
Parallel Implementation of GC-Based

MPC Protocols in the Semi-Honest Setting

Barni, Bernaschi, Lazzeretti, Pignata, Sabellico

University of Siena,

Italy

National Research Council

of Italy, Rome

Outline

 Introduction

 GC parallelization

 Two different implementations

 Fine-grained parallelization

 Coarse-grained parallelization

 Application examples

 Results

September 12, 2013 DPM 2013, Egham, UK 2

Garbled Circuits [Yao86]

 Powerful MPC tool

 Permits to evaluate any f(x,y), represented by a boolean

circuit, on private inputs

 Applied to

 Auctions

 Medical scenarios

 Biometric identification

 …

September 12, 2013 DPM 2013, Egham, UK 3

Previous GC improvements
Original GC

 [Yao]

Precomputing OT
 [Beaver]

OT implementation over elliptic curves
 [Naor, Pinkas]

Extending OT
 [Ishai, Kilian, Nissim, Petrank]

Point and Permute
 [Malkhi, Nisan, Pinkas, Sella]

Free-XOR
 [Kolesnikov, Schneider]

Garbled Row Reduction
 [Pinkas, Schneider, Smart, Williams]

September 12, 2013 DPM 2013, Egham, UK 4

1995

2001

2003

2004

2008

2009

1986

Parallelization

Motivation

 Boolean circuits have a lot of gates that can be evaluated in
parallel

 Many actual systems are suitable for parallel computation
 Multi-core CPUs

 Graphic Processing Units

 Multi-processors servers

 Other works
 Parallel implementation of particular operation

 [Pu, Duan, Liu 2011]

 GPUs for malicious setting
 [Frederiksen, Nielsen, 2013]

 Our contribution:
 Two parallel implementations of GC

 Analysis

September 12, 2013 DPM 2013, Egham, UK 5

Fine grained parallelization

 Parallelization of single gates

 Can be applied to any circuit

 No special attention during circuit design

 Circuit gates subdivided in layers

 Parallelizion performed by a parser

 Parallelized circuit

 Sorted gates

 Can be also evaluated sequentially

 Additional information

 Number of gates in each layer

September 12, 2013 DPM 2013, Egham, UK 6

Circuit parallelization

8 4

x0 y0 x1 y1

0 2 1 3

11

7

9

6

5

10 12 14 13 15

Layer 0

4

0 2 1 3

10 13

5

6 7

8

9

11

12

14

15

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7
 General rule:

A gate having inputs coming from

gates respectively in layers i and j

is placed in layer max(i,j)+1

September 12, 2013 DPM 2013, Egham, UK 7

Parser outputs

Sorted circuit Additional information

September 12, 2013 DPM 2013, Egham, UK 8

Fine-grained execution

 Gates in the same layer are assigned to different threads

 New layer processed when previous one is completely

elaborated

 Separate management for NOT, XOR and non-XOR gates

 XOR gates have low complexity

 Circuits usually composed by ~75% of them

 High benefits from XOR parallelization

 High overhead introduced by thread management

September 12, 2013 DPM 2013, Egham, UK 9

Coarse-Grained Parallelization

 Parallelization of macro-blocks

 Different design strategy

 A file for each macro-block

 Easier circuit design

 Interface between macro-blocks needed

 New secret type for input and output

 Suggestion:

 Use of macroblocks also for input and output management

 Conversion of plain inputs into associated secrets
implemented by one or more macroblocks

Macroblock

g e

g e

s

s

September 12, 2013 DPM 2013, Egham, UK 10

Macroblock

g e

s

Interface

Macroblock

Composition of macroblocks

Evaluator input

interface

e

s

Garbler input

interface

g

s

Garbler input

interface

g

s

Macro-block A

s

Macro-block A

s

Macro-block B

e

September 12, 2013 DPM 2013, Egham, UK 11

Evaluator output

interface

s

Execution
 Garbling

 Same =s0  s1 used in all the circuits

 Secret input pairs are not randomly generated

 Forced to be equal to secret output pairs obtained by previous blocks

 Evaluation
 Secrets obtained as output are stored to be used later

 Secrets used inside the block can be erased

 Different instances of the same block garbled/evaluated independently in
parallel

 Garbling/evaluation of instances of the same block can be driven together

 Time saved for loading circuit description
 One file reading for all the instances of the same block

 Reduced circuit description size

 Single macro-blocks can be processed by using fine-grained parallelization

September 12, 2013 DPM 2013, Egham, UK 12

Security

 Semi-honest model

 Provided by GC protocol

 Fine-grained implementation

 Gates are only permuted

 Evaluator and Garbler view identical to sequential

implementation

 Coarse-grained implementation

 Evaluator and Garbler view is equal to the one provided by a

single circuit obtained composing the macro-blocks

September 12, 2013 DPM 2013, Egham, UK 13

Performance analysis
 Two application scenarios

 Iris Identification
 High parallel nature

 Output: index of the best match, if exceeding a given threshold

 AES encryption
 Comparison with previous works

 Multiple parallel AES encryption

 System configuration
 Two Intel Xeon E5-2609@2.4GHz

 10Mb cache

 4 cores each

 16 GB RAM

 Connected to 100Mb/s lan

 OT precomputation peformed independently from the application
 1 million OTs precomputed in 5 seconds

September 12, 2013 DPM 2013, Egham, UK 14

Iris identification

e
query

g
Threshold

g
Iris1

g
Iris2

g
Iris3

g
Irisn-1

g
Irisn

HD HD HD HD HD

MIN MIN MIN

MIN

e
Best match index

MIN-TREE

with automatic

Index generation

 Parameters:

1023 irises in the DB

2048 bits for each iris

Single circuit:

6.3 M gates (1M non-XOR gates)

parallelizable in 356 layers

September 12, 2013 DPM 2013, Egham, UK 15

Iris identification (macroblocks)
e g g g g g g

HD HD HD HD HD

MIN0 MIN0 MIN0

MINlog(n+1)

e

Garbler

input

conversion

Garbler

input

conversion

Garbler

input

conversion

Garbler

input

conversion

Garbler

input

conversion

Garbler

input

conversion

Evaluator

input

conversion

Evaluator

output

conversion

September 12, 2013 DPM 2013, Egham, UK 16

Iris Identification performance (8 threads)

Phase Sequential Fine-Grained Coarse-Grained
Fine Grained +

Coarse Grained

O
ff

li
n

e

Garbling 9.772 3.475 2.175 1.860

OT precomputation 0.010 0.010 0.010 0.010

Garbled tables transmission 1.701 1.314 0.036 0.690

O
n

li
n

e

Garbler’s secret
transmission

0.338 0.378 0.130 0.158

Evaluator’s secret
transmission

0.002 0.003 0.002 0.002

Evaluation 3.437 2.899 1.019 1.765

September 12, 2013 DPM 2013, Egham, UK 17

Iris Identification performance (8 threads)

September 12, 2013 DPM 2013, Egham, UK 18

Oblivious AES Encryption

September 12, 2013 DPM 2013, Egham, UK 19

 Encryption of 128 bits

 Data owned by Garbler

 Encryption key owned by Evaluator

 Circuit kindly provided by Schneider

 38366 gates parallelizable in 327 layers

 Comparison with the most efficient sequential implementation
 [Huang, Evans, Katz, Malka, 2011]

Phase Sequential Fine-Grained Huang et al.

O
ff

li
n

e
 Garbling 0.001 0.001

1.438 OT precomputation 0.133 0.082

Garbled tables transmission 0.039 0.044

O
n

li
n

e

Garbler’s secret transmission 0.000 0.000 0.038

Evaluator’s secret transmission 0.013 0.002 0.086

Evaluation 0.066 0.017 0.311

Parallel AES Encryption

September 12, 2013 DPM 2013, Egham, UK 20

 Encryption of greyscale

256x256 pixels image

 4096 blocks evaluated in

parallel

e

Encryption

Key k
g

Block1

g
Block2

g
Blockn

AES AES AES

Enck[Block1] Enck[Block2] Enck[Block3]

Conclusions

September 12, 2013 DPM 2013, Egham, UK 21

 Addressed an analysis of parallel implementation of GC

 Two different parallelization techniques

 Fine-grained (gate)

 Coarse-grained (macroblocks)

 Tests performed on two different scenarios

 Both the solutions improve performances

 Coarse-grained is preferable, when applicable

 Optimum solutions for multi-core systems

 Future works:

 Study on circuit design for efficient parallelization

 Implementation and tests on GPUs

 Malicious setting analysis

