defined as
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equations that declaratively describe the intended values of every output stream
variable in terms of the input and output streams. The set of stream expressions

of a given type is built from constants and function symbols as constructors, and
from offset expressions of the form s[k|d] where s is a stream variable, k is an
integer number and d is a default value of the type of s.

For example, offset expression balanceA[-1|0] represents the value of stream
balanceA in the previous step of time with 0 as the value used at the initial
instant. We define a stream balA_ok which checks that the balance of account A
is always above a predefined threshold of 100 tokens:

1 input Int balanceA

2 output Bool balA_ok = balanceA[now] > 100

Given values of the input streams, the formal semantics of a Lola specification
is defined denotationally as the unique collection of streams of values satisfying
all equations.

One of the benefits of the extensible tool HLola is its ability to define tem-
plates for stream definitions using static parametrization. These templates act
as abstractions, hiding specific concrete values, which are instantiated in static
time by the compiler. Following the previous example, we can define a more
generic version of the stream balA_ok as follows:

1 input Int balanceA

2 output Bool balA_checker <Int threshold> = balanceA[now] > threshold

3 output Bool balA_ok = (balA_checker 100)[now]

However, static parametrization cannot handle parameters whose values are dis-
covered at runtime. The values of all parameters must be determined before
the monitor starts executing. Users must ensure that the resulting specification
contains a finite number of streams.

3 System Architecture

Our solution is composed of a monitor generated from an HLola specification
and an external component interfacing with Tezos nodes and indexers called
adapter. When monitors start execution, we start an adapter process in charge
of receiving data from the Tezos blockchain and formatting it for the monitor
input. Once the monitor is online, up and running, it can send parametrized
queries to the adapter to fetch subtraces of the blockchain history. The adapter
can perform complex requests to the Tezos indexer, i.e. filtering and formatting
the received data before redirecting the result to the monitor. Through the use of
the adapter, monitors efficiently obtain newly relevant data that was previously
omitted or they can process blocks that were added to the blockchain before
the monitor was launched. The adapter allows monitors to be agnostic to the
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Fig. 1. Offchain monitoring system architecture

blockchain used, the indexer and the format of the data, so this architecture can
be used (adapting the adapter) to other blockchains like Ethereum. Fig. 1 shows
this architecture.

4 Features

In this section, we present the features of our framework and demonstrate how
to apply them for effective monitoring, including to detect sandwich attacks,
identify malicious and suspicious actors, and calculate attackers’ profits.

4.1 Monitor Side Features

Nested monitors. Nested monitors [20] allow using SRV specifications as data
functions inside other specifications. Nested specifications are created and ex-
ecuted dynamically. A nested monitor receives a finite subtrace of the system
original trace as input, typically obtained using HLola operator s[:n], which
creates a list with the next n values of stream s.

To define a nested specification, we need to provide a name so we can refer
to it later on and add an extra clause: return x when y where x is a stream of
any type and y is a Boolean stream. The type of the stream x determines the
type of the value returned when the specification is invoked dynamically. The
Boolean stream y dictates when the nested specification finishes. The nested
monitor returns the value of x at the first instant at which y becomes true

(without needing to inspect the rest of the list), or the last value of x if y is
never true. Nested specifications can be parametric, parameters are declared
after its name. We can execute nested specifications by using the HLola function
runSpec specifying the parameters and the input streams with which the nested
monitor will be executed.

Example 1. The following specification calculates whether a transaction in the
input stream tx is the frontrunning transaction of a sandwich attack against
account a.

Blockchain traces may contain many trading operations involving the same
pair of tokens. In a sandwich attack, the frontrunning and backrunning trans-
actions must occur close in time to the victim transaction. For simplicity, we
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consider an operation to be part of a potential sandwich attack if both the sus-
pected frontrunning and backrunning transactions occur within 10 transactions
apart from the victim transaction. We define a stream frontruns which first
checks if tokens are traded in the transaction using function tradeTokens. If so,
the monitor invokes the nested specification frontrunspec with the current trans-
action (tx[now]) as the parameter ftx, and the next 20 events of tx (tx[:20])
as the input stream tx of the nested monitor.

1 use innerspec frontrunspec

2 input Transaction tx

3 output Bool frontruns = if tradeTokens tx[now]

4 then runSpec (frontrunspec tx[now] tx[:20])

5 else False

We use if · then · else · instead of the Boolean operator (&&) to stress the
fact that the nested specification is only executed when tokens are traded. The
nested specification frontrunspec defines three streams.

– Stream counter counts the number of transactions processed. We use it to
guarantee that the victim transaction is among the first 10 transactions, and
that the backrunning transaction occurs within 10 transactions of the victim
transaction.

– Stream victim stores the position in the input trace of a potential victim
transaction (a transaction where account a trades tokens in the same ex-
change as the frontrunning transaction).

– Stream attack indicates if an attack occurred (the client from the fron-
trunning transaction swapped tokens back at most 10 transactions after the
victim transaction).

1 innerspec Bool frontrunspec <Transaction ftx>

2 input Transaction tx

3 const a = "tz123"

4 output Int counter = counter[-1|0] + 1

5 output Int victim =

6 if counter[now] < 11 && tradeTokens tx[now]

7 && exchange tx[now] == exchange ftx && client tx[now] == a

8 && token1 tx[now] == token1 ftx && token2 tx[now] == token2 ftx

9 then counter[now]

10 else -1

11 output Bool attack =

12 victim[now] != -1 && counter[now] < victim[now] + 11

13 && tradeTokens tx[now] && exchange tx[now] == exchange ftx

14 && client tx[now] == client ftx

15 && token1 tx[now] == token2 ftx && token2 tx[now] == token1 ftx

16 return attack when attack
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In a transaction where tokens are traded, the client of a transaction is the ac-
count that traded the tokens, the exchange of a transaction is the exchange
where the trade happened, and token1 and token2 of a transaction are the
traded tokens. We can further extend the above specification with a stream
called malicious to track accounts that performed sandwich attacks against a.

6 output (Set Account) malicious = if frontruns[now]

7 then insert (client tx[now]) malicious[-1|empty]

8 else malicious[-1|empty]

Retroactive Nested monitors. Although nested monitors can detect sand-
wich attacks, this approach can be very inefficient. In a blockchain history, the
number of times account a trades tokens (and can be victim of a sandwich at-
tack) is significantly smaller than the total number of transactions where tokens
are traded. This leads to a large number of unnecessary nested monitors be-
ing created. To address this inefficiency, we propose creating nested monitors
only when account a trades tokens. This implies ignoring relevant transactions
and later accessing them to search for potential frontrunning transactions. We
achieve this retroactive search by implementing a function pastRetriever that
invokes the adapter (see Section 3) to retrieve a specified number of past events.

The following specification checks whether the current transaction corre-
sponds to address a trading tokens, and triggers the finer analysis of the sur-
rounding transactions when necessary.

1 use innerspec tradersSpec

2 input Transaction tx

3 const a = "tz123"

4 output Bool attacked =

5 if tradeTokens tx[now] && client tx[now] == a then

6 let fRunners = runSpec ((tradersSpec e t1 t2) (pastRetriever 10))

7 bRunners = runSpec ((tradersSpec e t2 t1) tx[:10]) in

8 not (null (intersection fRunners bRunners))

9 else False

10 where e = exchange tx[now]

11 t1 = token1 tx[now]

12 t2 = token2 tx[now]

Within the 10 previous transactions, nested specification tradersSpec com-
putes all accounts that made the same trade as a. On the subsequent 10 trans-
actions, nested specification tradersSpec computes all accounts that did the
opposite trade. Finally, the specification checks whether any account appears in
both sets. We use if · then · else False (&&) to stress the fact that the nested
specification is executed only when a trades tokens.

The nested specification tradersSpec identifies all accounts that trade two
specific tokens in a given exchange, as follows:
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1 innerspec (Set Account) tradersSpec <Account e> <Token t1> <Token t2>

2 input Transaction tx

3 output (Set Account) traders =

4 if tradeTokens tx[now] && exchange tx[now] == e

5 && token1 tx[now] == t1 && token2 tx[now] == t2

6 then insert (client tx[now]) traders[-1|emptySet]

7 else traders[-1|emptySet]

8 return traders when False

The above specification finds all transactions that are victims of a sandwich
attack at most 10 transactions after it happens. Also, the nested monitors in this
example are created, executed and destroyed only for every transaction where a
exchanges tokens.

(Forward) Dynamic Parametrization. Since we have an efficient way of
detecting sandwich attacks and malicious accounts, we can move on to identifying
suspicious wallets, defined as those that interact with the malicious account
performing the sandwich attack. The following specification computes all wallets
that interact with a given account:

1 input Transaction tx

2 output (Set Wallet) fellows <Account a> =

3 union (wallets a tx[now]) fellows[-1|empty]

The auxiliary function wallets a tx returns all wallets that sent tokens to ac-
count a during the execution of transaction tx. To identify all suspicious wallets,
we need to instantiate the parametrized stream fellows with all malicious ac-
counts. However, malicious accounts are only found after they perform a sand-
wich attack, which cannot be determined statically.

We can instantiate a parametric stream over values discovered dynamically
while processing the input trace using the HLola operator over. The over op-
erator takes two arguments: (1) a parametric stream strm, and (2) a stream
params of sets of values. The resulting expression is a map where at any point
in time the keys are the elements in params[now], and the value associated to
each key is the instantiation of strm over the key. For a complete description on
how this operator is implemented in the tool HLola, see [35]. In our case, we can
parametrize the parametric stream fellows over the values of stream malicious:

1 output (Set Wallets) suspicious = foldl union empty

2 (elems (fellows ‘over‘ malicious))

Here, elems m returns the list of values in map m, and function foldl f l aggre-
gates the elements in list l using f to combine them. To compute all suspicious
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wallets, we join the suspicious wallets related to each malicious account. This
specification follows each account independently.

When a new value is added to the set of parameters (the stream malicious in
our case), we spawn a new monitor parametrized with the discovered value. The
newly created nested monitor executes alongside the monitor that created it, as
long as its associated parameters remain part of the set represented by stream
malicious.

The nested monitors used for forward dynamic parametrization process the
same events as the root monitor, but it is often the case that only some of the
events are relevant to a specific parametrized stream. We can use subtracing to
redefine stream suspicious as follows:

1 output (Set Wallets) suspicious = foldl union empty

2 (elems (fellows ‘over‘ malicious ‘updating‘ (accounts tx[now])))

where accounts returns the set of all accounts involved in a transaction. The
updating operator lets us specify the parameters of the monitors that have to
process the current event.

In the example above, the monitor follows the dynamically parametrized
stream once the parameter has been discovered (like in Lola2.0 [15] or in quan-
tified event automata QEA [3]). However, monitoring a stream only after its
parameter is discovered has its limitations, for example that the beginning pre-
fix of the trace is ignored. In our example, this means that the monitor cannot
discover wallets that interacted with a malicious account before the malicious
account is identified, e.g. before a sandwich attacker reveals its identity.

We could still use forward dynamic parametrization to identify all wallets
that ever interacted with malicious accounts, regardless of when the interaction
happened. To achieve this, we need to follow all created accounts, tracked by
stream allaccounts, and then, at every instant, keep only the wallets related to
the malicious accounts discovered so far, using the stream malicious.

1 output (Set Account) allaccounts =

2 union (createdAccounts tx[now]) allaccounts[-1|empty]

3 output (Set Wallet) suspicious = foldl union empty

4 (elems (filterWithKey ismalicious

5 (suspicious ‘over‘ allaccounts ‘updating‘ (accounts tx[now]))))

6 where ismalicious k _ = member k malicious[now]

The function filterWithKey p m filters all the key-values in map m that satisfy
the predicate p. Although this specification is correct, if most accounts are not
malicious, this forward monitor follows many accounts unnecessarily.

However, as part of our infrastructure we have the node and indexer storing
the past events of the trace, so we can combine retroactive nested monitors

with dynamic parametrization when a new parameter is discovered, effectively
implementing retroactive dynamic parametrization.
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Retroactive Dynamic Parametrization. Retroactive dynamic parametriza-
tion [35] is a technique that allows monitors to revisit the past of the trace
whenever a new parameter is discovered, initialize the parametric stream with
the retrieved information and continue monitoring online from that point on-
ward. This nested monitor behaves exactly as a forward parametrized monitor
where an oracle had correctly guessed which parameters would be found to be
useful and which parameters can be ignored. Retroactive dynamic parametriza-
tion is implemented by adding a new clause withInit to the over operator. This
clause allows specifying an initializer, which initializes the nested monitor with
events taken from the trace up to the current point. Typically, an initializer in-
volves calling an external program (see Section 3) that interacts with an offline
infrastructure to efficiently retrieve relevant past trace elements based on the
discovered parameter.

We can use retroactive monitoring to only create the dynamic parameters
when the corresponding account is malicious, and use the retroactive capability
to inspect the past of the trace and see which wallets interacted with them in
the past. We redefine the stream suspicious accordingly.

1 output (Set Wallets) suspicious = foldl union empty

2 (elems (suspicious ‘over‘ malicious ‘updating‘ accs ‘withInit‘ initer))

3 where accs = accounts tx[now]

The new over expression specifies an initializer initer (whose definition is not
shown in the specification) that calls the adapter to retrieve the past of the
corresponding parameter. The adapter uses the indexer to efficiently retrieve
only the events in the past relevant to the current account.

4.2 Execution Simulation

To further analyze sandwich attacks, one could be interested in determining
the profit obtained by the attacker. This requires reasoning about what would
have happened if the invocations to the blockchain had been different. In our
example, we are interested in comparing what did happen (in particular the
legitimate exchange invocation) with what would have happened if the attack
had not existed. For these questions, our monitoring infrastructure introduces a
simple simulation framework.

The blockchain state is public and the code of smart contracts code is avail-
able, and evaluation frameworks are typically provided by the blockchain devel-
opers (using the exact same code that bakers execute). We use the official Tezos
interpreter in our monitoring infrastructure to perform a small-step execution
machine of alternative executions and observe the blockchain intermediate states.
We have developed two basic building blocks:
– Data crawler: for a given set of operations (blocks or groups) the data

crawler queries the blockchain extracting which contracts were involved in
the set of transactions requested.
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– Simulation: given a set of contracts and their state, execute a sequence of
grouped transactions in order.

This allows monitors to simulate operations that happened in the blockchain
and also to explore alternative histories. To simulate operations that happened,
we first get the required information to execute the operations, that is, the
invoking smart contract and its state, plus all other invoked smart contracts and
their states. Since we know what happened because it is publicly available on
the blockchain node, we can determine the smart contracts involved in a given
transaction. Once we have the initial states of every contract involved, we can
just execute one transaction at a time replicating the behavior executed by the
blockchain.

If we diverge from transactions that happened, as it would happen if we
are executing hypothetical scenarios, we may get into missing some contract
states. To explore alternative histories, we first obtained the contracts that were
called during a possible execution. Then, we perform a hypothetical execution,
which may lead to the invocation of smart contracts whose storages were not
fetched. We detect the address of the missing contract, add it to the list of
required addresses for execution using the data crawler and iterate until we
finish execution.

We can extend our running example about detecting sandwich attacks com-
puting the damage suffered by the victim simulating an alternative execution in
which the sandwich attack does not exist and comparing the hypothetical and
the real balance of the victim.

1 input Transaction tx

2 input Double balanceA

3 const a = "tz123"

4 output Double stolen =

5 if attacked[now]

6 then (getBalance a (simulate txs’)) - balanceA[now]

7 else 0

8 where txs’ = filter (not frontruns) (pastRetriever 10)

9 frontruns t = client t /= a && exchange t == exchange tx[now]

10 && tokens1 t == tokens1 tx[now] && tokens2 t == tokens2 tx[now]

In the example above, we only expose the difference between the real and al-
ternative balances of the victim. To precisely quantify how much the attacker
stole, the monitor can also inspect manually the valuable items (as tokens) and
describe the computation as an arithmetic expression. In summary, previous
specifications detect and extract transactions causing sandwich attacks, filter
them and observe the state of the blockchain as if these transactions had not
been executed.
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Number of monitored blocks 50,000

Number of transactions in monitored blocks 2,624,594

Number of transactions since the beginning of the blockchain 288,705,340

Number of calls to 3route v4 2,278

Number of attacks 39

Number of malicious accounts 3

Number of suspicious accounts 97

Number of suspicious wallets 5

Fig. 2. Summary of sandwich attack monitoring.

5 Case Studies

1. Detecting Sandwich Attacks. We used our framework to implement a
retroactive dynamic monitor for the detection of sandwich attacks, identification
of malicious addresses and quantification of the losses incurred.

The monitor receives a stream of transactions from the Tezos blockchain
and searches for possible sandwich attacks. In this case study, we set the victim
account a to an exchange aggregator smart contract known as 3route v4.

We executed the monitor starting from block 5,200,000 in the Tezos main net
until block 5,250,000. Retroactive parametrization allows us to start the monitor
at any point in the blockchain and find fund transfers that happened before the
monitor was launched. The table in Fig. 2 sums up the results obtained. Thanks
to retroactive monitoring, we obtained the suspect accounts without analyzing
every transaction. Instead of following 288 million transactions, the monitor only
queries the adapter for the past transactions when a specific target is dynam-
ically obtained, in the infrequent event where a suspicious account is found.
Furthermore, the search for the frontrunning and backrunning transactions is
only performed when the monitor detects a call to the exchange aggregator,
which occurred only in 0,08% of the monitored transactions.

2. Clustering. In this case study, we consider that an address that performs
front-running is a malicious address, and we mark the addresses that transferred
cryptocurrency in the past to a malicious address as the potential source of funds
is a suspicious address. We leave out of the search addresses that transferred
funds to suspicious accounts.

When we start to follow indirectly related addresses, we find that they form
clusters of heavily-interacting accounts with prominent addresses that act as
interconnecting hubs between clusters. The flexibility of HLola allowed us to
develop several implementations of clustering algorithms to discover the degree
of suspiciousness of a wallet with respect to a malicious account based on how
many times they interact (directly or indirectly), how many funds they exchange
(directly or indirectly), and how many intermediaries are in their relation.
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3. Juster. Juster is a decentralized application that allows Tezos users to bet
on events that represent the changes of certain cryptocurrency prices within
a given time interval. Users get a reward if their predictions are correct and
lose their bet otherwise. For example, users can bet that the value of the Tezos
cryptocurrency XTZ will rise by 10% or more in the following day. The Juster
administrator opens events on which the users can bet and closes them after the
betting interval ends, distributing the earnings accordingly.

We define an HLola monitor for the Juster platform assessing that:

(1) all closed events were previously open and no open event is reopened;
(2) there are less than 100 open events at any given time.

The monitor receives events tagged with an identifier eventId and with the kind
of event which can be either Open or Close. We define the specification in HLola:

1 input EventId eventId

2 input Operation operation

3 define {EventId} open_events =

4 if operation[now] == Open

5 then insert(eventId[now], openevents[-1|{}])

6 else if operation[now] == Close

7 then delete(eventId[now], openevents[-1|{}])

8 else openevents[-1|{}]

9 output Bool few_events = size(openevents[now]) < 100

10 output Bool right_order =

11 (operation[now] == Close) == member(eventId[now], openevents[-1|{}])

4. BFS vs DFS in Tezos. Tezos is a self-amending blockchain that provides a
mechanism to change its rules through regular protocol upgrades. Protocol Flo-
rence [32], modified the execution order of operations between smart contracts,
switching from a breadth-first search (BFS) to a more conventional depth-first
search (DFS) algorithm. This change in the execution order can potentially im-
pact transactions outcomes. In this case study, we identified those transactions
that could have behaved differently under the two execution orders.

A naive approach is to simulate each transaction under both execution orders
and compare the results. However, this approach is very inefficient for the entire
blockchain because simulating requires access to all invoked smart contracts and
their states (see Section 4.2). Fortunately, most transactions are guaranteed to
behave the same under BFS and DFS without simulation, because the execution
order only affects if some smart contract is invoked twice and the order of the
calls differs between execution orders. This is because the state of a contract only
varies when the contract is invoked. The difference in the call order to a smart
contract can be detected by inspecting the transaction call graph (a directed
tree where nodes are labeled with smart contracts and edges represent calls).
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Unfortunately, indexers do not store the transactions call graph, but only the
call sequence. For each transaction, the monitor creates all possible call graphs
that can generate the given call sequence when traversed with the corresponding
execution order. If in one of the call graphs, the call order for a smart contract
differs between BFS and DFS, the monitor marks that the transaction must be
simulated.

For this case study, we considered all 34,856,986 transactions corresponding
to the years 2021 and 2022. We used the adapter to retrieve from the indexer only
those transactions in which some smart contract is called more than once, ob-
taining 1,260,145 transactions. For each transaction, then the adapter produces
only its identifier, call sequence, and the execution order used when executing
it. As the actual name and address of the smart contract invoked is irrelevant in
this case, to save space, the formater assigns to each smart contract in a given
transaction a unique small identifier. Finally, the monitor received all 1,260,145
transactions and detected that only 599,684 (out of 34,856,986) require simula-
tion to determine behavioral differences under the other execution order.

6 Conclusions

We presented in this paper a framework for the offchain runtime verification of
blockchains, and more specifically, for the Tezos Blockchain. Offchain monitoring
allows us to create monitors which receive new blocks (as in online monitoring)
and can perform retroactive queries to the past of the blockchain (as in offline
monitoring). The retroactive feature is useful both for requesting information
about the past, before the monitoring was created, and to lazily evaluate events
that most of the time are irrelevant for the monitor.

We described our implementation based on stream runtime verification, and
in particular on the HLola language, and several cases studies including the
detection of sandwich attacks. Future work includes more advanced case studies
and more quantitaitve evalutaion and comparison with other frameworks, which
was beyond the scope of this work. Additionally, we plan to make the monitoring
front-end available as a service, enabling its application for other blockchains.
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Abstract. This work examines the resilience properties of the Snowball
and Avalanche protocols that underlie the popular Avalanche blockchain.
We experimentally quantify the resilience of Snowball using a simulation
implemented in Rust, where the adversary strategically rebalances the
network to delay termination.
We show that in a network of n nodes of equal stake, the adversary is
able to break liveness when controlling Ω(

√
n) nodes. Specifically, for n =

2000, a simple adversary controlling 5.2% of stake can successfully attack
liveness. When the adversary is given additional information about the
state of the network (without any communication or other advantages),
the stake needed for a successful attack is as little as 2.8%.
We show that the adversary can break safety in time exponentially de-
pendent on their stake, and inversely linearly related to the size of the
network, e.g. in 265 rounds in expectation when the adversary controls
25% of a network of 3000.
We conclude that Snowball and Avalanche are akin to Byzantine reliable
broadcast protocols as opposed to consensus.

1 Introduction

The Avalanche protocol [13] advertises exceptional performance in terms of trans-
action throughput and latency. The Avalanche blockchain based on the protocol
has certainly gained significant attention and support within the cryptocurrency
community, as evidenced by the remarkable market capitalization of its native
token amounting to $10B3. The media prominence and monetary value firmly
place Avalanche among the most popular and successful blockchain systems.

The protocol is built on a simple mechanism that operates by repeatedly
sampling random nodes of the network in order to gauge the system’s support of
a given decision and confirm transactions. Conceptually, the underlying Snowball
protocol can be compared to a voting process for a binary choice concerning a
transaction. The protocol description promises to swiftly converge to a final

3 https://coinmarketcap.com (Accessed: June 19 2024)
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decision from a network state initially divided equally between two alternatives.
With the aid of a directed acyclic graph (DAG), Avalanche forms a partial order
of transactions instead of the total order that is established by usual blockchain
protocols, like Bitcoin [12] or Ethereum [6]. Thus when transactions on Avalanche
are accepted, validators are able to execute them in different orders based on
their current view of the DAG, as long as those transactions are not causally
dependent on each other. In theory, such structure can allow for a higher degree
of parallelism in the transaction confirmation process, which can lead to a higher
throughput than traditional blockchain protocols.

The ideas that form Avalanche stand in contrast to other Proof-of-Stake and
BFT-based consensus protocols such as Ethereum 2.0. While the whitepaper [13]
claims excellent resilience, it only proves the protocol’s liveness in presence of up
to O(

√
n) malicious parties, where n represents the total number of validators

(or stake supply). However, usually Proof-of-Stake protocols ensure the upper
bound resilience of n

3 in partial synchrony.

Another detail that stands out in the description of Avalanche, is how it de-
fines its guarantees with respect to “virtuous” transactions, i.e. assuming there’s
no conflicting alternative in the system. Remarkably, broadcast-based payment
systems [9,4] are inherently reliant on such an assumption, and as such are fun-
damentally weaker than consensus protocols.

The lack of clarity about the Avalanche family of protocols begs the question:
how resilient Snowball and Avalanche really are? Does the unusual consideration
of “virtuous” transactions indicate a fundamental limitation?

Our Contribution We examine the resilience properties of the Snowball and
Avalanche protocols.

We experimentally exhibit the resilience of Snowball against attacks from
adversarial nodes. Our simulation showcases that in a system of n nodes (or
stake supply), the adversary can indefinitely halt the Snowball protocol when
controlling a stake of Ω(

√
n), or less than 2% in some experimental scenarios.

Furthermore, we examine a strategy for an adversary to violate safety by getting
a single validator to finalize an output distinct from the rest of the network.
The expected duration of the safety attack depends exponentially on the stake
controlled by the adversary, and is inversely linear to the size of the network. For
example, at 25% adversarial stake in a network of 3000, safety can be violated
after 265 rounds in expectation.

We discuss how these considerations translate to the Avalanche protocol
based on Snowball.

Finally, we draw parallels between Avalanche and broadcast-based payment
systems, and conclude that Avalanche is fundamentally weaker than usual con-
sensus protocols.
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2 Background

Avalanche’s blockchain platform consists of three distinct built-in blockchains:
The Exchange Chain (X-Chain), the Contract Chain (C-Chain) and the Plat-
form Chain (P-Chain) [14].

The X-Chain is responsible for processing simple transactions on the network,
such as transfers of the native AVAX token. It is based on the Avalanche protocol
with the DAG that runs multiple instances of the Snowball algorithm and only
partially orders transactions.

The C-Chain is responsible for executing general smart contracts compatible
with the Ethereum Virtual Machine (EVM). In contrast to the X-Chain, C-
Chain uses the Snowman protocol which ensures a total order of all transactions.

The P-Chain processes various platform-level operations, such as creation of
new blockchains and sub-networks, validator (de-)registration, or staking oper-
ations. It also uses Snowman.

The Avalanche protocol introduced in the Ava Labs whitepaper, which is also
mainly marketed and presented in online materials, is used as the basis of X-
Chain. Interestingly, the Snowman protocol, which supports the C-Chain and
P-Chain, is almost absent from documentation and marketing, and remains out-
side the scope of this work.

2.1 Validators

Participants in the Avalanche protocol are called validators or nodes. Validators
following the protocol are called honest. As a blockchain protocol, Avalanche
aims to be resilient to validators deviating from the protocol, which are called
malicious, or collectively as the adversary.

Avalanche employs a Proof-of-Stake mechanism to control the ability of ma-
licious validators joining the system. Validators need to acquire AVAX tokens
(2,000 minimum) and deposit them using the Avalanche platform to actively par-
ticipate in the agreement process. Validators are associated with, and weighted
by, the amounts of deposited tokens, called their stake. Typically, Proof-of-Stake
blockchains aim to be resilient to the adversary that is able to acquire a stake
smaller than 1/3 of the total tokens (which is the theoretical maximum in harsh
network conditions).

2.2 UTXO Model

Avalanche uses the Unspent Transaction Output (UTXO) model, as initially
introduced in Bitcoin [12]. In the model, a transaction contains a set of inputs, a
set of outputs, and a digital signature. Each input of a transaction corresponds to
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a specific output from a previous transaction. Transactions are issued by users,
processed by the system, and as a result are accepted or rejected by the system.

Two transactions including the same input are conflicting, and only one trans-
action from such a pair can be accepted by the system.

The balance of a user is determined by the set of outputs transferred to that
user in previously accepted transactions and not yet used as inputs for newer
transactions. A valid transaction is also signed with keys corresponding to the
relevant inputs.

In contrast to most blockchains such as Bitcoin, Avalanche does not neces-
sitate a total order of all transactions. Instead, transactions in Avalanche form
a directed acyclic graph (DAG) resulting in a partial order. A transaction tx′

depends on tx if tx′ consumes an output of tx. In this case, every validator needs
to process tx before processing tx′. Validators can execute transactions that are
not dependent on each other in any order.

3 Snowball

The Snowball protocol serves as the foundational component of the Avalanche
blockchain. It is based on continuously querying random sets of k validators
regarding their current “approval” regarding a transaction, denoted as T .

When performing a query on k = 20 nodes within a Snowball instance,
the selection probability of a node is proportional to the stake of the node.
Intuitively, the influence of validators in validating transactions, quantified by
the probability of them being queried, is determined by their stake.

Validators maintain a confidence value for each binary choice: Blue if they
prefer to accept transaction T , Red if they reject transaction T . When a validator
queried k other nodes and saw at least α for either Red or Blue, we say that this
color received a chit, and the confidence value for that color is incremented by
one. When queried, a validator will either respond Blue if the confidence value
for Blue is higher, or Red if the confidence value for Red is higher. A color is
accepted by a node if for at least β consecutive rounds of querying it received a
chit. The logic of Snowball is illustrated in Figure 1.

3.1 Safety

Intuitively, safety properties can be understood as “bad” things not happening.
In our context, the main safety property is ensuring that two honest nodes can-
not perceive two conflicting transactions as accepted. The Avalanche whitepaper
outlines the definition of safety as follows:

P1. Safety: When decisions are made by any two honest nodes, they decide
on conflicting transactions with negligible probability (≤ ε).

Here ε represents the safety failure probability, with the specific value de-
pendent on the maximum number f of adversarial nodes, which is not explicitly
stated in the formal definition provided by the Avalanche whitepaper.
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k,α,β ← 20, 15, 20 ▷ Protocol parameters

function Snowball(V, vself , cinit)
cpref ← cinit
clast ← cinit
confidence ← [0, 0]
counter ← 0

while counter < β do

Vquery ← SampleVal(V \ {vself}, k) ▷ Weighted by stake with replacement.

R ← Query(Vquery) ▷ Query each with vself , cpref ; R is multiset of responses.

for i ∈ {0, 1} do

if |[r ∈ R | r = i]| ≥ α then

if clast ̸= i then

counter ← 0
confidence[i] ← confidence[i] + 1
if confidence[i] > confidence[1− i] then

cpref ← i

clast ← i

counter ← counter + 1
return clast

function RespondToQuery(querier, cquerier)
if cpref = ⊥ then

cpref ← cquerier
return cpref

Fig. 1. Snowball algorithm.

3.2 Liveness

Liveness refers to the continued operation of the system. In our context, liveness
mainly refers to ensuring that all honest nodes eventually decide to accept or
reject a transaction within a reasonable time frame.

According to the whitepaper, Avalanche has the following liveness guarantees:

P2. Liveness (Upper Bound): Snow protocols terminate with a strictly pos-
itive probability within tmax rounds.

P3. Liveness (Strong Form): If f ∈ O(
√
n), then the snow protocol ter-

minates with high probability (≥ 1− ε) in O(log(n)) rounds.

However, it is specified later in the whitepaper that P2 holds only under the
assumption that initially, one proposal has at least α

k
support in the network,

for which there is no guarantee.
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4 Simulation

To test resilience of Snowball, we perform a local simulation of the protocol
using a Rust implementation [3]. As the base implementation of Snowball (c.f.
Figure 1) we use the avalanche-consensus Rust library4, which is a translation
of the Snowball Go code that is part of the official Avalanche implementation5

and is maintained by the Ava Labs team.

The simulation involves a network of multiple honest nodes executing the
protocol correctly, aiming to achieve agreement on a binary decision. Malicious
nodes collude to perform the considered attacks. In our experimental scenarios,
the stake is equally divided among validators.

4.1 Network Assumptions

Distributed protocols might require various network reliability assumptions to
work correctly. Many blockchain protocols guarantee safety in harsh network
conditions, such as those of partially synchronous models, where messages can
be greatly delayed.

In our simulation we make the strongest network reliability assumptions pos-
sible, where every message arrives with the same, known latency. We deny the
adversary any communication advantage whatsoever, including advantages of-
ten practically achievable by an attacker in the real world, such as performing
queries faster, or performing more queries.

In synchronous rounds, nodes query other nodes, as described by the Snow-
ball protocol. Between rounds, the nodes update their preferred color with which
they respond to the queries.

4.2 Adversary Information

To perform the attacks, the adversary needs information about the other nodes’
preferred color. We call the adversary naive if the adversary simply queries
honest nodes in line with the protocol and updates his estimation of the colors
preferred by the honest nodes according to the query results.

We also consider an adversary that possesses accurate information about
the numbers of nodes preferring Red/Blue in the current round, and call that
adversary informed.

4.3 Liveness Attack

When attacking the liveness property, the adversary aims to delay the decision
of honest nodes by keeping the network split equally between Red and Blue. The
attack strategy we consider is straightforward. When the adversary is queried,
it responds with the color that is less preferred among all honest validators. By

DPM & CBT 2024

252



Quantifying Liveness and Safety of Avalanche’s Snowball 7

n, f ▷ Network parameters.

µestimate ▷ Current estimate of network-wide preference towards 1.

function RespondToQuery(vquery, cquerier)
if µestimate < 0.5 then

return 1
return 0

Fig. 2. Adversary strategy for liveness attack.

doing so, the adversary aims to bring the network split between the Red and
Blue decisions closer to the even 50-50 split. This is shown in Figure 2.

For a given experimental scenario, we consider the attack successful if in more
than 5 out of 10 simulation runs, no validator has terminated with a decision
after 100,000 rounds. We note that if a round of querying took about 1 second,
100,000 rounds would correspond to over a day.

We perform binary search with respect to the adversary stake to find the
minimal fraction of total stake for which the adversary is successful. Figure 3
shows the minimum percentage of stake the adversary needs to attack the liveness
of the protocol. It can be seen to decrease significantly with increasing number
of total nodes in the network, showing the sub-linear security bound.
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Fig. 3. Minimum fraction of stake needed by the adversary to successfully attack live-
ness, plotted against the number of nodes in the network with equal stake.

4 https://crates.io/crates/avalanche-consensus
5 https://github.com/ava-labs/avalanchego
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n, f ▷ Network parameters.

Vtarget ▷ Validators targeted in the safety attack.

µestimate ▷ Current estimate of network-wide preference towards 1.

µtarget ▷ Target split to maintain before finalization.

fin ▷ Indicator if some targeted validator has finalized.

function RespondToQuery(vquery, cquerier)
if fin then

return 0
else if vquery ∈ Vtarget then

return 1

if µestimate < µtarget then ▷ Otherwise, continue with regular liveness attack.

return 1
return 0

Fig. 4. Adversary strategy for safety attack.

4.4 Safety Attack

In this scenario, the adversary aims to break the safety property of the protocol
by causing some honest nodes to accept conflicting transactions.

The adversarial strategy we consider starts with maintaining a modified live-
ness attack. While the honest nodes are divided between Red and Blue, denote
by µ the fraction of honest nodes that prefer Red. Then, the fraction of honest
nodes that prefer Blue is 1− µ. The adversary attempts to keep the numbers of
honest nodes preferring Red and Blue close to the µ : Red, 1 − µ : Blue split
by replying to queries with colors that sway the honest nodes towards this split.
Additionally, the adversary chooses a set of honest nodes to queries of which
the adversary responds exclusively with Red. By employing this approach, the
attacker can significantly increase the likelihood of the targeted nodes finalizing
with the color Red after some time, while at the same time keeping the rest of
the network from deciding in either direction. Once some targeted node accepts
Red, the adversary replies to all queries with the color Blue, such that the rest of
the network accepts Blue. As a result, the adversary produces a safety violation,
as the targeted node decides differently to the rest of the network.

Figure 4 describes the adversarial strategy for the considered safety attack.

4.5 Safety Attack Analysis

Consider the attack where a single node is targeted. Denote the number of ad-
versarial nodes by f and the number of nodes in total by n. Assuming that
the adversary can maintain the honest nodes split of µ : Red, 1 − µ : Blue,
in expectation we observe the following: when the targeted node queries, it re-
ceives a percentage of µ(1− f

n
)+ f

n
responses for Red, while other nodes receive

≥ µ(1− f
n
) fraction of responses for Red, depending on the adversary. For exam-

ple, with 30% adversary stake and a split of 69.4% Red and 30.6% Blue among
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honest nodes, the targeted node has a probability p = 0.694 · 0.7 + 0.3 = 0.7858
of receiving a Red response when querying. Consequently, the targeted node can
finalize Red with some probability, which eventually occurs.

Once this happens, the adversary replies to all queries with Blue. Since µ(1−
f
n
) = 0.694 ·0.7 = 0.4858 < 0.5, it is very likely that all honest nodes flip to Blue

and later accept Blue. In general, if µ(1 − f
n
) < 0.5, the adversary still has the

ability to sway the network towards accepting Blue.
We now compute the probability that the targeted node converges to Red,

given that it sees an average proportion of µ(1− f
n
) + f

n
of responses in favor of

Red when querying. Recall that when querying k = 20 other nodes, a validator
increments its successive success counter, denoted as “counter”, only if a color
receives at least α = 15 votes, and if this color is the same as the currently
preferred color. Otherwise, the success counter is reset to 0.

Let the random variable X denote the number of participants who prefer
Red in a sample of size k = 20. We want to calculate the probability distribution
P (X ≥ α) = 1 − P (X < 15). We can model this using a binomial distribution
with parameters p = µ(1 − f

n
) + f

n
for the targeted node and p = µ(1 − f

n
) for

the other nodes. Thus, we have:

P (X ≥ α) = 1− P (X < α) = 1− F (α− 1, k, p) = 1−
α−1X

i=0

�

k

i

�

pi(1− p)k−i

Here, F (α − 1, k, p) represents the cumulative distribution function (CDF)
of the binomial distribution. For our previous example, where µ = 0.694, for
honest nodes other than the attack target, we can calculate the probability
P (X ≥ α), which represents the chance of reaching the α majority threshold for
the color Red when querying. Plugging in the probability to receive a response
supporting Red in a single round p = 0.4858 from above, we get P (X ≥ α) =
1− F (14, 20, 0.4858) ≈ 0.015. On the other hand, the targeted node that has a
probability p = 0.7858 to get a Red response, and so pα = P (X ≥ α) = 1 −
F (14, 20, 0.7858) ≈ 0.756. This means that our targeted node has a pα ≈ 75.6%
chance of reaching the α majority for Red when querying k = 20 other nodes,
whereas other honest nodes only have a 1.5% chance of the same. Consider the
expected number of iterations needed to obtain β = 20 consecutive successes of
reaching the α = 15 majority for a color. Let Xβ represent the number of trials
required to achieve β consecutive successes, with the probability of one success
being pα. From [8], we can use the following formulas:

E[Xβ ] =
1− pβα

(1− pα)p
β
α

Var[Xβ ] =
1− (2β + 1)(1− pα)p

β
α − p2β+1

α

(1− pα)2p
2β
α

For the example where pα = 0.756 for the targeted node, we obtain:

E[X20] ≈ 1095
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σ =
p

Var[X20] ≈ 1078

On average, the targeted node needs to query 1,095 times with a standard
deviation of 1,078. We confirmed the expected results experimentally.

Adversary Honest Split pα E[X20] σ ≈ E[X1000

20 ]

30% 69.4% - 30.6% 0.756 1,095 1,078 20
25% 64.8% - 35.2% 0.560 245,562 245,544 265
20% 60.7% - 39.3% 0.364 9.4e+8 9.4e+8 940,000
10% 54.0% - 46.0% 0.101 8.4e+19 8.4e+19 8.4e+16
5% 51.2% - 48.8% 0.043 2.5e+27 2.5e+27 2.5e+24

Table 1. Summary of the expected safety attack results for different percentages of
adversarial stake and corresponding stable network splits. The second column shows
the maximally imbalanced but stable split of honest validators that the adversary is
able to maintain. E[X1000

20 ] is the expected length of the safety attack when 1000 nodes
are targeted.

The effectiveness of the attack can be greatly increased by targeting a large
number of nodes rather than just one. Let Xk

β be the number of trials required
for any target node among k targeted nodes to achieve β consecutive successes.
Assuming the β successes to be equally probable to conclude in every round after
19, and assuming the constant network split maintained by the adversary, the

expected number E[Xk
β ] is

E[Xβ−19]
k

+19. We have simulated some experimental
scenarios, such as targeting 1000 nodes with n = 3000 and the adversarial stake
of f = 750, where the results matched our expectation.

With increasing total number of nodes n, the adversary can target more
nodes. While in our experiments we successfully targeted over 0.3n of n = 3000
nodes, future work is needed to understand how big the share of targeted nodes
can be in an optimal strategy and with increasing n. In summary, the strength
of the attack corresponds exponentially to the share of the adversary stake. On
the other hand, the expected required duration of the attack is inversely linear
to the overall number of nodes n, as the number of targeted nodes can increase
roughly linearly with n. Table 1 summarizes the effectiveness of the safety attack
for adversaries of different strengths.

5 Avalanche Protocol

In this section, we explain how the Avalanche protocol builds on Snowball to
incorporate optimizations and additional features.

5.1 DAG

To enhance the throughput and enable parallel processing of transactions, the
Avalanche protocol builds a directed acyclic graph (DAG) for transactions, in-
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stead of a linear chain. Each transaction is represented as a node in the DAG.
Furthermore, transactions in the DAG are interconnected through parent-child
relationships: A transaction T refers to older transactions known as its parents
Parents(T ). We denote the parent relation T ′ ∈ Parents(T ) by T ′ ← T . If T ′′

is reachable by parent links from T , we say that T ′′ is an ancestor of T , or
T ′′ ∈ Ancestors(T ), and that T is a descendant of T ′′, or T ∈ Descendants(T ′′).

5.2 Vertex

In order to limit the coordination overhead, a node in the Avalanche DAG is not
an individual transaction but rather a batch of transactions known as a vertex.
A vote for a vertex is considered a vote for all transactions contained within that
vertex. This allows Avalanche to facilitate efficient queries, while still maintaining
confidence levels and a conflict set for each individual transaction.

When a vertex is accepted, all transactions within it are accepted. When a
vertex is rejected, valid transactions in that vertex may be batched into a new
vertex, by removing the non-preferred transactions that resulted in the vertex
getting rejected. When a node creates a vertex V , it chooses parents for V that
are currently preferred.

When a user submits a payload transaction tx, a node creates a transac-
tion T ⟨tx,D⟩ for that payload. It includes the payload tx, along with the set
of UTXO IDs that will be consumed if the transaction is accepted, and the
list D of dependencies on which this transaction relies. Each dependency must
be accepted before this transaction can be accepted. The node then batches
this transaction T ⟨tx,D⟩ with other pending transactions into a vertex. The
node assigns one or more parents to this vertex, allowing it to be added to
the DAG. We define an Avalanche transaction T as preferred if it is the pre-
ferred transaction in its conflict set PT . In other words, if transaction T has the
highest confidence among other conflicting transactions. Each node u calculates
the confidence value for each transaction T denoted by du[T ]. This confidence
value is defined as the sum of the chits received by T and all its descendants
[13]: d[T ] =

P
T ′∈Tu:T∈Descendants(T ′) cu,T ′ . Here, Tu represents all the transac-

tions currently known by node u in its view of the DAG, and cu,T ′ represents
the chit received by transaction T ′. cu,T can only take two values: 0 or 1. Node u

queries transaction T only once, as the votes on the descendants of T also serve
as queries and votes on T . Specifically:

cu,T =

(
1 transaction T received a chit when u queried for it

0 otherwise

As a reminder, receiving a chit for transaction T means that node u received
an approval rate of at least α = 15 when it queried k = 20 other nodes to
determine if T was their preferred transaction. The confidence value of T (and
thus its status as accepted or rejected) is then updated based on the queries
made on its descendants.
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We say that a transaction T is strongly preferred if T is preferred and all
its ancestors are also preferred in their respective conflict sets. An Avalanche
transaction T is considered virtuous if it conflicts with no other transactions or
if it is strongly preferred. Consequently, a virtuous vertex is a vertex where all
its transactions are virtuous. Similarly, a preferred or strongly preferred vertex
is one where all its transactions are preferred or strongly preferred, respectively.
The parents of a vertex are randomly chosen from the virtuous frontier set VF ,
which consists of the vertices at the frontier of the DAG that are considered
virtuous:

VF = { T ∈ T | virtuous(T ) ∧ ¬ virtuous(T ′) ∀T ′ ∈ T : T ← T ′}

The notation virtuous(T ) indicates that T is virtuous. In other words, VF is the
set of vertices that are virtuous, and have no virtuous children.

5.3 From Snowball to Avalanche

The Avalanche protocol runs a Snowball instance on the conflict set of each
transaction T once a node hears about a new transaction that gets appended
to the DAG. This means that when a new transaction T is received, a validator
will query k other random nodes to determine if T is their preferred transaction.
The queried nodes will respond positively only if transaction T and its ancestors
in the DAG are also their preferred transactions within their respective conflict
sets. Instead of querying a Snowball instance for each individual transaction,
Avalanche batches transactions into a vertex and instantiates a Snowball in-
stance for that vertex, checking if all the transactions within that vertex and its
ancestors are valid.

When a node is queried about the preference of transaction T and its ances-
tors, it provides not just a binary vote as in Snowball, but rather responds with
its entire virtuous frontier VF based on its local view. This allows the respon-
dents to specify which ancestors are not preferred if T is not strongly preferred.
The querying node u collects the virtuous frontier of the k queried nodes. For
each virtuous frontier VF ′ sent by a node w as a vote, we add the transactions
T ′ from VF ′ and the ancestors of T ′ to a set G[T,w], which represents the posi-
tively reported transactions of w when asked to vote for T . We then count how
many times node w, when queried for T , has acknowledged a transaction T ′ as
virtuous, and store this in the counter ack[T, T ′]. We then run a Snowball in-
stance for every ack[T, T ′]: If ack[T, T ′] received more than α votes it indicates
that the α majority of the k queried validator agree that T ′ is preferred. We then
increase the consecutive counter for T ′ if it was also the preferred transaction
in the last vote. The above procedure of voting on a vertex containing a single
transaction can be generalized for vertices containing multiple transactions.

Finally, there are two ways in which a vertex V , and consequently all the
transactions it contains T ∈ V , can be accepted, provided that all the ancestors
of V have also been accepted. The first way is if none of its transactions T ∈ V

conflict with any other transactions, and the vertex V received β1 consecutive
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successes. In this case, the vertex and all its transactions are accepted by node
u. The second way is if some transactions T ∈ V have other transactions in their
conflict sets, and the vertex V receives β2 consecutive successes. In this case,
the node accepts the vertex V and all its transactions. The Avalanche protocol
denotes β1 as betaVirtuous and β2 as betaRogue, and naturally β1 < β2.

5.4 Liveness Attack

Suppose that two transactions (both with accepted virtuous ancestors) T batched
in vertex V and T ′ batched in vertex V ′ are conflicting. Recall that the Snowball
liveness attack consisted of a strategy where the adversary tried to ensure that
the split between Red and Blue was always close enough to 50% each. Here,
the approach is similar, except that we have to ensure that, on average, 50% of
the network has V in their virtuous frontier or as an ancestor of their virtuous
frontier, and the other 50% of the nodes have V ′ in their virtuous frontier or as
an ancestor of their virtuous frontier. The binary attack can be transposed to
one where the adversaries responds with the virtuous frontier VF , with V an
ancestor of the nodes in VF , or responds with the virtuous frontier VF ′, with
V ′ an ancestor of the nodes in VF ′. The intuition behind this attack is that half
of the nodes will adopt a virtuous frontier that contains vertex V as a virtuous
vertex, and the other half of the nodes will adopt a virtuous frontier that con-
tains V ′ as a virtuous node. At every iteration of the loop, the adversary needs
to maintain those two conflicting virtuous frontiers VF and VF ′, grow the DAG
such that some new valid vertices are appended to the conflicting VF and VF ′,
and respond accordingly with either one of the virtuous forests using the same
technique that was used for the Snowball liveness attack.

5.5 Safety Attack

The safety attack from Snowball to Avalanche can be transposed in the same way
as was explained above for the liveness attack. Similarly, we will try to maintain
a network split that does not converge: µ of nodes will prefer a virtuous frontier
VF that contains v as an ancestor, and ν of nodes will prefer a virtuous frontier
VF ′ that contains v′ as an ancestor. For one targeted node, the adversary will
respond exclusively with the virtuous frontier VF instead of trying to maintain
a split. This way, we can make the targeted node to accept vertex v while all the
other nodes are still undecided. Once this is done, the adversary can unanimously
respond with virtuous frontier VF ′ to make the rest of the nodes accept v′ in
order to break safety. Such an attack can be instantiated by any adversary that
creates conflicting (double spending) transactions T and T ′, batch them in nodes
v and v′ and conducts the attack to make some nodes accept T, and some other
nodes accept T ′ thus resulting in a successful double spending.
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6 Consensus or Broadcast

Consensus is a property that allows multiple parties to reach agreement on trans-
actions, either accepting or rejecting them. In the context of blockchain systems,
consensus can be defined by the following set of properties:

Definition 1. Each honest validator observes some transaction from a set of
conflicting transactions {t0, t1, . . . }. Consensus satisfies the following proper-
ties:

Totality: If some honest validator accepts a transaction, every honest validator
will eventually accept the same transaction.

Agreement: No two honest validator accept conflicting transactions.
Validity: If every honest validator observes the same transaction (there are

no conflicting transactions), this transaction will be accepted by all honest
validators.

Termination: Some transaction from the set will eventually be accepted by
honest validators.

As implied by Agreement and Termination, a consensus protocol enables
nodes to reach an agreement on conflicting transactions, where multiple valid
transactions consuming the same input are involved. In such cases, all nodes
should unanimously accept one of the conflicting transactions.

As we have established, the Avalanche protocol features a relatively weak,
sublinear resilience to liveness attacks involving conflicting transactions. To ad-
dress this issue, Avalanche introduces the term of virtuous transactions, which
can enjoy better guarantees. In other words, even for a relatively small adver-
sary, Avalanche does not satisfy the Termination property, and only guarantees
termination if the Validity condition is also met: all honest validators observe
just one valid transaction and no conflicting ones.

The termination property becomes crucial in scenarios involving smart con-
tracts, where conflicting transactions may arise, such as two users attempting to
purchase the same product. To address this limitation, the Avalanche team in-
troduced a different solution for the C-Chain and P-Chain, specifically designed
to execute smart contracts required for such blockchain applications.

As described by [9], consensus is not necessary for payment systems, and
indeed there exist payment systems providing similar guarantees to Avalanche,
while also unable to support general applications such as smart contracts: broadcast-
based payment systems [4,7,5,15,11]. The provided guarantees of a Byzantine
reliable broadcast can be defined as follows:

Definition 2. Each honest validator observes some transaction from a set of
conflicting transactions {t0, t1, . . . }. Byzantine reliable broadcast satisfies
the properties of Consensus, without the Termination property.

Thus, referring to Avalanche as a consensus protocol can be misleading, as
it is more akin to broadcast-based payment systems. While the performance of
Avalanche is given prominence, a different solution has been used as required by
the C-Chain and P-Chain.
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7 Related Work

Amores-Sesar et al. [2] analyze the Avalanche protocol. They explain the protocol
with pseudocode and introduce a property of Avalanche that was omitted here:
No-op transactions which are stateless transactions are added into the DAG by
the nodes to make sure we always make progress on the finalization of older
transactions. The paper introduces a liveness attack (different from ours) that
could be possible if the naive way of voting for a transaction and its ancestors
with just a binary yes/no vote was implemented. However, this is not the case, as
emphasized at the end of the paper with the pseudocode involving the virtuous
frontier concept.

Ash Ketchum and Misty Williams [10] raise concerns similar to ours in their
recent write-up, that Avalanche is not a consensus protocol.

Most recently, a follow-up analysis by Amores-Sesar et al. [1] formalized
the need for at least Ω(log n+ β) rounds for consensus with the Snow family of
protocols. They then proposed a specific modification of Snowflake and Snowball
implementing this change.

8 Conclusion

In this paper, we have examined the resilience properties of Avalanche and its
underlying Snowball protocol. We have experimentally evaluated simple strate-
gies for a potential adversary. To quantify the efficacy of these attacks, we have
conducted simulations and evaluated the ratio of stake the adversary needs to
control to launch successful attacks on liveness and safety.

Our analysis revealed that an adversary with a small fraction of the stake can
indefinitely keep the network in a state where it cannot finalize a transaction.
With some probability depending on the stake and the size of the network, the
adversary can also convince some node to finalize a transaction that is then
rejected by other honest parties, which can result in a double spending attack.

Through our analysis, we have demonstrated that the Snowball protocol -
the foundation of Avalanche - is vulnerable, when conflicting transactions are
present. The weak resilience when conflicting transactions are present is a critical
limitation, as it makes the protocol unable to support general smart contracts.
This explains why Avalanche actually uses a different protocol, called Snowman,
which uses a linear blockchain (instead of a DAG) in order to totally order those
transactions, unlike what is done for payments [14].

Future Work The basis of our attacks relies on the presence of conflicting
transactions. Future work could analyze how Avalanche distinguishes unique
transactions, and determine the feasibility for an adversary to arbitrarily create
conflicting transaction from another transaction T broadcast by an honest node,
for example, by creating a copy with different parents in the DAG.
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Abstract. Protocols based on directed acyclic graphs (DAG) have been
proposed as potential solution to the latency and throughput limitations
of traditional consensus protocols. However, their adoption has been hin-
dered by security concerns and a lack of a solid foundation to guarantee
improvements in both throughput and latency. In this paper, we present
a construction that rigorously demonstrates how DAG-based protocols
can achieve superior throughput and latency compared to chain-based
consensus protocols, all while maintaining the same level of security guar-
antees.

Keywords: Consensus · Chain · DAG · Security · Latency · Through-
put.

1 Introduction

In the ever-evolving landscape of distributed systems, achieving consensus among
a set of processes has become a fundamental challenge that has garnered signif-
icant attention in recent years. Consensus protocols are a universal primitive
in distributed computing, ensuring that a network of interconnected processes
can collectively agree on a shared state despite potential failures or malicious
actors. However, as the demands on distributed systems continue to grow, the
need for consensus protocols that can deliver both higher throughput and lower
latency has become increasingly pressing. This need is particularly relevant in
permissionless consensus protocols as used by cryptocurrencies and blockchain
protocols, which face stringent demands on their throughput and latency.

Traditional consensus protocols have exhibited considerable advancements in
both throughput and latency since the first practical consensus protocols [12,7].
One of the most promising lines of work are DAG consensus protocols as in-
troduced by the “All you need is DAG” paper [10] and subsequently extended
by Narwhal and Tusk [8], Bullshark [22], and Cordial Miners [11]. A common
characteristic of these protocols is their capacity to enable every participant to
generate blocks that reference previous blocks, forming a directed acyclic graph

(DAG). In permissionless protocols like Bitcoin [14], every process (miner) can
create a block upon successfully solving the cryptographic puzzle. Therefore, the
concept of constructing a DAG that is later ordered, as proposed by Keidar et
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al. [10], holds the potential to enhance the throughput and latency of permis-
sionless consensus protocols. In essence, DAG protocols may surpass traditional
permissionless consensus protocols, which form a chain.

The evident approach to improving the throughput of chain protocols is to
increase the block ratio, i.e., the number of blocks produced per unit of time, ef-
fectively accelerating the execution of the protocol as there is less time between
created blocks. This goal can be pursued by lowering the difficulty in Proof-

of-Work (PoW ) protocols. However, increasing the block ratio may harm the
protocol since it elevates the likelihood of forks—situations where two different
processes create blocks extending the chain. An abandoned block is one that is
never output by the protocol; whenever a chain protocol forks, an abandoned
block is produced. Therefore, despite the increased number of generated blocks,
the number of abandoned blocks concurrently rises, adversely affecting the pro-
tocol’s throughput. Moreover, it is imperative to recognize that the block ratio
cannot be augmented arbitrarily without compromising the protocol’s security.

In this paper, we introduce a construction that takes as input a DAG-based
protocol or a chain protocol Π, which may produce abandoned blocks and pro-
duces a new DAG protocol Π

� with the property that every created block is
eventually output. Specifically, Π

� creates the same number of blocks as the
base protocol Π and outputs every created block of Π. We show that the safety
and liveness of Π � reduces to the safety and liveness of Π. In simpler terms, Π �

is as safe and live as Π. Furthermore, we establish that Π
� has lower or equal

latency as Π while achieving strictly higher throughput. Our main contribution
lies in a formal proof that chain protocols cannot achieve optimal throughput,
i.e., for any chain protocol Π, there is a DAG protocol Π � that is safe and life
under the same assumptions as Π, with the same or better latency and better
throughput.

2 Related work

DAG protocols represent a recent breakthrough within the domain of permis-
sioned consensus protocols [10,8,22,11]. While DAG protocols have been previ-
ously introduced in the permissionless context, their adoption and success have
been somewhat restrained due to their inherent complexity when compared to
traditional chain protocols. Several well-known DAG protocols have exhibited
vulnerabilities, highlighting challenges in their success. For instance, IOTA [18],
one of the pioneering DAG protocols, has been susceptible to vulnerabilities such
as Parasite-chain attacks [18,17]. Another promising protocol, GhostDAG [20],
has also revealed vulnerabilities in its design [13]. Even Avalanche [19], the most
successful DAG protocol in terms of market capitalization, originally had vul-
nerabilities in its design [3].

An intriguing DAG protocol to note is Conflux[13], which leverages the
GHOST consensus rule [21] and augments blocks with additional references to
transform a chain protocol into a DAG. Li et al. [13] have demonstrated that
Conflux’s security is directly inherited from the security of GHOST. However,
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it is worth mentioning that the GHOST protocol has exhibited lower resilience
than other consensus protocols in the presence of network malfunctions [15,4].

Our contribution to this landscape is a formal proof of the superior perfor-
mance of DAG protocols, facilitated by a construction that can be conceptualized
as an extension of the Conflux construction [13]. Specifically, when we instantiate
the throughput closure using GHOST [21], we arrive at Conflux [13].

3 Abstractions

We consider a set of n processes P = {P1, P2, . . .} that interact with each other
by exchanging messages through the network. A protocol Π for P consists of
a collection of programs with instructions for all processes. In particular we
are interested in the study of chain protocol and DAG protocol protocols, i.e.,
protocol that rely on a chain or a DAG to deliver blocks. These two concepts
are formally defined below.

Chain and DAG protocols are pivotal tools employed to establish robust and
secure ledgers, and as such, they must adhere to specific fundamental require-
ments.

Traditionally, the gold standard concept is atomic broadcast [6], which en-
sures that all processes deliver the same set of transactions in the same order.
In this paper, we consider a variant of this abstraction that includes the concept
of a block in the interface and properties [2]. Processes broadcast transactions
and deliver blocks using the events bab-broadcast(tx) and bab-deliver(b), re-
spectively, where block b contains a sequence of transactions [tx1, . . . , txm]. The
protocol outputs an additional event bab-mined(b, P ), which signals that block b

has been mined by process P , where P is defined as the miner of b. The event
bab-mined(b, P ) can be understood as the creation of block b by process P . No-
tice that bab-mined(b, P ) signals only the creation of a block and not its delivery.
In addition to predicate VT() that determines the validity of a transaction, we
also equip our protocol with a validity predicate VB() to be applied to blocks.
These predicates and function are determined by the higher-level application or
protocol.

Definition 1. A protocol implements block-based atomic broadcast with valid-

ity predicates VT() and VB() if it satisfies the following properties, except with

negligible probability:

Validity: If a correct process invokes a bab-broadcast(tx), then every correct

process eventually outputs bab-deliver(b), for some block b that contains tx.
No duplication: No correct process outputs bab-deliver(b) more than once.
Integrity: If a correct process outputs bab-deliver(b), then it has previously

output bab-mined(b, ·) exactly once.
Agreement: If some correct process outputs bab-deliver(b), then eventually ev-

ery correct process outputs bab-deliver(b).
Total order: Let b and b� be blocks, and Pi and Pj correct processes that both

output bab-deliver(b) and bab-deliver(b�). Pi delivers b before b� if and only

if Pj delivers b before b�.
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External validity: If a correct process outputs bab-deliver(b), then VB(b) =
true.

The block-based atomic broadcast abstraction can be implemented by pro-
tocols based on different approaches. These differences are not captured in Def-
inition 1, but can still be relevant for the performance of the protocol. The two
families of protocols of interest for this paper are chain protocol and DAG proto-

col protocols. The distinguishing factor between them lies in the set of references
to previously mined blocks. Specifically, for a given block b, we denote the set of
bab-mined blocks referenced by b as parents(b), commonly known as the parents

of b. Furthermore, the set of bab-mined blocks reachable through references from
b is represented as ancestors(b) and is often referred to as the ancestors of b.
A block b is a descendant of its ancestors. A block with no descendants is also
called leaf.

Definition 2 (Chain protocol, DAG protocol). A block-based atomic broad-

cast protocol Π is a DAG protocol protocol if Π-mined blocks contain references

to other Π-mined blocks, meaning that the set of references is not empty. Π is

a chain protocol protocol if every Π-mined block refers to exactly one Π-mined

block and for every honest process Pi there is a Π-delivered block b such that

every Π-delivered by Pi is b or in ancestors(b). In essence, Π-delivered blocks

form a chain.

Figure 1 illustrates an example of both chain and DAG protocols.
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Fig. 1. Comparison between a chain protocol and a DAG protocol. Blocks in blue
(continuous lines) are the bab-delivered blocks, whereas grey (dashed) blocks are
bab-mined but not bab-delivered. The protocol on the left is a chain protocol;
each block refers to exactly one block, and there is a block (b9) such that every
currently bab-delivered block is b9 or an ancestor of it. The protocol on the right
is a DAG protocol; block b9 references multiple blocks.
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To set the stage, we make the assumption that both chain and DAG proto-
cols begin with an initial, hard-coded block referred to as the genesis block. This
genesis block is special in that it possesses an empty set of references. It is impor-
tant to note that, according to Definition 2, chain protocols inherently are DAG
protocols. The blocks mined in chain protocols produce a tree, a particular kind
of DAG. Therefore, for the remainder of this paper, we will use the term “DAG
protocol” to encompass both DAG protocol and chain protocols, acknowledging
this inclusion.

One significant implication of abstracting DAG protocols as block-based
atomic broadcast (Definition 1) is that the protocol must define a function that
operates on DAG that produces a list of delivered blocks. It is worth mentioning
that certain DAG protocols, such as the original Avalanche protocol [19,3], do not
output an ordered list of transactions but the list output by different processes
may differ up to permutation. While DAG protocols can also be modeled as
generic broadcast [16], situations arise where complete transaction ordering, as
seen in calls to smart contracts, becomes necessary. For the purposes of this pa-
per, we focus on protocols that can be effectively modeled as block-based atomic
broadcast, i.e, protocols that achieve total order. The results we derive in this
context generalize straightforwardly to protocols modeled as generic broadcasts.

4 Model

DAG protocols base their security on different techniques such as proof of work

(PoW ), proof of stake (PoS ) [9], proof of space-time (PoST ) [1], or proof of

elapsed time (PoET ) [5]. For the sake of simplicity, we use the PoW terminol-
ogy. Nevertheless, our model does not use explicit properties of PoW and, thus,
includes all these techniques.

Processes. Consistent with prior research, our protocol operates without explicit
knowledge of the number or identities of the processes. The processes themselves
remain unaware of these details as well. We assume a static network consisting
of n processes, where up to f processes are to be corrupted by the adversary,
thereby exhibiting arbitrary behavior. We do not assume any general bound on
f . The construction introduced in this paper takes a protocol Π as input; we
leave the bound on f vary based on the input protocol Π.

Blocks. A transaction tx, comprises a set of inputs, a set of outputs, and a col-
lection of digital signatures, as in Bitcoin [14]. Transactions have size |tx|, and
they are grouped into blocks, as introduced in Definition 1. Each block encom-
passes a specific number of transactions, denoted as m, a number of references
to previously bab-mined blocks, quantified as nrefs, and further parameters es-
sential for the proper execution of protocol Π. It is noteworthy that the size of
a reference, represented as |ref|, is significantly smaller than that of a transac-
tion, for simplicity, we consider it to be negligible. We reiterate that protocol Π
defines external validity predicates, VT() and VB(), responsible for determining
the validity of a transaction or block.
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Network. A diffusion functionality implements communication among the pro-
cesses, which is structured into synchronous rounds. The functionality keeps a
distinct RECEIVEi string for each process Pi and makes it available to Pi at
the start of every round. The purpose of the string RECEIVEi is to serve as a
repository for all the messages received by Pi.

When a process, say Pi, instructs the diffusion functionality to broadcast

a set of messages, it signifies that Pi has “completed its round”. In response,
the functionality marks Pi as having completed its operations for that specific
round. The adversary, whose actions are described in detail below, possesses the
ability to access the string of any process at any point during the execution.
Additionally, the adversary can observe every message broadcast by any process
instantaneously. Furthermore, the adversary has the capability to insert messages
directly and selectively into RECEIVEi for any process Pi, ensuring that only Pi

receives the message at the outset of the following round. This behavior models
what is often termed a rushing adversary.

Once all non-corrupted processes have concluded their respective rounds,
the diffusion functionality aggregates all messages that were broadcast by non-
corrupted processes during that round. These aggregated messages are then ap-
pended to the RECEIVEi strings for all processes, this is the reason of the name
synchronous rounds. Subsequently, each non-corrupted process updates its lo-
cal view at the conclusion of every round. If a non-corrupted process Π-mines

a block in round r, all processes receive the Π-mined block by the subsequent
round r + 1.

Furthermore, even if the adversary causes a block to be received selectively by
only some non-corrupted processes in round r, the block is received by all non-
corrupted processes by round r+2. The update of the local view also encompasses
the Π-delivery of blocks that meet given criteria defined by protocol Π.

Adversary. The adversary can corrupt up to f processes at the beginning of the
execution. These corrupted processes may deviate arbitrarily from the proto-
col, adhering to the instructions from the adversary. Additionally, the adversary
wields control over the diffusion functionality. The adversary can schedule the
delivery of messages, read the contents of the RECEIVEi string for every pro-
cess at any point during the execution, and directly write messages into the
RECEIVEi of any process. The adversary signals the conclusion of her round by
transmitting a specially designated message.

Round structure. At the beginning of the round, process Pi reads the messages
in its input string RECEIVEi. Then, Pi proceeds to update its internal state
in accordance with the received messages and performs a set of actions defined
by protocol Π. Such actions include the Π-delivery of blocks. Pi concludes the
round by broadcasting a set of messages to the other processes.
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4.1 Abandoned blocks

Definition 3. An execution is a history with an entry for each round containing

the actions, a list of received messages, and a list of sent messages by each process

in that round.

Since executions are not bounded, an event may be theoretically possible,
but its occurrence might have a probability of zero. For instance, consider an
algorithm that continuously flips an unbiased coin indefinitely. There could be
an execution where all outcomes are heads, but the probability of this specific
sequence of events happening is zero, as it is the limit of an infinite execution.

To circumvent these issues, we introduce the concept of a partial execution.

Definition 4. Given a protocol Π, the set of λ-partial executions Φλ is defined

to be the set of λ-prefixes of all executions of protocol Π. A partial execution is

an execution that belongs to Φλ for some λ ∈ N.

Definition 5. Given an execution E of a block-based atomic broadcast protocol

Π, an abandoned block in E is is an honestly bab-mined block b such that b is

not bab-delivered in E.

It is important to note that the validity property defined in block-based
atomic broadcast (Definition 1) does not guarantee that every bab-mined block
will eventually be bab-delivered. Instead, this property ensures that for each
bab-broadcast transaction, there exists at least one bab-delivered block that
contains it. The concept of abandoned blocks is a significant concern in the
context of such protocols. Abandoned blocks have been honestly bab-mined but
are never bab-delivered. The existence of abandoned blocks can severely impact
the performance of a chain protocol or DAG protocol.

Definition 6. A protocol Π permits abandoned blocks if there exist a block b

and a partial execution E such that: b is abandoned in any extension of E.

Remark 1. Note that given a protocol that permits abandoned blocks, the prob-
ability, taken over the randomness of the protocol, of having at least one aban-
doned block in execution is greater than zero since partial executions happen
with non-zero probability.

Determining whether a given protocol Π permits abandoned blocks or not
can be a challenging task and, in some cases, may not be computable due to
the need to simulate potentially infinitely long executions. However, for certain
protocols like Bitcoin [14], the existence of abandoned blocks is a direct conse-
quence of forks occurring among honest miners. This phenomenon is formalized
in the following definition.

Definition 7. Given an execution E of a given protocol Π, a round r forked if

protocol Π outputs two events bab-mined(b, Pi) and bab-mined(b�, Pj) in round

r at two distinct honest processes Pi and Pj. A protocol with a forked round in

at least one partial execution is a forkable protocol.
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Lemma 1. A forkable chain protocol Π permits abandoned blocks.

Proof. Given a forkable protocol Π, there exist a round r in which two different
honest processes output events bab-mined(b, Pi) and bab-mined(b�, Pj). In par-
ticular, b �= b� because their miners are different. Π is also a chain protocol. thus
both b and b� have a unique reference to previously bab-mined blocks, so they
cannot reference each other. Another implication of Π being a chain protocol
is that at any point in the execution of the protocol, there exists a bab-mined

block b∗ such that every bab-delivered is in ancestors(b∗). Since every block only
contains a single reference and b and b� do not refer to each other, we conclude
that no honest processes can bab-deliver both b and b� simultaneously.

Transactions that were originally included in abandoned blocks must be re-
included in subsequent blocks to maintain the validity property (Definition 1).
This re-inclusion consumes space in new blocks and has implications for both
latency and throughput, as we formalize below.

4.2 Throughput and latency

Definition 8. Given a block-based atomic broadcast protocol Π, an adversary

A, and an execution E, we define the throughput of Π in the presence of A in

execution E as the average number of bab-delivered blocks per round, and we

denote by throughput(Π,A, E).

Definition 9. Given a block-based atomic broadcast protocol Π, the throughput
of Π is defined to be throughput(Π) := inf

A
E[throughput(Π,A, E)], i.e., the

infimum over all the possible adversaries A of the average over the randomness

Π of throughput(Π,A, E) over all the possible executions.

Definition 10. The goodput of protocol Π is defined to be the throughput of Π

in the presence of an adversary that follows the instructions of the protocol, i.e.,

the processes controlled by the adversary behave honestly.

Throughput, as defined above, should be considered as a metric of the average
yield of the capacity in the worst adversarial case. Goodput should instead be
understood as a metric of the capacity of the protocol without an adversary
interfering in the protocol.

Definition 11. Given a block-based atomic broadcast protocol Π, an adver-

sary A, an execution E, and a transaction tx, we define latency of tx in the

presence of adversary A in execution E as the number of rounds since tx is

bab-broadcast until the first block containing tx is bab-delivered, and we denote

it by latency(Π,A, E , tx). We define the latency of Π to be the average number

of rounds over the transactions tx in execution E, since tx is bab-broadcast until

the first block containing tx is bab-delivered and denote it by latency(Π,A, E).
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Definition 12. Given a block-based atomic broadcast protocol Π, The latency
of protocol Π is defined as latency(Π) = sup

A

E[latency(Π,A, E)], i.e., the supre-

mum over all the possible adversaries A of the average over the randomness of

the protocol of the latency(Π,A, E) over the possible executions E.

Latency is the other traditional measure of performance of the protocol.
Intuitively, latency is a metric for the response time of the protocol, reflecting
the amount of time needed until an operation is executed.

5 The throughput closure

We introduce a novel construction designed to enhance a given DAG protocol Π.
This construction produces a DAG protocol, which we call the throughput closure

of Π and denote by Π
�. Protocol Π � possesses the unique property of ensuring

that every honestly bab-mined block is eventually bab-delivered. The mecha-
nism by which protocol Π � accomplishes this feat involves the incorporation of
additional references to blocks. For any given block b, protocol Π � defines the
set abandoned(b) as the collection of valid blocks that will not be Π-delivered if
b is to be Π-delivered. The block mining and delivery routines of the throughput
closure Π

� are built on top of their counterparts in Π. We recall that chain pro-
tocols are a subset of DAG protocols and the differences between chain protocols
and general DAG protocols are the main interest of this paper.

Overview. As shown in Algorithm 1, when an honest process Pi Π-mines a block
b, process Pi also Π

�-mines the same block. However, in Π
�, the block b includes

an additional set of references to the blocks in the set abandoned(b).
The modified delivery routine operates as follows: when a block b would be

Π-delivered, all valid blocks in the set abandoned(b) are Π
�-delivered in a fixed

topological order immediately before b. This topological sort allows to order non
Π-delivered blocks with respect to Π-delivered blocks deterministically accord-
ing to the references included in the Π-delivered blocks. This is a crucial aspect
as establishing a total order in a DAG can be generally challenging due to dif-
ferent processes having different partial views of the DAG. The topological sort
τ ensure that all processes that have received block b agree on the same order.
A canonical example for topological sort τ is to order the blocks in abandoned(b)
according to their depth in the DAG, distance to genesis, breaking the ties ac-
cording to the hash of the block. Note that if an adversary creates a block with
low depth, it will be only Π-delivered when deeper block references it, thus the
adversarial block is Π

�-delivered concurrently with deeper blocks.
Constructing the set abandoned(b), even when it can be computed, may be

challenging task, as we explained above. However, given a chain protocol Π the
set abandoned(b) becomes trivial to compute as it is formed by every block that
is not an ancestor of b. Furthermore, the set abandoned(b) is the set of leaves
of the DAG, with the exception of b. As an illustrative example, Figure 2 shows
the application of this construction within the context of Bitcoin. If we consider
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Π to be GHOST protocol [21], we recreate the Conflux protocol [13]. Including
references to the leaves in the DAG is the correct method for referring to the set
abandoned(b), as this set is formed by the leaves in the DAG when considering
a chain protocol Π. The same approach can be considered with DAG protocols.
This approach is computationally feasible even in scenarios in which the set
abandoned(b) may not be computable, however, some blocks may be referenced
when there is no need, adding redundancy of references. Further insights into
this alternative approach are provided below.

Algorithm 1 Protocol Π � for process Pi.

Implements: block-based atomic broadcast Π
�

Uses: block-based atomic broadcast Π

topological sort τ

State:
1: D� ← ∅
2: b�� ← [ ]

3: upon event Π
�-broadcast(tx) do

4: invoke Π-broadcast(tx)

5: upon event Π-mined(b, Pj) do
6: if Pi = Pj then
7: weak ← leaves(abandoned(b,D�))
8: b� ← b

9: b�.wrefs ← weak

10: D� ← D� ∪ {b�}
11: invoke Π

�-mined(b�, Pi)

12:upon event Π
�-mined(b�, Pj) do

13: if VB�(b�) then
14: D� ← D� ∪ {b�}

15:upon event Π-deliver(b) do
16: ready ← ancestors’(b�) \ ancestors’(b��)
17: b�� ← b�

18: for b∗ ∈ τ(ready) do
19: invoke Π

�-deliver(b∗)

20: function abandoned(b,D�) :
21: return {b� ∈ D� : b� �∈ ancestors’(b) ∧ incompatible(b, b�)}

22: function VB�(b�) :
23: return VB(b) ∧ ∃ tx ∈ b� : undelivered(tx)
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Algorithm 2 Greedy approach for process Pi.

24:upon event Π-mined(b, Pj) do // Greedy approach
25: if Pi = Pj then
26: b� ← b

27: weak ← leaves({b� ∈ D� : b� �∈ ancestors(b�)})
28: b�.refs ← b�.refs||weak

29: D� ← D� ∪ {b�}
30: invoke Π

�-mined(b�, Pi)

Detailed description. We describe the execution of the protocol from the perspec-
tive of an honest process Pi. When honest process Pi Π

�-broadcasts a transaction
tx, it invokes Π-broadcast(tx) (L3–4). Notably, the broadcast of transactions oc-
curs exactly as it does in protocol Π. When Pi triggers event Π-mined(b, Pi)
(L5–11), it initially computes the set abandoned(b) locally. To Π

�-mine a new
block b�, Pi augments b by adding extra references to the set abandoned(b) (L7–
9). Subsequently, Pi adds b� to the set of mined blocks D� (L10) and triggers the
event Π

�-mined(b�, Pi) (L11).

When event Π
�-mined(b�, Pj) is triggered, Pi verifies the Π

�-validity of b�

and incorporates it into its local view (L12–14). So far, the execution of Π
�

closely parallels that of Π. However, the key distinction lies in the delivery of
blocks (L15–19). When event Π-deliver(b) occurs, Pi searches for the block b�

associated with b. Pi then assembles the set ready, which comprises the blocks
to be Π

�-delivered (L16). This set is computed as the set-difference between
the ancestors of block b� and the ancestors of the last delivered block b�l. Pi

subsequently updates the last delivered block to be b� (L17). Finally, Pi applies a
topological sorting algorithm τ to the set ready and Π

�-delivers them accordingly
(L18–19).

A block b� is deemed valid (L22–23) within protocol Π
� if it satisfies two

conditions: firstly, its associated block b must be Π-valid, and secondly, it must
contain at least one Π

�-valid transaction. Algorithm 2 presents a greedy version
of abandoned(b). In this approach, a process Pi adds references to b� for every
block that is not already an ancestor of b within protocol Π. This greedy ap-
proach solves the computational complexity of determining the set abandoned(b)
at the expense of an excess of references.

The throughput closure mirrors protocol Π when the set abandoned(b) is
empty for every block, indicating that the protocol does not permit the existence
of abandoned blocks. However, if Π permits abandoned blocks, then there exists
some executions of Π with a block b such that abandoned(b) �= ∅, and the
throughput closure diverges from the original protocol. The implementation of
the throughput closure does entail an increase in local computation for processes.
Specifically, processes need to scan the DAG and append a set of references to
all leaves in abandoned(b) to the currently mined block b. The computational
complexity of determining abandoned(b) can vary depending on the protocol, as
discussed earlier. However, in the case of chain protocols, this set is relatively
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straightforward to compute. A process simply adds references to every leaf of a
chain that has not been referenced by an ancestor.
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Fig. 2. An example of our construction applied to Nakamoto consensus. The full
lines denote the references of the Nakamoto consensus and the blue dashed lines
denote the extra references included by the throughput closure. According to
Nakamoto consensus, the main chain is the chain b1 · · · b11 and blocks b4, b7, b8,
and b9 are abandoned. Looking at b11, the set abandoned(b11) is formed by block
b9. Blocks b4, b7, and b8 are not part of the abandoned(b11) because b10 already
references them. When delivering b11, block b9 would be delivered between b10
and b11.

6 Analysis

6.1 Security analysis

Theorem 1. Given protocol DAG protocol Π implementing block-based atomic

broadcast, its throughput closure Π
� also implements block-based atomic broad-

cast.

Proof. We demonstrate that the throughput closure Π
� implements block-based

atomic broadcast by leveraging the fact that Π does. Throughout this proof, we
assume the perspective of an honest process Pi.

Validity: Assume that an honest process Pj Π
�-broadcasts a given transaction

tx. By construction, process Pj does so by invoking Π-broadcast transaction
tx (L3–4). The validity property of protocol Π guarantees that process Pi

eventually Π-delivers a block b containing transaction tx. Process Pi, by
definition of the protocol, Π �-delivers the block b� consisting of block b with
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the addition of the extra set of references (L15–19). If every transaction
contained in b� is invalid, the block is not Π �-deliver. In the case of block b�,
the validity check can only fail if transaction tx fails the validity predicate.
Since tx is Π

�-broadcast, the external validity predicate is satisfied unless
some block containing tx has been Π

�delivered.
We conclude that for any honestly Π

�-broadcast transaction tx, Pi eventually
Π

�-delivers a block b� containing tx, thus validity property of protocol Π � is
satisfied.

Integrity: Process Pi only Π
�-delivers blocks that it Π

�-delivers or ancestors
of those contained in the set D (L15–19). A block b� enters the set D only
after an invokation of Π-mined(b, Pj). We conclude that every Π

�-delivers

has previously been Π
�-mined.

Agreement: Consider a block b� that is Π �-delivered by process Pi. We consider
two different cases: when b whether b is Π-delivered or not. On the one hand,
if b is Π-delivered by process Pi, every honest process eventually Π-delivers

b, thus Π �-delivers b� as a consequence (L15–19). On the other hand, if block
bl� is Π �-delivered as a consequence of another block b∗ is Π �-delivered. The
same reasoning as above applies to block b∗, which implies the eventual
Π

�-delivery of block b�.
Total order: Consider two Π

�mined blocks b�1 and b�2 and two honest processes
Pi and Pj that Π �−deliver both blocks. We distinguish four cases depending
on whether blocks b1 and b2 are Π-delivered or not.
Assume that both b1 and b2 are Π-delivered. Note that in the view of any
honest process the order in which blocks b1 and b2 are Π-delivered is the
same as blocks b�1 and b�2 are Π

�-delivered (L15–19). Due to the total order
property of protocol Π, process Pi Π-delivers block b1 and b2 in the same
order as process Pj , thus both processes Π

�-deliver blocks b1 and b2.
If either b�1 or b�2 are Π

�-delivered as a consequence of another block b3 being
Π-delivered. Since the set of blocks that are Π

�-delivered as consequence of
block b�3 are Π �-delivered immediately before b�3, any block b� Π �-delivered be-
fore (after) b� is also Π

�-delivered before (after) the set of blocks Π �-delivered

as a consequence of b�. The same reasoning as above applies to this case. We
conclude that Pi also Π

�delivers both b�1 or b�2 in the same order as Pj .
The only case left is when both b�1 and b�2 are Π

�-delivered as a consequence
of two blocks b�3 and b�4 being Π

�-delivered. If b�3 and b�4 are different the case
is the same as before. If b�3 and b�4, both Pi and Pj use the topological order
to determine in which order to Π

�-delivered. Since the topological sorting is
deterministic and depends only on block b�3, both Pi and Pj Π

�-deliver b�1
and b�2 in the same order.

External validity: The external validity property is imposed by lines L22–23.

6.2 Throughput and latency

Theorem 1 states that the throughput closure Π
� maintains the safety and live-

ness properties the original protocol Π. In this section, we delve into a com-
parative analysis of the performance aspects, through throughput and latency,
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between Π
� and Π. It is important to note that both throughput and latency

definitions take into account adversarial behavior, and the connection between
the adversarial behavior of Π � and Π is discussed in the following remark.

Remark 2. Note that given an adversary A� for protocol Π �, an adversary A for
protocol Π can be constructed by merely removing the extra references from
any block that A�

Π
�-mines. Additionally, given an adversary A for protocol Π,

it can also be regarded as an adversary for protocol Π �, as every action taken
by A in protocol Π is allowed in protocol Π �.

Definition 13. Given an execution E � and an adversary A� for protocol Π �, we

define the equivalent execution of protocol Π as the execution E � without the extra

references in each block and adversary A, as discussed in Remark 2.

Lemma 2. Given a DAG protocol Π, its throughput closure Π
� achieves the

same or lower latency as Π.

Proof. Consider an execution E �, an adversary A� for protocol Π �, and a trans-
action tx that has not already been Π

�-delivered. Denote by E the equivalent
execution (Definition 13) of protocol Π. Note that by definition of Π �, tx has
not been Π-delivered either (L15). Protocol Π � has two different mechanisms to
Π

�-deliver(tx).
On the one hand, if an event Π-deliver(b) for a block b containing tx is

triggered, then b is Π �-delivered (L15). In this case, latency(Π �,A�, E �, tx) is the
same as latency(Π,A, E , tx).

On the other hand, if an event Π-deliver(b�) for a block b� that does not con-
tains tx but is descendent of a block b containing tx ., then block b� is Π �-delivered

immediately before b (L16). In this case, latency(Π �,A�, E �, tx) is strictly smaller
than latency(Π,A, E , tx).

We conclude that for every adversary, execution, and transaction, the latency
of protocol latency(Π �,A�, E �, tx) ≤ latency(Π,A, E , tx). Hence, latency(Π �) ≤
latency(Π)

The next result clarifies the motivation for the term throughput closure.

Lemma 3. Given a DAG protocol Π, then throughput(Π �) ≥ throughput(Π),
and if Π permits abandoned blocks, then throughput(Π �) > throughput(Π).

Proof. Consider an execution E �, an adversary A� for protocol Π �, and a trans-
action tx that has not already been Π

�-delivered. Denote by E the equivalent
execution (Definition 13) of protocol Π.

On the one hand, if there is no abandoned block in the execution E �, then,
the set abandoned(b�) is empty for every block b�. Thus, no extra reference is
added at any point in the execution of Π � the executions E and E � identical. We
conclude that throughput(Π,A�, E) = throughput(Π �,A, E).

On the other hand, if there exists at least one abandoned block b� in execution
E �, then, the set abandoned(b∗) is not empty for some block b∗ that is eventually
Π

�-delivered. When b∗ is Π
�delivered so is b� (L16).
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We conclude that throughput(Π �,A�, E �) ≥ throughput(Π �,A, E) for every
possible adversary A� and execution E �, thus throughput(Π �) ≥ throughput(Π �).
Furthermore, if Π permits abandoned blocks, there exists an λ-partial execu-
tion with a block b that is abandoned in all its extensions. This means that
the probability, over the randomness of the protocol, of having an abandoned
block is strictly greater than zero (Remark 1). Thus, E[throughput(Π �,A�, E �)] >
E[throughput(Π,A, E)] for at least some adversary A�. We conclude by notic-
ing that if an adversary A∗ prevents the exclusion of abandoned blocks, then
throughput(Π �,A∗, E �) > throughput(Π �,A�, E �). Hence, we conclude that

throughput(Π �) = inf
A�

E[throughput(Π �,A�, E �)]

> inf
A

E[throughput(Π,A, E)] = throughput(Π).

Corollary 1. Given a DAG protocol Π, then goodput(Π �) ≥ goodput(Π). Fur-

thermore, if Π allows for the existence of abandoned blocks, then goodput(Π �) >
goodput(Π).

Proof. Consider the proof of Lemma 3 limited to adversaries that follow the
instructions of the protocol.

Note that every chain protocol trivially permits abandoned block. We can
finally conclude that DAG protocols are strictly better then chain protocols.

Theorem 2. Given a chain protocol Π, there exists a DAG protocol Π � such

that: latency(Π �) ≤ latency(Π) and throughput(Π �) > throughput(Π).

Proof. Lemma 1 states that a chain protocol Π permits abandoned blocks. The-
orem 1 demonstrates that its throughput closure Π

� implements block-based
atomic broadcast. Lemma 3 shows that throughput(Π �) > throughput(Π). Fi-
nally, Lemma 2 establishes that latency(Π �) ≤ latency(Π).
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Abstract. Regulatory authorities aim to tackle illegal activities by tar-
geting the economic incentives that drive such behaviour. This is typi-
cally achieved through the implementation of financial sanctions against
the entities involved in the crimes. However, the rise of cryptocurrencies
has presented new challenges, allowing entities to evade these sanctions
and continue criminal operations. Consequently, enforcement measures
have been expanded to include crypto assets information of sanctioned
entities. Yet, due to the nature of the crypto ecosystem, blocking or
freezing these digital assets is harder and, in some cases, such as with
Bitcoin, unfeasible. Therefore, sanctions serve merely as deterrents. For
this reason, in this study, we aim to assess the impact of these sanctions
on entities’ crypto activities, particularly those related to the Bitcoin
ecosystem. Our objective is to shed light on the validity and effective-
ness (or lack thereof) of such countermeasures. Specifically, we analyse
the transactions and the amount of USD moved by punished entities that
possess crypto addresses after being sanctioned by the authority agency.
Results indicate that while sanctions have been effective for half of the
examined entities, the others continue to move funds through sanctioned
addresses. Furthermore, punished entities demonstrate a preference for
utilising rapid exchange services to convert their funds, rather than em-
ploying dedicated money laundering services. To the best of our knowl-
edge, this study offers valuable insights into how entities use crypto assets
to circumvent sanctions.

Keywords: Sanctions circumvention, Money laundering, Flow analysis,
Behavioural analysis, Cryptocurrency, Traceability

1 Introduction

Understanding the multidimensional nature of crime is crucial for developing
effective strategies to prevent and combat these illicit activities. Crimes often
manifest in various forms and domains, like drug trafficking, human trafficking,
and other types of organised crime. Nevertheless, in all these cases, the main

DPM & CBT 2024

279



2 F. Zola et al.

goal of the criminal networks is still to make a profit [23]. For this reason, dis-
rupting the economic incentives driving illicit behaviour has become the primary
objective in tackling these crimes [29]. This task requires cooperation and co-
ordination among governments, law enforcement agencies, financial institutions,
regulatory bodies, and other stakeholders at national and international levels.

This is the case of authority agencies such as the Office of Foreign Assets
Control (OFAC)1, Office of Financial Sanctions Implementation (OFSI)2, Eu-
ropean External Action Service (EEAS)3 and United Nations Security Council
(UNSC)4, that aim to implement and enforce financial sanctions directly to the
entity behind some violations and crimes. In fact, these agencies have the au-
thority to freeze, block or restrict access to sanctioned entities’ assets such as
banking accounts, real estate, vessels, etc.

However, with the advent of virtual currencies such as cryptocurrencies, sta-
blecoins, and Non-Fungible Tokens (NFTs), sanctioned entities have discovered
new opportunities for circumventing sanctions and continuing their illicit activi-
ties [30]. These digital assets promote decentralization and offer varying degrees
of anonymity or pseudo-anonymity, creating a borderless ecosystem ideal for the
proliferation of illicit activities [14][25]. According to “The 2024 Crypto Crime

Report” [12], although illicit crypto-transactions constitute less than 0.5% of the
total on-chain transaction volume, they accounted for nearly 40 billion USD in
2022 and over 24 billion USD in 2023.

The significant size of the crypto market, the opportunities crypto assets
present, and their proven involvement in illicit activities [9][16] have raised con-
cerns about ensuring compliance with existing financial regulations. While some
countries such as Tunisia, Nepal, Libya, Iraq, Bolivia, and Algeria have banned
the use of cryptocurrency [7], others have directed their effort to implement
new frameworks and technology to increase their control degree over the crypto
ecosystem. Thus, regulatory agencies have intensified their enforcement actions
against sanctioned entities, including tracking information about their crypto
assets whenever possible. However, due to the nature of the crypto ecosystem,
they still face limitations in blocking these digital assets. As a result, sanctions
solely serve as a deterrent, aiming to discourage other individuals and companies
from engaging in transactions with punished entities. Yet, this limitation makes
crypto assets the perfect facilitator for ongoing illicit operations and circumvent-
ing sanctions.

For this reason, in this work, we aim to examine the impact these sanctions
generate in the crypto activities of punished entities and their related violations.
Our objective is to evaluate the validity and effectiveness (or lack thereof) of such
countermeasures. Specifically, we analyse the transactions and the amount of
USD moved by punished entities that possess crypto addresses before and after
being sanctioned by the authority agency. Furthermore, we investigate which

1 https://ofac.treasury.gov/
2 https://sanctionssearchapp.ofsi.hmtreasury.gov.uk/
3 https://www.eeas.europa.eu/
4 https://www.un.org/securitycouncil/content/un-sc-consolidated-list
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type of known crypto entities (Exchange, Mixers, Gambling, etc.) are typically
engaged with by the punished entities post-sanction. Thus, we investigate if
they are attempting to connect with other entities involved in illicit operations
or are employing strategies such as money laundering, on-ramps and off-ramps
operations, funding raise campaigns, etc.

More specifically, this work analyses entities (individuals and companies)
sanctioned by the OFAC agency that have information about Bitcoin (BTC)
assets. These decisions were taken for two specific reasons: a) Bitcoin (together
with stablecoins) is widely recognised among the most popular cryptocurrencies
for illicit activities [12], primarily due to its high market value and accessibility,
even for users without technical background; b) other authority agencies (OFSI,
EEAS, UNSC) do not have a comprehensive list of sanctioned crypto-related
entities or do not release it publicly.

The results suggest that sanctions have been effective for roughly half of the
sanctioned entities, while the others continue to engage in transactions through
sanctioned Bitcoin addresses. Additionally, sanctioned entities prefer to directly
convert their cryptocurrencies using dedicated services (Exchanges), rather than
apply money laundering strategies using services like Mixers or Gambling.

To the best of our knowledge, this study offers a first step towards determin-
ing the effectiveness of sanctions within the crypto ecosystem and how sanctioned
entities used them to circumvent sanctions.

2 Background

This section presents an overview of the crypto ecosystem, showing regulations,
directives, and literature approaches. Specifically, in Section 2.1 a review of Eu-
ropean Union regulations related to the crypto ecosystem is presented, while
Section 2.2 is focused on presenting the United States OFAC agency and its
crypto sanctions. Finally, Section 2.3 describes related research in the field.

2.1 EU Directive review

As mentioned, crypto assets can be harder (or in some cases unfeasible) to freeze
or block directly. However, governments and regulatory authorities worldwide
have been increasingly implementing measures to monitor and regulate crypto
markets to tackle concerns related to illicit activities. Thus, these regulations
aim to facilitate the imposition of sanctions when necessary.

The European Union (EU) has established and reviewed several directives
aimed at tackling issues such as money laundering, fraud, terrorism financing,
and other emerging challenges related to non-cash payments. For instance, in
2015, the 5th Anti-Money Laundering Directive (5AMLD) [1] was introduced
to address new trends in terrorist financing, building upon the provisions of the
4AMLD. Notably, under the 5AMLD, the role of cryptocurrency Exchanges has
changed, they are now considered equivalent to financial institutions. There-
fore, they are required, among other measures, to adhere to Know Your Cus-
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tomer (KYC) requirements, implement Anti-Money Laundering (AML) mecha-
nisms, and register with national regulatory authorities. This directive has been
amended to include provisions regarding information accompanying transfers of
funds and certain crypto-assets, through the Regulation (EU) 2023/1113 [6]. The
amendment fosters international cooperation within the Financial Action Task
Force (FATF) and the global implementation of its recommendations [4]. Fur-
thermore, it sets the obligation for virtual asset service providers (VASPs) and
crypto asset service providers (CASPs) to collect information about the person
who uses their services. Together with these directives, another pivotal regula-
tion is the Markets in Crypto-Assets (MiCA) [5], which clearly distinguishes be-
tween different types of crypto-assets (asset-referenced tokens, electronic money
or e-money, and other crypto assets). It then imposes constraints on CASPs
to ensure market integrity and financial stability. One of its key provisions in-
volves significant disclosure and transparency rules aimed at better informing
consumers about associated risks, as well as mandating the implementation of
security measures and anti-money laundering compliance.

Fraud and counterfeiting of non-cash means of payment is regulated through
the EU directive 2019/713 [3]. The framework establishes measures aimed at
preventing and detecting fraud and counterfeiting of non-cash payment instru-
ments, such as security requirements for payment service providers, customer
authentication procedures, and usage of secure technologies (encryption and to-
kenization). This directive aimed to cover also new types of non-cash payment
instruments such as e-money and virtual currencies, since they have a significant
cross-border dimension. Another interesting EU framework, although it doesn’t
specifically mention digital currency or cryptocurrencies due to its general aim,
is the Directive (EU) 2017/1371 [2] that defines legal framework and measures
to combat any fraud against the financial interests of EU.

Despite the revision, update, and implementation of these policies, freezing
or blocking crypto assets remains harder to accomplish by technical design. Its
boundary-less structure, the availability of services in jurisdictions where these
policies don’t apply, or in countries unwilling to cooperate in criminal investi-
gations, the anonymity of users, and the ease of conducting transactions - these
properties collectively enable users to circumvent sanctions and persist in their
illicit activities.

2.2 US Office of Foreign Assets Control

The Office of Foreign Assets Control (OFAC) is part of the Department of the
United States (US) Treasury, and it is in charge of implementing economic and
trade sanctions in accordance with US foreign policy and national security objec-
tives. These sanctions are directed towards specific foreign countries and regimes,
terrorists, international narcotics traffickers, individuals involved in the prolif-
eration of weapons of mass destruction, and other actors posing threats to the
national security, foreign policy, or economy of the United States. These actors
and their blocked assets are included in a Specially Designated Nationals and
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Blocked Persons (SDN) list5. Consequently, US individuals and companies are
generally prohibited from dealing with them. The actors reported in the SDN
list, which we refer to as entities in this paper, are sanctioned due to the vio-
lation of one (or more) Executive Orders and/or Code of Federal Regulations
(CFR)6. Since 2018, OFAC has included cryptocurrency-related information in
the SDN list as blocked assets for sanctioned entities whenever such information
is available. In some cases, one entity can have multiple sanctioned addresses.
To date, the violations that have led to sanctions against entities with crypto
addresses involved, are detailed in Table 1. In this paper

# Code Description Executive Order N.

1 CYBER2 Malicious Cyber Activities 13694, 13757
2 DPKR3 Blocking Property of the Government of North Korea 13722
3 DPKR4 Additional Sanctions With Respect to North Korea 13810
4 ELECTION Foreign Interference in the US Election 13848
5 IFSR Iranian Financial Sanctions Regulations 31 CFR part 561
6 ILLICTI-DRUGS Illicit Drug Trade 14059
7 IRGC Iranian Financial Sanctions 31 CFR Part 561
8 NPWMD Weapons of Mass Destruction Proliferators Sanctions 31 CFR part 544
9 RUSSIA Blocking Harmful Activities of the Russian Federation 14024
10 SDGT Narcotics Trafficking Sanctions 31 CFR part 594
11 SDNTK Foreign Narcotics Kingpin Sanctions 31 CFR part 598

Table 1. Violations reported in the SDN list that have generated sanctions against
cryptocurrency related entities.

2.3 Cryptocurrency and Cybercrime

Cryptocurrencies have created a convenient ecosystem for the permanence and
movement of illicit cybercrime-related activities, with currencies such as Bitcoin,
Ethereum, and Monero becoming their operational space. The evolution of illicit
activities within the cryptocurrency ecosystem has been studied extensively [13]
[11]. For instance, Hornuf et al. [17] analysed cybercrime related to Ethereum
transactions. In particular, they identified over 1.78 million transactions related
to 19 categories of cybercrime, with losses amounting to $1.65 billion up to
the year 2021, posing the focus on estimating how these cybercrimes impact
victims’ risk-taking, risk-adjusted returns, and investor behaviour. In the same
line, in [26], authors employ the Generalized Autoregressive Score (GAS) model
to examine the impact of cybercrime on cryptocurrency returns in South Africa.
On the other hand, in [10], authors attempted to correlate the expansion of
ransomware activities with transactions performed in these cryptocurrencies be-
tween 2015 and 2020. However, although it is clear that these cryptocurrencies

5 https://sanctionssearch.ofac.treas.gov/
6 https://ofac.treasury.gov/specially-designated-nationals-list-sdn-list/program-tag-

definitions-for-ofac-sanctions-lists
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facilitate the growth of ransomware revenue [12], authors did not find an evident
correlation. In [8], traditional machine learning algorithms are used to detect
illegal activities using a Bitcoin dataset, while in [19] graph-based networks are
used for a similar task. Similar applications are also explored in [20] for defining
a method to identify and trace illicit activities in the Ethereum blockchain.

Among the most relevant cybercrimes, cryptocurrencies have become the per-
fect solution for laundering illegal funds [27]. By fostering decentralization, user
anonymity, and the ease of making cross-border transactions, they have led to the
proliferation of dedicated services. Achraf Guidara [16] examines the relation-
ship between cryptocurrencies and money laundering, emphasising the urgent
need to develop a robust and internationally coordinated regulatory framework
to mitigate these risks. In [21], 182 Bitcoin addresses belonging to 56 mem-
bers of the Conti ransomware group are analysed with the aim of identifying if
money laundering mechanisms are applied. They conclude that cryptocurrency
exchanges and dark web services are involved in 71% and 30% of transactions,
respectively, while only 8% utilized mixers. These findings challenge the pre-
vailing notion that cybercriminals employ sophisticated methods, highlighting
instead the simplicity of their tactics [22].

At the same time, as introduced in the previous sections, the lack of market
control has turned these cryptocurrencies into a means of evading sanctions, al-
lowing entities to continue their illicit activities. For this reason, in this work,
we aim to analyse how punished entities use crypto assets to circumvent sanc-
tions and whether they also employ laundering mechanisms to increase their
anonymity.

3 Experimental Framework

In this section, the dataset and the approach followed in this study are presented.
More specifically, Section 3.1 reviews the sanctioned list used, while Section 3.2
introduces the Bitcoin dataset. Finally, the guidelines and key concepts used
during the experiments are reported in Section 3.3.

3.1 Sanctions List

As of February 2024, the SDN list contains information about 600 crypto ad-
dresses related to 17 different cryptocurrencies, as shown in Figure 1a. The figure
shows that the majority of reported addresses (∼ 65%) belong to the Bitcoin
(BTC) network, while another ∼ 25% are from Ethereum (ETH). The remain-
ing addresses, representing just 10%, are divided across 15 cryptocurrencies.
Furthermore, analysing the composition of the sanctioned entities (Figure 1b)
that belong to the top-5 sanctioned cryptocurrencies, it becomes evident that
while there are more punished individuals than companies for both BTC and
ETH, companies possess a greater number of punished addresses. These results
lead us to focus the analysis only on the BTC-related entities, as anticipated
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(a) Distribution of sanctioned cryptocurren-
cies in the SDN list.
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(b) Addresses and entities distribution in
the SDN list (top-5 populated cryptocur-
rencies).

Fig. 1. Overall statistics of sanctioned entities with cryptocurrency information ex-
tracted from the SDN list (February 2024).
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(a) Distribution of BTC-related entities in
the SDN list per country/region.

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��
�

��
�
�

��
�
��
��
��
�
�
�
�

��
�
�

�
�
�
�
�

�
�
�
�
��

�
�
�
�

�
�
�
�
�

�

�

��

��

��

�
��
�
�
��
��
�

(b) Distribution of BTC-related entities in
the SDN list per violation.
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(c) BTC-related entities per violation over
time.

Fig. 2. Overview about violations of sanctioned entities with BTC information ex-
tracted from the SDN list (February 2024).
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in Section 2.2. In particular, this constraint leaves us to study 43 out of the 56
available entities in the SDN list.

Figure 2a details that most of the BTC-related sanctioned entities (both
companies and individuals) are located in China and Russia. In fact, of the
43 punished entities, 13 are from China and 10 from Russia (∼ 54%). In both
cases, the number of sanctioned individuals overwhelms the number of compa-
nies, while there are only sanctioned companies in Canada, the Czech Republic,
St. Vincent, and in the regions of Gaza and the Commonwealth of Independent
States (CIS). Figure 2b shows the distribution of these sanctioned entities with
respect to their violations. It is to be noted that one entity can face sanctions for
multiple violations. Consequently, the most prevalent category, with 23 entities,
pertains to malicious cyber-enabled activities since they include a broad spec-
trum of crimes. Furthermore, among the most populated categories, 10 entities
are sanctioned for illicit drug trading, while 5 entities are linked to interference
in the US election. Finally, Figure 2c analyses the temporality of these sanctions
and the number of entities involved. The figure shows that US authorities led
a significant operation on illicit drug trading in October 2023, resulting in the
sanctioning of 6 entities. Another interesting finding is that sanctioning opera-
tions against specific violations tend to occur only on specific dates. Specifically,
violations related to CYBER2, ILLICIT-DRUGS, and RUSSIA are consistently
detected over time, while the others are detected only on specific dates.

3.2 Bitcoin Dataset

In this paper, the entire Bitcoin blockchain data until the block 830,000 are
downloaded, i.e., all the transactions until February 11th, 2024 (more than
900M transactions). On the other hand, to have more information about real-
world entities, labelled (tagged) addresses are gathered from multiple reliable
sources, such as WalletExplorer7 and the tagpacks provided by Graphsense8.
Indeed, these sources represent valid solutions used in many previous researches
[24][28][32], and allowed us to gather more than 38M addresses of almost 400
entities labelled as Exchanges, Gambling, Marketplaces, Mining Pools, Mixers,

Services, Trading platforms, eWallet, Ransomware, Sextortion, and Extremist.

3.3 Proposed Analysis

As mentioned in Section 3.1, the BTC addresses included in the SDN list rep-
resent the starting point of our investigation. More specifically, from each of
them, we analyse the address-transaction graph [15][32]. This graph is directly
built using the information available in the BTC blockchain, where nodes are
BTC addresses and transactions. Then directed edges (arrows) from addresses
to transactions represent incoming relations, while edges from transactions to
addresses are outgoing relations, as shown in Figure 3. Furthermore, the edge

7 https://www.walletexplorer.com/
8 https://graphsense.info/
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Assessing the Impact of Sanctions in the Crypto Ecosystem 9

may incorporate BTC information like amount, fee, timestamps, etc. With these
principles, it is possible to define the n-step address-transaction graph of a sanc-
tioned address X1, as a graph in which all the paths from X1 involve maximum
n transactions. Thus, the paths from X1 have a maximum length of 2n (Figure
3).

Fig. 3. An example of a 1 -step address-transaction graph

In this work, we present two different analyses: the first one is based on
assessing the effectiveness of the sanctions by analysing the activities of the
entities (flow analysis), and the second has the aim to detect the relations that
entities have after being sanctioned (behavioural analysis).

For the flow analysis, a temporal aspect is introduced in the address-transaction
graph. Specifically, for each address of each entity, multiple 1-step address-
transaction graphs are created, considering 4 different temporal ranges: a) all
the transactions prior to the imposed sanction (pre-sanction); b) transactions
achieved immediately after the sanctions within the subsequent 7 days (7 post-

sanction); c) transactions achieved immediately after the sanctions within 30
days post-sanctions (30 post-sanction); d) and finally all the activities post-
sanctions up to February 11th, 2024 (up-to-date). These ranges allow us to eval-
uate the behaviour of the sanctioned entity and detect how they react to this
situation in short, medium, and long terms.

Once these graphs are built, from each one, several metrics such as the num-
ber of input and output transactions, the overall balance of the entity after each
temporal range, and the amount in USD of money sent and received by the
entity (the BTC/USD value is fixed on the day the transaction is performed),
are extracted and used for evaluating the trends and the effectiveness of the
sanctions. It is to be noted that one entity may possess multiple sanctioned ad-
dresses. Therefore, metrics computed from each of its addresses are aggregated
to provide a comprehensive overview of the entity’s behaviour.

On the other hand, the behavioural analysis is based on analysing a single
address-transaction graph for each entity, that is created using data from im-
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mediately after the sanctions until the end of the dataset (up-to-date). Further-
more, this graph is enriched with real-world entity information, i.e., with labels
gathered from the external sources mentioned in Section 3.2. This approach
enables us to identify whether the sanctioned entity engages in transactions
with other known entities, which could include potential actors related to illicit
operations (e.g. other sanctioned entities, ransomware, etc.) or it tries to ap-
ply strategies for conducting activities such as money laundering (e.g. involving
mainly mixers, gambling or other services), on-ramps and off-ramps operations
(e.g. involving exchanges), funding raise campaign (e.g. involving mining pool
or marketplace). This behavioural analysis is performed considering both 1-step
and 2-step address-transaction graphs. This approach gives us a deeper view of
the entity strategy, since the 1-step analysis only provides information about its
direct relations, while the 2-step also includes undirected transactions (reached
in two steps).

4 Current Study

In this section, the results obtained in the two proposed analyses are presented.
In particular, Section 4.1 describes the results obtained analysing transactions
and money flow of the entities before and after their sanctions, while Section
4.2 details the relations that the sanctioned entities have had with other known
type of entities. Finally, discussions and limitations are reported in Section 4.3.

4.1 Flow Analysis Results

Figure 4 shows the number of entities that received and sent money through
crypto transactions post-sanctions. Specifically, the figure illustrates that only
half of all the sanctioned entities were effectively discouraged from engaging in
transactions. In particular, only 21 entities stopped to receive money, and 25 to
send funds. On the other hand, the figure reveals that despite the sanctions, some
entities (7) continued to move funds within 7 days of the OFAC sanction. For this
reason, Figure 5 enables us to comprehend how these funds are being moved,
analysing the balance in terms of BTC held by each entity in its sanctioned
addresses before and after the sanctions.

Although Figure 4 indicates that some entities were not deterred from con-
ducting transactions, Figure 5 emphasises a general trend of maintaining at least
a minimal balance in the sanctioned addresses, excluding the two entities with
the highest balance (≥ 50 BTC) who adopted an off-ramp strategy. Yet, the
number of entities with a balance of 0 decreased, while the number of entities
with a balance in a range > 0 and ≤ 0.1 BTC increased.

Table 2 reports the number of transactions that involve sanctioned entities,
categorised by the violation they are convicted of. Additionally, the table in-
cludes the USD volume moved by the entities for each violation, both before
and after the sanctions. In particular, the volume indicates both incoming and
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Fig. 4. Number of sanctioned entities that perform transactions (received and sent) in
the different post-sanction intervals.
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Fig. 5. Entity balance (in BTC) considering the sanctioned addresses at the four stages:
pre-sanction, 7 post-sanction, 30 post-sanction, and up-to-date.
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outgoing transactions. Results in Table 2 show that CYBER2 represents the vi-
olation with the highest number of transactions pre-sanction (more than 150K)
and the highest USD volume of about 8,300 million. The result is expected since
this violation also has the highest number of sanctioned entities (Figure 2b).
However, what is interesting, is that after the sanctions, entities related to this
violation still perform 305 transactions for a market of about 3 million USD. On
the other hand, entities related to DPRK3 and ILLICIT-DRUGS violations per-
form a high number of transactions and show a USD volume of 240 million and
120 million pre-sanction, respectively. Although these numbers decrease in the
post-sanction phase, they remain consistent, with 209 thousand USD for DPRK3

and 8 million USD for ILLICIT-DRUGS. Also, the market related to RUSSIA

violation is pretty high pre-sanctions, with almost 40 million USD moved in just
553 transactions. However, it seems strongly affected by the sanctions, result-
ing in just 4 transactions with an overall amount of 162 USD. Finally, entities
related to violations such as IFSR, IRGC and SDGT are indeed deterred from
performing transactions; in fact, they achieve only 1 transaction post-sanctions,
moving just a few dollars (or less). Notably, the entities involved in DPRK4 ac-
tivities are shut down. More precisely, they have not achieved transactions from
May 2023 (Figure 2c) until the date.

# Transactions USD Volume

# Violation Pre-Sanction Up-to-date Pre-Sanction Up-to-date

1 CYBER2 153 K 305 8,300 M 3 M
2 DPRK3 2 K 63 240 M 209 K
3 DPRK4 62 0 10 M 0
4 ELECTION 46 K 8 6 M 1 K
5 IFSR 182 1 461 K ≤ 1

6 ILLICIT-DRUGS 9 K 747 120 M 8 M
7 IRGC 182 1 461 K ≤ 1

8 NPWMD 97 8 26 K 1 K
9 RUSSIA 553 4 39 M 162
10 SDGT 18 K 1 42 M 103
11 SDNTK 354 42 104 K 12 K

Table 2. Number of transactions achieved and estimation of USD moved before and
after the sanctions for each violation.

4.2 Behavioural Analysis Results

Table 3 reports the results gathered during the behavioural analysis, involving
1-step and 2-step address-transaction graphs. In particular, by creating a 1-step
graph from each of the 43 entities (387 BTC-sanctioned addresses) it is possible
to reach about 4K addresses, of which only 340 addresses (8.48%) are related
to known entities and have an external label. On the other hand, increasing
the analysis considering also undirected connections (2-step address-transaction
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graphs), it is possible to reach more than 10M addresses, of which just 175,444
(1.67%) are labelled. These outcomes confirm that, although the 1-step analysis
has more labelled information, it identifies only 15 known entities of 4 different
behaviours, while the 2-step analysis enriches the investigation by uncovering 67
entities with 9 different behaviours.

The results reported in Table 3 highlight that, in both the 1-step and 2-step
analyses, the majority of labelled addresses belonged to Exchanges with 97% and
86%, respectively. At the same time, in the 2-step analysis, 13.5% of the labelled
addresses are linked to 11 crypto services (trading, eWallet, banking, etc.). This
enhanced scenario also highlights connections between sanctioned entities and
addresses associated with Sextortion, Ransomware and Extremism crimes.

1-step analysis 2-step analysis

# Behaviour
# Distinct
Entities

# Distinct
Address

# Distinct
Entities

# Distinct
Address

1 Service 3 5 13 23,727
2 Mixer 1 1 2 14
3 Exchange 9 331 37 151,385
4 OFAC Sanctioned 2 3 6 33
5 Gambling - - 1 249
6 Extremism - - 1 13
7 Ransomware - - 2 9
8 Mining Pool - - 4 13
9 Sextortion - - 1 1

Labelled 15 340 67 175,444
No Labelled - 3,668 - 10,356,787

Table 3. Behavioural analysis of output entities related to sanctioned actors consid-
ering 1-step and 2-step address-transaction graphs.

4.3 Discussion and Limitations

Discussion. New regulations have started to treat Exchanges as financial ser-
vices, requiring any Crypto Asset Service Provider or Virtual Asset Service
Provider to implement anti-money laundering control measures such as Know
Your Customer (KYC) policies. Nevertheless, criminals have started to explore
new methods to obtain money fraudulently and to launder and use it, e.g., includ-
ing dedicated services and other digital assets that current solutions/directives
do not adequately supervise. Indeed, these new money laundering methods ex-
ploit gaps in existing legislations, which in turn require frequent updates and
make them challenging to enforce and follow. In this context, it is crucial to con-
sider and incorporate also technical connectivity to the crypto ecosystem, i.e.,
ensuring the technology used by both users and service providers is connected
and operates under unified legal standards. This alignment will help enforce the

DPM & CBT 2024

291



14 F. Zola et al.

law and catch those who commit crimes, making it more difficult for criminals
to exploit any legal loopholes.

Aligned with the findings presented in [27], this study, using OFAC infor-
mation, shows that Bitcoin is among the most used cryptocurrencies for various
crimes, not limited to the cyber ecosystem. The results indicate that, despite
being sanctioned, entities still perform operations with their blocked or frozen
cryptocurrencies without employing complex tactics or dedicated money laun-
dering services in their transactions. In fact, entities prefer to achieve off-ramp
activities through known and reliable exchanges. These results are aligned with
the outcomes reported in [21] and [22] regarding ransomware funds. However,
the results also show that, in some cases, sanctioned entities maintain relation-
ships with other sanctioned entities or entities involved in other crimes, such as
sextortion, ransomware, and extremism.

This paper shows that a 1-step analysis is not sufficient for understanding
and tracing the operations of sanctioned entities. Indeed, the analysis reveals
that only a few sanctioned entities can be traced to known services, while a 2-
step analysis provides enhanced context to their operations. However, although
expanding the analysis to include more steps seems beneficial, it should be noted
that this approach also introduces more unlabelled addresses, increasing the
uncertainty in the "follow-the-money" investigation. Therefore, the number of
steps to be included must be determined on a case-by-case basis.

Limitation. When interpreting the results, it is important to take into ac-
count some assumptions/constraints considered during this investigation. Firstly,
the results of the behavioural analysis strongly depend on the quantity and qual-
ity of labelled data available in the literature. The outcomes of this work are
strictly related to the information provided by the US OFAC authority and
need to be verified when information from new authorities becomes available.
At the same time, regarding the quantity of the data, as introduced in Section
3.2, this work has gathered 38M addresses of almost 400 entities used in many
state-of-the-art works [24][28][32]. Yet, these 38M represent only 2.9% of the
addresses used in the BTC blockchain, which counts about 1,300M addresses as
of February 2024. Additionally, the OFAC SDN list being considered includes
40 sanctioned entities with Bitcoin addresses involved. While one might argue
that this number is insufficient for comprehensive trend analysis, it should be
noted that this is the maximum number available in the real ecosystem. On the
other hand, regarding the quality of the information, we rely on the fact that
the labelled datasets are used in many research investigations, as mentioned in
section 3.2, and in some cases, they are extracted by tools that are used by LEAs
in real investigations [18]. Moreover, although these datasets are generated and
gathered from different sources, they do not present inconsistencies among them
in the provided data.

Furthermore, it is to be noted that some entities were sanctioned in late 2023
or early 2024, meaning that the gathered crypto transactions (until February
2024) might not fully capture their activities. However, we decided to focus the
analysis on the type of violation rather than concrete entities (Table 2). In fact,
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Assessing the Impact of Sanctions in the Crypto Ecosystem 15

looking at the distribution analysis provided in Figure 2c, it is possible to see that
the majority of the entities for each violation are prior to May 2023 - excluding
the ILLICIT-DRUGS crime - allowing us to analyse 9 months of transactions.

Finally, in the context of the 2-step analysis, this study has assumed that
there has been no change in ownership of the funds. However, relying just
on blockchain information, the validity of this assumption cannot be ensured.
Nonetheless, we acknowledge this risk because limiting the analysis solely to
1-step graphs would be excessively restrictive, generating a skewed and poor
view of the impact of the sanctions. Furthermore, a change in the ownership of
the funds should not generate high-impact deviations in the proposed analysis,
since we are just analysing the reached entities using a basic "follow-the-money"
approach.

5 Conclusion

The present study represents a first step and provides an interesting yet partial
understanding of the impact of sanctions on the crypto ecosystem, with a focus
on the Bitcoin cryptocurrency. The first point to emphasise is that sanctions
are inherently tied to the prevailing regulations at any given time. As context,
this study solely reports on European policies aimed at regulating the crypto
market and preventing financial fraud. However, the analysis is conducted using
data provided by the US OFAC authority, as it is the only entity that releases a
comprehensive list of economically and trade-sanctioned entities.

The flow analysis shows that in general, sanctions have been effective on at
least half of the sanctioned entities, while the other half has continued to move
(receive and send) money through the sanctioned BTC addresses, although they
do not show huge changes in their current balance. In particular, sanctions seem
to be not very effective against entities related to specific violations, like CY-

BER2 and ILLICIT-DRUGS which are the ones that still make transactions and
move high quantities of USD in proportion with their activities pre-sanctions.
On the other hand, the behavioural analysis highlights that sanctioned entities
tend to prefer reaching out directly to Exchanges to convert their cryptos, rather
than use dedicated services for money laundering (mixers or gambling).

With the aim of deepening that understanding, further analysis should in-
clude heuristics assumptions in the loop [31] as well as automatic labelling strate-
gies to generate clustered entities. Yet, in this way, it would be possible for each
punished entity, not only to consider the actual sanctioned addresses reported in
the list, but also other addresses that are likely to belong to the same wallet. At
the same time, it will be interesting to scale up our approach by incorporating
information from other cryptocurrencies (Ethereum) and stablecoins. In fact, as
reported in [12], they represent a good alternative - especially in the last three
years - through which criminals engage in illicit activities and sanctions circum-
vention. This approach will allow Law Enforcement Officers to have a complete
picture of criminal modus operandi.
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Abstract. Groth16 is a pairing-based zero-knowledge proof scheme that
has a constant proof size and an efficient verification algorithm. Bitcoin
Script is a stack-based low-level programming language that is used to
lock and unlock bitcoins. In this paper, we present a practical imple-
mentation of the Groth16 verifier in Bitcoin Script deployable on the
mainnet of a Bitcoin blockchain called BSV. Our result paves the way
for a framework of verifiable computation on Bitcoin: a Groth16 proof is
generated for the correctness of an off-chain computation and is verified
in Bitcoin Script on-chain. This approach not only offers privacy but also
scalability. Moreover, this approach enables smart contract capability on
Bitcoin which was previously thought rather limited if not non-existent.

Keywords: Bitcoin · Smart Contract · Zero-Knowledge Proof.

1 Introduction

Zero-knowledge proofs (ZKPs) have been widely adopted to enhance blockchain
technology. For example, zCash [36] and Firo [16] use ZKPs for user privacy, and
Ethereum uses ZKPs for scalability [14]. Bitcoin, on the other hand, is thought
to have limitations that make ZKP integration much more difficult, one of which
is the Bitcoin scripting language. Due to its stack-based structure and primitive
set of opcodes, it is rather difficult to implement the complex mathematical
functions required by most ZKPs.

Despite these limitations, there are many projects trying to integrate ZKPs
and Bitcoin. They determined to make Bitcoin more scalable and more capable
for smart contracts, ultimately making Bitcoin more economically sustainable
and viable even with the diminishing block reward through halving. For exam-
ples, B2 Network [4] and Merlin Chain [23] are working on ZK Rollups to scale
Bitcoin; Bitlayer [9] takes a BitVM [26] approach to create a computational layer
for Bitcoin, while LumiBit [21] adapts ZKEVM to achieve the same. In [27], Ze-
roSync has compressed the bootstrapping process (initial block download) into a
single ZKP verification using a ZKP-circuit-friendly language called Cairo [13],
thus dramatically reducing the time required to start a Bitcoin node. However,

⋆ Formerly nChain researcher. Work done while at nChain.
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in all the examples mentioned above, practically verifying ZKP on-chain has not
yet been realised.

sCrypt [31] has implemented ZKP verification (Groth16, [19]) in Bitcoin
Script on the BSV, a version of Bitcoin, achieving a script size of 1.2MB [32,33].
However, their implementation is not practical, and it falls short for three rea-
sons. First, it cannot be deployed on the BSV mainnet without a collaborating
miner. This is because of a policy that restricts the script size to 500kB [25],
and non-policy-compliant transactions can only be accepted by other miners if
the collaborating miner successfully mines a block. Second, it is not a faith-
ful implementation of the Groth16 verifier as they hard-code in the script data
which should be revealed at the point of spending, thus greatly limiting the ap-
plicability of their code. Third, their approach of using a compiler that converts
TypeScript to Bitcoin Script generally leads to scripts of non-optimal size.

Our main contributions are:

– an implementation of bilinear pairings in Bitcoin Script, which has size1 of
293.6kB, and that can be readily used on the BSV mainnet;

– an implementation of Groth16 verification in Bitcoin Script, which has size2

of 466kB, and that can be readily used on the BSV mainnet;

– an analysis of the trade-off between script size and execution time caused
by large number arithmetics (the smaller the script, the larger the numbers,
hence the longer execution time);

– a significant reduction in transaction fees for on-chain ZKP verification as
the transaction size is significantly reduced.

To achieve this level of optimisation, we use a combination of different techniques,
each providing a significant reduction in script size:3

– stack management: being aware of positions of elements on the stacks and
identifying the best arrangement of data elements and operations that results
in the smallest script;

– no computation of inverses: designing the script to verify a candidate inverse
instead of computing it;

– sparseness: working with field elements represented by polynomials that have
many zero coefficients [30];

– seed choice: choosing an elliptic curve with seed having the smallest Ham-
ming weight.

1 All the sizes are cumulative of the locking and unlocking script size.
2 The size reported here is for one public input, in Section 4 we also report the size
for the Groth16 verifier with two public inputs.

3 It is difficult to pinpoint where exactly the reductions come from, as they are a
combination of all the techniques we employed. However, in the body of the text we
provide rough estimations for each of the techniques we employ.
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Our scripts are publicly available on GitHub.4. In the repository, readers can
find a Python code used to generate our scripts,5 another Python code used to
generate the test data for benchmarking purposes, and the references to examples
of on-chain transactions.

Our results enable, for the first time, practical ZKP verification on the main-
net of a Bitcoin version called BSV. 6 While Ethereum uses ZKPs for scalability,
Bitcoin can also use them to enable smart contracts with greater flexibility. That
is, in theory, one can run any computation off-chain and generate a ZKP, which
is verified on chain, that the computation was done correctly. For example, the
computation can be the validation of a token rule set, the enforcement of a fi-
nancial contract, or the execution of instructions based on business logic and
workflows.

The paper is structured as follows. In Section 2, we recall the preliminary
notions we need in the rest of the paper, and we introduce the notation we use
for Bitcoin scripts. In Section 3, we detail our implementation of the Optimal
Ate Pairing and of the Groth16 verifier instatiated over the curve BLS12-381.
Finally, in Section 4 we evaluate our scripts according to script size and execution
time, and we compare the cost of verifying a ZKP on BSV and on Ethereum.

2 Preliminaries

2.1 Bitcoin

The Bitcoin blockchain [28] parses block data x into an ordered set of transac-
tions x ∶= (tx1, . . . , txn). Each transaction specifies a list of inputs and outputs.
An output of a transaction is spent if it is referenced as an input of a valid
transaction. An output can only be spent once.

Bitcoin uses a non-Turing complete, stack-based programming language in
which spending conditions can be coded into locking scripts contained in outputs.
Each input of a transaction contains an unlocking script, with the arguments
needed to execute the locking script from the output referenced by the input.
The spending is accepted if the execution terminates with true.

We think of the subroutines that make up a locking script as the implemen-
tations of functions f(x1, . . . , xn), and of the elements in the unlocking script
as the values (x̃1, . . . , x̃n) over which the functions are evaluated. The unlock-
ing script is then the implementation of a predicate (a function that returns
true or false) whose calculation requires the evaluation of various functions (the
subroutines) on the values supplied in the unlocking script.

4 https://github.com/nchain-innovation/zkscript package
5 We generate our scripts as outputs of Python functions, so that they can be composed
and shuffled around in an easy way. The approach we take is similar to that of
BitVM [12], but they use Rust in place of Python.

6 For our optimisations to work on BTC, we need large integer arithmetic.
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Opcode Operation

OP 1SUB Jx0 − 1K ← Jx0K OP 1SUB

OP DEPTH JxnK , . . . , Jx0K , Jn + 1K ← JxnK , . . . , Jx0K OP DEPTH

OP PICK JxnK , . . . , Jx0K , JxiK ← JxnK , . . . , Jx0K , JiK OP PICK

OP EQUAL Jx0 == x1K ← Jx0K , Jx1K OP EQUAL

OP VERIFY Pop x0; fail if x0 is false, otherwise, continue ← Jx0K OP VERIFY

OP EQUALVERIFY OP EQUALVERIFY = OP EQUAL OP VERIFY

Table 1. Opcodes used in this paper

Script execution A script is a sequence of opcodes and data objects. It is
evaluated in reverse Polish notation by the Bitcoin Script engine, starting by
pushing to the stack the arguments specified in the unlocking script.

The set of opcodes available for scripting depends on the implementation
of Bitcoin. We will use the BSV implementation [11] because it supports large
numbers (of size up to 10kB) and has the widest opcode support for arithmetic
operations.7 We list the opcodes used in this paper in Table 1; note that they
are not all the ones needed in our implementations.

We introduce some notation that will be used throughout this work:

– ⟪l⟫ denotes data hard-coded in the locking script. Thus, we will write

[foo] ∶= ⟪l⟫[bar]
to denote that the locking script [foo] consists of a subroutine script [bar]
and hard-coded data ⟪l⟫.

– JxK denotes data on top of the stack, i.e., the data we would get if we popped
an element from the stack. More generally, Jx0K , . . . , JxnK means that xn is
the data on top of the stack, xn−1 is the data below xn (second from the
top), and x0 is the data buried at depth n + 1 in the stack.

– Jy0K , . . . , JymK ← Jx0K , . . . , JxnK [foo]: Before executing [foo], the top n + 1
elements of the stack are Jx0K,. . .,JxnK, and after executing [foo] the top
m + 1 elements are Jy0K , . . . , JymK.

2.2 Pairings

Bilinear pairings are the building block of many important cryptographic prim-
itives. The most efficient instantiation of a bilinear pairing is the Optimal Ate
pairing [22], which is defined as a map e ∶ G1 ×G2 → GT such that

e(n[A], [B]) = e([A], n[B]) = e([A], [B])n
7 BTC only allows number up to 4 bytes and has disabled various opcodes needed for
arithmetic operations [1].
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for any [A] ∈ G1, [B] ∈ G2 and n ∈ Z. Here, G1 and G2 are subgroups of the
group of points on some elliptic curves.

The value of e on (P,Q) ∈ G1 × G2 is computed in two steps. First, we
compute miller(P,Q) ∈ GT , the output of the Miller loop [24], and then we
perform a final exponentiation miller(P,Q)η, where η is an exponent depending
on the instantiation of G1, G2 and GT . We set e(P,Q) ∶= miller(P,Q)η.

In this paper, we instantiate the Optimal Ate Pairing over BLS12 curves [8]
for their robustness against some known attacks [5–7,20] and their efficiency [3].

BLS12 curves BLS12 curves have the form y2 = x3 + b mod q, where b is a
parameter of the curve, and q = (u − 1)2(u4 − u2 + 1)/3 + u is a prime dependent
on a seed u. We write Eb,u(Fqn) to denote set of points of the BLS12 curve with
parameters b and u over Fqn .

For BLS12-381, we have u = −(263+262+260+257+248+216) and b = 4. When
instantiating the Optimal Ate Pairing over this curve, G1, G2 and GT are cyclic
groups of order r = u4−u2+1, G1 is a subgroup of Eb,u(Fq), while GT = Fq12 . To
construct G2, we set Fq2 = Fq[t]/(1+t2), and then G2 is a subgroup of Eb′,u(Fq2),
where b′ = (1 + t)b ∈ Fq2 .

2.3 zkSNARKs

Circuits and NP relations. Let C ∶ Fℓ+h
r → {0,1} be a polynomial-size arith-

metic circuit over a finite field Fr. The NP relation RC for C is defined as

RC ∶= {(a;w) ∈ Fℓ
r × Fh

r ∣ C(a,w) = 1} .
The vector a = (a1, . . . , aℓ) is the statement of the relation, sometimes also called
the instance or public input, and the vector w is the witness or private input.
The language associated to RC is LC ∶= {a ∈ Fn

r ∣ ∃w ∈ {0,1}h s.t. (a;w) ∈ RC}.
zkSNARKs A preprocessing, zero-knowledge, succinct, non-interactive, ar-
gument system of knowledge (zkSNARK8) for RC is a triplet of algorithms
Π ∶= (Setup,Prove,Verify) such that Setup takes as input a security parame-
ter λ and the description of the circuit C, and it outputs a pair of keys pk and
vk. The prover Prove takes pk, the statement a and the witness w and outputs
a proof π ∈ G1 ×G2 ×G1, that is π ← Prove(pk,a,w). The verifier Verify takes
vk, a, π and it either accepts or rejects, that is {true, false} ← Verify(vk,a,π).
The proof purportedly is for the statement “a ∈ LC”.

Groth16 Groth16 [19] follows the linear interactive proof paradigm [10] with
security in the generic group model, and can thus be instantiated with pair-
ings. Given π = ([A]1, [B]2, [C]1), the result of Verify on the public input

8 In this paper, we use ZKP and zkSNARK interchangeably. It is understood that
there is a subtle difference which is not relevant to this paper.
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a = (a1, . . . , aℓ) and the proof π is the result of an equation of pairings:

e([A]1, [B]2) = e([α]1, [β]2) ⋅ e( ℓ∑
i=0

ai[Pi]1, [γ]2) ⋅ e([C]1, [δ]2) (1)

where [α]1, [β]2, [γ]2, [δ]2 and the [Pi]1’s9 are part of vk, and a0 = 1.
Note that the equation (1) depends on C only via the number of public inputs.

This means that a Bitcoin Script implementation of Verify will be independent of
the complexity of the calculations happening in C, and will scale only according
to the number of public inputs. Furthermore, the size of the proof π is fixed to
that of three groups element, once again independent of C.

These properties make Groth16 the best candidate for implementing zk-
SNARK verification on-chain as it induces the least transaction size and com-
putational complexity, resulting in low fees and fast execution time.

3 Implementation of Pairings and Groth16 in Script

We now outline our implementation of the Optimal Ate Pairing and of the
Groth16 verifier in Bitcoin Script. First, we break down the scripts into sub-
routines. That is, we look at the operations required to compute the Optimal
Ate Pairing and to verify a Groth16 proof, and we decompose these operations
into simpler ones that we efficiently implement. Second, in constructing the sub-
routines we assume that the spender (the prover in the zkSNARK framework)
supplies to the script (the verifier) additional input data to simplify the proof
verification. The script will then verify that the data supplied is the one pur-
ported to be, and use it if it is, or fail otherwise. See Section 3.1 for an example
of the input data supplied by the spender.

Remark 1. In Bitcoin, the prover/verifier framework of zkSNARKs is transposed
to that of a payer who constructs the locking script (the Groth16 verifier) and of a
spender who shows a zero-knowledge proof to prove they have the right to spend.
While in zkSNARKs only the verifier carries the burden of verifying the proof,
in our setup we assume that also the prover performs part of the computation
required to verify the proof, so to reduce the size of the Bitcoin Script Groth16
verifier. This means that there is an additional burden on the prover, which is
quantified by the amount of work required to compute the product of the three
Miller loops in (6). This added burden is acceptable as it is easier to increase
efficiency of off-chain computations rather than optimising script size.

The Optimal Ate Pairing is computed as e(P,Q) = miller(P,Q)η, see Sec-
tion 2.2. We implement it by first implementing the Miller loop, and then the
final exponentiation. That is, we construct a script [millerLoop] that computes

9 The [Pi]’s are the evaluations of the QAP polynomials of the public inputs cor-
responding to the R1CS system of C on the verifier pre-computed challenge (the
so-called toxic waste generated in the setup), [18].
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the function (P,Q) ↦ miller(P,Q), and a script [finalExponentiation] that
computes the function (−) ↦ (−)η. More precisely, on input data

[inputMillerLoop] = JauxmillerK , JP K , JQK

[inputFinalExponentiation] = q
auxexp

y
, Jx0K

(2)

where x0 ∈ Fq12 , and auxmiller, auxexp is auxiliary data, they compute

Jmiller(P,Q)K ← [inputMillerLoop] [millerLoop]
Jxη

0
K ← [inputFinalExponentiation] [finalExponentiation] (3)

Then the script implementing the Optimal Ate Pairing is

[pairing] = [millerLoop] [finalExponentiation] (4)

Indeed, on input [inputPairing] = q
auxexp

y
, JauxmillerK , JP K , JQK, we get

Je(P,Q)K ← [inputPairing] [pairing]
We approach the Groth16 verifier in a similar way. By rearranging (1) from

Section 2.3 using the bilinear properties of e and its definition, we see that
Groth16 verification entails verifying the following equation

(miller([A]1, [B]2) ⋅miller( ℓ∑
i=0

ai[Pi]1,−[γ]2) ⋅miller([C]1,−[δ]2))
η

= e([α]1, [β]2)
(5)

Hence, we need a script [multiScalarMultiplication] that computes the func-
tion (a1, . . . , aℓ) ↦ ∑ℓ

i=0 ai[Pi]1, and a script [tripleMillerLoop] that computes
the product of the three Miller loops in (5). Then, the Groth16 verifier is10

[groth16Verifier] = [multiScalarMultiplication]
[tripleMillerLoop] [finalExponentiation]
⟪e([α]1, [β]2)⟫ OP EQUALVERIFY

(6)

We now detail the challenges to implement the subroutines the make up[pairing] and [groth16Verifier], and our proposed solutions.

3.1 Optimising the Miller loop

The value miller(P,Q) for curves in the BLS12 family is computed according to
algorithm (1), where evℓT,Q

(P ) denotes the evaluation of the line through T and
Q at P .

10 Note that e([α]1, [β]2) can be hard-coded because [α]1, [β]2 are part of vk and are
known before the proof is generated.
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Algorithm 1 Miller Loop

Inputs: P ∈ G1, Q ∈ G2, u = ∑
n
i=0 ui2

i, ui ∈ {−1,0,1}, un ≠ 0
Output: miller(P,Q) ∈ GT

out← 1
if un = 1 then

T ← Q

else

T ← −Q
end if

for i = n − 1, . . . ,0 do

out← out
2

T ← 2T
if ui = 1 then

out← out ⋅ evℓT,Q
(P )

T ← T +Q
else

out← out ⋅ evℓT,−Q
(P )

T ← T −Q
end if

end for

Seed choice To obtain the most efficient implementation of [millerLoop], we
seek to minimise the length of the loop and the cost of performing the operations
in each iteration. The length of the loop and the number of operations performed
can be minimised by choosing a curve whose seed u has small Hamming weight
(number of non-zero bits) and bit-length. Our choice is BLS12-381, for which u

has bit-length 64 and Hamming weight equal to 6, see Section 2.2.

Sparseness. The number of operations performed in the Miller loop can be
further reduced by leveraging sparseness as explained by Scott in [29]. Both out

and the line evaluations belong to the finite field extension Fq12 , but many of the
coefficients of the line evaluations are zero (that is why Scott calls them sparse).
Leveraging this knowledge, we reduce the size of the script required to multiply
two line evaluations from 1kB (the size of our implementation of multiplication
over Fq12 , to 150 bytes (the size of our script for the multiplication of two sparse
elements).

Remark 2. When implementing [tripleMillerLoop] for (6), instead of com-
puting miller([A]1, [B]2), miller (∑ℓ

i=0 ai[Pi]1,−[γ]2) and miller([C]1,−[δ]2) one
after the other, we parallelise the computation. Namely, as evaluatingmiller(−,−)
means executing algorithm (1), instead of repeating the loop three times, we go
through the loop once, and at every iteration we carry out the computations
required by each of the three terms appearing in (6). In this way, we can multi-
ply together the sparse elements coming from the various line evaluations, thus
amplifying the size optimisation resulting from leveraging sparseness.
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Verifying the gradient. Finally, we look at reducing the cost of performing
the various operations required by the Miller loop. To update the value of T ,
we sum points in G2 ⊂ Eb′,u(Fq2), while to update out, we need to compute line
evaluations. The most inefficient part of these operations is the calculation of
the gradient of the line through two points on the curve. The inefficiency is due
to the fact that computing the gradient requires inverting an element in a finite
field, an operation whose cost in Bitcoin Script is substantial.11

To avoid the overhead of computing the gradient on-chain, we verify a can-
didate provided in the unlocking script as part of the auxiliary data auxmiller.
Namely, every time we need the gradient of the line through two points R1,R2 ∈
G2, we expect the gadient λ ∈ Fq2 to be supplied in auxmiller, and we verify that
λ is computed correctely by verifying

λ ⋅ (xR2
− xR1

) = yR2
− yR1

where Ri = (xi, yi) ∈ Fq2 × Fq2 . Note that verification is very efficient, as once λ

is verified, it can be used multiple times. Putting it into numbers, verifying the
gradient instead of computing it on chain allows us to save roughly 3 ⋅ log(q) =
3 ⋅ 381 ∼ 1100 bytes.

3.2 Optimising the final exponentiation

Final exponentiation is the same for [pairing] and [groth16Verifier], and it
entails raising an element of Fq12 to the power η. To minimise the script size of[finalExponentiation], we follow the standard approach in the literature and
split the final exponentiation in an easy and a hard part

[finalExponentiation] = [easyExponentiation] [hardExponentiation]
In the hard part, we leverage the Frobenius map Fqn → Fqn , z → zq, to fix

the cost of [hardExponentiation] to (roughly) that of performing five expone-
tiations to the power u.

For the easy part, we need to compute one Frobenius map, and to invert an
element in Fq12 . Instead of performing inversion on-chain, similarly to what we
did in the Miller loop, we verify an inverse candidate supplied in the unlocking
script as part of the auxiliary data auxexp. Namely, as we need the inverse of an
element z ∈ Fq12 , we expect the inverse z′ to be supplied in auxexp, and on-chain
we verify z ⋅z′ = 1 ∈ Fq12 . This allows us to fix the cost of [easyExponentiation]
to constant (it is independent of the curve parameters).

Remark 3. Even if the Frobenius map entails raising an element to the power q,
its implementation is of constant size because it only requires multiplying the
components of z ∈ Fqn by some constants.

11 If z ∈ Fq, then inverting z in Bitcoin Script requires O(log(q)) operations using
Fermat’s Little Theorem.
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3.3 Optimising the multi scalar multiplication

The hardest subroutine to optimise in (6) is [multiScalarMultiplication].
The reason is that this subroutine computes ∑ℓ

i=0 ai[Pi]1, which depends both
on circuit-specific values: the [Pi]′s, see Section 2.3, and on values supplied by
the prover: the public inputs a1, . . . , aℓ.

As the public inputs are supplied by the prover, they are not known when[multiScalarMultiplication] is constructed, and therefore the script must
take into account the worst case scenario, namely, ai = r.

The cost of computing∑ℓ
i=0 ai[Pi]1 scales linearly with ℓ, which is unfortunate

as a single multiplication ai[Pi]1 costs about 35kB via double-and-add (and
verifying the gradient as in Section 3.1). To optimise the size of the script we use
a standard trick: pass the ℓ public inputs ai of C as witness and a hash of them
as public input. This makes the size of the script independent of the number of
public inputs at the cost of increasing the computational burden of the prover.

More specifically, let H ∶ {0,1}∗ → F
d
r be a cryptographic hash function where

Fr is the field over which C is defined. Then, the augmented relation for which
we prove satisfiability is

R′ ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
((h1, . . . , hd); (a1, . . . , aℓ,w))

RRRRRRRRRRRRR
C(a1, . . . , aℓ,w) = 1
(h1, . . . , hd) =H(a1, . . . , aℓ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

In this way, we keep the size of the script fixed to that of a Groth16 verifier
for a circuit with d public inputs. Indeed, in a proof for relation R′ the prover
supplies d public inputs h1, . . . , hd for which the circuit corresponding to R′
verifies that (h1, . . . , hd) is the digest of (a1, . . . , aℓ), the original public inputs
that are now passed as private inputs, and that C(a1, . . . , aℓ,w) = 1. The public
inputs h1, . . . , hd are a commitment to the public inputs a1, . . . , aℓ.

For example, if ℓ > 2 we can set H to be the (vector) Pedersen hash over
the JubJub curve [34], whose base field is the scalar field Fr of BLS12-381. A
Pedersen hash digest is just a single group element of JubJub h = (h1, h2) ∈ F2

r.
Thus, d = 2 and the verification script only needs to compute h1[P ′1] + h1[P ′2],
instead of an ℓ-multi scalar multiplication.

3.4 Subroutine-independent optimisations

In this section we detail some optimisations that we apply to all the subroutines
appearing in (4) and (6).

Stack management Stacks are data structures equipped only with push and
pop operations, which means that we can only access the top element of the
stack. This property makes storage and retrieval of temporary variables a task
with great impact on script size.

During script execution, the Bitcoin Script Engine has two stacks at its dis-
posal, the main stack, also referred to as the stack, and the altstack. One can
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only push and pull elements from the altstack, which is why it is customary to
use it to store variables. We take a different approach, we use the bottom of
the stack instead. As the depth of the stack can be obtained with the opcode
OP DEPTH, the bottom of the stack can be thought to have a fixed position, and
can be used to store variables.

The variable we need more often in [pairing] and [groth16Verifier] is q,
which we store at the bottom of the stack, and fetch with the following script

[fetchq] = OP DEPTH OP 1SUB OP PICK (7)

In this way, we save ∼ 50 bytes compared to pushing q to the stack every time
we need it.

Remark 4 (Make fetching secure). As there is no way to efficiently push an
element to the bottom of the stack, we assume q is supplied in the unlocking
script as part of the auxiliary data. To ensure that it is the one we assume it to
be, i.e., the parameter q of BLS12-381, we use the following script

[verifyq] = OP DEPTH OP 1SUB OP PICK ⟪q⟫ OP EQUALVERIFY

Arithmetic over finite fields All the subroutines in (4) and (6) require arith-
metic over (a finite field extension of) Fq. The biggest impact of finite field
arithmetic on script size comes from modulo operations by q. To efficiently mod
by q, we employ two techniques.

First, as taking the residue class modulo q is a homomorphism Z → Fq, in-
stead of taking a modulo after every operation, we do it only once in a while.
A similar approach was taken in [17], but we improve it by using the modulo
threshold, i.e., the upper bound on the size of the numbers during script exe-
cution, as a parameter of the script. Tuning this parameter we have a trade-off
between script size and execution time, see Section 4.

Second, we batch modulo operations, so that q must be fetched only once.
We explain the technique in the case of addition, but it can be applied to any
other operation. As elements of Fqn are given by tuples (z1, . . . , zn) of elements
in Fq, computing (z1, . . . , zn) + (z̃1, . . . , z̃n) means computing zi + z̃i mod q for
i = 1, . . . , n. Being Bitcoin Script a stack-based language, we must compute each
component zi+ z̃i mod q and place it on top of the stack. Instead of sequentially
computing zi+ z̃i mod q for i = 1, . . . , n, we compute zi+ z̃i for i = n, . . . ,1, place
them on the altstack, and then sequentially take the modulo of each element.
With this technique, we save (n − 1) bytes for every modulo operation.

Remark 5 (Preventing overflows). As we remarked in Section 2, the BSV im-
plementation supports large numbers. However, policy restrictions dictate that
the numbers must fit in 10kB. To avoid overflows, we proceed as follows. As the
operations executed in [groth16Verifier] are fixed, and we know the largest
size of the input data fed to the script, when constructing the script we keep
track of the size of the numbers we are working with. For example, if we multiply
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two numbers of bit size at most ∣q∣, we know that the result has bit size at most
2∣q∣. Then, in the script we reduce modulo q before the numbers overflow.

We go one step further: we introduce a modulo threshold variable that is
supplied at the point of script construction and that dictates when to perform
modulo operations. See Section 4.1 for more information.

4 Script benchmarking

We now benchmark our scripts according to three metrics: script size, script
execution time, and the cost of publishing a transaction with the script on-
chain. Based on the first two metrics, we select the optimal modulo threshold,
see Section 4.1, and then we compare the monetary cost of executing our script
to that of executing an equivalent script on Ethereum, see Section 4.2.

4.1 Script size and execution time

When constructing the [pairing] and [groth16Verifier], we can choose the
threshold after which modulo operations are carried out. Namely, we can choose
the largest size the numbers can reach during script execution before we mod
by q and bring them back to Fq. Changing the threshold for modulo operations
allows us to strike a balance between script size and execution time. Indeed, the
more often we mod by q, the bigger the script size, but the lower the execution
time of the script, as it will work with smaller numbers.

Below, we plot the threshold for the modulo operations against script size
and execution time, respectively, for [pairing] and [groth16Verifier] with
one and two public parameters, i.e., ℓ = 1 and ℓ = 2. We run our tests in a BSV
regtest v1.0.8 on a processor Intel Core i7, 2.6 Ghz, 6-Core.

While BSV can support transactions with arbitrary script size and execution
time, and with numbers of length up to 750kB, current policy restrictions impose
that the locking script is at most 500kB, that it executes in at most 1 second,
and that the numbers12 must fit in 10kB [25].

Figure 1 shows that the size of [pairing] decreases rapidly when the mod-
ulo threshold increases from 50 bytes (which implies that we mod by q after
every operation) to 2kB. Further increases of the modulo threshold result in
small further decreases of the script size, but at the cost of a higher execution
time. In particular, when the modulo threshold reaches 4kB, the execution time
approaches the policy threshold of 1 second. As there is not a big difference in
either script size or execution time when the modulo threshold passes from 2kB
to 3kB, we take a conservative stance and choose 2kB as the optimal modulo
threshold for the [pairing]. This choice results in a script of size 286kB and
with execution time of circa 0.47s.

Figure 2 shows that the size of [groth16Verifier] behaves similarly. Namely,
the size of the script decreases rapidly when the modulo threshold increases from

12 By numbers we mean elements on the stack that are used in mathematical operations.
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Fig. 1. Size and execution time of [pairing] as functions of the modulo threshold

Fig. 2. Size and execution time of [groth16Verifier] as functions of the modulo
threshold

50 bytes to 2kB, but further increases do not decrease the script size too much.
For Groth16, we approach the consensus threshold of 1s execution time when the
modulo threshold approaches 3kB. We choose as optimal modulo threshold 2kB,
which results in script of sizes 426kB and 460kB, for one and two public inputs,
respectively, and with execution times of circa 0.67s and 0.70s, respectively.

Remark 6. In the Figures 1 and 2, we focus on the size of the locking script
because the modulo threshold does not affect the size of the unlocking script.
However, in Section 4.2 we will take into account both locking and unlocking
script, as the cost of publishing of script on-chain depends on both.

4.2 Monetary cost

In this section, we compare the transaction fees for the Optimal Ate Pairing
and the Groth16 verifier on BSV and Ethereum, respectively. For simplicity,
the comparison only focuses on the cost for the computation to be done by the
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nodes in a network. We do not take other factors such as the cost to maintain
the respective network or the time it takes for the transaction to be confirmed
and published.

The results presented in Table 2 and Table 3 make it apparent that as of May
2024, it is much cheaper to execute bilinear pairings and the Groth16 verifier on
BSV than on Ethereum.13

In BSV, a miner executes a script [S] = [unlock][lock] if there is a transac-
tion txlock with an output txOutlock that has [lock] as locking script, and there
is a transaction txunlock with an input txInunlock that spends txOutlock and that
has [unlock] as unlocking script. In this situation, consensus requires a miner to
execute [S], regardless of what operations are contained in it.14 Thus, we model
the cost of executing a script in BSV as the dollar value of the transaction fees
required to publish [S] on-chain.

From the analysis of Section 4.1, we see that the optimal modulo thresholds
for the Optimal Ate Pairing and the Groth16 verifier are given by 2kB in both
cases. The script size for [pairing] and [groth16Verifier] can be read off
from Figure 1 and Figure 2, and are 286kB for [pairing], and 426kB, 460kB for[groth16Verifier] with ℓ = 1, ℓ = 2, respectively; the size of [unlockPairing],
see (2), is 7.6kB, while the size of the unlocking script of [groth16Verifier]
with ℓ = 1 is 40kB, and with ℓ = 2 is 60kB.

To estimate fee rates on the BSV blockchain and the BSVUSD conversion
rate, we download data from WhatsOnChain.com [35]. We consider the aver-
age fee rate and the exchange rate for the period going from 15/03/2024 to
12/06/2024. We trim the series by removing the values below the 5th percentile
and above the 95th percentile. Then, we take the 25th, 50th, and 75th percentile
from the time series of fee rates as estimates of low, medium and high fee rates.
They come out to be: 57, 79 and 120 sats/kB, respectively. As estimate of the
exchange rate, we take the average price of the trimmed time series, which is
$73 per BSV. The results of the calculations are presented in Table 2 for the
Optimal Ate Pairing, and in Table 3 for Groth16 verifier.

The cost to execute an Ethereum contract is proportional to the computa-
tional complexity of the underlying code, with computational units measured in
terms of gas. Hence, the cost of executing a contract in Ethereum is given by
how many units of gas it requires, and gas cost at the time of execution.

Since EIP-1108 [2], the cost of executing one pairing is of 79000 (= 34000 +
45000) gas units, whereas the cost of executing the Groth16 verifier is of 153150
(= 34000 ⋅3+45000+6150, see [2]) gas units for one public statement, and 159300
for two public statements. We estimate the cost of executing the scripts with the
same method as for BSV fee rates. We download the data from Etherscan.io [15],
and we calculate three fee rates: low: 11 gwei/gas,15 medium: 16 gwei/gas, and

13 Note that Ethereum uses a different curve. However, their implementation of pairings
is state-of-the-art, so the comparison made here can be considered fair.

14 The only exception is if the script does not abide by the policies set forth by the
miner. For the purpose of this analysis we assume that [S] satisfies such policies.

15 1 gwei equates to 10−9 ETH.
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Blockchain

Fee rate
Low Medium High

BSV $0.012 $0.016 $0.025

Ethereum $2.95 $4.29 $6.43

Table 2. Cost of executing the Optimal Ate Pairing in BSV and Ethereum.

Groth16 verifier (ℓ = 1) Groth16 verifier (ℓ = 2)

Blockchain

Fee rate
Low Medium High Low Medium High

BSV $0.018 $0.024 $0.037 $0.0019 $0.026 $0.040

Ethereum $5.78 $8.32 $12.48 $5.95 $8.65 $12.97

Table 3. Cost of executing the Groth16 verifier in BSV and Ethereum.

high: 24 gwei/gas, as well as an estimated exchange rate of $3394 per ETH.16

The results of the calculations are presented in Table 2 for the Optimal Ate
Pairing, and in Table 3 for the Groth16 verifier.

5 Conclusion

We have demonstrated not only that it is practical to implement the Groth16
verifier in Bitcoin Script, but also that the cost of executing it is much cheaper
than that of executing an equivalent script in Ethereum, see Section 4. As part
of our future work, we plan to implement more pairing-based cryptographic
primitives in Bitcoin Script so that the Bitcoin blockchain can leverage this
fruitful area of cryptography to its full strength.
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Abstract. Secure computation of multiparty protocol (MPP) is being
widely used to address privacy issues in various technologies, such as
cryptocurrencies, blockchain, and many more. The security of MPP is
computed in various steps, mainly via secret sharing of keys, encryp-
tion/decryption of messages, and signature generation. However, liter-
ature suggests the secure computation of multiparty is arduous in the
presence of adversarial nature of parties. In this paper, we propose a
notion for achieving ECDSA in a multiparty protocol using an Authen-
tication server At. We demonstrate this using four steps: 1. proposal of
multiparty (five) protocol (5PP) in which there are parties with adversar-
ial natures. 2. setup of 5PP with At that ensures the mutual identification
of parties. 3. Encryption of messages in the proposed 5PP. 4. ECDSA
signature generation between the parties in the aforementioned setup.
We ensure security in all the steps mainly by using modified Paillier
cryptosystem and homomorphic encryption.

Keywords: ECDSA · elliptic curve · five-party protocol · full secrecy ·
Homomorphic encryption · modified Paillier cryptosystem · ZkPok.

1 Introduction

Secure communication over multiparty protocol (MPP) is essential to preserve
the privacy of each party within the network during message passing. Multiparty
protocol enables n parties to ensure security of a system in the presence of x
adversarial parties. The more number of adversarial parties can have an adverse
affect on the system. Secure computation of parties can be maintained by a MPP
(number of parties ≥ 5) that contains at least 2 adversarial parties [1]. The main
contribution of this paper is to generate digital signature using ECDSA to ensure
authenticity in a multiparty system. We achieve this in four stages.
In the first stage, we setup a multiparty system (where parties can be adversarial
in nature) using five parties. Note that a multiparty system cannot be established
in our context with less than five parties [1]. In the second stage, we use the notion
of Authentication server At introduced by Tsai et al. [2] (as Authentication
server ensures the mutual identification of parties). At stores the information of
all parties. Parties interact with At by non-secret keys that helps to verify the

DPM & CBT 2024

314



2 Akshit et al.

identity of users. Latter, in the third stage, we ensure the security of messages in
5PP by using modified Paillier cryptosystem [3]. Finally, we achieve full secrecy
(where full secrecy is defined as when no intruder gets the information during the
message transmission) in 5PP over a network by using homomorphic encryption.
Homomorphic encryption (Hem) hides the information of sender and receiver
over a network with the help of arbitrary analytic operation [4]. We also show
that using elliptic curve cryptography (ECC), one can achieve a high level of
security compared to RSA [5]. This implies a more secure system than RSA
can be designed using a relatively smaller key by using ECDSA [6]. We first
discuss the relevant literature for this study. ECDSA is helpful for maintaining
authentic communication between the parties [7]. ECDSA can be mathematically
expressed as:

Ω = α−1(h(m) + δγ) (1)

Here h(m) is a hash function, m is a message, δ is a secret key, α is a secret
nonce, and γ is public nonce (such that the x-coordinate of α ·β where β is base
point generator of the elliptic curve).
Literature suggests that a limitation of ECDSA signature is that it does not
maintain secrecy, mutual identification of parties, and the case when the num-
ber of parties are high. Also, ECDSA generation is quite expensive. Chien et
al. [2] have proposed the ECC-based blind signcryption to strengthen the high
level of security. The main drawback of their work is that they cannot achieve
full secrecy. Xu et al. [8] used the signature key by threshold using the concept
of Fiat-Shamir paradigm [9]. The main limitation is that their work leaks the
information of both the sender and the receiver. Further, a few of the authors
have extended the existing work of Xu et al. [8] by considering the Diffie-Hellman
native assumptions and homomorphic Paillier encryption [3,10,11,12]. The main
limitation of their works is that they did not discuss the adversarial nature of any
party. Later on, a few authors extended the existing work by considering the five-
party protocol with the adversarial nature of parties [13]. The main drawback is
that they did not discuss the mutual identification between the parties. After-
wards, a few authors [14,15,16] proposed mutual identification based scheme to
check the authentication of parties by considering trusted third party protocol.
The work of [14] used identity based encryption to establish the mutual identifi-
cation where key is distributed between multiple parties. The main limitation is
high computation time for key agreement procedure. Li et al. [15] proposed third
party based approach to mutually authenticate the system. The main limitation
of their work is dishonest majority when the number of parties are scale up (by
considering dishonest parties). Similarly, Sucasas et al. [16] proposed certificate
authority (which provides some cryptographic keys to multi parties) to estab-
lish mutual identification. The main limitation of their work is complex protocol
designing which increases the computation overhead over the parties. Further,
Fragkos et al. [17] proposed several artificial intelligence based approach for au-
thentication and encryption of message having limitation of assumed multiple
trusted third party protocol which is not mutually identified. Further, Haung et
al. [18] have proposed a partial blind ECDSA scheme widely used in bitcoins.
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The main drawback of their work is that they use the Zero-knowledge Proof
of knowledge (ZkPok), which increases the computation complexity. Xue et al.
[19] have proposed two-party ECDSA signature generation via re-sharing of the
secret key and linear sharing of the nonce. The main limitation of their work
is that it does not applicable to more than two parties. Further, Ma et al. [20]
have proposed linear secret sharing that does not require recursive operations
for access control over message passing. The main limitation is that their work
does not maintain full secrecy. Later, Aggarwal et al. [21] proposed homomor-
phic encryption over message passing with the help of ECDSA signature that
maintains full secrecy. The main drawback is that they did not discuss the mu-
tual identification of parties or the case when number of parties are more than
two. Further, Aggarwal et al. [22] extended the work of [21] by considering the
adversarial nature of parties using the claim of Byzantine agreement but they
did not address the mutual identification between the parties.
In summary, we use 5PP as a multiparty protocol that contains adversarial par-
ties. The communication between the parties is maintained by modified Paillier
cryptosystem. The modified Paillier cryptosystem efficiently performs the homo-
morphic operations that provides security to the system as compared to other
existing techniques [23,24]. Later on, this work establishes authentic commu-
nication with the help of ECDSA signature. ECDSA signature is helpful for
generating the authentication in multiparty protocol.
The roadmap for the paper is as follows. Section 2 discusses the preliminaries.
Section 3 discusses the proposed methodology. Security of the proposed work is
discussed in Section 4. Finally, Section 5 discusses conclusion and future work.

2 Preliminaries

2.1 Elliptic Curve Cryptography (ECC)

In this work, message passing is performed via elliptic curves (EC). ECC was
first introduced by Neal Kobiltz and Victor Miller in 1985 [25]. EC is a non-
singular curve defined over a finite field Zq (where q is the order of EC). EC
consists of a set of points that satisfy the following equation, such as:

Y 2 = X3 +AX +B (2)

Where X,Y,A,B ∈ Zq, and 4A3 + 27B2 ̸= 0.

2.2 Modified Paillier Cryptosystem

The encryption mechanism of this work is based on the modified Paillier cryp-
tosystem, which is taken from the existing work of Xun et al. [3]. The modified
Paillier cryptosystem is based on a large sample space, which is helpful for the
easy computation of messages.
Consider a large prime number s (which is supposed to be a public parameter
of ECDSA). The modified Paillier cryptosystem is discussed as follows.
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– Key Generation: Randomly large prime numbers A and B are selected by
parties such that the greatest common divisor gcd(A−1, s) = gcd(B−1, s) =
1. Afterwards, parties estimate:

N = AsB (3)

M = (1 +N)AB(mod N2) (4)

, and publishes N , and M as public key keeping (A,B) as secret.
– Encryption: Encryption of message m is performed via randomly selecting I

(where m < q and I ∈ ZN2). Parties compute the ciphertext (CP) as:

CP = MmIN (mod N2) (5)

Here I is randomly selected, so the ciphertext looks like a random number.
– Decryption: The decryption (DC) of message is performed via secret key

(A,B) such as:
DC = CP (A−1)(s−1)(B−1)(mod N2) (6)

and message m can be computed as follows.

m =

�

DC − 1

ABN

�

[(A− 1)(s− 1)(B − 1)]−1(mod q) (7)

2.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

This section highlights the signature generation with the help of elliptic curves.
EC plays a crucial role in achieving a high level of security with a smaller key
size. The authenticity of messages over EC can be obtained by secret sharing of
public key Q, secret key δ, public nonce γ, secret nonce α, and hash function
h(m) (where m is a message). EC is defined over a finite field Zq consisting of
an origin generator β such as:

Q = δβ (8)

,and
γ = αβ (9)

Here β is also considered as x-coordinate Q = δβ (due to the symmetric prop-
erties of elliptic curves with respect to x-axis). Signature (Ω) over message with
the help of EC is termed ECDSA, which can be mathematically expressed as:

Ω = α−1(h(m) + δγ) (10)

3 Proposed Methodology

This section indicates the methodology of our proposed work (as shown in Figure
1). This work is divided into four steps. These steps are essential for generating
the ECDSA signature on the messages. The steps are discussed as follows.
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1. Five party protocol (5PP)

2x+ h∗ < n
x = 1
h∗ = 1

Here n = 5

2. Setup and Registration phase

Pi Pj

δi ← Zq, Di ← Zq, αi ← Zq δj ← Zq, Dj ← Zq, αj ← Zq

Qi = δiβ Qj = δjβ

πi = hi(ivi, Qi) πj = hj(ivj, Qj)

Di = αiβ = (xDi
, yDi

) Dj = αjβ = (xDj
, yDj

)

CFi = α−1
i (πi + xDi

δi) CFj = α−1
j (πj + xDj

δj)

3. Encryption (modified paillier cryptosystem)

Pi Pj

A ← ZN2

B ← ZN2

s ← ZN2

A ← ZN2

B ← ZN2

s ← ZN2

N = AsB N = AsB

M = (1 +N)AB ( mod N2) M = (1 +N)AB ( mod N2)

4. ECDSA Signature Generation

4.1. Homomorphic Encryption

Pi
Pj

δi ← Zq δj ← Zq

αj ← Zq

γj = αjγ
Ij ← ZN2

Ii ← ZN2

Encrypt with hash function h(mi) Encrypt with public nonce γ
with respect to secret key δ

CPi = Mh(mi)INi ( mod N2) CPj = (MγjINj )δj ( mod N2)

4.1.1. Generation of CPo

CPo = Hem[(CP1, CP2), ∗]

CPo = M (h(mi)+γjδj)INi I
Nδj
j ( mod N2)

4.2 Signature generation

Ω = α−1(h(m) + γδ)

Fig. 1. Flow diagram of ECDSA generation over five-party protocol (5PP). Here parties
Pi and Pj are randomly selected from 5PP (where 1 ≤ i, j ≤ 5, and i ̸= j).
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3.1 Multiparty (five) Protocol (5PP) with adversarial nature

In this step, for maintaining secure communication, multiparty (where number
of parties ≥ 5) protocol with an adversarial nature is used, which was adopted
from the work of Alon et al. [1]. Here we remark that the system is not applicable
when the number of parties are less than five. They worked on n-party system
with an honest majority, which can be mathematically expressed as:

2x+ h∗ < n (11)

Here n is total number of parties. h∗ is number of semi-honest parties (where
a party is considered semi-honest if it follows all the protocol of the proposed
network but is curious to get the information of other parties), and x is number
of adversarial parties. For attaining minimum multiparty protocol, we assume
x = 1 and h∗ = 1, then the minimum possible value for n = 4. When n = 4, it
is difficult for any party to ensure the system’s security (as n = 4 disobeys the
claim of Byzantine agreement [26]). For the sake of simplicity, we assume that
n = 5 (say 5PP), which ensures the security of multiparty protocols. The proof
for 5PP is discussed in Section 4.

3.2 Setup of 5PP with Authentication server At

After measuring adversarial nature of parties, this work uses the notion of an Au-
thentication server, At. At stores information about all parties that helps check
the mutual identification. The mutual identification of phases are discussed as
follows.

– Firstly, each party computes the value of its public key, such as:

Q1 = δ1β

Q2 = δ2β

Q3 = δ3β

Q4 = δ4β

Q5 = δ5β

(12)

Here {{Q1, Q2, · · · , Q5} ∈ Zq} are public keys, {{δ1, δ2, · · · , δ5} ∈ Zq} are se-
cret keys, β is base point generator of elliptic curve for parties {P1, P2, · · · , P5}.

– After computing public keys, each party sends its information to the At with
secret keys and their unique identity values (iv). Then, At applies hash func-
tion (h(·)) and generates the non-secret salt value, π, for verifying identity
of each participant. The corresponding hash value is obtained as follows:

π1 = h1(iv1, Q1)

π2 = h2(iv2, Q2)

π3 = h3(iv3, Q3)

π4 = h4(iv4, Q4)

π5 = h5(iv5, Q5)

(13)
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Here {{π1,π2, · · · ,π5} ∈ Zq} are non-secret salt values, {h1, h2, · · · , h5} are
corresponding hash values with unique identity values. {iv1, iv2, · · · , iv5} for
parties {P1, P2, · · · , P5}.

– Each party has their own data points, such as {{D1, D2, · · · , D5} ∈ Zq} on
the elliptic curve, with β being the base point generator. Each party selects
their secret nonce values {{α1.α2, · · · ,α5} ∈ Zq} and computes the value of
data points such as:

D1 = α1β = (xD1
, yD1

)

D2 = α2β = (xD2
, yD2

)

D3 = α3β = (xD3
, yD3

)

D4 = α4β = (xD4
, yD4

)

D5 = α5β = (xD5
, yD5

)

(14)

Here xDi
and yDi

(where i ∈ {1, 2, · · · , 5}) are the coordinates of x-axis and
y-axis corresponding to the data points.

– After computing the data points, each party Pi (where i ∈ {1, 2, · · · , 5})
generates the certificates (CFi) with the help of At such as:

CF1 = α−1
1 (π1 + xD1

δ1)

CF2 = α−1
2 (π2 + xD2

δ2)

CF3 = α−1
3 (π3 + xD3

δ3)

CF4 = α−1
4 (π4 + xD4

δ4)

CF5 = α−1
5 (π5 + xD5

δ5)

(15)

Later on, the At computes the certificate value in terms of binary output,
that is, 0 or 1. If the obtained value is 1 means party is valid, else for 0 party
either is malicious or semi-honest. The corresponding value of certificates
helps obtain the nature of the parties. This technique maintains mutual
identification among the parties.

3.3 Modified Paillier Encryption

A Paillier cryptosystem is efficient for performing homomorphic encryption,
which maintains full secrecy over the network [27]. In this work, we apply the
modified Paillier cryptosystem as it is more secure than the Paillier cryptosys-
tem, which is taken from the existing work of Xun et al. [3]. Here parties Pi and
Pj are randomly selected (where i, j ∈ {1, 2, · · · , 5} and i ̸= j), which works as
a sender and a receiver in the encryption mechanism of messages.
As we know, Mi = (1 +N)AB(mod N2), then

Ms
i = (1 +N)AsB = (1 +N)N = 1 +N2 = 1 ( mod N2).
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Therefore,

DCi = CP
(A−1)(s−1)(B−1)
i (mod N2)

= Mmi(A−1)(s−1)(B−1)αN(A−1)(s−1)(B−1)

= (1 +N)AB[mi(A−1)(s−1)(B−1) (mod s)]

αN(A−1)(s−1)(B−1)

= 1 +AB[mi(A− 1)(s− 1)(B − 1) (mod s)]N

Here AB[mi(A−1)(s−1)(B−1) (mod s)] < N . According to Euler theorem, we

know for any non-zero integer χ (where χ ∈ ZN2), where χφ(N2) = 1 (mod N2),
and χ ∈ ZN2 [28].
In the competence of this, we have:

AB[mi(A− 1)(s− 1)(B − 1) (mod s)] = (DCi − 1)/N

Therefore, we have:

mi =

�

DCi − 1

ABN

�

[(A− 1)(s− 1)(B − 1)]−1(mod s) (16)

3.4 ECDSA signature generation

The generation of ECDSA is formed in three steps. Firstly, we apply the ZkPok
for the reduction of complexity. In the second step, we apply homomorphic en-
cryption (which is helpful for maintaining secrecy over the network). Afterward,
the signature is generated to check the authenticity of messages.

Zero knowledge Proof of Knowledge (ZkPok) As we know, the value of
public key Q and public nonce γ can be computed as Q = δβ, and γ = αβ.
Computing the value of δ and α by the dint of ZkPok is quite arduous. In
this proposed work, we compute the values of δ and α with the help of non-
interactive Zero-knowledge Proof of Knowledge (niZkPok) using the concept of
Fiat-Shamir paradigm [9,29]. This step reduces the computation of the proposed
work.

Homomorphic Encryption In homomorphic encryption, message stays en-
crypted at all times, which minimises the likelihood that message gets compro-
mised. In this step, parties Pi and Pj are randomly selected (where i ̸= j).
Afterwards, party Pi encrypts the message mi with respect to hash function
h(·), such as:

CPi = Mh(mi)INi (mod N2) (17)

Later on, party Pj encrypts the message with public nonce γ and secret key δj ,
such as:

CPj = (MγjINj )δj (mod N2) (18)
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Further, CPi and CPj homomorphically encrypt (Hem) messages with the help of
analytical function i.e., multiplication (∗) and generate the ciphertext as follows.

CPo = Hem[(CP1, CP2), ∗]

= Mh(mi)INi (mod N2) ∗ (MγjINj )δj (mod N2)

= M (h(mi)+γjδj)INi I
Nδj
j (mod N2)

(19)

Signature Generation After getting CPo, the receiver estimates the signature
(Ω) with the help of secret random value (α−1) (where α−1 is the inverse of
secret random value; as we know, the inverse operation is quite difficult for
computation) such as:

Ω = α−1(h(mi + γjδj) (20)

Here, we remark that during the signature generation time for a particular party,
we assume that i = j = 1. Then, from Equation 20, the signature can be
computed as follows.

Ω = α−1(h(m1) + γ1δ1)

The optimised version for the signature can be expressed as:

Ω = α−1(h(m) + γδ) (21)

Finally, receiver receives signature as (δ,Ω).

4 Security of proposed work

In this section, we compute the security of our proposed work. In this paper,
security is computed in various steps. The steps are discussed as follows.

4.1 Five party protocol (5PP)

As from the existing work of Alon et al. [1], 2x+h∗ < n. If we consider the value
of x = 1 and h∗ = 1, then the least value of n = 4. As the value of n = 4, the
system is not secure. At n = 4, a system has four parties (say, P1, P2, P3, and P4).
These four-party protocols consist of message m (where party P1 is randomly
selected as a malicious party, party P2 is selected as a semi-honest party, and
the rest parties are considered honest). For ensuring security, we assume that
any honest party (say P4) receives m′ from P1 (as P1 is malicious party), m′′

from P2 (as P2 is semi-honest), and m from P3. In that scenario, the selection
of message is arduous for P4.
For sake of simplicity, at n = 5, a system has five parties (say, P1 (malicious
party), P2 (semi-honest party), P3 (honest party), P4 (honest party), and P5

(honest party)) that consist of message m. For ensuring security, we assume that
any honest party (say P5) receives m′ from P1, m

′′ from P2, and m from the
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rest of parties (as all other parties are honest). In that scenario, party P4 selects
the honest majority by considering the claim of Byzantine agreement [26]. The
claim of Byzantine agreement selects two-thirds honest majority that ensures
the security of a multiparty protocol in the presence of adversarial behavior by
parties. Hence, at n = 4, the system does not ensure security. So, in this work,
five-party protocol (5PP) is applied, which ensures security even in the presence
of adversarial parties.

4.2 Modified Paillier Cryptosystem

In this work, we prove the modified Paillier cryptosystem is secure by taking a
random oracle (where the oracle always generates the output either Yes or No).
We begin this problem by taking large composite residues. The heart of this
proof lies in modulus where modulus is performed on squares. As from paillier
encryption, we know that N = AsB (where A, s,B ∈ ZN2).
Definition. An integer λ is said to be the N -th residue modulo N 2 if there
exists an integer µ such that λ = µN (mod N2).
The N -th residuosity is a multiplicative subgroup of ZN2 of order s, such as:

φ(N) = (A− 1)(s− 1)(B − 1) (22)

Here λ has exactly N -th roots of degree N (where exactly one root is strictly
less than N). The N -th roots of unity can be mathematically expressed as:

(1 +N)z = 1 + zN(mod N2), (23)

(where z ∈ Zq). Deciding the P -th residuosity is NP-hard. Accordingly, we as-
sume that:

Conjecture. There exists no polynomial time solver for N -th residues mod-
ulo N2 [Section 5, [3]].
As we know from Paillier encryption, M = (1 +N)AB . We denote it by ρ(m, v)
which can be defined as:

ρ(m, v) = MmvN (mod N2) (24)

(where m ∈ Zq and v ∈ ZN2). Assume ω = ρ(m, v) ∈ ZN2 .
Claim. Random oracle decides the security of modified Paillier cryptosystem

when z = m.
As we know, ω = MmvN (mod N2) and we can write it as:

ωM−z = Mm−zvN (mod N2) (25)

that submits to the random oracle for solving the residue problem. In case of
N -th residue, there exists a constant v′N (where v′N ∈ ZN2) such as:

ωM−z = v′N (mod N2) (26)
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From Equations (25, 26), we can deduce that:

Mm−z
h v

v′

iN
= 1(mod N2) (27)

(where v, v′ are constants). So by raising power of (A− 1)(s− 1)(B− 1) on both
sides, we can deduce that:

M (m−z)(A−1)(s−1)(B−1)(mod s) = 1(mod N2) (28)

Further, we can compute it is as:

(m− z)(A− 1)(s− 1)(B − 1)(mod s) < s (29)

Now, consider the claim when z = m Equation (29) holds good. We can conclude
that random oracle solves the problem and provides the outcome Yes. In the
above competency, we can deduce that the modified Paillier cryptosystem is
secure.

4.3 Elliptic Curve Discrete Logarithmic Problem (ECDLP)

In this step, security is computed in terms of ECDLP [30]. As from Equations
(8, 9), Q = δβ, and γ = αβ.
Computation of Q and γ is adequate with the knowledge of δ, α, and β. Consider
a situation where an intruder knows the value of Q, γ, and β. Due to inadequate
knowledge, it is arduous to compute the value of δ and α. Hence, the discrete
logarithmic problem of elliptic curves improves the security of system.

4.4 Homomorphic Encryption

In this work, we homomorphically encrypt the ciphertexts of parties Pi and Pj

with the multiplication operation. As we know from Equation (19):

CPo = Hem[(CP1, CP2), ∗] (30)

Consider a situation where, at any instance, when an attacker gets the informa-
tion of CP1 and CP2 with respect to CPo, then due to inadequate knowledge
of arbitrary operation, that is, multiplication (∗), an attacker cannot get the
information of CPo. Thus, homomorphic encryption makes the proposed work
secure.

4.5 Signature Generation

Finally, for the signature generation, we use the value of secret key (α). We are
proposing the inverse operation of secret key, which is quite difficult to compute.
Hence, inverse operations increase the security of the system (as message is
always encrypted throughout the communication channel).
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5 Limitations

This work does not verify the designed protocol concerning side channels at-
tacks (or any cryptographic attacks). The proposed work does not discuss the
implementation setup.

6 Conclusion and Future work

In this work, homomorphic encryption-based ECDSA generation over five-party
protocol is proposed. We show the mutual identification between the parties
with the help of At, and the security of messages is ensured by modified Paillier
cryptosystem. Finally, our work achieves the authenticity of 5PP with the help
of ECDSA signature.
In future, we will extend our work to more than five parties. Another extension
of this study is to maintain full secrecy between the adversarial parties.
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Abstract. Blockchain technology has significantly transformed various
industries by enabling secure and tamper-resistant transactions. How-
ever, the rise of quantum computing threatens the cryptographic foun-
dations of blockchain networks, making blockchain vulnerable to signa-
ture forgery and transaction manipulation. This raises concerns about
the long-term viability of blockchain systems and highlights the need for
post-quantum secure solutions.
This paper investigates the feasibility of quantum-resistant blockchain
ecosystems. Our research focuses on estimating the cost of the integration
of the post-quantum algorithms selected in the NIST standardization
competition into Ethereum-based blockchains.

Keywords: Blockchain · post-quantum cryptography · digital signature
· Ethereum · ECDSA · Dilithium · Falcon · SPHINCS+.

1 Introduction

In recent years, blockchain technology has emerged as a revolutionary technol-
ogy for secure and decentralized data management, largely due to its ability to
provide an immutable and transparent data ledger, which cannot be manipu-
lated. This technology has been adopted in various sectors, with finance being
the main application scenario, but also extending to supply chain management
and many others.

However, the advent of quantum computers poses a major threat to the foun-
dations of blockchain technology as they could undermine the security of cur-
rent cryptographic algorithms. Leveraging the principles of quantum mechanics,
quantum computers can perform a large number of calculations simultaneously
because their basic unit of information representation, the quantum bit or qubit,
can exist in a superposition of states. This allows multiple states to be repre-
sented at the same time, greatly facilitating efficient parallel processing [1].

As such, quantum computers are capable of solving complex mathematical
problems considerably faster than classical computers.

The potential of quantum computing is significantly enhanced by the ap-
plication of specific algorithms, such as Shor’s algorithm [2] for factoring large
numbers, and Grover’s algorithm [18] for speeding up searches in unstructured
data.
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These algorithms have direct implications for the security of current crypto-
graphic algorithms, especially public-key algorithms. For example, the security
of RSA is based on the impossibility of factoring large prime numbers, but with
Shor’s algorithm a 2048-bit RSA key could be factorized in approximately 8
hours using a quantum computer with 20 million qubits [13].

While this is a clear threat to security, the reality is that we are still far from
building quantum computers with this number of qubits. To the best of our
knowledge, the largest quantum computers to date have just over a thousand of
qubits. IBM’s Condor, for example, has 1.121 qubits [14]. On such a computer,
the factorization of the above mentioned RSA key would take approximately
142.204 hours, or about 5915 days. This value was obtained without differenti-
ating between physical and logical qubits, because otherwise the result would be
much higher [3].

Although quantum computers are not an immediate problem, the rapid de-
velopment of them in recent years, has led to the need for new cryptographic
algorithms that can withstand quantum computers. These new cryptographic
algorithms are referred to as post-quantum or quantum-resistant algorithms.

Since blockchains rely on public-key cryptography to operate, they are also
vulnerable to quantum computers. The main mechanism for interacting with
blockchains is through transactions, which are digitally signed to ensure their au-
thenticity. Most blockchains, including Bitcoin and Ethereum-based blockchains,
use the Elliptic Curve Digital Signature Algorithm (ECDSA) [15] for this pur-
pose. The main reason is that ECDSA uses short keys and produces short sig-
natures.

In this paper we investigate the threat that quantum computers pose to block-
chain systems and whether post-quantum cryptography (PQC) can be integrated
into Ethereum-based blockchains to mitigate the risk. The main contribution of
this paper is a performance comparison of the PQC algorithms selected from the
NIST standarization process against ECDSA using real-time transaction data.
It has been focused only on the ECDSA signature algorithm used to sign the
Ethereum transactions, not in the BLS signature. The reason for this has been
because replacing BLS is much more changeling given that Ethereum consensus
uses BLS signature aggregation to store the results of the consensus voting. In
the end, the solution has been composed of a modular and scalable system for
acquiring, comparing and visualizing the results.

The rest of this paper is organized as follows. Section 2 provides a comparative
analysis with related works. Next, Section 3 introduces the main existing post
quantum cryptography families. The benchmarking architecture is described in
Section 4. Subsequently, Section 5 shows the results obtained from the evaluation
of applying ECDSA and NIST selected algorithms to real-time transaction data
from an actual blockchain network. Finally, Section 6 present the conclusion and
outlines potential lines of future research.
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2 Related work

Concerns about the threat of quantum computers to current cryptographic
schemes have led to notable research in this area, generating several solutions
and surveys.

Regarding survey papers, Buser et al. [4] focus on exotic signature schemes
for post-quantum blockchains, exploring the challenges associated with their im-
plementation and proposing research directions. More recently, Yang et al. [21]
presented a comprehensive survey and comparison of post-quantum and quan-
tum blockchains, which highlighted the current state of research and identifying
possible future directions.

Some papers focus on investigating the application of post-quantum blockchains
to particular scenarios. For example, Chen et al. [5] concentrate on studying the
practical implications of integrating post-quantum cryptographic schemes into
blockchain systems designed for the Internet of Things (IoT) and other smart city
infrastructures. Similarly, Yi et al. [22], discuss the application of post-quantum
blockchain technology to secure the social Internet of Things (SIoT), proposing
a framework that leverages post-quantum cryptography to ensure data integrity
and privacy in these scenarios.

Additionally, some authors proposed the use of lattice-based cryptography to
make blockchain networks resistant to quantum attacks. The focus of [11] is the
creation of a cryptocurrency based on a post-quantum blockchain while [16] pro-
poses a new signature scheme and describes how to apply it to secure blockchain
transactions. None of them present a practical implementation.

To the best of our knowledge, the paper that is most similar to ours is [9]. This
paper analyses the feasibility of post-quantum algorithms for the blockchain.
However, their study does not use the finalists of the PQC competition organized
by NIST. Furthermore, their evaluation is not done with real blockchain data.

In contrast, in this paper we provide a modular and scalable tool to facilitate
the incorporation of novel post-quantum algorithms as they are developed. In
addition, our solution uses real-time transaction data from a blockchain network,
making the evaluation results more accurate.

3 Post-quantum cryptography families

The threat of quantum computing to today’s cryptographic schemes has prompted
the US National Institute of Standards and Technology (NIST) to launch a stan-
dardization process for post-quantum schemes, which aims to develop and stan-
dardize cryptographic algorithms that are resistant to quantum attacks [17]. The
competition started in 2016 with 69 candidate algorithms and has progressed
through rounds of evaluation. The candidates algorithms can be classified into
different families, which are briefly described below.

Lattice-based cryptography relies on the mathematical properties of lat-
tices, geometric structures formed by points in n-dimensional space. It involves
solving problems such as the Shortest Vector Problem (SVP) and the Closest
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Vector Problem (CVP) in these high-dimensional spaces, making brute-force at-
tacks impractical. Lattices are often represented as arrays for easier matrix oper-
ations. The main cryptographic schemes include NTRUEncrypt and NTRUSign,
which leverage SVP and CVP, and Ring-LWE-based schemes, which use the Ring
Learning with Errors (RLWE) problem to perform computations on polynomial
rings.

Code-based cryptography is one of the oldest and most studied ap-
proaches to post-quantum cryptography. Its security is based on the difficulty of
solving the mathematical problems associated with error-correcting codes. These
codes ensure reliable data transmission over noisy channels by introducing re-
dundancy, which allows the receiver to detect and correct errors, while attackers
without secret knowledge cannot decode the data. The McEliece cryptosystem,
created in 1978, is the most famous code-based algorithm. It encrypts messages
by encoding them in codewords and adding random errors to make decryption
impossible without the private key. Although efficient and secure, the McEliece
cryptosystem has large public keys and computationally intensive key generation
and management processes.

Multivariate polynomial-based cryptography (MPKC) is a crypto-
graphic scheme that exploits the hardness of solving systems of multivariate
polynomial equations, which are computationally very difficult to solve, and have
been proven to be NP-Complete, like some other lattice or code problems. These
problems are of complexity class NP (non-deterministic polynomial time), which
means that if a polynomial-time algorithm exists for solving any NP-complete
problem, then polynomial-time algorithms exist for solving all problems in NP,
making them essentially equivalent in difficulty.

Hash-based cryptography is a method of encrypting and securing data
using hash functions. Before the process begins, it is necessary to determine
which values are to be signed, and then to generate a long random string of
characters for each of them. This resulting random string will be the private
key used to sign the data. Once the private key is ready, this string is hashed
using typical hash functions such as SHA-1, SHA-3, SHA-256 or BLAKE2, which
produce strings between 256 and 512 bits, which are used as public keys to
verify the signature. This is done by hashing the signature (the private key) and
comparing it with the public key it has.

Isogeny-based cryptography creates cryptographic systems over finite
fields using isogeny graphs of elliptic curves, which are mappings that preserve
algebraic structures. An isogeny is a morphism between two elliptic curves, char-
acterized by its homomorphism between the groups of points on the curves. Key
generation involves choosing two elliptic curves over a finite field and generating
a secret isogeny between them. The private key is the isogeny, while the public
key is made of the starting and resulting curves. While the Supersingular Isogeny
Diffie-Hellman (SIDH) protocol and its successor, Supersingular Isogeny Key En-
capsulation (SIKE), were initially prominent, they have been found vulnerable
to cryptographic attacks. As a result, newer isogeny-based schemes like SQISign
and its variants have emerged. SQISign, which has been featured in recent NIST
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post-quantum cryptography evaluations, represents a more robust approach, ad-
dressing the vulnerabilities of earlier protocols and offering promising security
in the evolving landscape of post-quantum cryptography.

4 Benchmarking solution

This section describes the benchmarking tool developed to evaluate the perfor-
mance of both current and post-quantum cryptographic algorithms in block-
chain.

The tool consists of a set of interconnected functional blocks that result in a
modular and scalable environment for the evaluation of cryptographic algorithms
against real-time transactions from an Ethereum-based blockchain. The tool also
provides an interface for the visualization and analysis of the results.

In the following, we present the overall architecture of the benchmarking
solution and its building blocks in detail.

4.1 System architecture

The proposed solution consists of four main components as illustrated in Fig-
ure 1. The first component is devoted to the deployment of a blockchain network.
The second component provides all necessary cryptographic algorithms, which
will be applied to actual blockchain data in the third component. The fourth
component provides a mechanism to display the results.

Fig. 1: Benchmarking solution architecture

As shown in the figure, our solution incorporates an actual blockchain net-
work capable of deploying and running a number of Go-Ethereum nodes using a
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Docker environment. All transactions sent in the blockchain environment are
intercepted and their actual payloads are passed to our benchmarking API.
The benchmarking component evaluates the performance of both the crypto-
graphic algorithms currently provided by the Go-Ethereum client and the post-
quantum cryptographic schemes selected by NIST. The results are stored in
a Sqlite database that is read by Grafana, the component in charge of gener-
ating graphics for comparing the evaluation results. These graphics are finally
included in a web application developed with Flask to facilitate the visualization
and analysis of the results.

4.2 Cryptographic component

This section presents the cryptographic algorithms and libraries incorporated
in our benchmarking solution. Currently, it includes the three post-quantum
signature algorithms selected by NIST after their standardization competition:

– CRYSTALS-Dilithium [7]: Dilithium is a digital signature algorithm based
on the hardness of lattice problems over module lattices. It ensures that even
with access to a signing oracle, an adversary cannot fabricate a new signa-
ture for an unsigned message or a different signature for an already signed
message. Dilithium utilizes rejection sampling of Fiat-Shamir with Aborts
and the uniform distribution for signature generation, leading to secure yet
larger signatures. Despite this, its key size is reduced post-creation with an
optimizaiton process, making it the algorithm with the smallest combined
public key and signature size among lattice-based schemes. Dilithium offers
three modes (Dilithium 2, 3, and 5), with increasing security and resource
needs, and includes AES encryption.

As there is a library that implements this algorithm in GO [6], the necessary
test functions have been included directly in the simulation program that
has been carried out in GO.

– Falcon [10]: As Dilithium, it is a lattice-based digital signature scheme, but
uses the Gentry, Peikert, and Vaikuntanathan framework [12], deploying
NTRU lattices with a fast Fourier sampling trapdoor sampler. This scheme
addresses the short integer solution (SIS) problem over NTRU lattices, which
remains computationally challenging even for quantum computers. Falcon
offers two modes, Falcon-512 and Falcon-1024, with this benchmark focusing
on Falcon-1024 due to its higher security.

To implement of Falcon, since there is currently no native library for GO, it
was necessary to use the CGO library to combine C and GO code, calling
Falcon cryptographic functions from C [19] for analysis in GO.

– SPHINCS+ [20]: Stateless hash-based digital signature scheme using Merkle
tree structures. It offers high security with relatively short signatures and fast
verification times. SPHINCS+ includes three variants based on the underly-
ing hash functions: SHAKE256, SHA-256, and Haraka, with this benchmark
focusing on SHA-256.
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The GO library for SPHINCS+ [8] supports 12 modes per hashing method,
varying in hash length (128, 192, 256) and mode type (simple, robust). In
this case, six modes have been analyzed, covering both simple and robust
options for each hashing type.

Although this component only incorporates libraries for the three finalists of
the NIST competition, it is designed to facilitate the inclusion of new crypto-
graphic algorithms in the future.

4.3 Measurement component

The measurement component is one of the core elements of the proposed solution.
This component is responsible for receiving, in real time, the transactions of all
blocks generated by the Ethereum-based blockchain.

Every time a signature is generated or verified in the blockchain network, an
API call is made with the hash of the transaction. This hash is then used as
payload to perform the comparisons of cryptographic functions.

The tests, which are performed in every single API call, simulate a key gen-
eration, signature generation and signature verification process. These tests are
first carried out with the cryptographic code extracted from Go-Ethereum, i.e.
with ECDSA, and then compared with the post-quantum cryptographic schemes
explained above: Dilithium, Falcon and SPHINCS+.

The metrics measured have been the execution time and the memory us-
age of the corresponding cryptographic function. All measurements have been
carried out directly from GO, with native libraries: time for time measurement
and runtime/pprof for CPU profiling. Both are started just before calling the
function to which the parameters are going to be measured.

However, instead of measuring the time directly in the blockchain node, we
produce also an ECDSA signature in the backend to ensure that all benchmarked
algorithms are run in the same environment. As the backend does not know the
private keys used for signatures, we need to generate a new pair in each test
iteration. In addition to that, key and signature sizes have also been measured
apart from the tests.

Execution times The simulations have been carried out several times in a loop
and the average execution time of all of them has been calculated, since there
have been functions that took extremely low time that were considered as 0ms
by the measurement function. This loop was 50 times for the tests performed by
API call.

However, the need to perform iterations to obtain more accurate results,
increased considerably the time required to complete each test. This has caused
another problem, which was that API calls were being received with new block
information, while tests were still running with hashes from previous blocks. In
short, it took longer for the GO program test to complete than for the private
network to validate a new block.
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Therefore, it has been essential to implement asynchronous calls in the block-
chain network, so that it has not need to wait for the API response and continues
its normal operation. At the same time, and more importantly, a queuing system
has had to be implemented in the GO program. This has been achieved using
GO channels and GO routines. When the application launches, the channel is
initialized and a GO routine is started to handle incoming requests. Then for
each API call received, the hash information has been added to the channel
queue, to be executed one at a time on a first-come, first-served basis.

Memory usage In addition to measuring the execution time of cryptographic
functions, in order to assess whether an algorithm is suitable or not, it has
been very interesting to quantify the memory usage during executions. For this
purpose, four metrics have been evaluated:

– Alloc: Amount of memory allocated by the Go runtime for live objects, in-
cluding all reachable objects in the heap, as well as some additional memory
used by the garbage collector and other runtime structures.

– Total alloc: Cumulative amount of memory allocated since the program
started. It covers all allocations, even those that have been freed by the
garbage collector.

– Sys: Total memory obtained from the operating system, including both the
Go heap and any memory allocated by the Go runtime for other purposes
(such as stack space, memory-mapped files, and so on).

– Num GC: Number of garbage collection cycles that have occurred since
the program started. Garbage collection is the process of reclaiming memory
that is no longer in use by the program, and each cycle involves scanning
the heap to identify and free unreachable objects.

5 Experimental results

The test results have been divided into three parts: the key and signature sizes,
and the execution times and memory usage of the functions under test.

5.1 Key and signature sizes

Table 1 shows the comparison of private and public key and signature sizes for
each type of cryptographic algorithm. It is worth mentioning that the size of the
public key is only the size of the key itself, which in reality would have to be
added 1 bit for the signature of the y-coordinate.

Comparing the key sizes of the various cryptographic schemes, there have
been notable differences that reflect their security objectives and underlying algo-
rithms. The best values have been obtained by ECDSA and 128-bit SPHINCS+,
which with the sum of the public and private key sizes achieve the same size.
ECDSA has a 64-byte public key and a 32-byte private key, while SPHINCS+

has a 32-byte public key and a 64-byte private key.
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Table 1: Key and signature sizes of different algorithms
Algorithm Public key Private key Signature

ECDSA 64 32 64

Dilithium2 1312 2528 2420

Dilithium3 1952 4000 3293

Dilithium5 2592 4864 4595

Falcon 1024 1793 2305 1231

SPHINCS+ SHA256 128bit - Robust 32 64 17088

SPHINCS+ SHA256 192bit - Robust 48 96 35664

SPHINCS+ SHA256 256bit - Robust 64 128 49856

In any case, although ECDSA could be considered the best in this aspect, it
should be noted that the set of all SPHINCS+ schemes have values very close
to ECDSA and therefore, values that could be competitive to it in this aspect.
Among SPHINCS+ versions, the higher the security level, the more bits are used
and therefore, the key sizes increase. However, using the simplest version, the
128 bit one, it is possible to use the same key sizes as ECDSA.

In contrast, both Dilithium and Falcon have been excessively far from the
ECDSA or SPHINCS+ key size values. They should be used in scenarios where
security is paramount and large key size is not an issue.

In case of the signatures, it can be seen that the result changes radically
compared to the key sizes comparison. Although ECDSA has still been the best,
SPHINCS+, which for the keys was the second best option, becomes the worst
with a huge difference with the rest.

In this case, the second best option has been Falcon 1024. However, the size
have fallen far above of the ECDSA signature size, since the size of a Falcon
1024 signature is equivalent to just over 19 ECDSA signatures.

The size of the signatures generated using Dilithium has also turned out to
be considerably larger, doubling the size of Falcon 1024 using Dilithium2, and
more than tripling if Dilithium5 is employed.

In general, it can be concluded that there is no scheme that globally (adding
the three sizes) comes close to ECDSA, since the second best is Falcon and
exceeds it by 33 times. Especially analyzing the sizes of the signatures, it can be
clearly stated that all post-quantum schemes are extremely far from the ECDSA
values. However, SPHINCS+, in the aspect of the keys obtains a very good result,
being even better in the size of the public keys and not much worse in the private
ones. In any case, it is clear that using these algorithms, the increase in the size
of the keys and especially of the signatures is an inevitable consequence of the
improvement in security they offer.

5.2 Execution times

One of the most important factors when choosing one cryptographic algorithm
over another is the time required for the algorithm to execute the cryptographic
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functions. Therefore, much emphasis has been placed on measuring and analyz-
ing in a precise and detailed way the execution times required by each crypto-
graphic scheme.

The final average results after more than 24 hours of running the blockchain
network have been those summarized in the Table 2 and also visible in the
historical data dashboards of the project.

Table 2: Average execution times by algorithms (ms)
Algorithm Key

generation

Signature

generation

Signature

verification

ECDSA 90.7 58.6 71.4

Dilithium2 80.5 149 17.3

Dilithium2-AES 102 124 16.5

Dilithium3 144 222 22.7

Dilithium3-AES 171 191 19.5

Dilithium5 201 251 33.6

Dilithium5-AES 254 207 29.6

Falcon 1024 90434 13162 166

SPHINCS+ SHA256 128bit - Robust 5612 120583 7845

SPHINCS+ SHA256 128bit - Simple 3376 72760 4569

SPHINCS+ SHA256 192bit - Robust 8318 198359 11856

SPHINCS+ SHA256 192bit - Simple 4977 118773 6777

SPHINCS+ SHA256 256bit - Robust 26333 483158 14568

SPHINCS+ SHA256 256bit - Simple 13074 240571 6957

Firstly, evaluating the differences in key generation times, it can be con-
cluded that there have been two algorithms that clearly stand out above the
rest: ECDSA and Dilithium2 (both in its normal version and in the AES version,
which hardly varies). However, it should be noted that all versions of Dilithium
have a relatively good execution time that did not deviate that much from the
ECDSA times. In fact, the Dilithium2 version improves on the ECDSA result
and achieves the shortest execution time of all the algorithms. However, both
SPHINCS+, in all its versions, and Falcon, differ exaggeratedly compared to the
times of the rest, especially the latter.

Secondly, evaluating the signature generation times, there is no doubt that
ECDSA is clearly above the rest of the algorithms, as it is slightly more than
twice as fast as the second, Dilithium2-AES. Unlike the key generation, in this
section Falcon 1024 (224 times the ECDSA time) has obtained a better result
than SPHINCS+ (2057 times the ECDSA time in the simplest mode), but they
are still times that are not at all competitive compared to the times of ECDSA
or even Dilithium.

However, at this point it must be taken into account the large difference that
existed between the signature size of ECDSA and the signature sizes of the post-
quantum algorithms, which greatly influences the time of signature generation.
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Finally, as far as signature verification times are concerned, it is interesting
to note that ECDSA did not obtain the best score on this point, being clearly
outperformed by Dilithium in all its versions.

Dilithium2 has been more than four times faster than ECDSA, and Dilithium5,
the version with the highest level of security, 2.1 times faster too. Falcon 1024,
on the other hand, although it has been more than twice as slow as ECDSA, was
not far behind. SPHINCS+, in all its modes, has been the scheme that took an
exorbitant amount of time compared to the rest, being 47.3 times slower than
Falcon 1024 for example (128bits robust mode). However, although it is not a
very considerable difference, a clear difference in times could be observed when
using the robust or simple mode of SPHINCS+, regardless of the number of bits
used.

Summarizing the results, on the one hand, in key generation, Dilithium ob-
tains a result very close to ECDSA, even improving its time in its Dilithium2
version. The rest of the algorithms need an extremely higher time and are not
competitive at all. The same happens in the generation of signatures, although
in this case Dilithium does not improve the time of ECDSA in any version, it
is very close. The worst here is SPHINCS+, while Falcon improves compared
to key generation. The most remarkable thing happens in signature verification,
where Dilithium is exceptionally better than the rest, including ECDSA, being
between 2.1 and 4.1 times faster than ECDSA depending on the versions used.

Therefore, in the sum of all times, it can be concluded that Dilithium needs
a similar amount of time as ECDSA, being practically the same time in the
Dilithium2 version. Comparing it with the rest of the post-quantum schemes, it
obtains an excellent result, being the only one that could compete in this aspect
with the current cryptographic methods.

5.3 Memory usage

In addition to measuring the execution time of cryptographic functions, in order
to assess whether an algorithm is suitable or not, it has been very interesting
to quantify the memory usage during executions. Nevertheless, obtained results
have not been as interesting and analyzable as those of the execution time, which
has led to more extensive conclusions.

The values of total alloc, sys and num GC, have concluded to be very similar
between all the executions of the different algorithms in each test. The metric of
interest for the analysis has been the alloc, the amount of memory allocated by
the Go runtime for live objects, which has led to detect greater variation among
the different algorithms.

First, in the memory allocation levels of the key generation, a clear differ-
ence has been observed between ECDSA and Falcon compared to Dilithium and
SPHINCS+. Although ECDSA achieved the lowest result, it is less than 1% bet-
ter than Falcon, which is a negligible difference. The difference to consider exists
when compared to the other two post-quantum algorithms, which need about
55-60% more memory than the first two.
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Next, the results of the same metric have been analyzed for the signature
generation process, and it was observed that in this aspect, Dilithium improves
and approaches the values of ECDSA and Falcon, which are still slightly better
in that order. SPHINCS+, on the other hand, still requires about 50% more
memory compared to the other three algorithms.

Finally, signature verification follows the same pattern as signature genera-
tion, with all the algorithms being quite close to each other, except SPHINCS,
which continues with much higher values. However, in this case, it can be seen
that there is a notable difference between the different modes that has SPHINCS.
The robust 192-bit mode gives the best result, while curiously, the simple mode
of the same bits is the one that gives the worst result of all, surpassing it by just
over 10%. The rest of the algorithms are in between, but except for the 128-bit
one, in the other two, it is the simple mode which needs less allocated memory
than the robust mode.

6 Conclusions and future work

One of the main conclusions was obtained during the research and study process.
At present, quantum computers are still a long way from being able to break
current encryption schemes easily and quickly. Current quantum computers are
not necessarily large enough to break the schemes fast, nor are they anywhere
near the size needed at the moment.

The test execution times have been where the most interesting information
has been extracted, especially because a similar performance has been seen be-
tween ECDSA and Dilithium, and a huge difference has been observed with the
other two analyzed schemes.

Analyzing the memory usage, it can be said that even though there is a
difference between the schemes, it is not as big as in the case of the execution
times. Falcon equals ECDSA in terms of results, followed by Dilithium, which
needs more resources in key generation, but in the other two processes it is
practically the same as ECDSA. However, SPHINCS+ does require slightly more
memory in all processes.

In summary, analyzing all the results, it can be clearly concluded that in
terms of performance, Dilithium is currently the best post-quantum crypto-
graphic scheme, being quite close to the performance levels of ECDSA, which
has been the present scheme used as a comparison. In the case of the simplest
version of Dilithium (Dilithium2), summing all the values of time and memory,
it would only need 12% more execution time in the three processes evaluated
and 20% more memory. These values, which although on a large scale could
make a considerable difference, are values that are not too far off current levels.
Therefore, the increase in security level that the integration of this algorithm
could entail, could be totally understandable in exchange for the slight decrease
in performance.

From the results presented and also during the development, new ideas, ques-
tions and improvements have arisen, which will be detailed below.
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The main point for improvement would be to integrate the post-quantum
cryptographic methods used in the tests into the blockchain network directly,
i.e. to include them into the source code of the used Ethereum client, in this
case Go-Ethereum. This way, more detailed tests could be performed, with real
transactions, enabling the analysis of more factors such as network load for
example. It would be possible to analyze the behavior of the methods in a real
network, including latency, node distribution, volume of transactions...

Secondly, while current tests only include post-quantum digital signature
algorithms selected by NIST, many other post-quantum algorithms could be
tested in the future.

Finally, current tests were performed on a local computer with its own compu-
tational limitations and concurrent processes, which might affect results. Moving
the system to an external server dedicated to testing, free from other tasks, would
provide more accurate performance measurements. Additionally, creating a net-
work of multiple systems to run the same tests and share a common database
would allow for calculating average values across different systems, offering a
broader perspective on performance results.

Acknowledgements

This work has been partially supported by project PID2022-139268OB-I00, financed by

MCIN/AEI /10.13039/501100011033 / FEDER, UE and project TED2021-129830B-

I00, financed by MCIN/AEI /10.13039/501100011033/Next-GenerationEU/PRTR.

References

1. Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a pro-
grammable superconducting processor. Nature 574(7779), 505–510 (10 2019).
https://doi.org/10.1038/s41586-019-1666-5

2. Bhatia, V., Ramkumar, K.: An efficient quantum computing technique for crack-
ing rsa using shor’s algorithm. In: 2020 IEEE 5th International Conference on
Computing Communication and Automation (ICCCA). pp. 89–94 (2020). https:
//doi.org/10.1109/ICCCA49541.2020.9250806

3. Brooks, M.: Quantum computing is taking on its biggest challenge:
noise (01 2024), https://www.technologyreview.com/2024/01/04/1084783/

quantum-computing-noise-google-ibm-microsoft/

4. Buser, M., Dowsley, R., Esgin, M., Gritti, C., Kermanshahi, S.K., Kuchta, V.,
Legrow, J., Liu, J., Phan, R., Sakzad, A., Steinfeld, R., Yu, J.: A survey on exotic
signatures for post-quantum blockchain: Challenges and research directions. ACM
Computing Surveys 55(12) (3 2023). https://doi.org/10.1145/3572771

5. Chen, J., Gan, W., Hu, M., Chen, C.M.: On the construction of a post-quantum
blockchain for smart city. Journal of Information Security and Applications 58,
102780 (2021). https://doi.org/10.1016/j.jisa.2021.102780

6. Cloudflare: Circl: Cloudflare interoperable reusable cryptographic library (04
2024), https://pkg.go.dev/github.com/cloudflare/circl/sign/dilithium

7. CRYSTALS Team: Cryptographic suite for algebraic lattices (crystals) (08 2023),
https://pq-crystals.org/

DPM & CBT 2024

340



14 P. Juaristi

8. Daugaard, K.: Sphincsplus-golang (12 2023), https://github.com/kasperdi/

SPHINCSPLUS-golang

9. Fernández-Caramès, T.M., Fraga-Lamas, P.: Towards post-quantum blockchain: A
review on blockchain cryptography resistant to quantum computing attacks. IEEE
Access 8, 21091–21116 (2020). https://doi.org/10.1109/ACCESS.2020.2968985

10. Fouque, P., Hoffstein, J., Kirchner, P., Lyubashevsky, V., et al.: Falcon (11 2017),
https://falcon-sign.info/

11. Gao, Y.L., Chen, X.B., Chen, Y.L., Sun, Y., Niu, X.X., Yang, Y.X.: A secure
cryptocurrency scheme based on post-quantum blockchain. IEEE Access 6, 27205–
27213 (2018). https://doi.org/10.1109/ACCESS.2018.2827203

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions (2007), https://eprint.iacr.org/2007/432

13. Gidney, C., Ekerå, M.: How to factor 2048 bit rsa integers in 8 hours using 20
million noisy qubits. Quantum 5, 433 (4 2021). https://doi.org/10.22331/

q-2021-04-15-433

14. IBM: Ibm’s roadmap for scaling quantum technology. IBM (12 2023), https://
www.ibm.com/quantum/blog/ibm-quantum-roadmap

15. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa). International Journal of Information Security 1(1), 36–63 (08 2001).
https://doi.org/10.1007/s102070100002

16. Li, C.Y., Chen, X.B., Chen, Y.L., Hou, Y.Y., Li, J.: A new lattice-based signature
scheme in post-quantum blockchain network. IEEE Access 7, 2026–2033 (2019).
https://doi.org/10.1109/ACCESS.2018.2886554

17. National Institute of Standards and Technology (NIST): Post-quantum cryptogra-
phy (04 2024), https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022

18. Pati, C.: Search using grover’s algorithm. National Institute of Technology
Rourkela (11 2023). https://doi.org/10.13140/RG.2.2.25842.07369

19. Pornin, T.: Falcon source files (reference implementation) (11 2021), https://

falcon-sign.info/impl/falcon.h.html

20. SPHINCS+ Team: Sphincs+ (08 2023), https://sphincs.org/
21. Yang, Z., Alfauri, H., Farkiani, B., Jain, R., Di Pietro, R., Erbad, A.: A survey and

comparison of post-quantum and quantum blockchains. IEEE Communications
Surveys & Tutorials 26(2), 967–1002 (2024). https://doi.org/10.1109/COMST.
2023.3325761

22. Yi, H.: Secure social internet of things based on post-quantum blockchain. IEEE
Transactions on Network Science and Engineering 9(3), 950–957 (2022). https:
//doi.org/10.1109/TNSE.2021.3095192

DPM & CBT 2024

341


	Contents
	Preface
	DPM 2024 PC Committee
	CBT 2024 PC Committee
	DPM 2024: 19th International Workshop on Data Privacy Management
	DPM Session 1: Privacy & Machine Learning
	Privacy-Preserving Optimal Parameter Selection for Collaborative Clustering
	reteLLMe: Design rules for using Large Language Models to Protect the Privacy of Individuals in their Textual Contributions
	Plausible Deniability of Redacted Text
	Exploring Distribution Learning of Synthetic Data Generators for Manifolds

	DPM Session 2: Privacy & Applied Cryptography
	HEDAS: Secure and Efficient Distributed OLAP using Fully Homomorphic Encryption
	Card-based Cryptographic Protocols for Three-input Functions with a Standard Deck of Cards Using Private Operations
	Grid-Based Decompositions for Spatial Data under Local Differential Privacy
	Balancing Privacy and Utility in Multivariate Time-Series Classification

	DPM Session 3: Use Cases & Privacy Assessment
	Dynamic k-anonymity: A Topological Framework
	Using Static Code Analysis for GDPR Compliance Checks
	Privacy-preserving tabular data generation: Systematic Literature Review
	A DPIA Repository for Interdisciplinary Data Protection Research
	Secrecy and Sensitivity: Privacy-Performance Trade-Offs in Encrypted Traffic Classification


	CBT 2024: 8th International Workshop on Cryptocurrencies and Blockchain Technology
	CBT Session 1: Layer 2 & Smart Contracts
	Route Discovery in Private Payment Channel Networks
	A comparative study of Rust smart contract SDKs for Application-Specific Blockchains
	Offchain Runtime Verification (for The Tezos Blockchain)

	CBT Session 2: Consensus protocols & the cryptocurrency ecosystem
	Quantifying Liveness and Safety of Avalanche's Snowball
	We will DAG you
	Assessing the Impact of Sanctions in the Crypto Ecosystem: Effective Measures or Ineffective Deterrents?

	CBT Session 3: Cryptography for cryptocurrencies
	Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script
	Homomorphic Encryption Based ECDS Generation over 5PP
	Benchmarking post-quantum cryptography in Ethereum-based blockchains



