

Privacy-Preserving Multi-Party Reconciliation Secure in the Malicious Model

8th ACM International Workshop on Data Privacy Management 2013

Georg Neugebauer¹, Lucas Brutschy¹, Ulrike Meyer¹ and Susanne Wetzel²

UMIC LuFG IT-Security, RWTH Aachen University¹ Department of Computer Science, Stevens Institute of Technology²

12.09.2013

Overview

Fair and Privacy-Preserving Reconciliation on Ordered Sets
Protocol for Minimum of Ranks Secure in the Malicious Model

Fair and Privacy-Preserving Reconciliation

Borda Count Voting

Dotor

Michael Alice	2 1
Candidate	Points
Michael	3
Peter	2
Alice	1
Candidate	Points

Candidate Points

Points
3
2
1

Result	Points	
Michael	8	

IT SECURITY

DPM 2013

Fair and Privacy-Preserving Reconciliation on Ordered Sets

Definition (MPROS)

• Secure multi-party computation protocol between *n* parties

• Input:

- Ordered sets $S_1, ..., S_n$ of size k drawn from a common domain D
- Ranking $rank_S(x_i) = k i + 1$, $x_i \in S$

• Fairness:

$$f^{MR}(x) = \min \left\{ \operatorname{rank}_{S_1}(x), ..., \operatorname{rank}_{S_n}(x) \right\}$$
$$f^{SR}(x) = \operatorname{rank}_{S_1}(x) + ... + \operatorname{rank}_{S_n}(x)$$

• Output:

$$X = \underset{x \in (S_1 \cap \ldots \cap S_n)}{\operatorname{arg max}} f(x) \qquad t = \underset{x \in (S_1 \cap \ldots \cap S_n)}{\operatorname{max}} f(x)$$

Candidate	Points
Peter	3
Michael	2
Alice	1

MR			SR
Candidate	Points	Candidate	Points
Michael	2	Michael	8
Peter	1	Peter	6
Alice	1	Alice	4

MR			SR
Result	Points	Result	Points
Michael	2	Michael	8

Preliminaries

Basics

- Additively homomorphic cryptosystem (Threshold Paillier cryptosystem)
 - Compute the encrypted sum of two plaintexts given only the related ciphertexts
- Privacy-preserving multiset operations (Kissner et al.¹)
 - Represent multiset $S_i = \{s_{i,1}, ..., s_{i,k}\}$ as polynomial $f_i(x) = \prod_{j=1}^k (x s_{i,j})$
- Computation on encrypted polynomials, semi-honest adversary model

¹L. Kissner and D. X. Song: **Privacy-Preserving Set Operations**, In *CRYPTO*, LNCS, 2005

Preliminaries

Basics

- Additively homomorphic cryptosystem (Threshold Paillier cryptosystem)
 - Compute the encrypted sum of two plaintexts given only the related ciphertexts
- Privacy-preserving multiset operations (Kissner et al.¹)
 - Represent multiset $S_i = \{s_{i,1}, ..., s_{i,k}\}$ as polynomial $f_i(x) = \prod_{i=1}^k (x s_{i,i})$
- Computation on encrypted polynomials, semi-honest adversary model

Privacy-Preserving Set Operations

- Let ϕ , γ denote enc. polys, g an unenc. poly, and s, r, F_i random unenc. polys

¹L. Kissner and D. X. Song: Privacy-Preserving Set Operations, In CRYPTO, LNCS, 2005

MPROS Secure in the Semi-Honest Model

Reminder Definition

Fairness:

$$f^{MR}(x) = \min \{ \operatorname{rank}_{S_1}(x), ..., \operatorname{rank}_{S_n}(x) \}$$
 $f^{SR}(x) = \operatorname{rank}_{S_1}(x) + ... + \operatorname{rank}_{S_n}(x)$

Output:

$$X = \underset{x \in (S_1 \cap \ldots \cap S_n)}{\operatorname{arg max}} f(x) \qquad t = \underset{x \in (S_1 \cap \ldots \cap S_n)}{\operatorname{max}} f(x)$$

MPROS Functions²

• Minimum of ranks: • Minimum of ranks: • Sum of ranks: $\bigcap_{i=1}^{n} \{s_{i1}, \dots, s_{il}\} \\ \text{with round } 1 \le l \le k \text{ and } S_i = \{s_{i1} > \dots > s_{ik}\} \\ Rd_t \Big(renc (S_1) \cup \dots \cup renc (S_n) \Big) \cap (S_1 \cap \dots \cap S_n) \\ \text{with } renc (S_i) = \{s^{rank_i(s)} | s \in S_i\} \text{ and } t = nk - 1, \dots, n - 1$

²G. Neugebauer, L. Brutschy, U. Meyer, S. Wetzel: **Design and Implementation of Privacy-Preserving Reconciliation Protocols**, 6th ACM International Workshop on Privacy and Anonymity in the Information Society, EDBT/ICDT 2013, Genoa, Italy, March 2013

How to Achieve Security in the Malicious Model

Security Model

- Semi-honest adversary: insider attacker that tries to infer as much (secret) information as possible, but follows the prescribed actions of the protocol
- Malicious adversary: insider attacker that can almost arbitrarily deviate from the protocol except refusal to participate, manipulation of its own input, and protocol abortion

Observations

- MPROS is based on privacy-preserving intersections, unions, and reductions of multisets that encode the ordered input sets of the *n* parties
- Privacy-preserving multiset operations are based on homomorphic additions and scalar multiplications
- \rightarrow Use **ZKPK's** to prove correctness of computations involving **encryptions** of
 - secret input sets
 - chosen random polynomials
 - intermediate computation results

Verifiable Set Operations

Zero-Knowledge Proofs of Knowledge

- We use ZKPK's based on a threshold version of the Paillier cryptosystem
- Previous work
 - Interactive Proof of Plaintext Knowledge
 - Interactive Proof of Correct Multiplication
 - Proof of a Subset Relation Using Verifiable Shuffles
 - Proof of Correct Threshold Decryption
- Novel work
 - Non-Interactive Proof of Plaintext Knowledge and Correct Multiplication
 - Proof of a Homomorphic Linear Equation

Polynomial Operations

- Proof of Correct Multiplication of Polynomials
- Proof of Arbitrary Linear Expressions of Polynomials

 \rightarrow Enables verifiable set intersection, union, and reduction operations

Protocol Comparison (MR) - Semi-honest model (SHM) vs Malicious model (MM)

Same setting: $P_1, ..., P_n$, ordered sets $(S_i, <_i)$ chosen from a common domain D, pre-distributed keys, secure channels

1. Input Encryption

SHM Each party P_i encrypts and broadcasts its highest ranked input $\phi_{i,1} = E(x - d_{i,1})$ MM Each party P_i

- 1. Computes an encrypted shuffle $(\delta_{i,1}, ..., \delta_{i,k}, ...)$ of the domain D
- 2. Broadcasts the shuffle and a correctness proof $\Pi_{SHUFFLE,i}$

Each party P_i for $j \in \{1, ..., n\}$

- 1. If $j \neq i$, verifies $\prod_{SHUFFLE, j}$
- 2. Chooses random polynomial $r_{i,j,1}$ of degree 1
- 3. Computes and commits to $\rho_{i,j,1} = E_1(r_{i,j,1})$

Protocol Comparison (MR) - Semi-honest model (SHM) vs Malicious model (MM)

2. Set Intersection (Initially t = k - 1)

SHM Each party P_i

- 1. Chooses random polynomials $r_{i,j}$ of degree k t
- 2. Calculates and broadcasts $\gamma_i = \sum_{j=0}^{n} (\phi_{j,k-t} \times_h r_{i,j})$
- 3. Calculates $\pi = \tilde{\sum}_{l=1}^{n} \gamma_l$

MM Each party P_i

- 1. Opens the commitment to $\rho_{i,j,k-t}$
- 2. Computes and broadcasts $\gamma_i = \left[\tilde{\sum}_{j=0}^n (\phi_{j,k-t} *_h r_{i,j,k-t}) \right]_r$
- 3. Broadcasts a proof $\Pi_{\text{INTERSECT},i}$ that γ_i is correctly computed Each party P_i
 - 1. For $j \in \{1, ..., n\} \setminus \{i\}$ verifies $\prod_{\text{INTERSECT}, j}$
 - 2. Calculates $\pi = \sum_{i=1}^{n} \gamma_i$

Protocol Comparison (MR) - Semi-honest model (SHM) vs Malicious model (MM)

2. Set Intersection (Initially t = k - 1)

SHM Each party P_i

- 1. Chooses random polynomials $r_{i,j}$ of degree k t
- 2. Calculates and broadcasts $\gamma_i = \sum_{j=0}^{n} (\phi_{j,k-t} \times_h r_{i,j})$
- 3. Calculates $\pi = \tilde{\sum}_{l=1}^{n} \gamma_l$

MM Each party P_i

- 1. Opens the commitment to $\rho_{i,j,k-t}$
- 2. Computes and broadcasts $\gamma_i = \left[\tilde{\sum}_{j=0}^n (\phi_{j,k-t} *_h r_{i,j,k-t}) \right]_r$
- 3. Broadcasts a proof $\Pi_{\text{INTERSECT},i}$ that γ_i is correctly computed Each party P_i
 - 1. For $j \in \{1, ..., n\} \setminus \{i\}$ verifies $\prod_{\text{INTERSECT}, j}$
 - 2. Calculates $\pi = \sum_{i=1}^{n} \gamma_i$
- 3. Decryption
 - SHM All parties together perform a threshold decryption of π
 - MM All parties perform a malicious model threshold decryption of π

Protocol Analysis

Correctness

- We compute the same function as the semi-honest variants
- Assuming that the ZKPK's are difficult to forge, each party is forced to perform the correct computations
- \rightarrow Correctness results in the semi-honest model also apply to our malicious model variant

Security / Privacy

- All parties only learn the optimal solution and the minimum of ranks value
- Security proof based on the simulation paradigm given in our paper

Results in Theory

Problem	Model	Comp./Comm. Complexity	
MPROS ^{MR}	Semi-honest, standard model	$O\left(k^3\cdot n\cdot b^3 ight) \ O\left(k^2\cdot n\cdot b ight)$	
	Malicious, random oracle model	$O\left(\left(D +k^3\cdot n\right)\cdot n\cdot b^3\right)$ $O\left(\left(D +k^3\cdot n\right)\cdot n\cdot b\right)$	
MPROS ^{SR}	Semi-honest, standard model	$O\left(k^6\cdot n^4\cdot b^3 ight) \ O\left(k^3\cdot n^3\cdot b ight)$	
	Malicious, random oracle model	$ \begin{array}{c} O\left(\left(D +k^5\cdot n^4\right)\cdot k\cdot n\cdot b^3\right) \\ O\left(\left(D +k^5\cdot n^4\right)\cdot k\cdot n\cdot b\right) \end{array} \end{array} $	

- *n* parties, *k* input elements, modulus with *b* bits
- Computation overhead: encryption, decryption and homomorphic operations
- Communication overhead: number of ciphertexts transmitted

Remarks

• All solutions polynomial-time bounded with respect to the number of parties *n* and inputs *k*

Results in Practice

Conclusion

Contributions

- New protocols for privacy-preserving reconciliation on ordered sets secure in the malicious model
- New ZKPK's to enable verifiable set operations
- First practical implementation and evaluation of MPROS protocols secure in the malicious model

Future research

- Development of a manifold library for privacy-preserving applications³
- Development of end-user (mobile) applications for privacy-preserving reconciliation

³G. Neugebauer, U. Meyer: **SMC-MuSe: A Framework for Secure Multi-Party Computation on MultiSets**, RWTH Aachen University, Technical Report, AIB-2012-16, December 2012.

Thank you for your attention!

Questions?

