The 8-th International Workshop on Data Privacy Management (DPM 2013) September 12th – 13th, 2013 (Egham, UK)

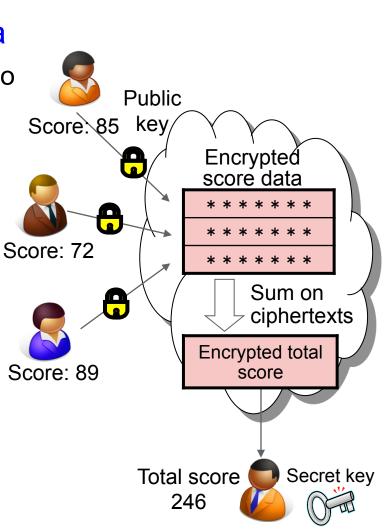
shaping tomorrow with you

Practical Packing Method in Somewhat Homomorphic Encryption

<u>Masaya Yasuda</u>, Takeshi Shimoyama, Jun Kogure (Fujitsu Laboratories Ltd.), Kazuhiro Yokoyama (Rikkyo University), and Takeshi Koshiba (Saitama University)

Homomorphic Encryption (HE)

- Public-key encryption supporting "some operations" on encrypted data
 - It enables us to compute the total score so that the cloud cannot know any score


Additively HE

- Practical in performance, but it can only support addition (e.g., Paillier scheme)
- Limited applications (e.g., e-voting)

FHE (fully HE)

- Breakthrough by Gentry [1] in 2009
- It supports any operations, and is expected to applied to cloud computing
- But, difficulty on performance and size

[1] C. Gentry, "Fully homomorphic encryption using ideal lattices", STOC 2009.

FUĨTSU

Summary of Our Work

SHE (Somewhat HE)

- It supports "a limited number" of additions and multiplications
 - Well known as a building block for the FHE construction
- Much faster and shorter than FHE
 - (Performance and Size) Additively HE < SHE << FHE
- Motivation: practical use of SHE in wider applications

Contributions:

- New packing method in SHE for the practical use
 - Use of the ring-LWE based LWE scheme
 - Our method can pack a vector into a single ciphertexts
 - It gives several efficient computations over packed ciphertexts
- Application to privacy-preserving biometrics
 - Our method gives faster performance and shorter size for secret authentication in the HE approach

Ring-LWE Based SHE Scheme

Key Generation

- Secret key sk=*s*, Public key pk= $(a\downarrow 0, a\downarrow 1)$
 - $a \downarrow 0 = -(a \downarrow 1 \ s + te)$ in $R \downarrow q$, s, $a \downarrow 1$, e: small noises in $R \downarrow q$
 - $R = \mathbb{Z}[x]/(x \ln t)$: base ring, *t*: plaintext modulus, *q*: ciphertext modulus

Encryption

- For a palintext $m \in R \downarrow t$, $Enc(m, pk) = (c \downarrow 0, c \downarrow 1) \in (R \downarrow q)^2$
 - $c \downarrow 0 = a \downarrow 0 \ u + tg + m, \ c \downarrow 1 = a \downarrow 1 \ u + tf$
 - u, g, f: small noises in $R\downarrow q$

Homomorphic Operations

- [Add] Enc(m,pk)+Enc(m¹/, pk):=($c \downarrow 0 + c \uparrow \prime \downarrow 0$, $c \downarrow 1 + c' \downarrow 1$)
- $[Mul] Enc(m,pk)*Enc(m\mathcal{T},pk) \coloneqq (c \downarrow 0 \cdot c \mathcal{T} \downarrow 0, c \downarrow 0 \cdot c \mathcal{T} \downarrow 1 + c \mathcal{T} \downarrow 0 \cdot c \downarrow 1, c \downarrow 1 \cdot c' \downarrow 1)$

Decryption

For a ciphertext ct=($c\downarrow 0$, $c\downarrow 1$, ..., $c\downarrow k$), Dec(ct, sk)=[$\sum t = c\downarrow i \cdot s t$] $q \mod t$ in $R\downarrow t$

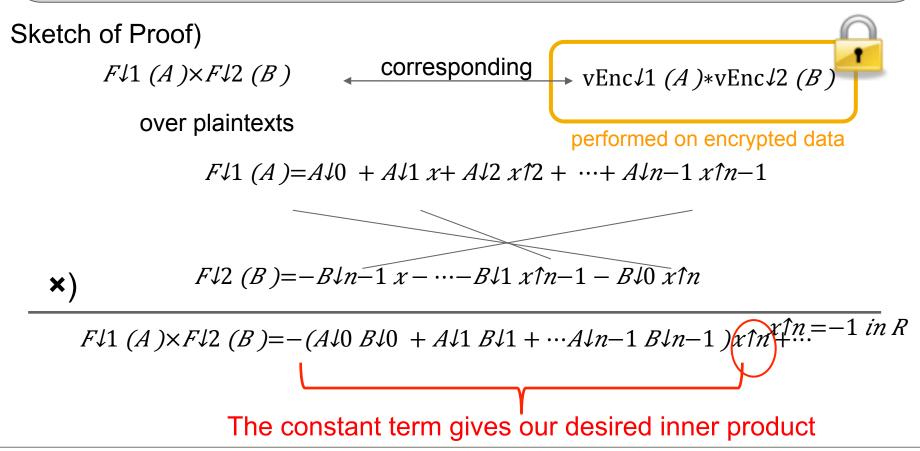
• [a]q: a modulo q in [-q/2, q/2)

Introduction of Our Packing Method

FUJITSU

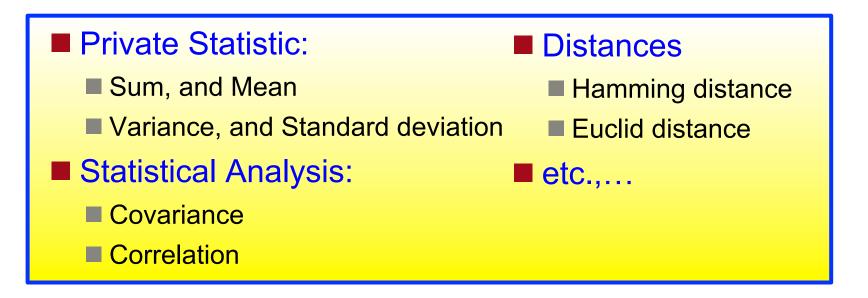
Strategy

- 1. Transform a vector of length n to a certain polynomial in R
- 2. Pack its polynomial into a single ciphertext
- Our Trick: two types of polynomials in $R=\mathbb{Z}[x]/(x \ln n+1)$
 - [Type1] $A = (A \downarrow 0, \dots, A \downarrow n-1) \rightarrow F \downarrow 1$ ($A \models \sum \uparrow A \downarrow i x \uparrow i$ (ascending order)
 - [Type2] $B = (B \downarrow 0, \dots, B \downarrow n-1) \rightarrow F \downarrow 2$ (B) $\coloneqq -\sum t = -\sum t = B \downarrow i x t n i$ (descending order)


Packed ciphertexts

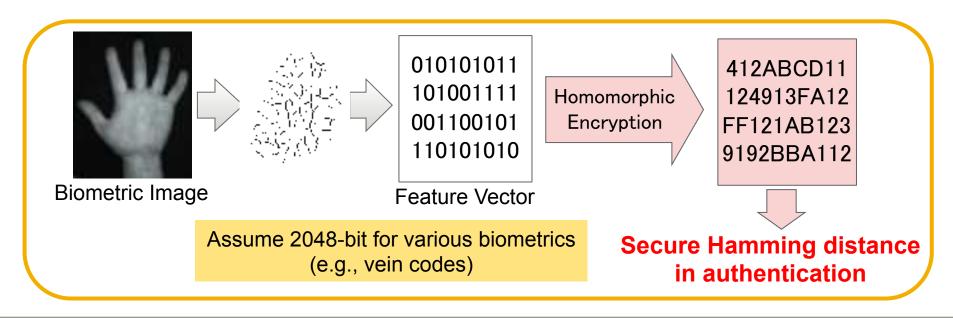
- [Type1] vEnc \downarrow 1 (A) := Enc(F \downarrow 1 (A), pk)
- [Type2] vEnc \downarrow 2 (B) \coloneqq Enc(F \downarrow 2 (B), pk)
 - It does not change the security level of the SHE scheme

Efficient Secure Inner Product



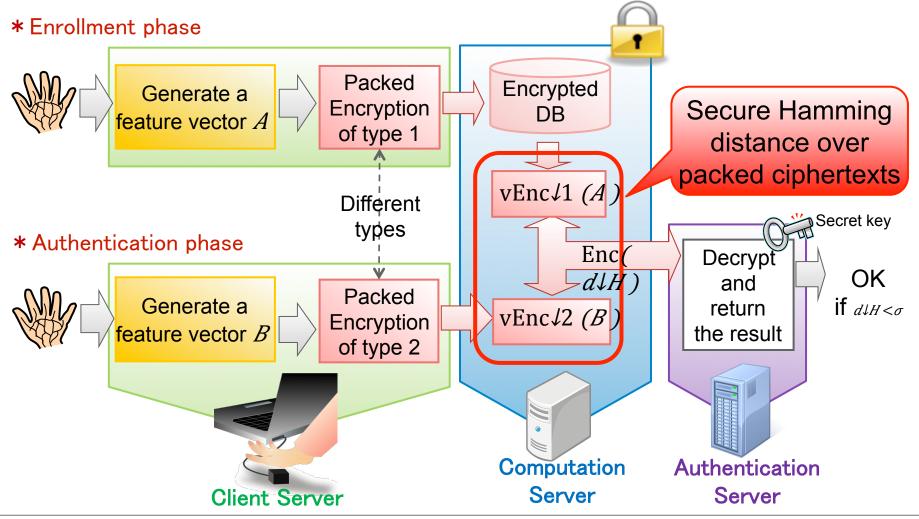
Only one homomorphic multiplication vEnc 1 (A) * vEnc 2 (B)over packed ciphertexts gives the inner product between A and B on encrypted data

Combinations of our packed ciphertexts also give us the following computations:


<u>Remark</u>: It is difficult to perform computations such as

- the median,
- the 1-norm distance

since we generally can not compare two values without decryption in the use of homomorphic encryption (irrespective of packing method).


Application to Privacy-Preserving Biometrics Fujirsu

- Privacy-Preserving Biometrics
 - Biometric authentication with protecting the privacy of biometric data
- Homomorphic Encryption Approach
 - Secure Hamming distance: metric to measure the similarity of feature vectors A, B on encrypted data
 - $d\downarrow H (A, B) = \sum_{i=0}^{i=0} 12047 \square (A\downarrow i B\downarrow i) 12 = \sum_{i=0}^{i=0} 12047 \square (A\downarrow i + B\downarrow i 2A\downarrow i \cdot B\downarrow i)$
 - The authentication result is "OK" if $d\downarrow H$ (A, B) < σ

Secret Authentication with Our Method

Since all computations are performed on encrypted data, we hope that we would use "the cloud" as the computation server

FUITSU

Table: A comparison on the performance and the encrypted data size

	Protocols	Performance of	Size increase rate by	Homomorphic	
	(feature vector size)	Secure Hamming	encryption [†] (cipher. size)	encryption scheme	
	SCiFI [25]	$310 \text{ ms}^{(a)}$	2048 times	Paillier-1024	
	(900-bit)		(230 KByte)	(additive scheme)	Only one feature vector
	Protocol of [2]	$150 \text{ ms}^{(b)}$	1024 times	DGK-1024	is protected
	(2048-bit)		(262 KByte)	(additive scheme)	
	Previous work [‡] [31]	$18.10 \text{ ms}^{(c)}$	about 80 times	ideal lattices-4096	Two feature
	(2048-bit)		(19 KByte)	(SHE)	vectors are
	This work	5.31 ms ^(c)	about 120 times	ring-LWE-2048	 protected, which condition
U	(2048-bit)		(31 KByte)	(SHE)	is tighter

[†] denotes the ratio of (encrypted feature vector size)/(plain feature vector size)

[‡] uses a similar packing method as in this work

^(a) on an 8 core machine of 2.6 GHz AMD Opteron processors with 1 GByte memory

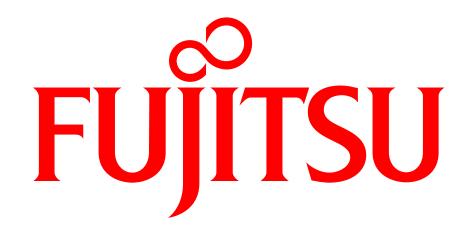
^(b)on an Intel Core 2 Duo 2.13 GHz with 3 GByte memory

^(c)on an Intel Xeon X3480 at 3.07 GHz with 16 GByte memory

[2] Osadchy et al, "SCiFI – A system for secure face identification", IEEE Security & Privacy 2010.
[25] Blanton et al, "Secure and efficient protocols for iris and fingerprint identification", ESORICS 2011.
[31] Yasuda et al., "Packed homomorphic encryption based on ideal lattices and its application to biometrics", MoCrySEn 2013.

Conclusions and Future Work

FUĴĨTSU


Conclusions

We proposed a packing method in the ring-LWE based SHE scheme

- Main trick: two types of packed ciphertexts
- It gives us an efficient computation of secure inner product
- Our method gave a practical solution in privacy-preserving biometrics
 - It takes 5.31 ms for secure Hamming distance of 2048-bit vectors
 - Faster than additively schemes even under tighter condition
 - Lattice-based SHE with our packing method would be practical

Future Work

- Application of our packing method in wider applications
 - e.g., secure pattern matching for secret search

shaping tomorrow with you