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Garbled Circuits [Yao86] 

 Powerful MPC tool 

 Permits to evaluate any f(x,y), represented by a boolean 

circuit, on private inputs 

 

 Applied to 

 Auctions 

 Medical scenarios 

 Biometric identification 

 … 
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Previous GC improvements 
Original GC 

 [Yao] 

Precomputing OT  
 [Beaver] 

OT implementation over elliptic curves  
 [Naor, Pinkas] 

Extending OT  
 [Ishai, Kilian, Nissim, Petrank] 

Point and Permute 
 [Malkhi, Nisan, Pinkas, Sella] 

Free-XOR  
 [Kolesnikov, Schneider] 

Garbled Row Reduction  
 [Pinkas, Schneider, Smart, Williams] 
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Motivation 

 Boolean circuits have a lot of gates that can be evaluated in 
parallel 

 Many actual systems are suitable for parallel computation 
 Multi-core CPUs 

 Graphic Processing Units 

 Multi-processors servers 

 Other works 
 Parallel implementation of particular operation 

 [Pu, Duan, Liu 2011] 

 GPUs for malicious setting 
 [Frederiksen, Nielsen, 2013] 

 Our contribution: 
 Two parallel implementations of GC 

 Analysis 
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Fine grained parallelization 

 Parallelization of single gates 

 Can be applied to any circuit 

 No special attention during circuit design 

 

 Circuit gates subdivided in layers 

 Parallelizion performed by a parser 

 Parallelized circuit 

 Sorted gates 

 Can be also evaluated sequentially 

 Additional information 

 Number of gates in each layer 
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Circuit parallelization 
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 General rule: 

A gate having inputs coming from  

gates respectively in layers i and j  

is placed in layer max(i,j)+1 
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Parser outputs 

Sorted circuit Additional information 
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Fine-grained execution 

 Gates in the same layer are assigned to different threads 

 

 New layer processed when previous one is completely 

elaborated 

 

 Separate management for NOT, XOR and non-XOR gates 

 XOR gates have low complexity  

 Circuits usually composed by ~75% of them 

 High benefits from XOR parallelization 

 

 High overhead introduced by thread management 
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Coarse-Grained Parallelization 

 Parallelization of macro-blocks 

 

 Different design strategy 

 A file for each macro-block 

 Easier circuit design 

 Interface between macro-blocks needed 

 New secret type for input and output 

 

 Suggestion: 

 Use of macroblocks also for input and output management 

 Conversion of plain inputs into associated secrets 
implemented by one or more macroblocks 

 

Macroblock 
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g e 

s 

s 
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Composition of macroblocks 

Evaluator input 

interface 
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Execution 
 Garbling 

 Same =s0  s1 used in all the circuits 

 Secret input pairs are not randomly generated 

 Forced to be equal to secret output pairs obtained by previous blocks 

 Evaluation 
 Secrets obtained as output are stored to be used later 

 Secrets used inside the block can be erased 

 

 Different instances of the same block garbled/evaluated independently in 
parallel 

 Garbling/evaluation of instances of the same block can be driven together 

 Time saved for loading circuit description 
 One file reading for all the instances of the same block 

 Reduced circuit description size 

 

 Single macro-blocks can be processed by using fine-grained parallelization 
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Security 

 Semi-honest model 

 Provided by GC protocol 

 

 Fine-grained implementation 

 Gates are only permuted  

 Evaluator and Garbler view identical to sequential 

implementation 

 

 Coarse-grained implementation 

 Evaluator and Garbler view is equal to the one provided by a 

single circuit obtained composing the macro-blocks 
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Performance analysis 
 Two application scenarios 

 Iris Identification 
 High parallel nature 

 Output: index of the best match, if exceeding a given threshold 

 AES encryption 
 Comparison with previous works 

 Multiple parallel AES encryption 

 System configuration 
 Two Intel Xeon E5-2609@2.4GHz 

 10Mb cache 

 4 cores each 

 16 GB RAM 

 Connected to 100Mb/s lan 

 OT precomputation peformed independently from the application 
 1 million OTs precomputed in 5 seconds 
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Iris identification 
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 Parameters: 

1023 irises in the DB 

2048 bits for each iris 

Single circuit:  

6.3 M gates (1M non-XOR gates) 

parallelizable in 356 layers 
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Iris identification (macroblocks) 
e g g g g g g 
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Iris Identification performance (8 threads) 

Phase Sequential Fine-Grained Coarse-Grained 
Fine Grained + 

Coarse Grained 

O
ff

li
n

e
 

Garbling 9.772 3.475 2.175 1.860 

OT precomputation 0.010 0.010 0.010 0.010 

Garbled tables transmission 1.701 1.314 0.036 0.690 

O
n

li
n

e
 

Garbler’s secret 
transmission 

0.338 0.378 0.130 0.158 

Evaluator’s secret 
transmission 

0.002 0.003 0.002 0.002 

Evaluation 3.437 2.899 1.019 1.765 
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Iris Identification performance (8 threads) 
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Oblivious AES Encryption 
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 Encryption of 128 bits 

 Data owned by Garbler 

 Encryption key owned by Evaluator  

 Circuit kindly provided by Schneider 

 38366 gates parallelizable in 327 layers 

 Comparison with the most efficient sequential implementation 
 [Huang, Evans, Katz, Malka, 2011] 

Phase Sequential Fine-Grained Huang et al. 

O
ff

li
n

e
 Garbling 0.001 0.001 

1.438 OT precomputation 0.133 0.082 

Garbled tables transmission 0.039 0.044 

O
n

li
n

e
 

Garbler’s secret transmission 0.000 0.000 0.038 

Evaluator’s secret transmission 0.013 0.002 0.086 

Evaluation 0.066 0.017 0.311 



Parallel AES Encryption 
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 Encryption of greyscale 

256x256 pixels image 

 4096 blocks evaluated in 

parallel 

e 

Encryption 

Key k 
g 
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Blockn 

AES AES AES 

Enck[Block1] Enck[Block2] Enck[Block3] 



Conclusions 
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 Addressed an analysis of parallel implementation of GC 

 Two different parallelization techniques 

 Fine-grained (gate) 

 Coarse-grained (macroblocks) 

 Tests performed on two different scenarios 

 Both the solutions improve performances 

 Coarse-grained is preferable,  when applicable 

 Optimum solutions for multi-core systems 

 

 Future works: 

 Study on circuit design for efficient parallelization 

 Implementation and tests on GPUs 

 Malicious setting analysis 

 


