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Urban Movement Patterns

Macro-level detection of aggregated urban movement can assist
infrastructure management.

In a tourism office: “Are the individuals in this art gallery likely
to have visited a given art museum first?”

In a shopping mall: “Which shops are visited most likely after
the movie theater? and before the theater?”
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Individual Movement Patterns

Individuals often carry devices than can be detected

Local detections can be shared and allow movement tracking

02:27:e4:f2:cd:0a W.Foyer 11:Sep:2013:19:12:33

MAC pseudonyms can be correlated to individuals
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Research Questions

1 Can we design a mechanism that preserves privacy while
allowing limited accuracy tracking of movement patterns?

2 Can higher accuracy collective movement result from lower
accuracy individual tracking?
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Precedence Filters

Our approach, Precedence Filters, builds heavily on:

Bloom Filters (for probabilistic set membership) and on,

Vector Clocks (for distributed causality tracking).

The goal is to present a probabilist trace of past user locations, when
at a given location.

@ Subway

Bank → Market → Subway

And collectively collect common routes.
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Tools: Bloom Filters

Bloom filter for set {x , y , z} with 3 hash functions.

Bloom Filters 
12 

1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 

{x,y,z} 

Checking if w belongs to the set 

w 

hash_fun2 
hash_fun3 

hash_fun1 

Querying for element w yields a false positive.

Larger filters depict larger precision for the same stored set size.
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Tools: Vector Clocks

Captures causality (happens before) relations without wall clocks

P1

P2

P3

[2,2,0]

[2,2,3][0,0,1] [2,2,2]

[2,1,0]

[2,3,3]

[1,0,0] [2,0,0] [3,0,0] [4,3,3]

[2, 2, 0] → [2, 2, 3] → [4, 3, 4]
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System Model and Design

Network of local sensing devices (e.g. WiFi Hotspots)

MAC/Pseudonyms cannot leave the local sensing device

Tracking can exhibit false routes (plausible deniability)

No network communication failures

Network communication is faster than user movement

A node holds a filter and caches cells from other filters
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Precedence Filters: Algorithm

All filters have cells at 0 and they can take natural numbers

A MAC address a is sensed in scanner node X

Using hashes X calculates to which cells item a is mapped

Each other node sends to X the value on those cells

Node X updates the caches of node’s filters on those cells

In X filter, on those cells, it stores the maximum known value,
plus one. This creates a fingerprint for a that is after all other
sightings.

From this information a node can construct its probabilistic view of
the sequence of visits of a sensed device.
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Gonçalves, Rui
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Mobility Traces

Trace with recurrent visits

Subway → Market → Bookshop → Bank → Market → Subway

Precedence filters only capture the last of recurring visits

Trace with more recent visits

Bookshop → Bank → Market → Subway
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Metrics and Data Sets

A data set of Bluetooth sightings by static nodes was used from
Leguay at all, from 2006, where 18 static nodes tracked 9244 distinct
users. This trace was replayed and complemented by a derived
synthetic trace that expands the trace length and number of users.

Precedence Filters false positives create fictitious transitions. For
evaluation we observe the relative proportion of these transitions.
A value of 0.5 means that 50% of transitions are false.
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Data Set: Location visits
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Distribution of detections in locations on real and synthetic traces
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Inaccuracy vs False Positive Probability
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Real and synthetic traces for the same trace length and users

Global measures quality of aggregated transition prevalence
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Extended synthetic trace

Effects of increased trace size (100) and tracked users (100000)
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For longer runs higher quality aggregated data can be extracted from
low quality (higher privacy) individual movement tracking.
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Take home message

New technique, Precedence Filters, joins Bloom Filters and VCs

Controlling filter size WRT number of devices, dictates accuracy

False positives translate to fictitious visits to locations

Proportion of fictitious visits supports plausible deniability

50% user inaccuracy can support aggregated 10% inaccuracy
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