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Web Search Engines

Information society: access to services and information
anywhere anytime.

Web Search Engines (WSE) are one of the most successful
services on Internet.

Easy way to access the web.
During 2011 Google received 5000 million transactions per day.
All these transactions are stored in search logs.
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Search logs

A standard search log from a WSE is composed of lines
of the form:

(id, q, ts, r, url)

24963762 myspace codes 2006-05-31 23:00:52 2 http://www.myspace-codes.com

24964082 bank of america 2006-05-31 19:41:07 1 http://www.bankofamerica.com

24967641 donut pillow 2006-05-31 14:08:53

24967641 dicontinued dishes 2006-05-31 14:29:38

24969374 orioles tickets 2006-05-31 12:31:57 2 http://www.greatseats.com

24969374 baltimore marinas 2006-05-31 12:43:40
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Search logs utility

Personalization.
Results relevant to the users.

68% clicks in the first page.
92% clicks within the first three pages.

Disambiguation.

Example

mercury

Interests of the user and query context.

Advertisements.
Google had a revenue of 43, 686 million dollars from
advertisements in 2012.
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Search logs utility

Improving search.

Improve ranking algorithms.
Suggest reformulated queries.

Sharing data.
Researchers.

IR algorithms, users needs, use of language in queries...

Marketing companies.

Characterize profiles, behavior and search habits, improve
keyword advertising campaigns, extract market tendencies and
trending topics...
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Search logs privacy

Query logs clearly contain valuable information.

Logs can also contain personal information.

Example

A user searched for a certain place.

A user searched for a disease.

A user can make a vanity query.

Various information: Drug Clinic in Portland

Queries can disclose private information about the user.

12 / 35



Introduction
Background

Proposal
Results

Conclusions

Search logs privacy

Privacy disclosure risks

Identity disclosure.

User is re-identified.

Attribute disclosure.

Information about the user is retrieved.

Main threat: link user’s queries with user’s identity.
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Search logs anonymization

In order to limit disclosure risks, search logs should be
anonymized: Data modifications which limit the privacy
disclosure risks and reduce the data utility.

Utility is conditional to the ability of performing a latter
analysis with the data.
Privacy is conditional to the ability of disclosing information
about the users.

Once anonymized, search logs can be stored or outsourced.
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Search logs anonymization

The unbounded nature of queries make it difficult to detect
the sensitive information.

Not constitute well-defined sets of attributes (several subsets
of queries could play the role of quasi-identifiers)
Variable length and high dimensionality.
Free text.

Important trade-off between the privacy and the utility.

Although the search logs are anonymized, there is no absolute
guarantee of anonymity.
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AOL
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Erik S. Lesser  for The New York Times

Thelma Arnold's identity was betrayed
by AOL records of her Web searches,
like ones for her dog, Dudley, who
clearly has a problem.

Multimedia

Graphic: What Revealing Search

Data Reveals

A Face Is Exposed for AOL Searcher No. 4417749
By MICHAEL BARBARO and TOM ZELLER Jr.
Published: August 9, 2006

Buried in a list of 20 million Web search queries collected by AOL

and recently released on the Internet is user No. 4417749. The

number was assigned by the company to protect the searcher’s

anonymity, but it was not much of a shield.

No. 4417749 conducted hundreds of searches over a three-

month period on topics ranging from “numb fingers” to

“60 single men” to “dog that urinates on everything.”

And search by search, click by click, the identity of AOL

user No. 4417749 became easier to discern. There are

queries for “landscapers in Lilburn, Ga,” several people

with the last name Arnold and “homes sold in shadow

lake subdivision gwinnett county georgia.”

It did not take much investigating to follow that data trail

to Thelma Arnold, a 62-year-old widow who lives in

Lilburn, Ga., frequently researches her friends’ medical

ailments and loves her three dogs. “Those are my

searches,” she said, after a reporter read part of the list to

her.

AOL removed the search data from its site over the

weekend and apologized for its release, saying it was an

unauthorized move by a team that had hoped it would

benefit academic researchers.

But the detailed records of searches conducted by Ms.

Arnold and 657,000 other Americans, copies of which continue to circulate online,

underscore how much people unintentionally reveal about themselves when they use

search engines — and how risky it can be for companies like AOL, Google and Yahoo to

compile such data.

Those risks have long pitted privacy advocates against online marketers and other

Internet companies seeking to profit from the Internet’s unique ability to track the

comings and goings of users, allowing for more focused and therefore more lucrative

advertising.

But the unintended consequences of all that data being compiled, stored and cross-

linked are what Marc Rotenberg, the executive director of the Electronic Privacy

Information Center, a privacy rights group in Washington, called “a ticking privacy time

bomb.”

Mr. Rotenberg pointed to Google’s own joust earlier this year with the Justice

Department over a subpoena for some of its search data. The company successfully

fended off the agency’s demand in court, but several other search companies, including

AOL, complied. The Justice Department sought the information to help it defend a

challenge to a law that is meant to shield children from sexually explicit material.

“We supported Google at the time,” Mr. Rotenberg said, “but we also said that it was a

mistake for Google to be saving so much information because it creates a risk.”
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Background

Deletion of specific queries or logs.

Remove infrequent queries.
Select the queries to preserve an acceptable degree of privacy
Choose the publishable queries.

Microaggregation to anonymize search logs.

Ensures a high degree of privacy (k-anonymity).
Preserves some of the data utility.
Navarro-Arribas et al. (2009)
Erola et al. (2010)
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Microaggregation broadly explained

Microaggregation is divided in three steps:

Partition: create clusters of individuals.
Aggregation: calculate a representative individual for each
cluster.
Replace original data by the representative.

Microaggregation can be defined as an optimization problem.

Minimize information loss: find optimal partition.
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Erola et al.

Semantic Microaggregation: take into account semantics of
the queries.

WSE need to know users’ interests, which are represented by
queries’ semantics.

Example

Freddie Mercury VS. Queen Singer

Utility of search logs is related to the preservation of user’s
interests.
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Erola et al.

Interpret query terms in ODP (Open Directory Project) in
order to extract their semantics.

ODP is distributed data base of Web content classified by
humans.

Hierarchically structured in categories.
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Erola et al.

Similarity coefficient ODPsim between two given users ui and
uj :

OPDsim(ui , uj) =
L∑

l=1

{|cl | : cl ∈ {Cl(ui ) ∩ Cl(uj)}}

The representative is composed of random queries of all query
logs in the cluster.
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Erola et al.

Drawbacks:
Fail to retain their meaning of the complex queries with several
words or nouns. For instance: water sports.

Fail to retain the meaning of various nouns. For instance:
windsurfing in the Mediterranean.
The size of the hierarchy is limited: although we find a
classification in ODP it can be a non precisse one.
We need to disambiguate queries again.

All them are cause of the interpretation of the queries on the
knowledge base.
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Our proposal

We consider that selected results can better represent the
users’ interests.

We propose a microaggregtion method that uses selected
results insted of queries in order to anonymize the data.

We use ODP as metric space.
In this way, we can compare our proposal with Erola et al.
proposal.
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Our proposal

Our proposal is divided in four steps:
Search results for all the queries in a WSE.

We select the first result.

Classify selected results in ODP tree.
Partition: we use ODPsim.
Aggregation: calculate a representative for each cluster.

We select 840 users from the AOL files, which correspond to
400, 000 queries, to test our proposal.

We compare our proposal with Erola et al. proposal and a
random microaggregation.
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Evaluation

Coefficient Formula

Jaccard |S1∩S2|
|S1∪S2|

Sokal and Sneath |S1∩S2|
2×(|S1|+|S2|)−3×|S1∩S2|

Dice 2×|S1∩S2|
|S1|+|S2|

Table : Similarity coefficients between two sets S1 and S2
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Evaluation

Utility

UtilityCoefy (Cprop,Cx) =

n∑
i=1

Coefy (Corig (ui ),Cprop(ui ))

n∑
i=1

Coefy (Corig (ui ),Cx(ui ))

− 1

Disclosure risk

LinkabilityCoefy (Qprop,Qx) =

n∑
i=1

Coefy (Qorig (ui ),Qx(ui ))

n∑
i=1

Coefy (Qorig (ui ),Qprop(ui ))

−1

29 / 35



Introduction
Background

Proposal
Results

Conclusions

Results: Utility improvement
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Results: Linkability reduction
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Conclusions

The present work studies the maximization of the utility in
search logs anonymization.

We propose a microaggregation method that uses the selected
results to interpret the users’ interests.

We compared our proposal with the Erola et al. proposal and
a random microaggregation. Results shows that using the
selected results:

Information loss is reduced.
The record linkage is reduced.

Search results can better represent the users’ interests.
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Conclusions

Alternative representation: a bipartit graph.
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Thanks for your attention.
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